

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL VICERRECTORADO ACADEMICO - DECANATO DE POSTGRADOS

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

PROPUESTA SÍLABO DE LA ASIGNATURA

1. INFORMACIÓN GENERAL DE LA ASIGNATURA

Código:	ESPOL02172 (TEMPORAL)			
Nombre:	INDUSTRIA 4.0	INDUSTRIA 4.0		
Modalidad de la asignatura	Híbrida	Híbrida		
ldioma de impartición de la asignatura:	Español			
Organización del aprendizaje		Número de Horas		
Aprendizaje en contacto con el profesor		32.0		
Aprendizaje práctico-experimental		0.0		
Aprendizaje autónomo		64.0		
TOTAL DE HORAS		96,00		
CRÉDITOS DELA ASIGNATURA		2,00		

2. PALABRAS CLAVE

fábricas inteligentes, automatización industrial, tecnologías habilitadoras, transformación digital, tecnologías habilitadoras

3. OBJETIVO GENERAL DE LA ASIGNATURA

Diseñar estrategias para la integración de los principios de la Industria 4.0, utilizando tecnologías habilitadoras y evaluando su impacto en los procesos productivos, para el fortalecimiento del análisis y la toma de decisiones en entornos industriales.

4. DESCRIPCIÓN DE LA ASIGNATURA

La asignatura de Industria 4.0 está dirigida a estudiantes de maestría, con el fin de proporcionarles una comprensión integral sobre la transformación digital de los procesos industriales. Se abordan los principios y tecnologías habilitadoras de la Industria 4.0, su aplicación en diversos sectores productivos, y los desafíos y oportunidades que surgen con esta revolución. A lo largo del curso, los estudiantes exploran casos de estudio reales, desarrollando habilidades para promover soluciones tecnológicas avanzadas que optimicen la manufactura y mejoren la eficiencia de los sistemas productivos.

5. CONOCIMIENTOS Y/O COMPETENCIAS PREVIOS

Conceptos básicos de manufactura y producción industrial. Fundamentos de tecnología y digitalización.

6. RESULTADOS DE APRENDIZAJE

	Resultados de aprendizaje de las Asignatura (Ya declarados previamente/en función de los contenidos)	Resultado de aprendizaje del programa (Ya declarados perviamente)	Nivel de contribución del resultado de aprendizaje del programa al perfil de egreso (Alto/Medio/ Bajo)
1	Evaluar los principios y tecnologías de la Industria 4.0, aplicándolos a casos prácticos de manufactura, para la identificación de los procesos más adecuados en función de las necesidades específicas de producción.	Diseñar mecanismos que aseguren la sostenibilidad de las mejoras y/o soluciones implementadas como parte de procesos de mejoramiento continuo.	Alta
2	Diseñar estrategias de procesos de manufactura, integrando tecnologías habilitadoras de la Industria 4.0, para la optimización de los sistemas productivos en diversos sectores industriales.	Diseñar mecanismos que aseguren la sostenibilidad de las mejoras y/o soluciones implementadas como parte de procesos de mejoramiento continuo.	Alta
3	Implementar soluciones tecnológicas basadas	Diseñar mecanismos que aseguren la sostenibilidad	Alta

6. RESULTADOS DE APRENDIZAJE

	Resultados de aprendizaje de las Asignatura (Ya declarados previamente/en función de los contenidos)	Resultado de aprendizaje del programa (Ya declarados perviamente)	Nivel de contribución del resultado de aprendizaje del programa al perfil de egreso (Alto/Medio/ Bajo)
3	en los principios de la Industria 4.0, mediante el uso de herramientas de análisis y simulación, para la mejora de los indicadores de producción y eficiencia en los procesos de manufactura.	de las mejoras y/o soluciones implementadas como parte de procesos de mejoramiento continuo.	Alta

7. LISTADO DE UNIDADES

		Horas de componentes		
Unidad	Nombre de las Unidades y Subunidades	Contacto con el profesor	Práctico- Experimental	Aprendizaje autónomo
	1. Introducción a la Industria 4.0			
۱ ,	1.1. Evolución histórica de las revoluciones industriales	4	0	8
1.	1.2. Definición de la Industria 4.0	4		
	1.3. Impacto global de la Industria 4.0			
	2. Tecnologías habilitadoras de la industria 4.0			
	2.1. Internet de las cosas			
	2.2. Big Data y analítica avanzada		0	40
	2.3. Computación en la nube y edge computing			
2.	2.4. Inteligencia artificial y aprendizaje automático			
	2.5. Robótica colaborativa y autónoma	20		
	2.6. Manufactura aditiva			
	2.7. Gemelos digitales y simulación			
	2.8. Realidad aumentada y realidad virtual			
	2.9. Ciberseguridad industrial			
	2.10. Sistemas ciberfísicos y automatización inteligente			
	3. Aplicaciones y casos de estudio			
2	3.1. Aplicaciones de la industria 4.0 en manufactura		0	8
3.	3.2. Aplicaciones en otros sectores industriales	4		
	3.3. Casos de estudio destacados			
	4. Desafíos, oportunidades y el futuro de la industria 4.0			
1	4.1. Desafíos en la implementación	4	0	8
4.	4.2. Impacto en la sociedad	4		
	4.3. Pespectivas futuras			

8. METODOLOGÍA

La metodología del curso combina exposiciones teóricas con apoyo audiovisual, análisis de casos reales y actividades prácticas para la aplicación de conceptos. Se fomenta el aprendizaje activo mediante discusiones grupales, uso de herramientas digitales y resolución de problemáticas en contextos reales. Además, se promueve la interacción entre los participantes a través de dinámicas colaborativas que faciliten la comprensión y aplicación de las tecnologías de la Industria

9. EVALUACIÓN POR COMPONENTES DEL APRENDIZAJE

COMPONENTE		Porcentaje %	Tipo de evaluación		
			Diagnóstica	Formativa	Sumativa
1	Aprendizaje en contacto con el profesor	60,00	×	×	×
2	Aprendizaje práctico-experimental	0,00			
3	Aprendizaje autónomo	40,00		×	×

10. BIBLIOGRAFÍA

Básica:		
Industry 4.0, Managing the digital transformation – Ustundag, et al – 2018		
Complementaria:		
Handbook of Smart Manufacturing, Forecasting the Future of Industry 4.0 – Ajay Kumar, et al – 2023		
Industry 4.0 Concepts, Processes and Systems – Ravi Kant, et al – 2024		

11. RESPONSABLES DE LA ELABORACIÓN DEL SÍLABO

Nombre	Responsabilidad
RODRÍGUEZ ZURITA MARÍA DENISE	Colaborador
BUESTÁN BENAVIDES MARCOS NICOLAJEEF	Colaborador
HELGUERO ALCIVAR CARLOS GABRIEL	Coordinador de asignatura

