Morare John

T 621.67 CHO

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

FACULTAD DE INGENIERIA EN MECANICA

CONSTRUCCION DE UN BANCO DE PRUEBAS PARA BOMBAS CENTRIFUGAS

TESIS DE GRADO

Previa a la obtención del Título de

INGENIERO MECANICO

Presentado por:

EMILIO FEDERICO CHONG GARCIA

Guayaquil - Ecuador

1996

AGRADECIMIENTO

- A Dios, por permitirme concluir mis estudios superiores.
- Al Ing. Franscisco Andrade S., Director de Tésis por su ayuda y colaboración en la realización de esta Tésis.
- Al Ing. Mario Patiño A., por su invalorable y desinteresada ayuda en el desarrollo del presente trabajo.
- Al Dr. Alfredo Barriga R., por la gestión realizada para conseguir el financiamiento de este proyecto.
- A mis amigos y familiares por brindarme su apoyo constante.

DEDICATORIA

A MI PADRE

A MI MADRE

A MI HERMANA

ING. EDUARDO RIVADENEIRA P.
DECANO DE LA FIM

Commo States.

ING. FRANCISCO ANDRADE S.
DIRECTOR DE TESIS

ING. JORGE FELIX N.

MIEMBRO DEL TRIBUNAL

ING. MANUEL HELGUERO G.

ElcuERA

MIEMBRO DEL TRIBUNAL

DECLARACION EXPRESA

"La responsabillidad por los hechos, ideas, y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de exámenes y Títulos profesionales de la ESPOL)

EMILIO FEDERICO CHONG GARCIA

RESUMEN

El Banco de Pruebas para Bombas constituye un equipo necesario para la producción y comercialización de bombas, donde el fabricante de las mismas pueda obtener experimentalmente el informe que certifique y garantice al comprador que sus bombas cumplen con las caracteristicas para una aplicación determinada. Incluso el comprador puede hacer una comprobación somera de vez en cuando para registrar el comportamiento y decidir si es necesario reemplazaria.

La prueba que se le realiza a la bomba está recomenda por el Instituto Hidráulico y se denominan "Pruebas en fábrica o en laboratorio". El banco entre sus partes principales consta de un motor de combustión interna a base de gasolina, un torquímetro, bomba centrifuga, tuberías con sus respectivos accesorios y estructuras donde se colocan los dispositivos para medición y control.

Con el equipo en óptimas condiciones arranca la prueba de la bomba haciendo la respectiva toma de datos experimentales para calcular el NPSH, altura útil, velocidad específica de succión, potencias, eficiencias, para obtener las curvas características y curvas de isoefiencias de la bomba centrífuga de prueba.

Para encontrar las mejores condiciones de funcionamiento de la bomba analizamos las curvas anteriormente citadas donde encontramos sus puntos de mayor efleciencia (puntos nominales de operación) a una determinada revolución del eje de la bomba. Dentro del análisis se enfoca también los costos de construcción y operación del Banco de Pruebas, para que la persona que desea usar o construir, tenga una idea de los costos básicos que involucra poseer una herramienta de esta naturaleza.

INDICE GENERAL

			PAG.
RES	UMEN		. VI
INDICE GENERAL VII			VIII
INDI	CE DE I	FIGURAS	ΧI
INDICE DE TABLAS X			XIII
SIME	BOLOGI	A	. XV
INTF	RODUC	CION	XVIII
CAP	ITULO I	: FUNDAMENTOS BASICOS SOBRE PRUEBAS DE BOI	MBAS
1.1	Clasific	ación de las pruebas de bombas	20
1.2	Curvas	características de bombas centrifugas	22
1.3	Reglas	generales para la operación de las bombas	25
1.4	Medido	ores de potencia	27
1.5	Definic	iones generales	29
	1.5.1	Presión estática	29
	1.5.2	Presión Dinámica	30
	1.5.3	Velocidad específica	31
	1.5.4	Carga del sistema	34
	1.5.5	Potencia hidraúlica y potencia mecánica	40
	1.5.6	Pérdidas hidraúlicas y mecánicas	43

	1.5.7 Eficiencia	. 4
	1.5.8 Carga neta positiva de succión (NPSH)	45
CAP	ITULO II : CARACTERISTICA DEL EQUIPO EXPERIMENTAL.	
2.1	Banco de pruebas	51
2.2	Motor de combustión interna	52
2.3	Bomba centrífuga	5
2.4	Instrumentación	54
2.5	Fuente de alimentación y drenaje del agua	57
	ITULO III : TRABAJO EXPERIMENTAL.	
3.1	Procedimiento requerido para la prueba	. 58
3.1	Procedimiento requerido para la prueba Preparación del equipo	
		62
3.2 3.3	Preparación del equipo	62 . 63
3.2 3.3 3.4	Preparación del equipo	62 . 63
3.2 3.3 3.4	Preparación del equipo Toma de datos de operción Cálculo del NPSH disponible	62 . 63 . 69
3.2 3.3 3.4 3.5	Preparación del equipo Toma de datos de operción Cálculo del NPSH disponible Obtención del NPSH requerido	62 . 63 . 69 . 70
3.2 3.3 3.4 3.5 3.6	Preparación del equipo Toma de datos de operción Cálculo del NPSH disponible Obtención del NPSH requerido Cálculo de la altura útil o efectiva	62 . 63 . 69 . 70 . 71
3.2 3.3 3.4 3.5 3.6 3.7	Preparación del equipo Toma de datos de operción Cálculo del NPSH disponible Obtención del NPSH requerido Cálculo de la altura útil o efectiva Cálculo de la velocidad específica de succión.	62 . 63 . 69 . 70 . 71 . 72
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Preparación del equipo Toma de datos de operción Cálculo del NPSH disponible Obtención del NPSH requerido Cálculo de la altura útil o efectiva Cálculo de la velocidad específica de succión. Cálculos de potencia	62 63 . 69 70 71 . 72 73

	3.10.2	Curvas de potencia en función del caudal	. 75
	3.10.3	Curvas de eficiencia en función del caudal	. 76
3.11	Curvas	de isoeficiencias	76
CAP	ITULO IV	: ANALISIS DE RESULTADOS.	
4.1	INTERP	RETACION DE LAS CURVAS CARACTERISTICAS	. 100
4.2	COSTO	S DEL BANCO	. 102
4.3	COSTO	S DE OPERACION	105
CON	ICLUSIO	NES Y RECOMENDACIONES	112
ANEXOS 116			. 116
RIRI IOCEACIA 153			152

INDICE DE FIGURAS

	P	'AG.
1.1	Características típicas de bombas centrifugas	24
1.2	Velocidad específica de bombas rotodinámicas	32
1.3	Carga estática total de un sistema con bomba centrífuga	35
3.1	Curva de carga vs caudal a 2.800 RPM	78
3.2	Curva de potencia al freno vs caudal a 2.800 RPM	79
3.3	Curva de eficiencia vs caudal a 2.800 RPM	80
3.4	Curva característica de la bomba a 2.800 RPM	81
3.5	Curva de carga vs caudal a 2.500 RPM	. 82
3.6	Curva de potencia al freno vs caudal a 2.500 RPM	83
3.7	Curva de eficiencia vs caudal a 2.500 RPM	. 84
3.8	Curva característica de la bomba a 2.500 RPM	. 85
3.9	Curva de carga vs caudal a 2.800 RPM.,	86
3.10	Curva de potencia al freno vs caudal a 2.000 RPM	87
3.11	Curva de eficiencia vs caudal a 2.000 RPM	. 88
3.12	Curva característica de la bomba a 2.000 RPM	. 89
3.13	Curva de carga vs caudal a 1.800 RPM	90
	Curva de potencia al freno vs caudal a 1.800 RPM	
	Curva de eficiencia vs caudal a 1.800 RPM	
3.16	Curva característica de la bomba a 1.800 RPM	Q2

3.17 Curva de NPSHR vs caudal a 2.800 RPM	94
3.18 Curva de NPSHR vs caudal a 2.500 RPM	95
3.19 Curva de NPSHR vs caudal a 2.000 RPM	96
3.20 Curva de NPSHR vs caudal a 1.800 RPM	97
3.21 Curva de NPSHA vs caudal	98
3.22 Curva de Isoeficiencia	99
B.1 Estator del torquímetro montado en forma rígida	130
C.1 Tubería de succión	134
C.2. Tuheria de descarga	400

INDICE DE TABLAS

		PAG
3.1	Datos experimentales para calcular: cabezal, potencias y	
	eficiencias a 2.800 RPM	65
3.2	Datos experimentales para calcular: cabezal, potencias y	
	eficiencias a 2.800 RPM	66
3.3	Datos experimentales para calcular: cabezal, potencias y	
	eficiencias a 2.800 RPM	67
3.4	Datos experimentales para calcular: cabezal, potencias y	
	eficiencias a 2.800 RPM	68
A.1	Datos para graficar las curvas características a 2.800 RPM	118
A.2	Datos para graficar las curvas características a 2.500 RPM	119
A.3	Datos para graficar las curvas características a 2.000 RPM	. 120
A.4	Datos para graficar las curvas características a 1.800 RPM	. 121
A.5	Datos y resultados para el NPSH requerido a 2.800 RPM	. 122
A.6	Datos y resultados para el NPSH requerido a 2.500 RPM	. 123
A .7	Datos y resultados para el NPSH requerido a 2.000 RPM	. 124
8.A	Datos y resultados para el NPSH requerido a 1.800 RPM	. 125
A.9	Datos y resultados del NPSH disponible	. 126
B.1	Clasificación de los acoplamientos	. 131
R 2	Dimensiones de les brides fins (C)	400

C.1	Fricción en tuberías debido al agua	136
C.2	Fricción en accesorios de tuberías con agua	137
C.3	Fricción en accesorios de tuberías con agua	138
C:4	Fricción en accesorios de tuberías con agua	139
C.5	Tabla de vapor (temperatura de saturación)	140

SIMBOLOGIA

abs : Absolutos (lectura)

°C: Grados centigrados

Cte: Constante

CIF: Costo, seguro y flete

DR: Densidad relativa

d : diámetro

°F: Grados Farenheit

FOB: Franco a bordo

g : Aceleración de la gravedad

GPM: Galones por minutos

ha: Presión atmosférica

hd : Cabezal de descarga

hf : Cabezal de perdidas por fricción

h_{gd} : Presión manométrica de descarga

h_{gs} : Presión manométrica de succión

 h_{psa} : Presión sobre la superficie de succión

hs : Cabezal de succión

h_{sa}: Cabezal de succión total

hss: Cabezal estático de succión

Ht: Cabezal Total (altura útil)

h_√: Cabezal de velocidad

h_{vd} : Cabezal de velocidad en la descarga

h_{vs} : Cabezal de velocidad en la succión

h_{vpa} : Presión de vapor del agua en terminos de cabezal

HP: Caballos de fuerza

Kw-h: Kilovatios- horas

Lb-Plg²: Libras por pulgadas cuadradas

Lb-pié: Libras-pié

Lt.: Litros

man: manométrica (lectura)

n : Velocidad de rotación

Ns : Velocidad específica

NPSHA: Cabezal neto positivo de succión disponible

NPSHR: Cabezal neto positivo de succión requerido

P : Presión estática

Pf: Potencia al freno

Plg H₂O: Pulgadas de agua

Pw: Potencia hidráulica

Q : Caudal (capacidad)

SA: Velocidad específica de succión disponible

T: Torque

°T : Temperatura

V : Velocidad lineal

W : Velocidad angular

Z : Distancia vertical entre el eje de la bomba al manómetro

Zd : Distancia vertlical entre el eje de la bomba y el manómetro de descarga

Zs : Distancia vertiical entre el eje de la bomba y el manómetro de succión

П: Pi (3.1416)

γ: Peso específico

η : Eficiencia

ρ : Densidad

INTRODUCCION

Las bombas son máquinas que absorben energía mecánica y la restituye al líquido que la atraviesa en forma de energía hidráulica, es conocido que las de tipo centrífugo constituyen aproximadamente el 80% de la producción de bombas a nivel mundial debido a que puede manejar más cantidad de líquido que las de tipo desplazamiento positivo. Por está razón se encuentran muy ligadas a los procesos industriales y agrícolas.

El banco de pruebas para bombas cuenta entre sus partes principales de un motor de combustión interna de 1200 cc., capaz de desarrollar una potencia de 50HP, a una velocidad de 6000 revoluciones por minuto empleando como combustible gasolina, La bomba que nos servirá para prueba tiene una velocidad nominal de 2800 revoluciones por minuto y maneja un caudal de 150 Galones por minuto con un cabezal de 165 pies. Este banco constará con un torquímetro de tipo eléctrico marca SHC., para revoluciones máximas de 7500 rev/ min., con capacidad de 500 libras por pulgadas.

El fluido de trabajo para esta experiencia es agua potable almacenada en una cisterna del laboratorio de conversión de energía, cuyo caudal es sensado por un medidor de tipo turbina.

El procedimiento a seguir después de tener conformado el banco en cuestión es la comenzar a tomar datos de caudal, presiones tanto en la succión como en la descarga de la bomba en prueba, el torque en el eje, las revoluciones a que se encuentra trabajando. Con la finalidad de conocer el rendimiento o comportamiento de la bomba por medio de las curvas características de tal forma que, a una velocidad constante de rotación de la bomba, se grafica: Carga total de la bomba, eficiencia y potencia mecánica (al freno) versus la capacidad o caudal entregado, además se variará las revoluciones del motor hasta llegar a las revoluciones nominales de la bomba.

CAPITULO I

FUNDAMENTOS BASICOS SOBRE PRUEBAS DE BOMBAS.

1.1 Clasificación de las pruebas de bombas centrifugas.

Las pruebas de bombas se iniciaron desde que el hombre empezó a utilizar los dispositivos para elevar el agua. Con el transcurrir el tiempo se han perfeccionado tanto el equipo de bombeo como las técnicas para las pruebas de bombas, sean estas en el laboratorio o en el campo.

En la actualidad a toda bomba se le realizan las pruebas necesarias antes de ponerla a la disposición del comprador, de manera que este pueda revisar en el catálogo del fabricante las características que poseen y elegir la que más se adapte a sus necesidades.

Las pruebas por lo general tienen uno de los siguientes propósitos:

 Mejorar el funcionamiento real , lo cual permite evaluar cualquier efecto sobre el comportamiento y esto nos permitirá conocer cuales serán los cambios que se aplicarán al proyecto. Determinar si se han cumplido los requisitos contractuales, lo cual hace posible la comparación del comportamiento especificado, predicho y real.

El Instituto Hidráulico clasifica las pruebas de bombas como sigue:

- 1. Pruebas en fábrica o en laboratorio, que a veces se le llama pruebas para aceptación. Se efectúan en la fábrica en condiciones geométricamente similares, ideales y controladas considerando que son los métodos más exactos para las pruebas.
- 2. Pruebas en el campo o sitio, se realizan con la unidad de bombeo instalada en su lugar final y en condiciones de funcionamiento reales y de límite de comportamiento. La exactitud y confiabilidad de las pruebas en el campo dependen de la instrumentación utilizada, la instalación misma y la planeación durante etapas del proyecto de la instalación.
- 3. Las pruebas con modelos, sirven para proyectar y construir el prototipo y suelen ser muy exactas; complementan las pruebas de campo del prototipo para el cual se hizo el modelo. Las pruebas con modelos se utilizan cuando se trata de unidades muy grandes y para

comparar el comportamiento de diversos modelos para su evaluación, ayudando a tener una idea anticipada del prototipo.

1.2 Curvas características de las bombas.

Las bombas del tipo centrífugo se diferencian de otros tipos porque pueden operar con velocidad constante y descargar cualquier capacidad desde cero hasta una capacidad máxima dependiendo del tamaño, diseño y condiciones de succión de la bomba. La carga total generada por la bomba, la fuerza requerida para moveria y la eficiencia varían con la capacidad.

Las interrelaciones de capacidad, carga (cabezal), potencia, y eficiencia se las denominan características de la bomba, y suelen mostrarse gráficamente un conjunto de curvas llamadas curvas características de la bomba, donde observamos que la carga, la potencia, y la eficiencia se grafican contra el caudal a velocidad constante, como se muestra en la figura 1.1

Cuando las condiciones de succión llegan a ser críticas, la curva límite de elevación de succión-caudal o la curva de NPSH requerido - caudal es la que se muestra la mayoría de las veces.

La curva H-Q de la fig. 1.1 presenta la relación entre la altura o carbezal total y el caudal, llamada curva de carga-capacidad. Frecuentemente se clasifican las bombas tomando como base la forma de sus curvas cargacapacidad.

La curva P_P-Q de la fig. 1.1 presenta las relaciones existente entre la potencia necesaria para mover el eje del impulsor y la cantidad de agua que la bomba puede manejar , es la curva de fuerza-capacidad; pero generalmente uno se refiere a la curva de potencia al freno.

La curva η - Q , en la fig. 1.1 exhibe la relación entre la eficiencia y el caudal, se le denomina curva de efciencia-capacidad, pero muchas veces se la llama curva de eficiencia.

Las curvas características de las bombas se grafican para una variación del caudal desde cero hasta el caudal normal de funcionamiento, no se muestra el caudal máximo, ya que está fuera del margen de trabajo (punto de máximo rendimiento).

Con la ayuda de estas curvas podemos conocer las condiciones de operación o nominales, es decir el caudal, la potencia al freno , el cabezal total desarrollado en el punto de máxima eficiencia.

