PROPUESTA DE SÍLABO DE ASIGNATURA

1. INFORMACIÓN GENERAL DE LA ASIGNATURA

	T		
Código:	digo: ESPOL02052		
Nombre:	INTELIGENCIA A PROMPTING PA	RTIFICIAL GENERATIVA Y A NEGOCIOS	
Modalidad de la asignatura:	Hibrida		
Idioma de impartición de la asignatura:	Español		
Organización del aprendizaje		Número de Horas	
Aprendizaje en contacto con el profesor	32		
Aprendizaje práctico-experimental	0		
Aprendizaje autónomo		32	
TOTAL DE HORAS		64	

2. PALABRAS CLAVE

IA Generativa, Sistemas RAG, Chatbots

3. OBJETIVO GENERAL DE LA ASIGNATURA

Diseñar técnicas de prompting y de soluciones con IA generativa, mediante el uso de modelos de lenguaje, y estrategias de IA por área funcional, para la mejora en los procesos operacionales y en oferta de valor de la organización.

4. DESCRIPCIÓN DE LA ASIGNATURA

La asignatura *IA Generativa y Prompting para los Negocios*, impartida a nivel de maestría en el programa de Business Analytics, está dirigida a profesionales que buscan aplicar modelos de lenguaje y técnicas de prompting en contextos empresariales. Se abordan temas como el diseño de prompts estratégicos, aplicaciones por áreas funcionales (marketing, finanzas, operaciones, RRHH), ética en IA y liderazgo de proyectos. El estudiante desarrolla habilidades para automatizar procesos, generar soluciones innovadoras y tomar decisiones con tecnologías de vanguardia, fortaleciendo su rol en la transformación digital y en la adopción responsable de la inteligencia artificial en las organizaciones.

5. CONOCIMIENTOS Y/O COMPETENCIAS PREVIOS

Software de análisis de datos, Machine Learning Aplicado

6. RESULTADOS DE APRENDIZAJE

	Resultados de aprendizaje de la asignatura	Resultado de aprendizaje del programa	Nivel de contribución al resultado de aprendizaje al perfil de egreso
1	Crear prompts, mediante el uso de estrategias que aborden las limitaciones de estos modelos, para la mejora de la calidad y de la relevancia en las respuestas de un modelo de lenguaje grande.	MBAn.RA.Metodos.1. Desarrollar competencias en programación, manejo y procesamiento de datos para identificar oportunidades de alcanzar la transformación digital de un negocio.	Alto
2	Identificar los impactos de la Inteligencia Artificial (IA) generativa en los negocios para el desarrollo de estrategias de IA efectivas.	MBAn.RA.Metodos.3. Investigar la tipología de preguntas en el manejo de un negocio, pueden ser contestadas a través de métodos cualitativos y cuales requieren un análisis estadístico.	Medio
3	Desarrollar estrategias de implementación de herramientas de IA generativas para la implementación de una IA ética y socialmente responsable que garanticen su transparencia.	MBAn.RA.Metodos.4. Analizar los dilemas éticos que se derivan del uso de sistemas aprendizaje automático para la toma decisiones en las organizaciones.	Alto

7. LISTADO DE UNIDADES

المناما ما	Nambro do los Unidodes y Cybywidodes		Horas de componentes		
Unidad		Nombre de las Unidades y Subunidades	ACD	APE	AA
1		Introducción a la Inteligencia Artificial (IA) Generativa y al uso del aprendizaje supervisado para entrenar modelos generativos. 1.1. El ciclo de vida de un modelo generativo, basado en MGLs, y los factores que limitan las decisiones en cada paso del ciclo. 1.2. Arquitectura de tipo Transformer, base de los Modelos Grandes de Lenguaje (MGL), como motor de la IA generativa. 1.3. Pre-aprendizaje y los retos/costos computacionales que involucra entrenar MGLs.	6		12
2		Prompting para modelos generativos. 2.1. Marcos para el diseño de prompts efectivos 2.2. Métodos iterativos para la optimización de prompts 2.3. Prompting Multimodal	5		10

