

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL VICERRECTORADO ACADEMICO - DECANATO DE POSTGRADOS

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

PROPUESTA SÍLABO DE LA ASIGNATURA

1. INFORMACIÓN GENERAL DE LA ASIGNATURA

Código:	ESPOL02153 (TEMPORAL)	ESPOL02153 (TEMPORAL)		
Nombre:	PLANIFICACIÓN Y CONTROL DE LA PF	PLANIFICACIÓN Y CONTROL DE LA PRODUCCIÓN		
Modalidad de la asignatura	Híbrida	Híbrida		
ldioma de impartición de la asignatura:	Español			
Organización del aprendizaje		Número de Horas		
Aprendizaje en contacto con el profesor		48.0		
Aprendizaje práctico-experimental		0.0		
Aprendizaje autónomo		96.0		
TOTAL DE HORAS		144,00		
CRÉDITOS DELA ASIGNATURA		3,00		

2. PALABRAS CLAVE

teoria de restricciones, justo a tiempo, kanban, sistemas pull, cuello de botella

3. OBJETIVO GENERAL DE LA ASIGNATURA

Desarrollar proyectos en entornos operativos industriales, integrando modelos de planificación y control de la producción, enfoques pull y principios de la teoría de las restricciones, para la mejora de la eficiencia operativa.

4. DESCRIPCIÓN DE LA ASIGNATURA

Asignatura de nivel avanzado de maestría orientada al análisis de modelos de planificación y control de operaciones. Abarca tanto enfoques clásicos como contemporáneos, con énfasis en sistemas pull, kanban y la Teoría de las Restricciones (TOC). Está dirigida a profesionales que buscan optimizar procesos productivos mediante herramientas de mejora operativa, integrando perspectivas estratégicas y tácticas

5. CONOCIMIENTOS Y/O COMPETENCIAS PREVIOS

Manejo de hoja de cálculo.

Lectura comprensiva de textos científicos y académicos en idioma inglés

6. RESULTADOS DE APRENDIZAJE

	Resultados de aprendizaje de las Asignatura (Ya declarados previamente/en función de los contenidos)	Resultado de aprendizaje del programa (Ya declarados perviamente)	Nivel de contribución del resultado de aprendizaje del programa al perfil de egreso (Alto/Medio/ Bajo)
1	Aplicar sistemas basados en la teoría de las restricciones para la planificación y control de la producción.	Diseñar e implementar proyectos de mejoramiento continuo a través de la aplicación de herramientas estadísticas, matemáticas y computacionales en empresas manufactureras o de servicios.	Alta
2	Aplicar los principios de producción de manufactura esbelta mediante el desarrollo de sistemas de control de producción Pull reduciendo los tiempos de entrega	Diseñar e implementar proyectos de mejoramiento continuo a través de la aplicación de herramientas estadísticas, matemáticas y computacionales en empresas manufactureras o de servicios.	Alta
3	Crear planificaciones de producción a mediano y largo plazo utilizando el planificador de recursos de manufactura para la reducción de los costos asociados al manejo de inventarios.	Diseñar e implementar proyectos de mejoramiento continuo a través de la aplicación de herramientas estadísticas, matemáticas y computacionales en empresas manufactureras o de servicios.	Alta

7. LISTADO DE UNIDADES

		Horas de componentes		
Unidad	Nombre de las Unidades y Subunidades	Contacto con el profesor	Práctico- Experimental	Aprendizaje autónomo
	1. Introducción a los Sistemas de Control de Producción			
	 1.1. Definición y objetivos de los sistemas de control de producción 	4		10
1.	1.2. Enfoques Push y Pull	6	0	12
	 1.3. La estrategia operativa, la distribución de procesos y su influencia en los sistemas de control de producción 			
	2. Sistemas clásicos de planificación y control de producción			
	2.1. Sistemas MRP, MRP II, ERP y DDMRP			
2.	2.2. Planificación agregada de operaciones y ventas	12	0	24
	2.3. Planificación de requerimientos de materiales			
	2.4. Control de piso de trabajo			
	3. Física de Fábricas para ejecutivos			
	3.1. Parámetros e indicadores de desempeño básico			
3.	3.2. Ley de Little y su aplicación en sistemas productivos	10	0	20
	3.3. Ecuación VUT y su aplicación en sistemas productivos			
	3.4. Leyes de la Física de Fábricas			
	4. Control Visual y Sistemas de control de producción Lean			
	4.1. Ventajas y limitaciones de los sistemas Kanban			
4.	4.2. Tipos de Tarjetas Kanban	10	0	20
	4.3. Tamaño de lote técnico			
	4.4. Cálculo de número de tarjetas Kanban			
	5. Teoría de Restricciones			
	5.1. Principios Fundamentales de TOC			
5.	5.2. Indicadores TOC	5	0	10
	5.3. El método DBR (Drum-Buffer-Rope)			
	5.4. El método S-DBR (Simplified Drum-Buffer-Rope)			
	6. Sistemas Híbridos y basados en control de carga			
	6.1. Sistema de control de producción CONWIP			
	6.2. Sistemas basados en control de carga WLC	_		
6.	6.3. Modelos Mixtos: Combinación de sistemas según procesos	5	0	10
	 6.4. Análisis comparativo del desempeño de sistemas de control de producción 			

8. METODOLOGÍA

El curso estará basado en la presentación de conceptos y herramientas que luego serán aplicados en clase y a través de trabajo autónomo mediante casos de estudio y talleres que presenten entornos similares a los ambientes laborales donde se desempeñan los estudiantes. Se emplearán técnicas como simulaciones y talleres. Se propendrá el trabajo colaborativo y el trabajo interdisciplinario especialmente en el proyecto final de curso. Es necesario el estudiante realice lectura independiente que será compartida mediante la plataforma Aula Virtual y con lo cual reforzará los conceptos fundamentales. y podrá revisar casos de aplicación.

9. EVALUACIÓN POR COMPONENTES DEL APRENDIZAJE

COMPONENTE		Porcentaje	Tipo de evaluación			
	COMPONENTE		%	Diagnóstica	Formativa	Sumativa
	1	Aprendizaje en contacto con el profesor	60,00	×	х	x

9. EVALUACIÓN POR COMPONENTES DEL APRENDIZAJE

COMPONENTE		Porcentaje	Tipo de evaluación		
COM	COMPONENTE		Diagnóstica	Formativa	Sumativa
1	Aprendizaje práctico-experimental	0,00			
2	Aprendizaje autónomo	40,00		х	

10. BIBLIOGRAFÍA

Básica:

Hopp, W. J., & Spearman, M. L. (2011). Factory Physics: Foundations of Manufacturing Management (3rd ed.). Waveland Press Tucker, A. (2021). Factory Physics for Managers: HowLeaders Improve Performance in a PostLean SixSigma World. McGrawHill Professional.

Scheinkopf, L. J. (2020). Thinking for a change: Putting the TOC Thinking Processes to use. Taylor & Francis.

11. RESPONSABLES DE LA ELABORACIÓN DEL SÍLABO

Nombre	Responsabilidad
RODRÍGUEZ ZURITA MARÍA DENISE	Coordinador de asignatura
BUESTÁN BENAVIDES MARCOS NICOLAJEEF	Colaborador