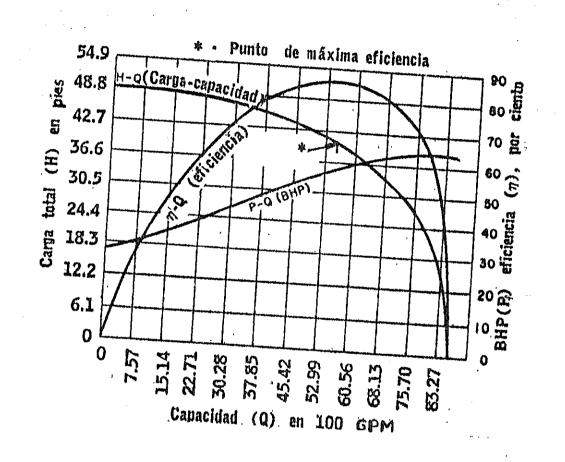


Figura 1.1. Caracaterísticas típicas de bombas centrifugas.

1.3 Reglas generales para la operación de las bombas.

Antes de la operación inicial de cualquier bomba centrifuga, es necesario asegurarse que la unidad de potencia está conectada para proporcionar la dirección correcta de rotación, que todos los acoplamientos de ejes entre componentes separados de toda la unidad esten alineados dentro de los límites establecidos por el fabricante, y que todos los cojinetes tengan las cantidades adecuadas de lubricantes.

Cuando se pone en servicio por primera vez una bomba centrífuga, sus conductos se encuentran ocupados por el aire. Si el abastecimiento de succión está arriba de la presión atmosférica, el cebado se efectúa eliminando el aire atrapado en la bomba por medio de una válvula prevista para este propósito. Si la bomba toma la succión de una cisterna localizada abajo de la bomba misma, se desaloja el aire en la bomba por medio de un dispositivo que produzca vacío, o instalando una válvula de pié (válvula de retención) en la línea de succión, para que el líquido ocupe totalmente el lugar del aire.

Cuando el sistema cuenta con una válvula de retención, protege a una bomba del flujo inverso después de una falta de corriente o combustible (para bombas movidas por motores de combustión interna) , se las puede volverias a arrancar sin temor a dañarla, una vez restablecida la energía o el combustible.

Las bombas que operan con elevación de succión pueden perder su cebado durante el período que no hay corriente o combustible, en este caso no deben proceder a arrancarias hasta cebarla nuevamente.

Si estrangulamos la succión de una bomba de tipo centrífugo se produce una reducción en la presión absoluta a la entrada del impulsor, llegando a reducir el caudal y forzando a la bomba a funcionar en vacío, disminuyendo el caudal de descarga por alteración de la curva cabezalcaudal. Esta acción causa una reducción en la eficiencia, daños por erosión y destrucción prematura por cavitación.

Solo se recomienda estrangular la succión cuando la presión de succión excede en amplio margen los requerimientos mínimos, como en el caso de la segunda bomba de una unidad en serie. (Ref. 5, cap.26, 516).

La estrangulación de la succión la realizamos con el fin de simular en el banco de pruebas, las condiciones de succión en la bomba y poder hallar el NPSH requerido.

1.4 Medidores de Potencia.

La medición del torque está frecuentemente asociada con la determinación de la potencia mecánica, definiéndose la potencia como la velocidad o rapidez con que se realiza un trabajo. Los aparatos para medir la energía mecánica (dinamómetros) son de dos tipos.

 Los que absorben la energía y la disipan en calor (dinamómetros de absorción).

En el dinamómetro de absorción, el momento del par o torque se mide por equilibrios con pesos colocados en un brazo de palanca de longitud fija, no obstante también se utilizan otros procedimientos para medir fuerzas.

Hay varias clases de dinamómetros de absorción :

Freno de Prony.

Freno de aletas.

Freno de agua.

Freno de retraso magnético o de corrientes parásitas.

Dinamómetros eléctricos.

2.- Los que transmiten la energía que se mide (dinamómetros de transmisión).

En los dinamómetros de transmisión se mide el momento del par por medio de elementos medidores de deformación ligados al árbol de transmisión. Un dinamómetros de transmisión comúnmente empleado es del tipo elástico que emplea un medidor de esfuerzo para sensar el torque transmitido al eje, frecuentemente se usan acoplándose entre la carga y el motor. Las conecciones eléctricas se hacen por medio de argollas tipo slip, en la mayoría de los casos los transductores de resistencia tipo medidores de deformación son más sensibles para sensar las deflexiones. Comercialmente están disponibles para capacidades de 100 a 30000 Lb. Pig., con exactitud del 0.25%.

El torquímetro denominado "sin contacto" empleado en este proyecto, es un caso especial de dinamómetro de transmisión que posee una buena exactitud en la medición de torque y velocidad rotacional, el cual emplea un campo electromagnético y medidores de defexión.

El material del extensómetro es de constantan, adherido sobre el eje donde sensa la torsión aplicada enviádola a un transformador rotatorio rotatorio y luego a la caja transductora-amplificadora que posee pantalla de presentación digital. El torquímetro es de tipo bidireccional con resistencia a la fatiga bastante elevada, llegando a resistir torques picos no más grandes que la escala total que posee. El eje es de acero inoxidable dentro de una cubierta compacta que lo hace inmune a los campos externos, ruidos y fluídos hidraúlicos, siendo ideal para el control en la producción.

1.5 Definiciones Generales.

1.5.1 Presión Estática.

La presión estática es independiente del tiempo, la que se obtiene con buena exactitud pues no hay variación de presión perpendicular a las líneas de corrientes cuando estas son rectilíneas, haciendo posible la medición cuando el fluido se encuentra en movimiento. Si el orificio es perpendicular a la pared del ducto no producirá perturbaciones al conectar el instrumento de medición adecuado.

El término de presión (P), que es uno de los miembros de la ecuación de Bernoulli , es la presión estática.

$$P/p + V^2 / 2 + gZ = cte$$

1.5.2 Presión Dinámica.

La presión dinámica se refiere a fluidos en movimiento y pueden ser menor, igual o mayor que la presión hidrostática, la cual va ligada a la columna de agua del punto al que se refiere. Una presión dinámica tiene dirección de aplicación mientras que la estática se transmite en todas las direcciones.

La presión dinámica forma parte de un término de la ecuación de Bernoullí, que reordenandose se puede obtener la presión dinámica, así:

$$P + \rho V^2/2 + \rho gZ = Cte$$
. (Ecuación de Bernoulli)

El término (1 /2 ρ V 2 / 2) de la ecuación de Bernoullí se lo conoce como presión dinámica. En otras palabras es el efecto de presión que causaría la energía cinética cuando la velocidad se reduce a cero.

1.5.3 Velocidad Específica.

Las bombas rotodinámicas se las clasifica asignando a todas las familias de bombas geométricamente semejantes un número denominado velocidad específica. Este número es un indicativo de las formas y características que poseen impulsores, tal como se muestra en la fig. 1.2

El término "velocidad específica" relaciona los tres factores principales de las características de rendimiento: capacidad, carga y velocidad de rotación en un solo término, en su forma básica la velocidad específica es un número índice que se expresa así:

Ns=
$$(n\sqrt{Q})/(Ht)^{3/4}$$
 (1.1)

donde:

Ns = velocidad específica.

n = velocidad de rotación, RPM.

Q = caudal, GPM.

Ht = carga, Pies. (Carga por etapas en una bomba de etapas múltiples).

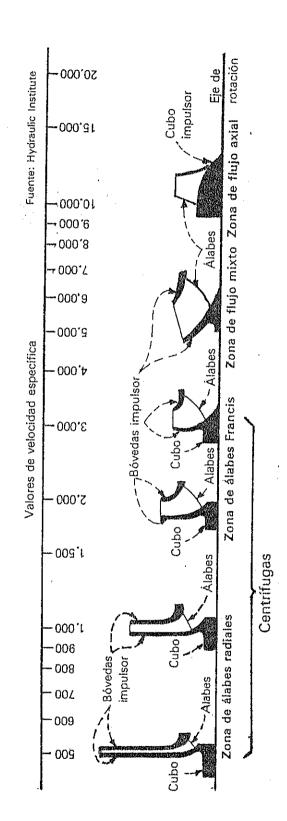


Figura 1.2 Velocidad especifica de bombas rotodinámicas

La ecuación anterior no cambia aunque el impulsor sea de succión sencilla o doble. Por lo tanto, cuando se cita un valor definido de velocidad específica se menciona el tipo de impulsor.

Aunque se podría calcular la velocidad específica en cualquier condición dada de carga y capacidad, la definición de velocidad específica supone que la carga y capacidad utilizadas en la ecuación son para la máxima eficiencia de la bomba.

El valor índice asociado con la capacidad en la succión es la velocidad específica de succión y se define también como un número índice que describe las condiciones de succión del sistema (bomba - instalación).

Para determinar la velocidad específica de succión disponible (SA), empleamos la siguiente fórmula :

$$SA=(N\sqrt{Q})/(NPSHA)^{3/4}.$$
 (1.2)

donde:

SA = Velocidad específica de succión disponible.

N = Velocidad de rotación (RPM)

Q = Caudal o Flujo requerido por la bomba (GPM).


NPSHA = Cabezal neto positivo de succión disponible (pies).

Este valor se compara con el valor proporcionado por el fabricante de la bomba, que normalmente es en el punto de máxima eficiencia de la bomba. (ref. 2 pag. 106).

1.5.4 Carga del sistema.

Una bomba para entregar un volumen dado de líquido en un sistema, debe aplicar al líquido una energía formada por los siguientes componentes:

- 1. Carga estática.
- 2. Diferencia de presiones en la superficies de los líquidos.
- 3. Carga de fricción.
- 4. Pérdidas en la entrada y salida.
- 5. Elevación correspondiente a la velocidad.

a. Nivel de succión debajo de la línea de centros de la bomba

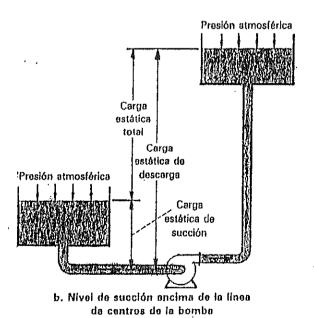


Figura 1.3 Carga estática total de un sistema con bomba centrífuga.

Carga estática

La carga estática total de un sistema se define como la diferencia en elevación entre el nivel del líquido de descarga y el nivel del líquido de succión de la bomba. Fig. 1.3.

La diferencia de elevación entre el nivel de líquido de descarga y la línea de centro de la bomba se llama carga estática de descarga; si el nivel de líquido para la succión está debajo de la línea de centros de la bomba, tendrá un valor negativo y se denomina altura estática de aspiración.

Si el nivel de líquido de la succión o el de descarga está a otra presión que no sea la atmosférica, deben considerarse como parte de la carga estática.

Carga de fricción.

La carga de fricción es la carga equivalente, expresada en altura de líquido bombeado, necesario para superar las pérdidas de fricción que se producen al pasar el líquido por la tubería y los accesorios. Dicha carga sufre variaciones que dependen de la cantidad de flujo, tamaño, tipo y condición de la tubería con sus accesorios, y la naturaleza del líquido a bombearse.

Los datos para el cálculo de la pérdida por fricción para tuberías nuevas y con cierto tiempo de uso lo encontramos tabulados en el Hydraulic Institute Standards.

Pérdidas en la entrada y en la salida.

Si no se tiene una línea a presión para suministro de agua y se realiza el abastecimiento a la succión de la bomba con una cisterna, las pérdidas a la entrada dependen del diseño de la entrada al tubo. Para reducir las pérdidas se recomienda una entrada con forma acampanada. En el lado de la descarga, si la salida es del mismo diámetro que la tubería de descarga y termina en alguna extensión de líquido se produce una pérdida completa de la elevación correspondiente a la velocidad. Algunas veces para recuperar esta energía la descarga termina en un cono largo para reducir la velocidad. Algunos ingenieros sugieren

consideran las pérdidas de entrada y salida como parte de las pérdidas por fricción del sistema

Elevación correspondiente a la velocidad.

La energía cinética que poseen los líquidos en cualquier punto se lo conoce como la elevación correspondiente a la velocidad, expresados en columna de líquido, para nuestro caso es en columna de agua, su expresión matemática es :

$$h_v = v^2/2 g$$
. (1.3)

donde:

h_v: cabezal de velocidad (pies)

v: velocidad del líquido (pies / seg.)

g: aceleración de la gravedad (32.2 pies / seg²).

La elevación correspondiente a la velocidad más el cabezal manómetrico tanto en la succión como en la descarga se emplean para obtener el cabezal total o altura útil.

Si el cambio en la energía cinética es relativamente pequeña, como en bombas con gran altura de elevación, el no considerarias no afectarán significativamente los resultados en el cabezal total. Al no tener gran altura de elevación en nuestro banco de pruebas si la debemos tomar en cuenta.

La altura útil o cabezal total Ht, es el incremento de la energía en columna de líquido impartido al líquido por la bomba (ref. 2, sec 4, pag 68-71) su expresión algebraica es:

$$Ht = hd - hs ag{1.4}$$

$$Ht = (h_{gd} - h_{gs}) + (h_{vd} - h_{vs}) + (Z_d - Z_s).$$
 (1.5)

donde:

hd: Cabezal de descarga total

hs: Cabezal de succión total

h_{gd}: Presión manométrica en la descarga

h_{gs}: Presión manométrica en la succión.

 h_{vd} : Cabezal de velocidad en la descarga.

h_{vs}: Cabezal de velocidad en la succión.

- Z_d: Distancia vertical entre el manómetro de descarga y el eje de la bomba
- Z_s: Distancia vertical entre el manómetro de succión y el eje de la bomba

En el banco que utilizamos para la prueba de la bomba se debe considerar lo siguiente:

 $Z_s = 0$ (toma de presión justamente en la línea de referencia).

La ecuación 1.5 queda así:

$$Ht = (h_{gd} + h_{vd} + Z_d) - (h_{gs} + h_{vs})$$
 (1.6)

1.5.5 Potencia Hidráulica y Potencia Mecánica.

El trabajo desarrollado por una bomba, está en función de la altura dinámica de descarga y del peso del líquido bombeado en un período de tiempo determinado. Donde el producto del peso específico por el caudal y la altura útil o

total es la potencia hidráulica o potencia útil como también es conocido y se representa así:

$$P_{w} = y*Q*Ht. (1.7)$$

Al emplear agua, la fórmula anterior es la siguiente:

$$P_{w} = 0.0002527*Q*Ht$$
 (1.8)

donde:

Pw: Potencia hidráulica (HP)

Q: caudal (GPM)

Ht: cabezal total (pies).

γ: Peso especifico del agua (62.4 Lb_f / ple³)

La potencia mecánica es la necesaria para mover el eje de la bomba y se le conoce como potencia al freno. En nuestro caso, es la potencia suministrada por el motor de combustión interna.

$$P_f = (1/550) * W *T$$
 (1.9)

donde:

Pf : Potencia al freno (HP)

W : Velocidad angular del eje de la bomba

T: Torque (par en el eje).

Los valores W y T son obtenidos experimentalmente por el sistema de medición de torque y velocidad que posee el torquímetro del laboratorio.

La ecuación (1.9) podemos expresaria en función de las revoluciones por minuto y del torque transmitido al eje de la bomba y por los factores que lo convierten en unidades de potencia comúnmente usadas en las curvas de bombas, como se muestra en la ecuación (1.10).

$$Pf = (190.40 *10^{-6} *n *T)$$
 (1.10)

donde:

Pf : Potencia al freno (HP)

n : revoluciones del eje (RPM).

T: Torque (Lbs x pie)

1.5.6 Pérdidas hidráulicas y mecánicas.

En cualquier tipo de bomba, siempre estarán presentes las pérdidas hidráulicas y mecánicas; la cuales se toman muy en cuenta en el diseño y construcción

1. Las pérdidas hidráulicas son también llamadas pérdidas internas y son las más importantes en las máquinas rotodinámicas. Se presentan en los pasajes del impulsor y la voluta, incluyendo escapes. Las pérdidas por escapes ocurren en los anillos de desgaste, boquillas de escape o entre los distintos pasos y medios de balanceo cuando se usan.

Estas pérdidas son causadas por el rozamiento de superficie que se deben a la deformación viscosa y en números elevados de Reynolds; en cambio el rozamiento de forma es el producido por un gradiente de presiones que hace que se desprenda la capa límite que depende del diseño del impulsor.

- 2. Las pérdidas mecánicas o pérdidas externas tienen lugar en todas las máquinas y pueden presentarse en forma de energía específica (o altura Ht), en forma de caudal (Q), o de potencia (P) que son por rozamiento del disco, y tienen lugar en:
 - Los prensaestopas y en los cierres de contacto.
 - Los cojinetes.
 - La transmisión.
 - El accionamiento de órganos auxiliares.

1.5.7 Eficiencia.

En la eficiencia total (η) se tiene en cuenta todas las pérdidas que se producen en la bomba; conociéndose como la razón entre la energía hidráulica entregada por la bomba y la energía mecánica de entrada a la misma, expresado en porcentajes.