3	3. Qué es el fine-tuning y estrategias modernas eficientes para mejorar el comportamiento de un modelo generativo en casos aplicados. 3.1. Fine-tuning basado en instrucciones 3.2. Fine-tuning basado en una y múltiples tareas 3.3. Fine-Tuning eficiente: PEFT y LoRA	5	10
4	 Desarrollando Sistemas de Búsqueda Multimodal y Retrieval Augmented Generation (RAG) Modelos de Embeddings y la importancia de tokenizadores Cuantización de Vectores y relevancia de la búsqueda Desarrollo de sistemas de recomendación y de busqueda 	10	20
5	5. Tópicos Especiales: El aprendizaje reforzado mediante retroalimentación humana (RLHF) para mejorar el comportamiento de MGLs en casos aplicados 5.1. Obteniendo Retroalimentación de humanos 5.2. Modelo de Recompenzas 5.3. Fine-Tuning mediante Reinforcement Learning	6	6

ACD: Aprendizaje en contacto con el profesor; APE: Aprendizaje práctico experimental; AA: Aprendizaje autónomo.

8. METODOLOGÍA

ESTUDIO DE CASOS:

Se examinan casos reales de adopción de IA generativa en empresas de distintos sectores (retail, salud, banca, RRHH), tanto exitosos como fallidos, para analizar cómo el prompting y los modelos de lenguaje transforman decisiones, procesos y estrategias de negocio, permitiendo a los estudiantes identificar riesgos, oportunidades e implicaciones éticas.

EJERCICIOS APLICADOS:

Los estudiantes diseñan una solución empresarial basada en IA generativa, integrando estrategias de prompting y modelos de lenguaje, desde su conceptualización hasta una implementación funcional adaptada a un área del negocio.

APRENDIZAJE BASADO EN PROBLEMAS (ABP):

Se plantean desafíos reales relacionados con la automatización, análisis de clientes o comunicación organizacional, que deben resolverse utilizando técnicas de prompting avanzado, selección de modelos, tuning y despliegue responsable de soluciones generativas en contextos empresariales.

REVISIÓN DOCUMENTAL Y ANÁLISIS CRÍTICO:

Los estudiantes analizan artículos técnicos y estudios recientes sobre arquitecturas de LLM, prompting, sistemas RAG y ética en IA, para reflexionar críticamente sobre los fundamentos teóricos, el impacto organizacional y las buenas prácticas en el desarrollo de soluciones con IA generativa.

9. EVALUACIÓN POR COMPONENTES DEL APRENDIZAJE

Commonanto	Porcentaje	Tipo de evaluación		
Componente	%	Diagnóstica	Formativa	Sumativa

1	Aprendizaje en contacto con el profesor	33	x	x	х
2	Aprendizaje práctico- experimental				
3	Aprendizaje autónomo	67		х	х

10. BIBLIOGRAFÍA

Básica:

- Jay Alammar (2020). The Illustrated Transformer.
 https://jalammar.github.io/illustrated-transformer/
- Jay Alammar (2021). The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). https://jalammar.github.io/illustrated-bert/
- Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.
- Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom, T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.
- Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. *ACM Computing Surveys*, 55(9), 1-35.
- Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., ... & Wang, G. (2023). Instruction tuning for large language models: A survey. *arXiv preprint arXiv:2308.10792*.

Complementaria:

- Jay Alammar (2019). The Illustrated GPT-2 (Visualizing Transformer Language Models). https://jalammar.github.io/illustrated-gpt2/
- Jay Alammar (2020). How GPT3 Works Visualizations and Animations. https://jalammar.github.io/how-gpt3-works-visualizations-animations/
- Asai, A., Min, S., Zhong, Z., & Chen, D. (2023, July). Retrieval-based language models and applications. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts) (pp. 41-46). https://acl2023-retrieval-lm.github.io/

11. RESPONSABLES DE LA ELABORACIÓN DEL SÍLABO

Nombre	Responsabilidad
Raquel Plua Moran	Coordinador
Ramón Villa Cox	Colaborador