La eficiencia total es definida por la siguiente ecuación:

 η = (Potencia de salida) / (potencia de entrada)*100

$$\eta = P_{\rm w} / P_{\rm f} *100$$
 (1.11)

Esta ecuación es de interés para los usuarios de bombas, también existen otras eficiencias parciales tal como : hidráulica, mecánica, volumétrica que emplean los diseñadores y expertos para el estudio de rendimientos de bombas.

1.5.8 Carga neta positiva de succión (NPSH).

La carga neta positiva de succión se refiere a las condiciones de succión mínimas que se necesitan para evitar la cavitación en una bomba. En realidad es un análisis de las condiciones de succión de la bomba, para saber si el líquido se vaporizará o no en el punto de menor presión de la bomba. Necesariamente se debe mantener el fluído en estado líquido para un buen funcionamiento de la bomba y evitar el fenómeno de la cavitación que afecta a la presión, capacidad, eficiencia y produce perforaciones en los álabes

del impulsor. Las características físicas de la bomba, la forma de su impulsor y la velocidad rotacional permitirá un rango específico de capacidades del flujo a través de la bomba. La exacta capacidad es manejada por el cabezal total para un sistema específico.

Es necesario diferenciar entre la carga neta positiva de succión disponible(NPSHA) y la requerida, (NPSHR). La primera es una característica del sistema en que se emplea la bomba centrífuga, representa la diferencia entre la carga absoluta de succión existente y la presión de vapor a la temperatura dominante. La segunda es función del diseño de la bomba y representa el margen mínimo requerido entre la carga de succión y la presión de vapor a una capacidad determinada (ref. 5, cap 27, pag. 222 - 223).

La presión sobre el líquido que entra a la bomba centrifuga es reducido mientras se mueve desde la brida de succión hasta el punto donde recibe energía del impulsor. Es necesario compararar el NPSHA con el NPSHR porque si el resultado es mayor o igual, no se producirá el fenómeno de la cavitación.

a) Cabezal neto positivo de succión disponible (NPSHA).

El NPSH disponible se encuentra relacionado con las características que presenta la instalación, es decir el tipo, longitud, diámetro y tipos de accesorios utilizados en este banco en forma particular.

Se le conoce como la diferencia entre el cabezal de succión total y la presión de vapor del líquido, expresados en ples de líquido, en la brida de succión. Cuando medimos el cabezal de succión total y la presión de vapor del líquido se debe recordar que debe ser a la temperatura del líquido (ref. 10, cap. 5, pag. 63-67).

La relación matemática es la siguiente:

NPSHA=
$$h_{sa}$$
 - h_{vpa} . (1.12)

si
$$h_{sa} = h_{psa} + h_{ss} - h_{fs}$$
.

$$NPSHA = h_{psa} + h_{ss} - h_{fs} - h_{vpa}$$
 (1.13)

donde:

NPSHA: Cabezal neto positivo de succión disponible, en ples de líquido.

h_{sa} : Cabezal de succión total, en pies de líquidos absolutos.

h_{psa}: Presión en la superficie de succión, en pies de líquidos, absolutos. Puede ser la presión atmosférica, en el caso de un tanque abierto, o la presión absoluta existente sobre el líquido en un tanque cerrado.

h_{ss}: Cabezal estático de succión, en pies de líquido;
 Es la altura desde la superficie del líquido en el tanque de succión hasta la línea central de la bomba (positivo si el nivel de líquido está por encima y negativo se está por debajo).

h_{fs}: Cabezal de pérdidas por fricción, en pies de líquido,
entre la superficie libre del líquido en el tanque de
succión y la brida de succión de la bomba.

h_{vpa}: Presión de vapor del líquido, a la temperatura de bombeo (temperatura del líquido), en ples de líquidos absolutos.

b) Cabezal neto positivo de succión requerido (NPSHR).

Se define como la reducción en el cabezal total cuando el líquido entra a la bomba.

Los fabricantes determinan el NPSHR para cada bomba por medio de pruebas y sus resultados los grafican en forma de curvas estandarizadas de rendimientos para la bomba en prueba.

Para la prueba del NPSHR, se reduce el cabezal de succión total hasta que el líquido se encuentre en el punto donde se vaporiza dentro del impulsor, causando una caída en el cabezal total desarrollado por la bomba. Cuando la caída en el cabezal total es 3%, es un indicativo de cavitación incipiente, en este instante se toman las lecturas de presión de succión, el caudal, la temperatura de bombeo, la presión barométrica y las revoluciones a la que se encuentra trabajando la bomba. A partir de la información obtenida, calculamos el NPSH requerido en cavitación incipiente (ref.10,cap.5,pag.80), mediante la siguiente expresión:

NPSHR =
$$h_{gs} + h_a + h_{vs} - h_{vpa}$$
 (1.14)

donde:

NPSHR: cabezal neto positivo de succión requerido.

h_{gs}: presión manométrica de succión.

ha : presión atmosférica.

h_{vs}: cabezal o altura de velocidad.

h_{vpa} = presión absoluta de vapor de agua.

CAPITULO II

CARACTERISTICAS DEL EQUIPO EXPERIMENTAL.

2.1 El Banco de pruebas.

En este equipo experimental se realizan las mediciones para calcular los parámetros básicos como altura, caudal, potencia consumida, eficiencia y NPSH de la bomba; permitiéndonos determinar las correspondientes curvas y conocer si la bomba cumple con las características detalladas en las hoja de especificaciones.

El banco de prueba lo conforman: el motor de combustión interna con su caja de cambio y bomba centrífuga, como sus partes principales; luego podemos citar a la instrumentación (manómetros, torquímetro y medidor de flujo), sistemas de tuberías, acoples flexibles y las estructura que forma el banco, como elementos secundarios.

Los trabajo de armado y puesta en funcionamiento del banco antes mencionado requirió varios días de trabajo en forma contínua.

2.2 Motor de combustión interna.

El motor es de marca NISSAN y utiliza como combustible gasolina con las siguientes especificaciones:

TIPO DE MOTOR	modelo	A12			
CILINDRADA	cc(pulg cúb.)	1.171 (71,4).			
POTENCIA MAX.	HP./RPM.	52,3 / 6.000			
PAR. MAX. DE TORSION	Lb. Plg. / RPM.	755 / 3.600			
RELACION DE COMPRESIC	on.	9,0			
RAZON DE ENGRANAJES	PRIMERA	3,757			
	SEGUNDA	2,169			
	TERCERA	1,404			
	CUARTA	1,000			
	RETRO	3,640			

Los datos fueron proporcionados por Automotores y Anexos S.A

Distribuidores de vehículos NISSAN en Guayaquil.

2.3 Bomba centrífuga.

Potencia al freno.

La bomba posee las siguientes características:

Caudal Nominal	150 galones/ minutos.
Altura de elevación nominal	165 ples.
Velocidad específica	745
Eficiencia nominal.	63 %

La bomba es de eje horizontal, de una etapa, con impulsor sencillo y álabes curvados hacia atrás; fué construida en los talleres de la facultad de mecánica formando parte de un proyecto de grado. (Ref. 3, sec.3.1, pag. 237-245).

12 HP.

2.4 Instrumentación.

- Medidores de Presión.

El Manómetro en la descarga tiene las siguientes características:

Tipo:

Bourdon.

Marca:

USG (USA).

Rango:

(0 -100 Lb/ Plg2.)

División de la escala :

2 Lb/ Plg².

Rosca:

bronce de 1/4 " NPT.

Diámetro del dial:

2"

El Vacuómetro para la succión tiene las siguientes características :

Tipo:

Bourdon.

Marca:

EMPEO (Alemán)

Rango:

(-30 a 0 Plg.Hg.) y

(-76 a 0 Cm. Hg).

Mínima división :

1 Plg. Hg. (Primer escala) y

2 Cm. Hg (segunda escaia)

Rosca:

1/2 "NPT. de bronce.

Diámetro del dial:

4"

- Medidor de flujo.

El medidor utilizado es electrónico digital con las siguientes características:

Marca:

GPI (USA)

Tipo:

Turbina

Modelo:

A-104GMA200NA-2

Material de construcción : Aluminio.

Exactitud :

Con calibración de fábrica ±1,5 %.

Con calibración de campo ±1,0 %

Rosca:

2 pulgadas NPT.

Razón de flujo:

30 - 300 GPM.

Presión máxima:

300 Lb/ Plg² man. (20.7 Bar).

- Medidor de Torque y Revoluciones.

El sistema consiste en un torquímetro y un transductoramplifiador de señales.

El torquímetro tiene las siguientes características:

Marca:

S. Himmelstein and Company

Modelo:

MCR 9-02 T (5-2)

Rango:

0 a 500 Lb.- Plg.

Velocidad:

0 a 7500 RPM.

Capacidad de sobrecarga: Dos veces el rango de la escala.

Desalineamiento:

0,1 % del total de la escala.

Amortiguamiento:

0,05% del total de la escala.

Histeresis:

0.1 de la escala total.

Temperatura de operación: 65 a 220 °F.

El transductor- amplificador (indicador de torque y velocidad) tiene las siguientes características:

Marca:

S. Himmelstein and Company

Modelo:

66300

Entrada:

El tranductor del torquimetro.

Salida:

Pantalia de cinco dígitos con

con escala ingenieril.

2.5 Fuente de alimentación y drenaje del agua.

El banco de prueba toma el agua en circuito cerrado de la cisterna que posee el laboratorio de Conversión de Energía, el cual tiene las dimensiones de (7,20*7,20*3.94) pies cúbicos, posee una válvula de nivel y una válvula de compuerta. Para la prueba se almacenó en la cisterna 170 pies cúbicos de agua limpia.

La bomba centrifuga, los ductos de succión y descarga y la cisterna conforman el circuito cerrado. El ducto de alimentación (succión) posee un diámetro de tres pulgadas cédula 40 y es de hierro galvanizado, mientras que la de descarga es de dos pulgadas de diámetro y de PVC de alta presión. La ubicación de los accesorios para las respectivas tuberías y sus arreglos se encuentran detallados en las figuras C.1 y C.2.

CAPITULO III

TRABAJO EXPERIMENTAL.

3.1 Procedimiento requerido para la prueba.

Los puntos de prueba deben ser como mínimo diez, para establecer la curva cabezal-caudal, calcular las eficiencias, las potencias tanto hidráulica como mecánica en el rango requerido. El procedimiento es el siguiente:

- a. Se realiza el montaje de la bomba en el banco de pruebas, cuidando que el sistema motor-torquímetro-bomba, quede alineado paralelo y angularmente.
- b. Se instalan las tuberías tanto de la succión como en la descarga conjuntamente con el medidor de flujo, recordando cebar la bomba para luego conectar la batería y dejar el interruptor en posición de arranque.
- c. Se procede a dar arranque al motor y cuando la caja de cambios se encuentre en posición neutra, se espera algunos

minutos hasta que se estabilice el motor para su funcionamiento normal.

- d. Con la válvula de la tubería de descarga cerrada, mueva la palanca de aceleracióndel motor lentamente y seleccione la tercera relación de engrane acelerando hasta alcanzar 1800 RPM, en el eje de la bomba.
- e. Empiece con la válvula de descarga cerrada, luego abrala gradualmente para incrementar el flujo de agua, y para cada posición de la válvula citada tome las lecturas de revoluciones, caudal, torque, presiones de succión y descarga.
- f. Realice un cambio a cuarta velocidad con la palanca provista en la caja de velocidades para seguidamente acelerar el motor hasta alcanzar 2000 RPM, en el eje de la bomba.
- g. Con estas nuevas condiciones, siga las instrucciones que se encuentran en el literal (e).
- h. Para las revoluciones de 2500 y 2800 en el eje de la bomba,
 las pruebas se la realiza en la cuarta relación de engrane de la

caja de cambio controlando las revoluciones del motor con la palanca de aceleración, para seguidamente realizar lo indicado en el literal (e).

I. Al terminar la prueba , se disminuye la velocidad por medio de la palanca de aceleración y se procede a realizar el cambio a engrane neutro para seguidamente apagar el motor, evitando así que el motor se dispare.

Para realizar las pruebas del NPSHR, se procede así:

- a. Se dá arranque la motor sin carga, esperando unos minutos para que el motor alcance su temperatura de operación.
- b. Asegurese que la válvula de succión está abierta, y la de descarga está cerrada al iniciar el arranque de la bomba.
- c. Realice el cambio a tercera velocidad empleando la palanca que acciona el embrague conjuntamnte con la selectora de velocidad y luego acelere el motor hasta alcanzar 1800 RPM., en eje de la bomba.

- d. Abra la válvula de descarga de la bomba para incrementar el flujo y tome lecturas de caudal, y presión tanto en la descarga como en la succión (datos de referencia).
- e. Proceda a cerrar la válvula de succión lentamente hasta notar que el cabezal total tiene una disminución del 3% con respecto al valor referencial y anote las lecturas de presiones en la descarga como en la succión y el caudal.
- f. Abra totalmente la válvula ubicada en la succión, manteniendo las revoluciones de prueba aproximadamente constantes y repita los pasos de los literales (d),(e), (f); tratando de obtener un mínimo de siete puntos experimentales.
- g. Para realizar las pruebas a 2000, 2500, y 2800 RPM., realice el cambio a cuarta velocidad , acelere o desacelere hasta alcanzar las revoluciones deseadas y proceda luego como en los literales (d), (e), y (f) anteriormente citados, cerrando inicialmente la válvula de descarga.
- h. Tome lectura de la temperatura y presión atmosférica local, en los instrumentos respectivo instalados en el laboratorio.

 Terminda la experimentación desacelere gradualmente el motor y proceda a descargarlo (caja de cambio en posición neutral) para seguidamente apagarlo.

3.2 Preparación del equipo.

La bomba y el equipo empleado para las pruebas se inspeccionarán antes y después de las pruebas, donde se revisarán especialmente lo siguiente:

- 1. La bomba debe estar debidamente cebada.
- 2. Los acoples flexibles y el correcto alineamiento del conjunto motor-torquímetro-bomba.
- 3. El nivel de gasolina en el depósito de combustible.
- 4. Comprobar si la batería tiene la carga suficiente.
- La válvula de estrangulación de la succión esté abierta, y la correspondiente a la descarga esté cerrada al iniciar la prueba.

- 6. Los conductos hidráulicos.
- Los medidores de presión y el medidor de flujo están debidamente instalados y calibrados.
- El conjunto sensor-transductor-amplificador, de torque y revoluciones, esté debidamente calibrado.

3.3 Toma de datos de operación.

Los valores que necesitamos para obtener las gráficas de las curvas características de la bomba centrífuga son:

- El torque y la velocidad de giro del eje de la bomba, los cuales se obtuvieron por medio de un equipo de medición compuesto por un torquímetro con su respectiva caja transductora amplificadora de señales de tipo digital. Con la ayuda de un tacómetro digital adicional se comprobó la lectura que mostraba la caja tranductora- amplificadora antes mencionada.
- El caudal, el cual es controlado por una válvula de globo localizada en la descarga; y sensado por un medidor de flujo de

turbina, presentando los resultado en pantalla digital.

 Las presiones tanto en la succión como en la descarga , la distancia a la que se encuentra los manómetros del eje de la bomba y el cabezal estático de succión.

- La cantidad de combustible (gasolina) utilizado en la prueba, el cual es colocado en un depósito con nivel de líquido visible.

- La temperatura del agua y la presión barométrica local, se leen con el termómetro y barómetro del laboratorio de energía.

Entre los datos de operación tenemos la siguiente información:

Distancia entre el eje de la bomba y el manómetro de descarga: 30.708 Pig. (2.559 pies)

Carga estática de succión: 4.10 pies

Presión barométrica: 29.75 Plg. Hg. (755.65 mm. Hg)

Temperatura: 82.4° F (28 °C).

Los datos experimentales obtenidos de pruebas con la bomba, se encuentran en las tablas: 3.1, 3.2, 3.3, y 3.4

Tabla 3.1:Datos experimentales para calcular: cabezal, potencias y eficiencia a 2800 RPM.

	Caudal	Q	GPM.	205,86	202,54	191,92	172,15	150,26	146,92	132.00	12027	+0.00	102,84	89,59	82,96	71,36	57,27	47.16	+	-	20,0	
	lectura del	torquímetro	Lb-pie	23,00	24.90	26,40	23.83	22.45	21.85	21.6	221.4	21,0	18,90	17,60	16,80	16,40	14.60	13.45		20171	9,35	
I. canezai, por	Presión en	la Succión	Pla. Ha.	-12.5	-12.5	-11.0	68-	-73	יי מי	Q u	70.7	ည်သ	-3,5	-2.5	-2.0	-22	-14	40		c'\-	0,0	
Tabla 3.1:Datos experimentales para calcular. vauezar, pocareiro y	Presión en	la descarda.	Psi	23.0	017	0 05	0,50	0 88	0.00	0.50	747	74,0	77.0	78.0	0.02	200	100	200	מה'חמ	79,5	0'08	
ы ехрептепта	coreccion	destrard	DIA HO	20.11.50	20,11	30.71					30,71	30.71				\perp				30,71	30.71]
Tabla 3.1:Dato	Velocidad		UC DI UCDA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25007	2802,34	2000,03	2800, 12	2800,00	2803,17	2800,00	2800 00	2003,53	2001,32	00,000	2000,99	7800,00	2800,00	2799,87	2800,00	2801 52	1

Tabla 3.2: Datos experimentales para calcular: cabezal, potencias y eficiencia a 2500 RPM.

Velocidad	coreccion	Presión en	Presión en	lectura del	Caudal
de prueba	descarg.	la descarga.	la Succión	torquímetro	
RPM	Plg. H ₂ 0	Psi.	Plg. Hg.	Lb-pie	GPM.
2500	30,71	22,50	-12,9	19,48	205,03
2500	30,71	17,50	-15,0	19,60	179,30
2498	30,71	28,00	-16,0	19,65	185,15
2500	30,71	34,00	-15,0	20,50	171,00
2500	30,71	49,50	-15,0	19,08	160,21
2500	30,71	46,00	-8,1	19,25	151,92
2500	30,71	55,00	-8,0	17,95	122,87
2495	30,71	00'09	0'9-	14,70	91,24
2500	30,71	00'59	-2,3	13,95	29'62
2500	30,71	63,50	-1,9	13,65	76,33
2513	30,71	65,50	1,7	12,80	12'29
2492	30,71	63,00	6'0-	10,90	47,33
2500	30,71	63,00	-0,5	10,00	39,88
2494	30,71	61,00	1 -0,1	9,50	33,25
2500	30,71	00'09	0'0	8,64	00'0

Tabla 3.3 :Datos experimentales para calcular: cabezal, potencias y eficiencia a 2000 RPM.

			-				_		_					
Caudal		GPM.	190,09	178,47	170,17	150,26	134,50	117,00	102,81	86,27	06'69	58,83	42,36	00'0
lectura del	torquímetro	Lb-pie	17,0	16,8	16,0	15,6	15,2	14,2	13,9	12,2	11,2	10,2	8,7	6.2
Presión en	la Succión	Plg. Hg.	-10,30	05'6-	-8,50	09'9-	-2,00	-4,00	00'E-	-2,00	-1,00	-1,00	SE'0-	00'0
Presión en	la descarga.	Psi.	20,0	22,1	26,0	31,0	34,0	37,1	39,0	41,0	42,0	44,0	43,0	40.0
coreccion	descarg.	Plg. H ₂ 0	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71
Velocidad	de prueba	RPM	2023	2067	2052	2047	2056	2060	2056	2065	2056	2073	2048	2048

Tabla 3.4 :Datos experimentales para calcular: cabezal, potencias y eficiencia a 1800 RPM.

Caudal		GPM.	183,00	175,00	160,00	153,00	136,15	121,21	100,36	64,00	46,50	29,94	22,55	00'0
lectura del	torquímetro	Lb-pie	17,00	16,00	15,80	14,90	14,10	13,00	12,00	10,00	8,40	7,60	06'9	2,60
Presión en	la Succión	Pig. Hg.	-12,5	-12,0	-10,5	-10,0	0'6-	-7,5	0'9-	-4,5	8'6-	5,5-	0'6-	0'E-
Presión en	la descarga.	Psi,	20'0	22,0	23,0	26,0	29,0	30'0	31,5	0'98	0'88	0'68	36'8	40'0
coreccion	descarg.	Plg. H ₂ 0	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71	30,71
Velocidad coreccion	de prueba	RPM	1932	1940	1932	1932	1932	1932	1930	1932	1932	1931	1932	1932

Con estos datos experimentales obtenidos y tabulados procedemos a calcular lo siguiente:

3.4 Cálculo de NPSH disponible.

El presente cálculo representativo para el NPSHA se lo realiza usando la ecuación 1.13 y las tablas desde C.1 hasta C.5, para el sistema de tuberías cuando la bomba maneja 200 GPM., de agua a 82.4 °F. (28 °C) con un cabezal estático de 4.1 ples. Se utilizan: una tubería de 3 pulgadas en la succión de 10.332 pies de longitud con un codo a 90°, una válvula de pié, una válvula de compuerta, y 2 uniones. La presión barométrica (atmosférica) local es de 29.75 Plg. Hg.

- 1. h_{psa}= 33.62 pies H₂O.
- 2. hss = -4.1 pies.
- 3. Cabezal de pérdidas por cada 100 pies = 8.90 pies (tabla C.1).
- 4. Cabezal de velocidad (hv) = 1.17 pies (tabla C.1).
- 5. Cabezal de fricción (hf)

hf (tubo) = $10.332 \text{ pies} \times 8.90 \text{ pies} / 100 \text{ pies} = 0.919 \text{ pies}$

 $hf (codo) = 0.54 \times 1.17 pies = 0.631 pies (tabla C.2)$

hf (válvula de compuerta) = 0.14 ×1.17 pies = 0.164 pies

hf (válvula de pié) =
$$7.6 \times 1.17$$
 = 8.892 pies

hf (2 unión) = $2 \times 0.04 \times 1.17$ = 0.094 pies

Total de pérdidas por fricción (hfs). = 10.699 pies

6. $h_{vpa} = 1.265 \text{ pies H}_2\text{O}$ a 82.4 °F (tabla C.5).

3.5 Obtención del NPSH requerido.

El cabezal neto positivo de succión requerido, se lo obtiene por medio de la fórmula 1.14 y siguiendo las instrucciones dadas en la sección 3.1, los datos y resultados para 2.800, 2.500, 2.000, y 1.800 revoluciones por mínutos, se encuentran en tablas A.5, A.6, A.7 y A.8.

Presentamos un cálculo representativo utilizando el primer juegos de datos experimentales de la tabla A.5, para 2800 revoluciones por minuto, (presión de succión de 13.50 Pig. H_g y caudal de 194.24 GPM) y por medio de las tablas C.1 y C.5 hallamos los valores de cabezal de velocidad en la succión (h_{vs}), y la presión de vapor (h_{vpa}).

El valor que presentamos a continuación representa un punto en la curva del NPSHR.

1.
$$h_{gs} = (Plg Hg / 12) \times DR$$
. Hg $h_{gs} = (-13.50 / 12) \times (13.60)$

$$h_{gs} = -15.30 \text{ pies } H_2O.$$

2.
$$h_a = (Plg Hg / 12) \times DR$$
. Hg $h_a = (29.75 / 12) \times 13.60$ $h_a = 33.716 ples H_2O$

- 3. $h_{vs} = 1.106$ pies (tabla C.1)
- 4. $h_{vpa} = 1.265$ pies abs. (tabla C.5)
- 5. NPSHR = $h_{gs} + h_{a} + h_{vs} h_{vpa}$ NPSHR = (-15.30 + 33. 716 + 1.106 - 1.265) pies. NPSHR = 18.257 pies a 194.24 GPM.

3.6 Cálculo de la altura útil o efectiva.

La altura útil o efectiva (Ht) es la diferencia de alturas totales entre la salida y la entrada de la bomba. Para realizar el cálculo representativo tomaremos el primer valor de la tabla de datos cuando la bomba trabaja a 2800 RPM. (Tabla 3.1) para utilizarlo en la fórmula (1.6), así:

 $h_{ad} = 53.061 \text{ pies } H_2O \text{ (23 psi)}$

 $h_{qs} = -14.162 \text{ pies H}_2\text{O} (-12.5 \text{ plg. Hg})$

 $z_d = 2.558$ pies

 $h_{vd} = 6.86 pies$

 $h_{vs} = 1.36$ pies

 $Ht = (h_{gd} + h_{vd} + Z_d) - (h_{gs} + h_{vs})$

Ht = (53.061 + 6.86 + 2.558) ples -(-14.162 + 1.36) ples

Ht = 75.29 pies.

3.7 Cálculo de la velocidad específica de succión.

En el cálculo de la velocidad específica disponible (SA) del sistema de tuberías, se emplea la fórmula (1.2), con los datos correspondientes a la velocidad nominal de operación (2800 RPM) y el valor obtenido previamente en el cálculo del NPSHA, que son: 200GPM, 17.525 ples, respectivamente.

 $SA=(N\sqrt{Q})/(NPSHA)^{3/4}$

 $SA = (2800*\sqrt{200}) / (17.525)^{3/4}$

SA = 4623

3.8 Cálculos de Potencias.

Los cálculos representativos para la potencia hidráulica y mecánica que presentamos a continuación, emplean los primeros datos experimentales cuando la bomba gira a 2800 RPM., y las fórmulas (1.8 y 1.10) respectivamente.

Potencia hidráulica

$$P_{w} = 2.527*10^{-4}*Q*Ht.$$

$$P_W = 2.527 * 10^{-4} * 205.86 * 69.76$$

$$P_W = 3.63 \text{ HP}.$$

Potencia mecánica

$$P_f = 190.40*10^{-6}*n *T$$

3.9 Cálculo de la eficiencia global de la bomba.

La eficiencia de la bomba se la calcula por medio de la ecuación (1.11) donde se relacionan las potencias tanto hidráulica y mecánica del cálculo

realizado en la sección 3.8 así :

Para 2800 RPM para el primer punto experimental la eficiencia es:

 $\eta = (PW / Pf) \times 100 \%$

 $\eta = (3.63 / 12.26) \times 100$

 $\eta = 29.61 \%$.

3.10 Curvas características de la bomba.

Los valores para graficar las curvas características de la bomba trabajando a revoluciones constantes (2800, 2500, 2000, 1800 RPM.), se encuentran en tablas desde A.1 hasta A. 4 y las curvas características se encuentran graficadas en las figuras 3.4, 3.8, 3.12, 3.16., a las que previamente se les aplicó la suavización por medio de el método de curvas de tendencia.

Las curvas del NPSHR, se presentan cuando queremos conocer en que condiciones se realiza la succión, y si ésta puede ser crítica, es decir si se presentará en la bomba problemas de cavitación al ponería en servicio. Las curvas del NPSHR, las presentamos en las figuras 3.17, 3.18, 3.19 y 3.20 y los datos para su graficación lo encontramos en las

tablas A.5, A.6, A.7 y A.8 para 2800, 2500, 2000 y 1800 respectivamente.

Para saber si las condiciones de succión se realizan adecuadamente necesitamos conocer además de las curvas del NPSHR, la curva del NPSHA es decir de la instalación, dicha curva para nuestro banco de pruebas se encuentra en la tabla A.9 y su gráfica en la figura 3.21,

3.10.1 Curvas de cabezal total en función del caudal.

Las curvas de cabezal total en función del caudal para la bomba funcionado a 2800, 2500, 2000 y 1800 RPM lo encontramos en las figuras 3.1, 3.5, 3.9 y 3.13 y los datos para graficarlas están en las tablas A.1, A2, A3, y A.4.

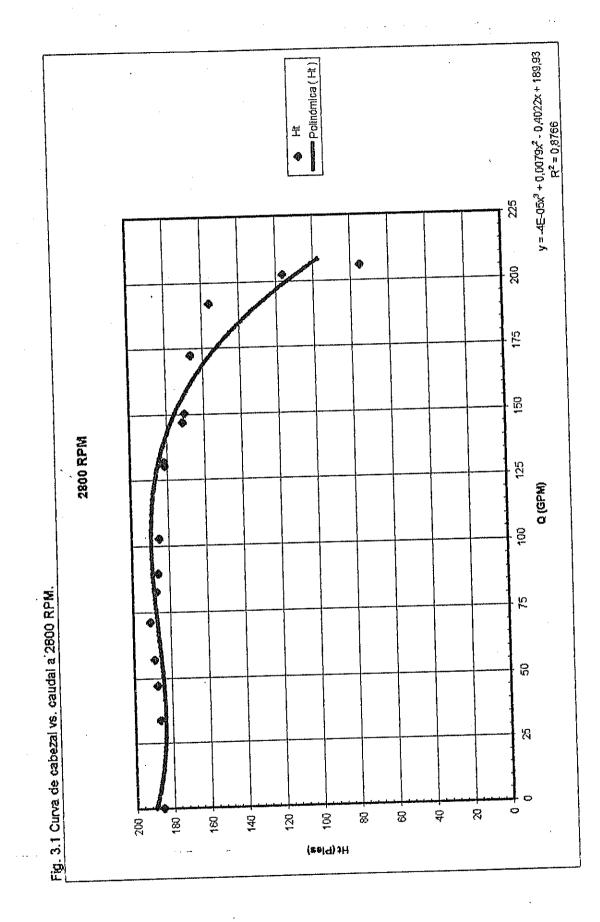
3.10.2 Curvas de potencia en función del caudal.

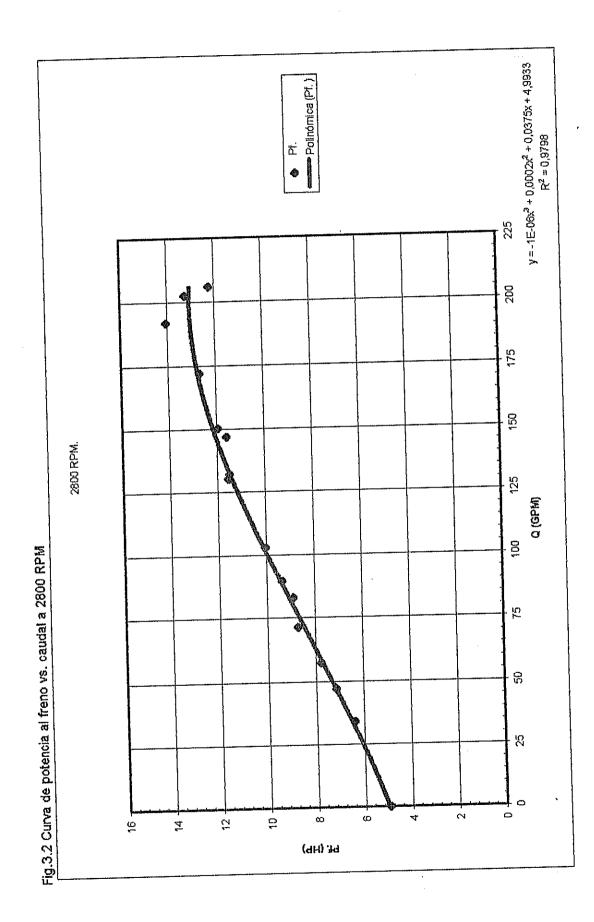
Las curvas de potencia al freno en función del caudal para la bomba funcionado a 2800, 2500, 2000 y 1800 RPM lo encontramos en las figuras 3.1, 3.5, 3.9 y 3.13 y los datos para graficarlas estan en las tablas A.1, A2, A3, y A.4.

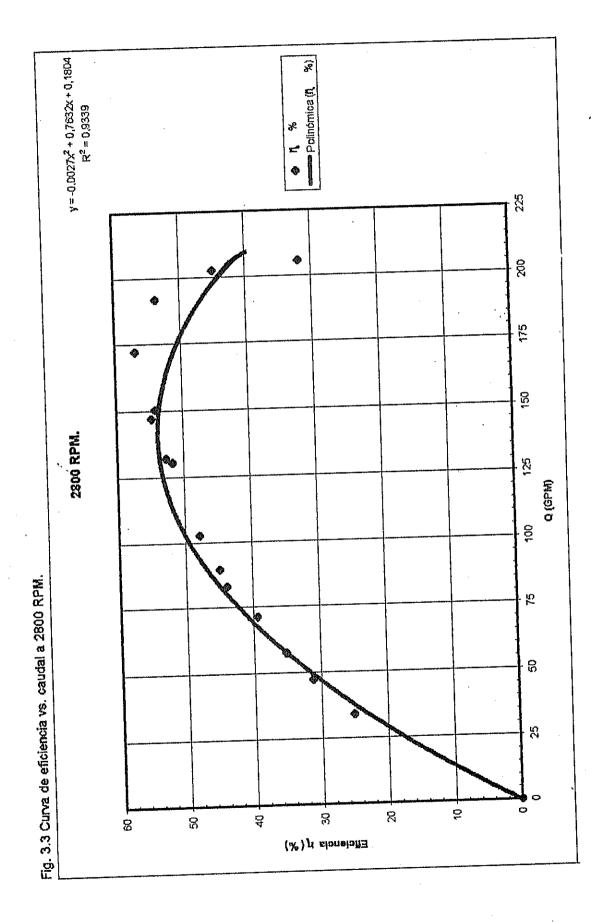
3.10.3 Curvas de eficiencia en función del caudal.

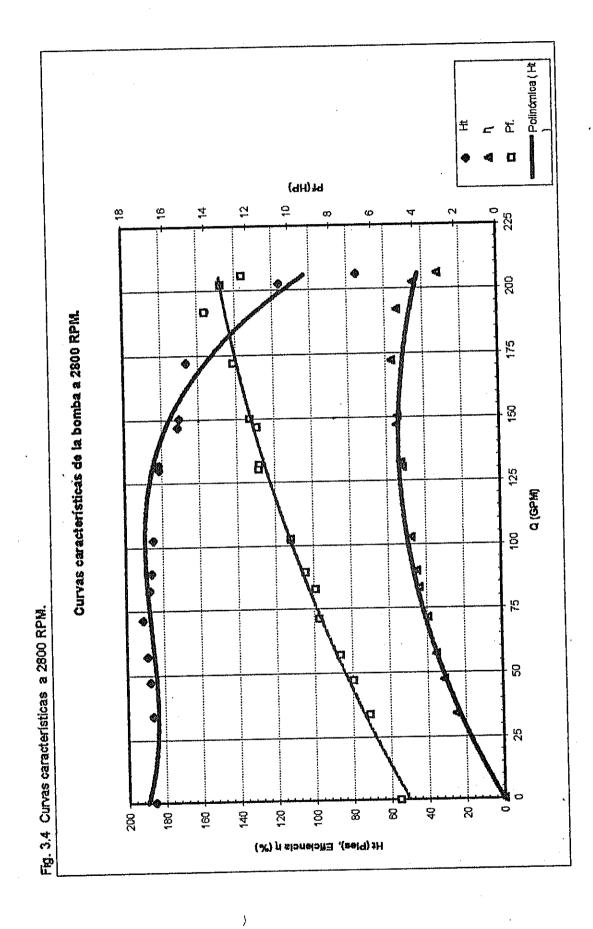
Los datos y cálculos realizados para la potencia tanto hidráulica como mecánica nos sirven para obtener por medio de la relación existente entre ellos los puntos para graficar las curvas de eficiencia en función del caudal, dichos datos lo encontramos en las tablas A.1 hasta A.4 y las gráficas para la eficiencia estan en las figuras 3.3, 3.7, 3.11, 3.15, para las revoluciones de prueba de 2800, 2500, 2000 y 1800 RPM respectivamente..

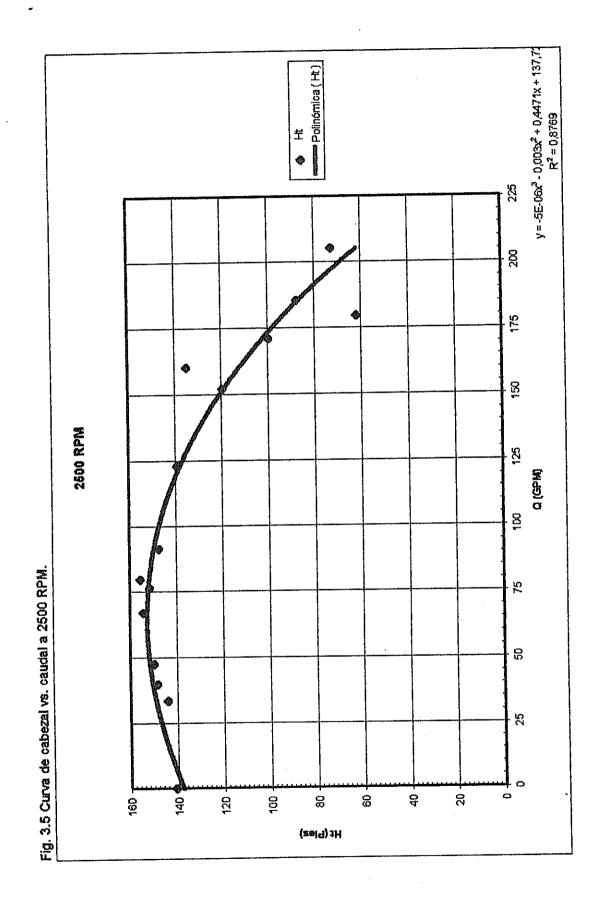
3.11 Curva de isoeficiencias.

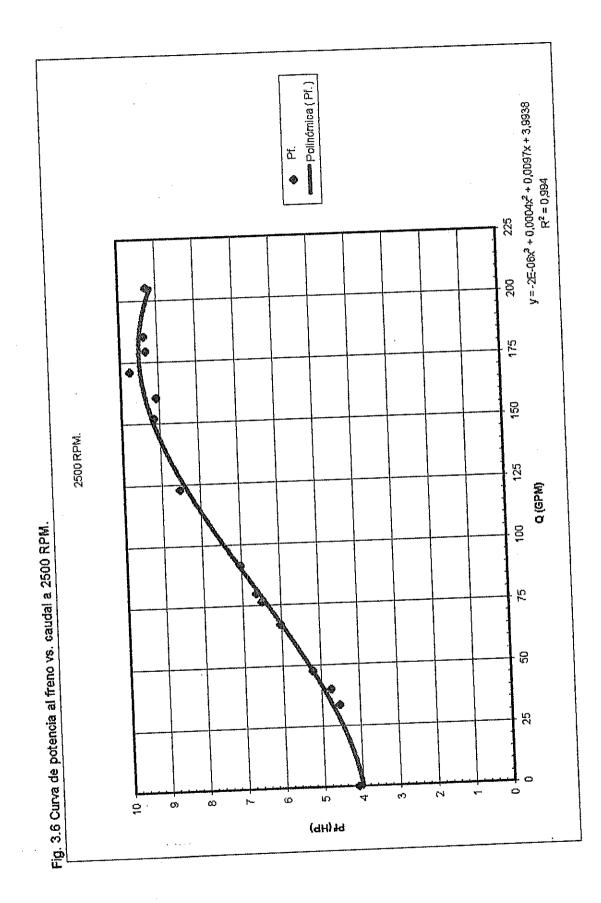

Las curvas de Isoeficiencias o "curvas concha" son el resultado de un conjunto de ensayos elementales, caracterizados por poseer diferentes números de revoluciones, se forman con las curvas "Ht vs. Q" y las curvas de " η vs Q" , revelandonos las condiciones de la bomba para trabajar dentro del campo caracaterístico de las curvas antes mencionadas.

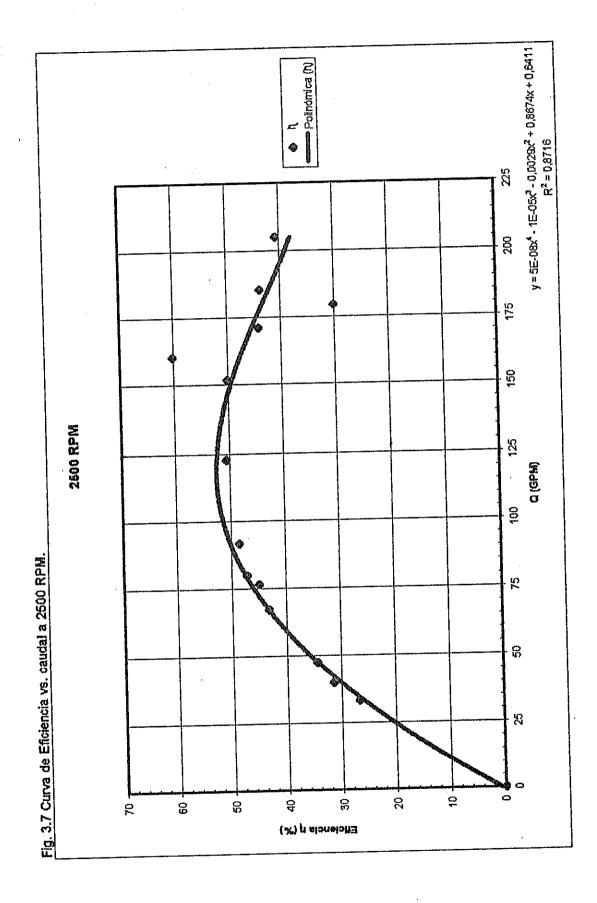

El procedimiento utilizado es el siguiente:

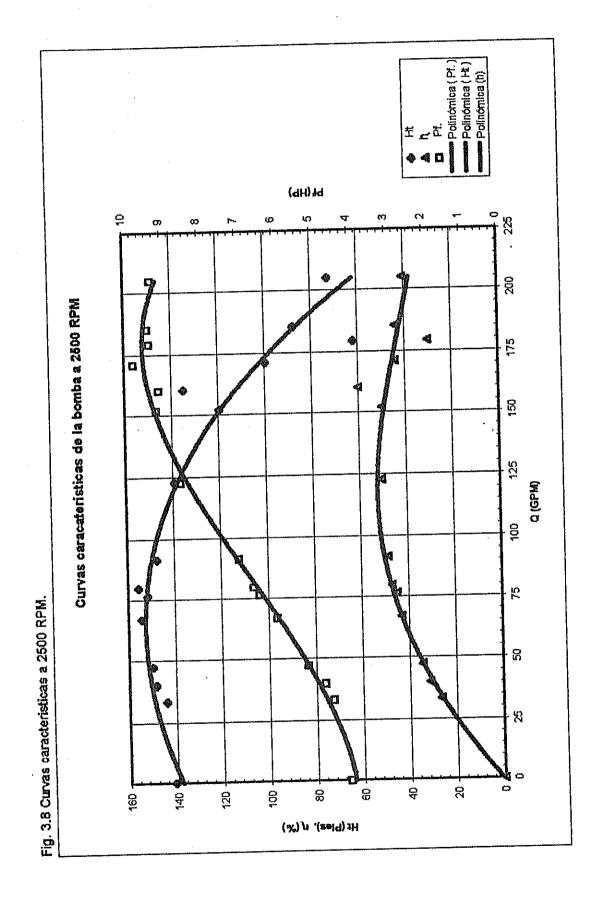

a. Trasladar las curvas Ht vs. Q a un mismo gráfico.

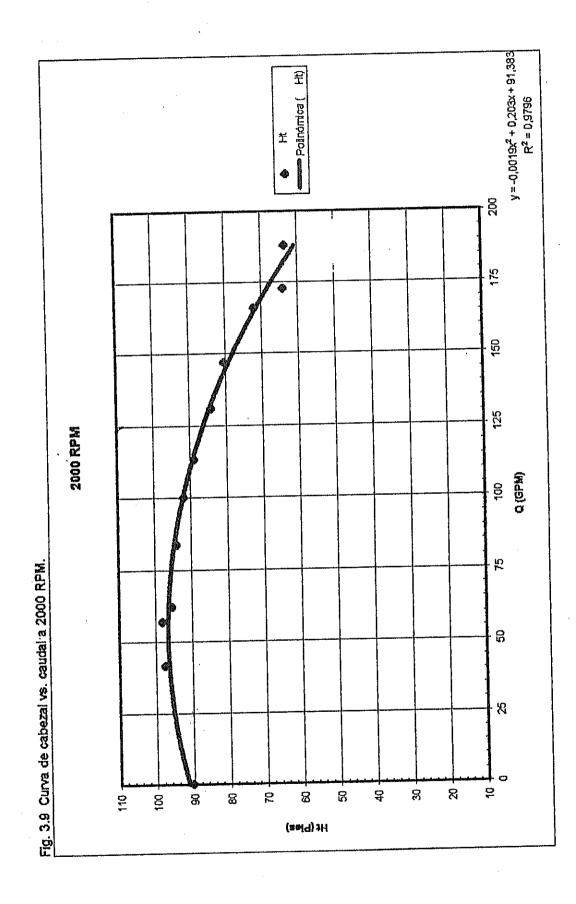

- b. Escoger en los gráficos " η vs. Q" los mismos valores de eficiencias, trace horizontales y tranfiera los valores de Q para cada η constante al gráfico "Ht vs Q".
- c. Finalmente una los puntos de igual eficiencia.

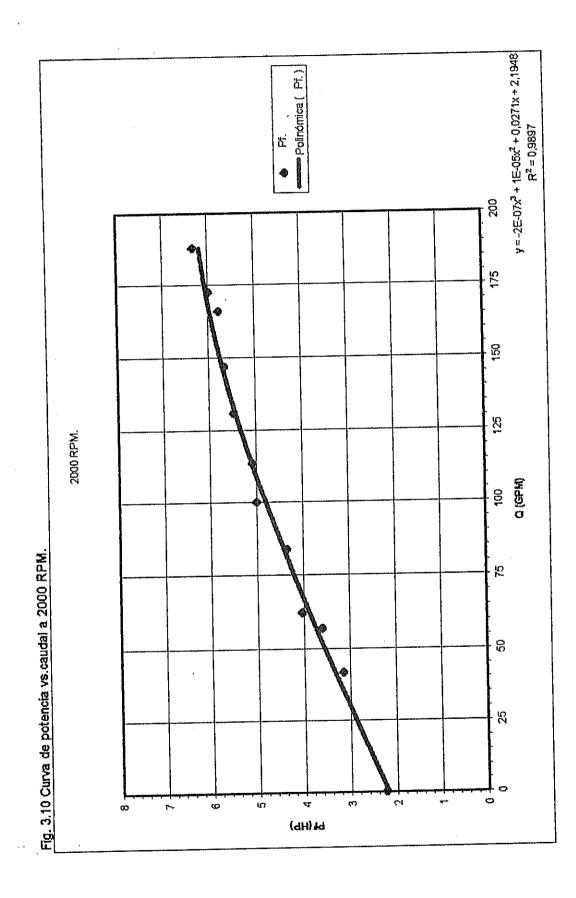

La curva de isoeficiencia para la bomba que utilizamos en la prueba, la presentamos en la fig 3.22

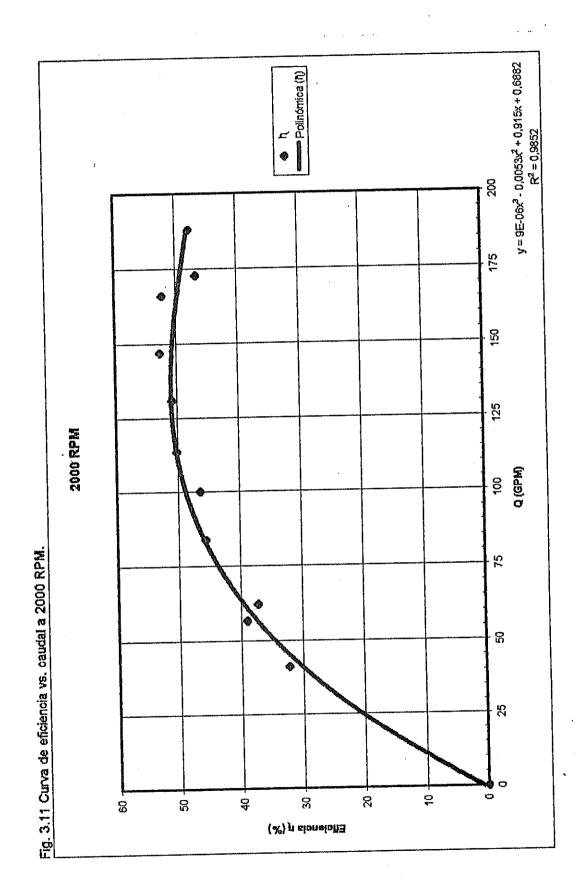


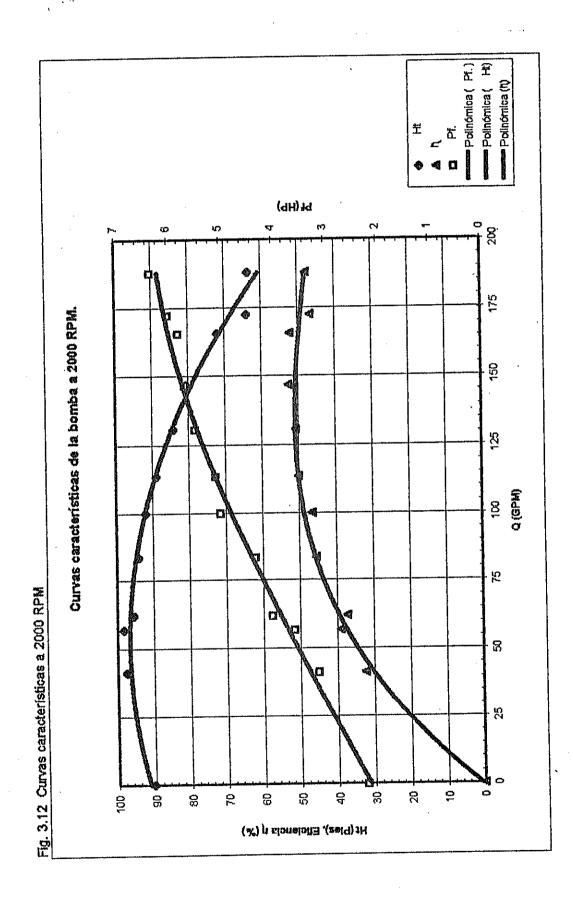


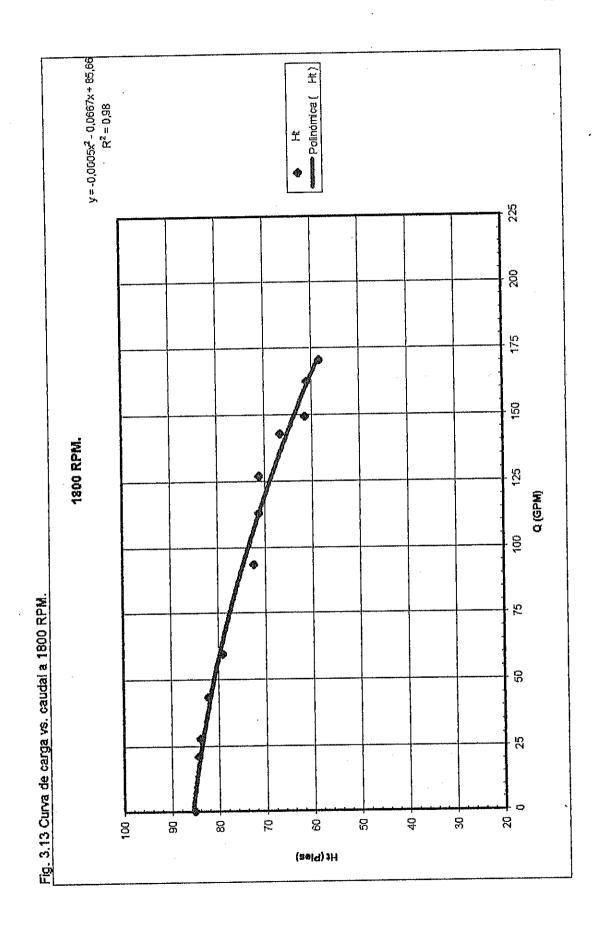


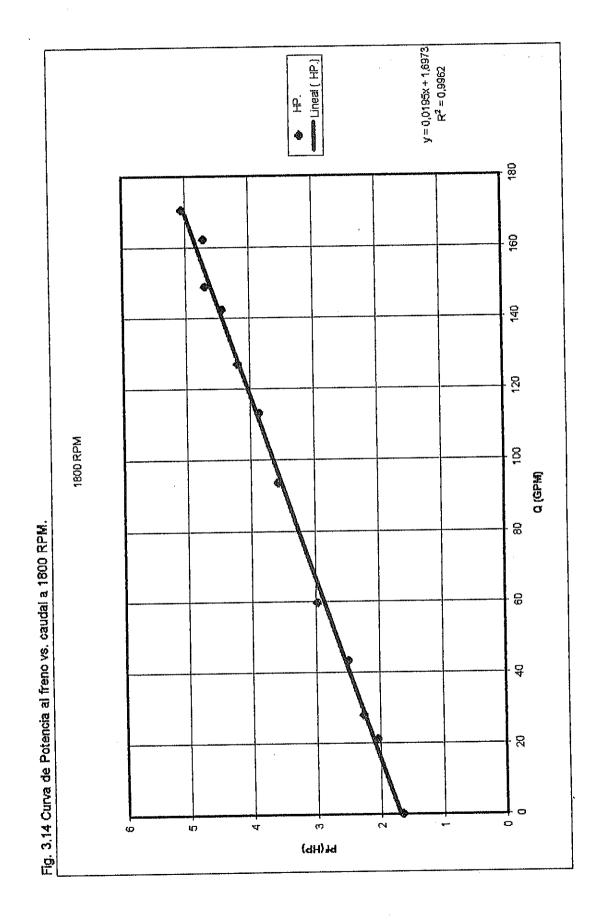


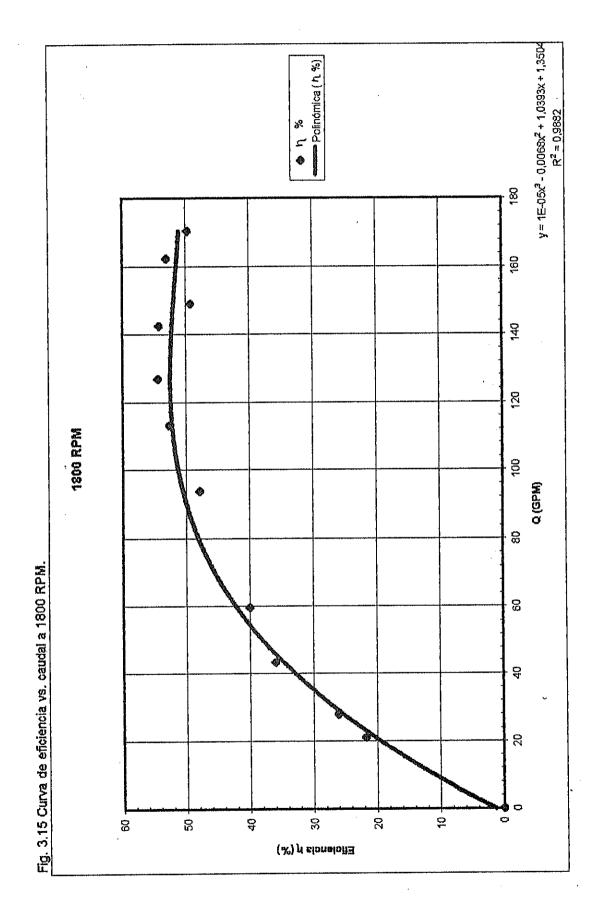

÷.

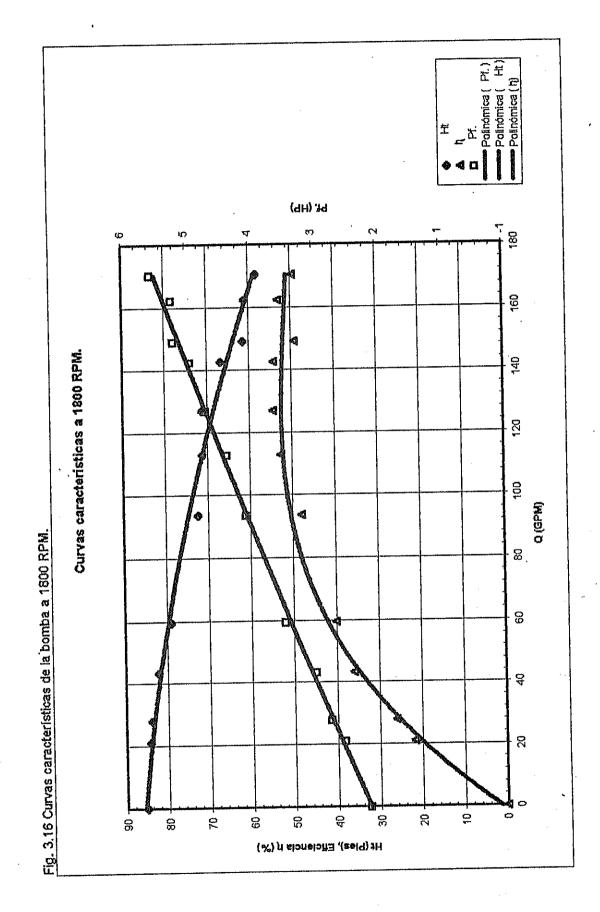

...

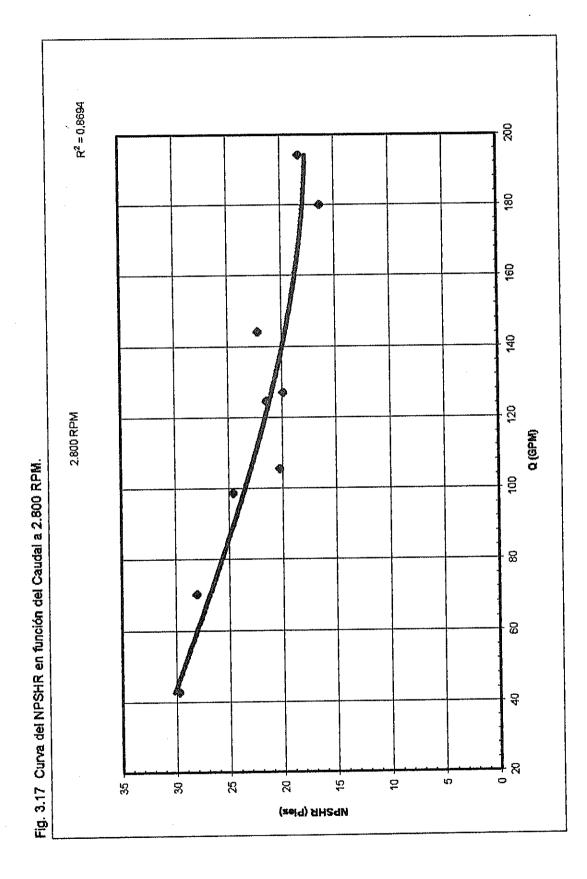


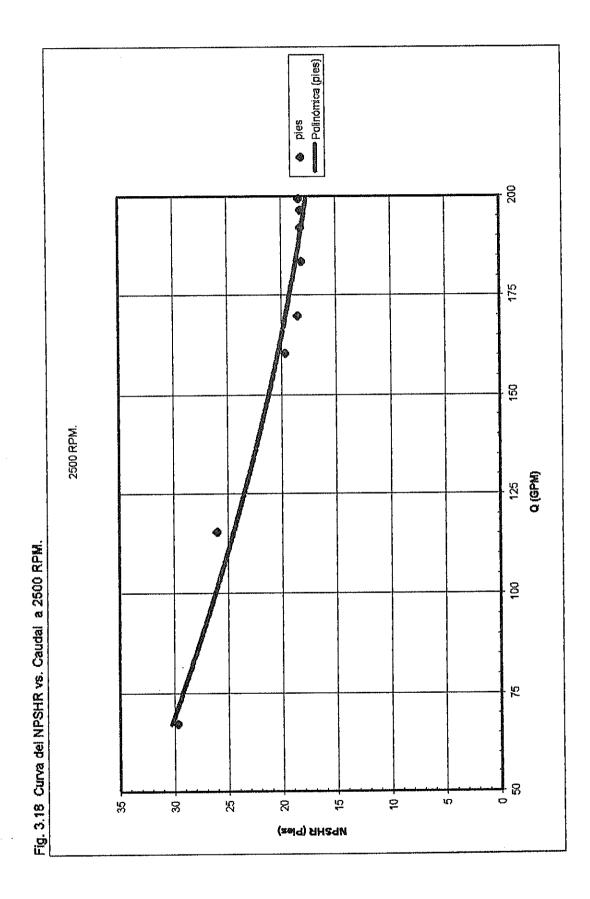


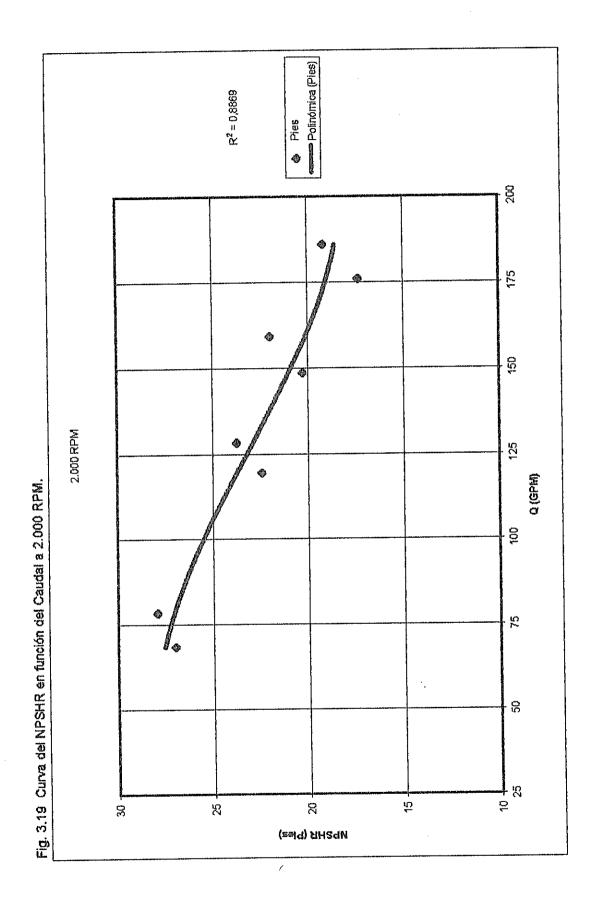


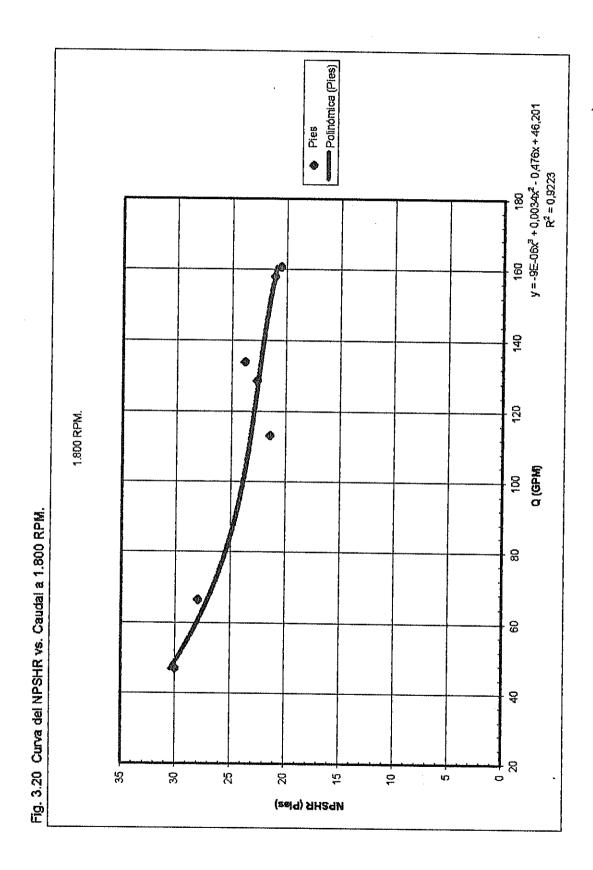












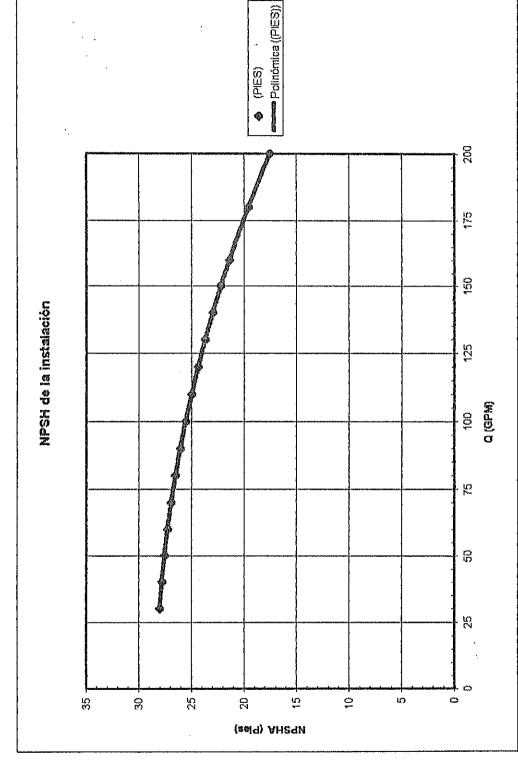
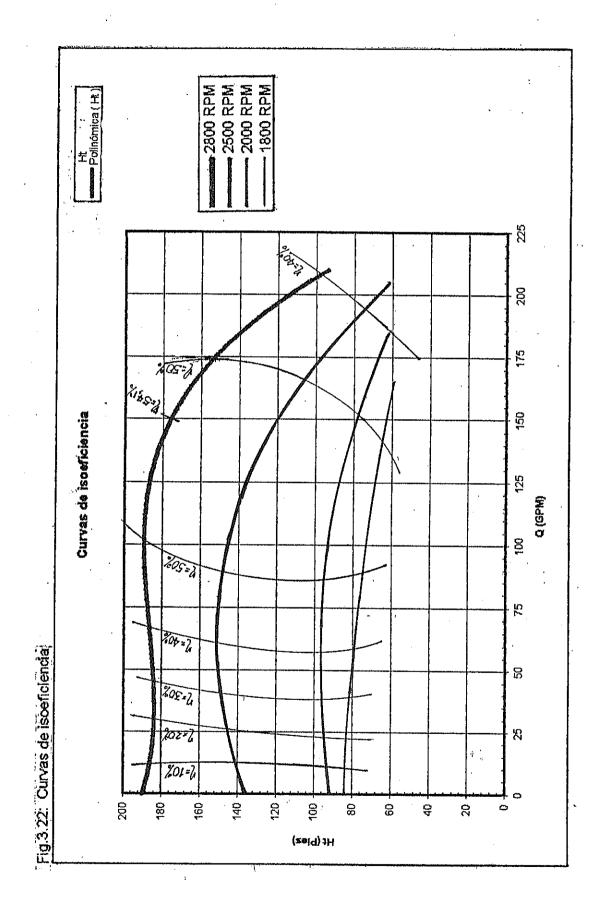



Fig 3.21 : Curva del NPSHA vs. CAUDAL

CAPITULO IV

ANALISIS DE RESULTADOS

4.1 INTERPRETACION DE LAS CURVAS CARACTERISTICAS.

Las curvas características graficadas para la bomba centrifuga empleada en la experimentación con el Banco de Pruebas nos permite conocer y predecir lo siguiente:

Las curvas de cabezal total versus caudal en cada una de las cuatro velocidades de rotación de la prueba presentan una región con pendiente positiva. Esta región representa las oscilaciones en el bombeo cuando se opera la bomba con pequeños caudales cercanos al cierre de la válvula localizada en la descarga.

Las curvas de potencia ai freno versus caudal que presentan una tendencia creciente aún después de pasar por el punto de mayor eficiencia, nos indica que se producirá sobrecarga en la unidad motriz de la bomba cuando se trabaja a mayor caudal que el nominal, como se puede observar en las gráficas para 2800 RPM. Si las curvas de potencia

anteriormente citadas tienden a aplanarse y luego decrecer después de pasar por el punto de mejor eficiencia, no se producirá sobrecarga al motor como sucede en la gráfica para 2500 RPM.

Analizando las curvas características encontramos que para 2800 RPM, la mejor eficiencia es de 54.13 % y está relacionada con caudales de 150.26 GPM, potencia al freno de 12 HP, cabezal total de 170 pies, parámetros que conforman el conjunto de condiciones nominales de operación de la bomba centrífuga en prueba.

Las curvas de isoeficiencias obtenidas al realizar un conjunto de cuatro ensayos elementales variando las revoluciones (2800, 2500, 2000, 1800 RPM), nos revelan las posibilidades de la bomba para operar en cualquiera de estas cuatro velocidades de rotación dentro del campo característico formado, encontrándose que el valor de isoeficiencia mayor es de 50%.

De acuerdo con los gráficos que contienen las curvas de NPSHA y NPSHR versus caudal, obtenidas en el Banco de Bombas para las cuatro velocidades de rotación de la bomba centrifuga en prueba, nos permiten saber que no habrá cavitación si se trabaja en los puntos de mayor eficiencia, donde se cumple con la condición que dice: Para que no se

102

produzca la cavitación el valor del NPSHA debe ser mayor o igual al

NPSHR.

4.2. Costo del Banco.

En la construcción del Banco de Pruebas se utilizarón partes y piezas de

diferentes tamaño y costo. Dentro de este subcapítulo se podrán en

evidencia el costo en valores monetarios que significa armar y poner en

funcionamiento del banco de pruebas.

EQUIPOS:

Motor a gasolina

Marca: NISSAN

Modelo: A -12

Cilindrada: 71,4 Plg³.

Potencia Máxima: 50 HP a 6000 RPM.

Valor del motor (usado y reparado): 1'900.000,00 sucres.

Medidor de Torque y Velocidad.

Marca: SHC (S. Himmelstein and Company)

Modelo: MCRT 9-02T (5-2)

103

Rango: 0 a \pm 500 Lbs-Plg.

Velocidad: 0 a ± 7.500 RPM.

El valor FOB de este medidor es de U.S.\$ 7.500,00, a un tipo de cambio

referencial de S/. 2.950,00 (Febrero de 1996), equivalente en nuestra

moneda nacional a SI. 22'125.000,00. Si consideramos su valor CIF,

éste es de S/. 26'550.000,00 .

Medidor de Flujo.

Marca: GPI (USA)

Tipo: Turbina

Modelo: A-10GMA200NA-2

El valor FOB del medidor es de U.S.\$ 628,00, al tipo de cambio

referencial anterior, equivale a S/. 1'852.600,00. el valor CIF, es decir

incluyendo seguro y flete es de S/. 2'542.310,00.

Partiendo de estos elementos principales es necesario invertir en otros

materiales y accesorios para poder en marcha el banco para pruebas.

Los valores que presentaremos acontinuación también corresponden a

febrero de 1996.

MATERIALES Y ACCESORIOS:

La lista de los materiales y accesorios con sus respectivos valores los presentamos a continuación.

Cantidad	Descripción	,	Valor (S/.)
2 2 1 1 40 pies 4 pies 20 pies	Acoples completos "martin" tipo 7S Manómetro Bourdon (0-100 psi), (-30a 0 Plg Hg Baterias de 12V. 40 A Slienciador para el motor Perfil "U" de 80x40x 3mm Perfil "U" de 100x50x3 mm. Perfil "L" de 30x30x4 mm. Piancha negra de 80x100x0.8 mm.)	280.000,00 79.325,00 80.000,00 45.000,00 65.000,00 9.600,00 15.600,00 13.000,00
28 pies	Tubo cuadrado de 40x40x3 mm.		40.000,00 10.000,00
6.5 pies 4	Tubo cuadrado de 40x40x2 mm. Ruedas (garruchas) d= 125mm.		30.900,00
2 Lbs.	Flectrodos AGA E6011 d= 1/8"		5.000,00 4.030,00
8 Plg.	Acero para transmisión SAE 1016 d=1"		70.000,00
2	Bridas soldadas con neplos		2.400,00
6	Pernos M7 x 20 mm. Pernos M8 x 20 mm.		2.100,00
6 4	Pernos acerados de 5 /16" x 1"		2.200,00
4 16	Pernos acerados de 3/8 " x 1" con arandelas		10.400,00
14	Pernos de 3/8 " x 3 " con arandelas		5.600,00
8	Pernos de 1/2 " x 2 "		4.000,00
ĭ	∨álvula cheque vertical d=3"		65.000,00
1	Válvula de compuerta TOYA d=3"		80.000,00
1	Codo galvanizado de d=3"		10.250,00
1	Unión universal (nudo) d=3"		26.100,00 27.400,00
1	Neplo galvanizado 17x 3"		67,256,00
1	Neplo galvanizado 48x 3"		35.870,00
1	Neplo galvanizado 25x 3"		36.675,00
1	Neplo galvanizado 26x 3"		14.050,00
1	Neplo galvanizado 4x 3"		7.200,00
1	Unión galvanizada de d=3"		95,000,00
16 ples	Tubo PVC roscable "plastigama"d=2" Válvula de esfera d=2"		11.500,00
1	Codos de PVC roscable de d=2"		13.000,00
2	Unión universal de PVC., d=2"		24.000,00
2 2 1	Unión roscable de PVC., d=2"		5,000,00
1 2	Neplos de PVC., de 2.5x 2"		4.200,00
0.5 Lt.	Pintura esmalte "Atomix" gris		6,000,00
¥. V leets	Total de materiales y accesorios	S/.	1'302.656,00

Construcción de cisterna (materiales y mano de obra)

1'300.000,00

Mano de obra:

(torneado, fresado, soldar, montaje y pintada)

500.000,00

Valor total del banco de pruebas para bombas

S/. 34'094.966,00

Cómo se financió este proyecto?. El motor, el medidor de torque, la bomba y la cisterna que se emplearon en el proyecto pertenecen a los Laboratorios de Energía y Fluidos respectivamente, S/. 1'000.000,00 fuerón entregados por la Facultad de Ingeniería en Mecánica para el desarrollo del proyecto y el resto de gastos fueron financiados directamente por el autor de la tesis de grado.

4.3 Costos de Operación.

Para poder determinar el costo de operación de Banco de Pruebas es necesario que se identifique los elementos que lo conforman, los mismos que a continuación se detalian:

- Combustible: Gasolina

- Energía eléctrica

- Agua
- Sueldos: Operario y supervisor
- Depreciación del equipo.
- Mantenimiento: incluye cambios de acelte, bujías, repuestos, etc.

Para poder calcular el costo total se procederá a calcular el valor que tiene cada uno de estos elementos por cada prueba que se realice, considerando que ciertos costos son variables, otros son fijos y otros se pueden considerar como semifijos.

El combustible que se utiliza es la gasolina. La gasolina alimenta y pone en marcha el motor que posee el banco de pruebas. Este elemento se puede considerar como variable ya que su consumo depende del número de bombas que se prueben. Para una prueba el volumen de gasolina utilizado es de tres galones. El costo por galón de gasolina es de S/. 3.800,00. Por lo que el costo por prueba se obtiene así:

Valor de combustible por prueba = $3gal. \times \frac{3.800sucres}{gal.}$ = 11.400 sucres.

La energía eléctrica. La energía eléctrica servirá para accionar el equipo de medición de torque y velocidad. El costo de este elemento se estima

como variable ya que también dependerá del número de pruebas que se hagan. Para una prueba la cantidad de energía consumida es de 0,075 kilovatios y, el valor del kilovatio/ hora es de S/. 300. Para realizar una prueba se debe disponer de 3 horas. El cálculo se lo realiza de la siguiente forma:

Valor de energía eléctrica por prueba = 0,075 Kw/hora × 3horas × S/.300 Valor de energía eléctrica por prueba = S/. 67,5

El agua. Para poder poner en marcha el banco de pruebas para bombas es necesario contar con el agua necesaria. El volumen de agua requerida en la cisterna del banco es de 4,80 m³. Este elemento se puede considerar fijo por que su valor no varía en función del número de pruebas, puede ser una prueba o cincuenta y seguirá utilizandose la misma cantidad. Además, el agua tiene otra característica puesto que es reutilizable hasta un número determinado de pruebas. Para este caso, el agua puede ser reutilizada para 10 pruebas. El costo de cada metro cúbico de agua es de S/. 2.500.

Para calcular el costo del agua, procedemos de la siguiente manera:

Valor del agua por prueba = $(4,80 \text{ m}^3 \times 2500 \text{ sucres /m}^3) / 10 \text{ pruebas}$

Valor del agua por prueba = S/. 2.500

Sueldos. El elemento humano es un elemento esencial en la operación del banco de pruebas. Este elemento está compuesto por dos personas: una encargada de operar directamente el equipo al que se denominará operario y otra que vigilará, tomará nota y evaluará los resultados obtenidos que se llamará supervisor. Los sueldos se considerará como elemento fijo ya que no está en función del número de pruebas que se realicen, es decir, solamente se dispondrá de dos personas para manejar el banco de pruebas. Para el operario se le asignará un sueldo neto de S/. 400.000 mensuales y para el supervisor será de S/.2'000.000

Por otro lado, como lo que nos interesa en el presente cálculo es cual va a ser el valor del rubro sueldo que se incorpore al costo total de operación, debe considerarse que un mes tiene 30 días, sin embargo se consideran laborable 20 días, y que en cada día se trabajan 8 horas, por tanto al mes se laborarán 160 horas. Además para realizar una prueba las horas-hombre corresponden a 4. Entonces, es necesario definir el costo hora/hombre de las dos personas:

Costo horas / hombre operario = $\frac{\text{Sueldo mensual}}{\text{horas laborab.}} = \frac{S/.400.000}{160}$

Costo horas / hombre operario = 2.500

Costo hora/ hombre supervisor = $\frac{\text{Sueldo mensual}}{\text{horas laborab.}} = \frac{2'000.000}{160}$

Costo hora/ hombre supervisor = 12.500

Partiendo de estos parámetros se llega a:

Valor de sueldos por prueba = Sueldos de operario + Sueldos de supervisor

donde:

Sueldo operario = $S/.2.500 \times 4$ horas = S/.10.000

Sueldo supervisor = S/. 12.500 x 4 horas = S/. 50.000

Y, llegamos a: Valor sueldos por prueba = S/.10.000 + S/.50.000

Valor sueldos por prueba = S/. 60.000.

Depreciación del equipo. Todo equipo está sujeto a desgaste que se manifiesta en la depreciación, que es la pérdida del valor del bien y que deberá trasladarse al costo de operación. Los equipos se deprecian en 10 años, es decir a una razón del 10% anual. Este costo también debe considerarse como fijo. La depreciación anual es de S/. 3'409.496,60 que representa el 10% del costo total del banco de pruebas.

Como se expresó el costo de depreciación debe cargarse al costo de operación y, también que el equipo amortizará este costo en las horas que consideramos que está operando. Si tomamos el cálculo de las horas laborables anuales, esto es 160 horas al mes x 12 meses = 1.920 horas al año, por tanto:

Costos de depreciación por prueba =
$$\frac{\text{Dep. anual x horas(duración de prueba)}}{\text{horas de operación}}$$

Costos de depreciación por prueba =
$$\frac{S/.3'409.496}{1.920}$$
 x 4 = S/. 7.103

El mantenimiento. Toda maquinaria para que funcione sin problemas necesita revisiones y cambios cada cierto periodo. Para el banco de pruebas de bombas es necesario que cada 40 horas de trabajo se revisen sus elementos constitutivos y se cambien el aceite, filtros, condensos y platinos del motor. El valor de mantenimiento asciende a S/. 54.000; si deseamos determinar el costo por cada prueba podemos calcular primero el costo por hora, el cual es de S/. 1.350, y luego multiplicario por el número de horas que dura la prueba. El mantenimiento se considera también un costo fijo, ya que no depende del número de pruebas, sino del número de horas trabajadas haciendo que el costo de mantenimiento sea siempre el mismo.

De lo expuesto en el párrafo anterior llegamos a:

Costo de mantenimiento por prueba = S/. 1.350 x 4 horas = 5.400

Costos de operación por prueba. Todos los costos por prueba obtenidos se proceden a sumar obteniendo así el costo por cada prueba:

Costo de Operación de	,, Danies para	4		
Elementos	Unidad	Cantidad	Valor Unitario	Valor Total
Combustible (gasolina)	Galon	3,000	3.800,00	11.400,00
	Kliovatio-hora	0,225	300,00	68,00
Energía eléctrica	m3	0,480	2.500,00	1.200,00
Agua	hore	4,000	2.500,00	10.000,00
Sueldo del operario	hora	4,000		50.000,00
Sueldo del supervisor	horas operadas	1		7.103,00
Depreciación		4,000		
Mantenimiento Total costos de operac	hora	-1,000	S/.	85.171,00

De lo expuesto se concluye que el costo de operación de una prueba de bomba centrífuga realizada en el banco de pruebas en Febrero de 1996 es de S/. 85.171,00 por bomba (valores calculados para la bomba que disponemos para la experimentación).

CONCLUSIONES Y RECOMENDACIONES.

A partir de las diferentes pruebas que se realizaron y de los gráficos obtenidos se puede concluir lo siguiente:

- 1 El banco de pruebas para bombas centrífugas se encuentra en capacidad de operar con bombas hasta 15 HP y velocidades entre 1800 y 3600 RPM, con diámetros de 3 y 2 pulgadas en la succión y descarga respectivamente.
- 2 El empleo de un motor con cierto tiempo de uso junto con el factor económico influyerón en la determinación de la capacidad del banco de pruebas para bombas centrifugas y en la selección de los acoples flexibles para dicho equipo.
- 3 El muy leve ruido que se produce al iniciarse la cavitación no se lo puede distinguir del ruido del motor de combustión interna. Solo lo podemos apreciar en los manómetros de manera aproximada cuando se produce una reducción cercana al 3% del cabezal total desarrollado, al estrangular gradualmente el flujo con la válvula localizada en la succión.

- 4 Las curvas características elementales presentadas y todos los cálculos realizados aquí son solo aplicables cuando el fluído de trabajo es el agua.
- 5 La unidad motriz del banco de pruebas para bombas (motor a gasolina), no mantiene constantes las revoluciones en el lapso que dura la prueba, por este motivo todas las tablas que contienen los datos para graficar las curvas características están corregidas por las leyes de semejanza para bombas.
- 6 Por el bajo costo de operación mostrado, junto con la cantidad de bombas de tipo centrifugo que se emplean tanto en la agricultura como en la industria serían el aliciente para los fabricantes y dueños de una empresa de servicio emprender la aventura de adquirirlo y operarlo a pesar de su considerable costo inicial.

En base a la experiencia que se adquirió al realizar las pruebas se ha elaborado algunas recomendaciones :

 Las bombas centrífugas con eje horizontal, de una etapa, y succión por un extremo (de tipo voluta), cuya potencia no sea superior a 15 HP / 3.600 RPM, son las que recomendamos ensayar en el banco de pruebas para bombas que se ha construído.

- 2. Existe gran posibilidad de incrementar por lo menos a 2,5 veces la capacidad de operación, de acuerdo a las especificaciones originales del motor, para ello recomendamos obtener experimentalmente las curvas de funcionamiento del mismo; del análisis de éstas curvas y las caracaterísticas que poseen los demás instrumentos disponibles en el banco de pruebas, nos determinarán la nueva capacidad de operación y la elección de los acoples requeridos.
- 3. Las especificaciones del medidor de torque y las revoluciones a las que se someteran las bombas centrífugas en prueba, nos permite sugerir el empleo de un motor de combustión interna que entregue un torque de 500 Lbs - Pig a 3.600 RPM (relacionada con potencia de 30 HP).
- 4. Para evitar cambios repentinos en las revoluciones del motor se recomienda utilizar gasolina de buena calidad (super o eco 86), e instalar una bomba para el combustible y un filtro en la linea de suministro al carburador.
- 5. Cada vez que se requiera probar bombas centrífugas es necesario revisar la hermeticidad de las tuberías , la calibración de los instrumentos y especialmente el alineamiento paralelo y angular del sistema Motortorquímetro-bomba.

- 6. Para proceder a calibrar el equipo sensor transductor amplificador de torque y velocidad, espere que su pila interna se recargue especialmente cuando este equipo no se lo empleó por mucho tiempo, y luego utilice el manual para realizar la calibración requerida evitando introducir cargas al eje del torquímetro mientras se ingresan los constantes de calibración.
- 7. Es recomendable colocarle un filtro en la tuberla de succión para evitar absorber impurezas que podría contener el agua almacenada; puesto que el impacto de éstas contra los álabes de la turbina del medidor de flujo le podrían causa serios daños a este instrumento.
- 8. La operación del banco de pruebas requiere de recintos abiertos que gosen de buena ventilación, para evitar daños en la salud del personal a cargo de este equipo, debido a los gases de escape del motor.
- 9. En la tubería de succión se requiere que se encuentre nivelada de tal manera que no tenga puntos altos, evitando así que se formen bolsas de gas dentro de la tubería.
- 10. Para facilitar el trabajo de montaje y desmontaje de las bombas, se sugiere la instalación de un tecle, con capacidad de 1/8 de tonelada.

ANEXOS

ANEXO A

TABLAS DE DATOS PARA LA GRAFICACION DE LAS CURVAS CARACTERISTICAS DE LA BOMBA CENTRIFUGA EN PRUEBA

Tabla A.1: Datos para graficar las curvas características a 2800 RPM.

_			Iç	21	9	įγ	g	1	र्ग १	ল	92		F	2	7	7	‡	7	17	7	; [्रा	800	1
tantes.	=	%		5,50	44,93	53.72	56 99	7 43		54,73	52,69	217	,	47,83	44,97	2	45,54	39,44	35.1	21 24	2 0	25,13	Ö	
RPM cons	₽₩	<u>0</u>		3,91	5,95	7.58	7.24	1917	Q Q	6,36	6.07	00 4	5,53	4 ,84	4.22	30.0	3,92	3,45	274	1000	4,4,4	1,61	00.0	
a 2800 F	7	Ω.		12,25	13.25	14 07	12.70	12,70	11,97	11,62	11.52		/c.1	10.06	0.38	3	8,93	8.74	7.78	2,70	7,7	6,40	80 P	2
características corregidas a 2800 RPM constantes	1	רכים חום	7	75,21	116 45	155 85	3 3	100	170,64	171,53	181 80		181,72	185.34	186 38	22/22	187,44	191 20	180 18	01,001	18/38	186,68	185 00	120,001
racteristica	-		_	205,75	200 27	404 07	70121	1/2,14	150,26	146.75	132 00	24,92	130,34	187 071	00.50	80,80	82,84	71.36		17:70	47,16	34.08	60.0	33'5
8		-	_	0.998	7000	0,000	288	1,000	99,	799 U	000	000,1	1.000	8000) ()	0.996	1000	3/3	J.000	1,000	1 000	1	0,880
and de norrechita	CALCACION Inhalina	7 (1111)		0.999	1000	0,880	1,000	1,000	1.000	800	200	1,000	1,000	1		200.	799 U			1,000	1.000	4 000		0,999
ob Jose	100 Les	T TOTAL		0000		7	1,000	1,000	1,000	٥		1,000	1 000	1	7	<u> </u>	0000			1,000	1,000			0000
100	Coencia	Mecanica	ď.	10.07	14,41	13,29	14,08	12,71	11 97	7	00,11	11,52	11.57		10,08	933	2 07		8,/4	7,78	717			66,4
	Caudai		<u>S</u>	80 300	20,500	202,54	191,92	172.15	150 26	23,25	145,92	132,00	120 24	100,00	102,84	89.59	30 00	02,20	71,36	57,27	47.16	2 7 7	34,00	000
	Ø	ctal	nia H2O		67°C/	116,64	155,93	166 45	470 84	3 3	171,92	181.89	707	7/101	185,54	186 38			191,20	189.14			186,68	186 12
	Velocidad Attura	de prueba Itotal	100	1	2801,52	2802,34	2800.69	2800 12	2000,14	7800,000	2803,17	2800.00	2000	7800,UU	2801,52	00 0000	20002	2803,99	2800,00	2799.87	100000	78700	2800,00	2801 52

Zd= 2,56 pie H2O T= 82,4 oF.

Pa = 29,75 Pig Hg.

Tabla A.2: Datos para graficar las curvas características a 2500 RPM.

_	T		O	Ιœ	100	G	N	m	100	100	100	900	lio.		100	T ~~	1
6	F	· %	40,69	30,16	43,86	44	80.2	50,18	50,66	48,55	\$7.18	45,04	43.25	34.48	31,46	8,7,8	0,00
랿		۵,		ľ		7	٦	"	ľ			4	4	["	(6)	1	
a 2500 RPM constantes			3,77	2.81	Ξ	4,31	14	4,60	4,33	3,41	3,13	2,93	2,61	8	8	12	0,00
ž	Ž	퓻.	۳ ا	2	Ą	4	က်	4	4	3	ကြ	~	7	-	-	-	0
5.0	-	<u></u>		_	L	(6)	_	<u></u>		_			_		_	_	
250		_,	9,27	9.33	9,37	9,76	9,08	9,16	8,54	7,03	6,64	6,50	6,03	5,22	4,76	4,54	4.11
	ፚ	ᇁ															
egid		H20	72,83	62,11	87,75	99,80	135,09	119,78	39,41	47,65	ठ	7.	श्र	50,	20	44,22	40,98
8	불	工	2	8	8	8	135	119	139	147	155,64	151,71	154,35	150,05	148,61	144	5
icas	ļ	띮							_								
erist		~ C	205,03	179,30	185,30	171,00	160,21	151,92	122,87	91,42	79,65	76,33	66,86	47,48	39,88	33,33	000
caracteristicas corregidas	ø	GPM	ಜ	17	48	17	16	15	12	G	7	7	9	Ą	്ര	m	
3	က		Ø	8)2	L OC	8	8	g	<u>g</u>	Q	Q	छ	0	g)7	
	Ev(Luju)	٠.	1,000	1,000	1,002	1,000	1,000	1,000	1,000	1,006	1,000	1,000	0,985	1,010	68. 86.	1,007	8
8				_	<u>.</u>		_								_		
de correccion	(rufn1)^2		000	000,	,002	000	900,	000	000,	,004	80,	000	0,990	900,	000	,005	8
g	цл))		ļ	1	-	1	•	7	-	1	7-	*	0	7	7	***	
e			,000	000	,001	000	000	000	000	002	800	000	395	003	000	002	8
coef.	n/n1		1,	1,1	1,	1,	1,1	1,	1,1	1,(-	1	Ö	1,(7,), ,	Ŧ
_	8		9,27	33	35	92	9,08	16	54	6,98	6,64	6,50	6,12	5,17	4,76	4,51	4,11
Potencia	Mecánica	HP.	0	G	G	တ်	တ်	တ်	œ	တ်	Ô	တ်	ထ်	່ນ	4	4	4
<u>a</u>	Ž																
		-		179,30	5,15	171,00	180,21	151,92	122,87	91,24	79,65	76,33	67,21	47,33	39,88	33,25	읽
Caudal		GPM.	205,0	17	185,	17	18	15	12	Ò	7	7	ဖ	4	સ્	က်	
<u>ප</u>		_	3							60	*d+	-		_			
		႙	72,83	62,11	87,61	89,8	135,09	119,78	139,41	147,06	155,64	151,71	155,96	149,09	148,61	143,53	140,98
Altura	total	pie H20		-			1		-	Ť		*	***	**	*	-	-
	앒	ق	힏	Ö	82	ွ	9	Ö	Q	32	Q	ō	က	Ŋ	0	4	ᇹ
dad	epa		2500	2500	2498	2500	2500	2500	2500	2495	2500	2500	2513	2492	2500	2494	2500
Velocidad	de prueba	RPM															
×	g	뜨						·									

Zd= 2,56 pie H2O

T= 82,4 oF.

Pa ≈ 29,75 Pig Hg.

Tabla A.3: Datos para graficar las curvas características a 2000 RPM.

				_			·							
constantes	Ļ	%	47,73	46,69	52,24	52,69	50,84	50,14	46,46	45,62	37,24	39,08	32,31	0,00
00 RPM o	Pw	Ŧ.	3,02	2,80	3,02	2,99	2,78	2,56	2,33	1,99	1,50	1,41	1,02	00'0
das a 20	ፚ	규.	6,33	5,99	5,79	5,67	5,48	5,10	5,01	4,36	4,04	3,62	3,16	2,25
cas corregi	士	PIE H20	63,59	64,08	72,14	80,54	84,23	89,04	92,07	94,16	69'96	98,34	97,65	90,45
caracteristicas corregidas a 2000 RPM constantes	ø	GPM	187,93	172,69	165,86	146,81	130,84	113,59	100,01	83,55	62,16	56,85	41,37	00'0
	(n/h1)^3		996'0	906'0	0,926	0,933	0,920	0,915	0,920	0,909	0,920	0,898	0,931	0,931
correccion	(n/n1)^2(n/n1)^3		0,977	986'0	0,950	0,955	0,946	0,943	0,946	0,938	0,946	0,931	0,954	0,954
coef, de correccion	n/n1		0,989	0,968	0,975	0,977	0,973	0,971	0,973	0,969	0,973	0,965	0,977	0,977
Potencia	Mecánica	HP.	6,548	6,612	6,251	6,080	5,950	5,570	5,441	4,797	4,384	4,026	3,392	2,418
Caudal		GPM.	190,09	178,47	170,17	150,26	134,50	117,00	102,81	86,27	63,90	58,93	42,36	00'0
	total	pie H2O	90'59	68,45	75,94	78,27	89,01	94,46	87,3	100,38	101,12	105,65	102,39	94,84
Velocidad Altura	de prueba	RPM	2023	2067	2062	2047	9902	2060	2056	2065	9507	2073	2048	2048

Zd= 2,56 pie H2O T= 82,4 oF.

Pa = 29,75 Pig Hg.

Tabla A.4 Resultados para graficar las curvas características a 1800 RPM.

Velocidad Altura	Attura	Caudal	Potencia	coef. de	coef. de correccion	Ş	caracterist	caracteristicas corregidas	idas a 18	a 1800 RPM constantes	nstantes
de prueba total	total		Mecánica	n/n1	(n/n1) ^{4.} 2	(n/n1)^3	O	Ī	ፚ	ď	2
RPM	pie H2O	GPM.	픞				E G	PIE H20	<u>.</u>	: <u>0</u>	- 8
1932,0	67,21	183,00	6,25	0.932	0.868	0.809	170 50		5.057	2 544	40.704
1940,0	70,89	175,00	5,91	0.928	0.861	0 799	162.37	64 03	4 704	2,504	50,70
1932,0	70,84	13	5,81	0.932	O	0.809	149 07		4 700	2,204	05,040
1932,0	76,91	153,00	5,48	0,932	0.868	0.809	142.55		4 433	2,510	19,200 19,200
1932,0	82,07		5,19	0,932	0.868		126.85	27.72	4 105	2000	267,40
1932,0	82,17	4	4.78	0.932	0.868	0.809	112 93	71 33	2 867	7,204	24,45
1930,0	83,33	100,36	4.41	0.933	0 870	0 844	93,80	75.48	200	2,52	32,031
1932,0	91,24	8		0.932	0.868	0.809	59 63	70,20	2,077	4 702	C78'14
1932,0	94,81	46,50	3,09	0.932	0.868	0.809	43,32	32.52	2 400	0 003	20.054
1931,0	96,61	29,94	2,79	0,932	0,869	0.810	27.94	20.5	2.783	0.507	450,00
1932,0	97,15	22,55	2,54	0,932	0.868	0.809	2101	84.33	2053	2000	24, 133
1932,0	98,24	00'0	2,06	0.932	0.868	0.809	000	85.97	1 88		- 0,0
							,,,,,	1	2	2	22.2

Zd = 2,56 pie t = 82,4 oF (28 oC)

Pa = 29,75 Plg Hg.

Tabia A.5: Datos y Resultados para el NPSH requerido para la bomba a 2800 RPM

	_	-	т-	<u>-</u>		_			٠,				_			
	NPSHR	Pies	48 204	10,434	16,389	35 8	77,240	10 020	222121	21 462		20,285	21 611	44,044	28 057	200 755
	CAUDAL	GPM	194 24	20.2	180,05	444 20	C74441	126.89		124.53	183	00'CO1	98 70		70.10	A2 83
		(n/n1) ^{n/} 2	1,000	200	1,000	0 008	335	1.000		0,994	0000	0,030	0.993		35	0 991
	corrección. a		1,000	1 000	337	566 C		35,	2002	1,987	0000	33.7	9660	550 *	000'	966.0
	NPSHR Pin		18,294	18 397	2	22.291	2007	18,820	24 800	7,000	20 307		74,820	29.054	40,04	30,011
	Pies H2O	201102	1,106	0.949		0,611	0.475	2/4/2	0.457		0.327	1000	0,407	0 143	2	0,054
L	Pies H2O	40.20	07'01-	-17.00	01.07	-10,76	-13 00	3	-1130		-12,46	7 04	0,7	4.53		-2,49
D do cucaión	Pla. Ha.	12 60	20,01	-15,00		00,8-	-11.50		-10.00		-11,00	-7 00	22	-4,00		-2,20
CALIDA		194 2A	200	180,09	144 30	221/22	126,89		124,93	2007	70,001	99.05		70,10	50 65	43,00
VELOCIDAD	RPM.	2800.00	00000	28UU,69	2803 17		2800,00	20,400	2012,00	2804.52	2001,002	2810,00	2200	/88/7	2042 00	2013,00

ha= 33,617pies abs. hvpa =1

. hvpa =1,265 pies abs.

Tabla A.6: Datos y Resultados para el NPSH requerido para la bomba a 2500 RPM

	CAUDAL	GPW	20000	38,300	196,490	18	132,126	183 450	2	169,856	160 450		115,410	27.040
		Dies (10 200	10,003	18,261	40.04	0,440	18.174	100	18,550	19,726	414 64	26,053	29 750
2 2500 2020	מהטיווון וארטרוא	(n/n1)*2	1 005		1,000	1000	700	1,000	7	000,1	1,000	000	000,1	1.000
Corraco	200	(m/n1)	1.002		000,1	1.001		1,000	1 000	200,1	1,000	1 000	2,000	1,000
NPSHR	, i	200	18,305			18,208	11000	10,174	10.551	100	13,120	26.053	222	29,750
hvs.	Ç	╗	1,1572	1113	2	1,061	2000	I	0.847	0000	200	0.390		0,132
hgs.	مَّة	<u>'</u>]	-15,296	-15.296	47.000	-15,286	-15 255	3	-14,729	-13 5En	20,00	-6,780	2000	C70'7-
P.de succ.	Pla. Ha.	40.5	C'C -	-13,50		JC,C1-	-13 50	2	-13,00	-12 00		-6,00	2 50	2,3
1	GPM		20,00	196,49	101 04		183.45		109,86	160.45	745	110,41	67.24	25.34.1
Velocidad CAUDAL	RPM.	SC FORC	7,2	2500,00	2497 SR	30,132	2500,00	00000	an'nnez	2500,00	2500 00	CO.0002	2500.00	

ha= 33,617pies abs. hvpa =1,265 pies abs.

Tabla A.7: Datos y Resultados para el NPSH requerido para la bomba a 2000 RPM

	NPSHR		res	19 20	22.5	17.35	50,	2 00	51,00	00.00	40,00	20 76	62,70	32 66	24,40	27.67	/R',7
	CAUDAL	2000	5	186.05		175.98		159.39	22.5	148.60	33.5	108 21		140 55	22,53	78.41	
	a 2000 rpm.	(m/m1)**?		1,000	1000	788,0	300	200.1		0.988		1,000		566.0		6660	
	corrección.	(n/n1)	200	1,000	0000	0,933	7	1,000	7000	C,884	2007	200	2000	בי מממט	0000	2,888	700 7
of social	ברטוא. הבטוא	Pes	40.205	50.75	17 400	2021	27 002	1227	20 542	55,72	20 774	133,62	27.5 00	670,77	20,000	20,000	28 822
4		22 E 82 E	1018	2	0.810		0 743		0.654	5	A 833	3	0.420	2,420	0.120	3	0.135
has	Dien COO	271 221 1	-14.16	20.1	20.00	3,7,7	2		12.46		9		-1020		4.53		-5.67
CAUDAL P.de succión	Pio Ho		-12,5			0.0	0,6	7	⊃;		Ņ,	4 4	ဘု		4. O		က
CAUDAL	C P M	20.007	180,08	17R 2A	1777	150 20	50,00	140 40	140,43	400 00	20,021	7000	200,00	70 07	0,40	0.00	51,5
VELOCIDAD	RPM.	2000 20	50007 50007 50007	2003 00		2000.00		2012 00		2000	2000,000	2008 00	200,000	2001 20	2001,20	1002 00	70,085

ha= 33,617pies abs. hvpa =1,265 pies abs.

Tabla A.8: Datos y Resultados para el NPSH requerido para la bomba a 1800 RPM

	NPSHR		ries	20.55	l		l	2,00	3	22 80				27 QQ	7	- C C C C
	CAUDAL	300	5	160,52		157.90		134 00		128 68	Ì	13.74	l	66.39		A C A
	a 1800 rpm. CAUDAL	fn/n1 M2		968'0		2 2 2 2 2 2 2 2 2 3 2								1,00,1		
	corrección.	(n/n1)	ł		0000		0000			3	ľ	700,1	700 7	3.	7000	
	NPSHR	Pies	20 620	1		201-1-4		ı	22 620	•		1	27 070	1	30 242	
	.e.	Fies H20	OFL U		0.733		0.50x		D ARA		0.374	I	0,70		000	
	hgs.		-12 46	l	11.80	l	90.6		-10.20		1,1		533		-2.27	
	P.de succion		-11.00	40 00	2.	Ç	n ×		00.5-		-10.001		8.69		-7,00	
COLDANION	1 5 5 6 C	-13	160,86	150 22	100,20	427 55	134,22	1000	70,07	(())	2, X	000	00,50	47 40	47,10	
CACION INV	RPM.		1803,81	1803 81	0,000	180008	1004,30	4700 00	20,00	4700.00	00,00	1700 00	00,55	1805 18	25.1.2	

ha≕ 33,617pies abs. hvpa =1,265 pies

Tabla A.9: Datos y resultados del cálculo del NPSH disponible

CAUDAL	Pérdidas por	cabezal de	Pérdidas por	Pérdidas por friccion en fuherias y accesorios	rias v accept	7 P		
GPM	c/100pies	velocidad	fuberia	Codo Ont	Smith of accept	,		ALVIN A
200.00	R GOD	1 170		3	van de comp. van de pie	varv. de pie	union.	(PIES)
400.00	1000	27.		0,632	0,164	8.892	0.047	17 551
ກີກຳດວາ		0,948	0,751	0.512	0 133	7 205		31,5
160,00	5,800	0.749	A 599		2000	207,		18,5/6
150.00	5 130				C31 '0	5,692	0,030	21,391
44000		20,0	0,550	0,355	0,092	5.008	คน บ	22 242
140,00	4,500	0,574	0.465	0.310	080 0	1 360		2,413
130,00	3,900	0.495			200,0	4,302	0,023	22,989
120 00					Ron'n	3,762	0,020	23.711
		0,441	U,948	0,227	0.059	3 200	0.017	300
110,00	2,840	0,354	0.283	0 191	0.050	200	1000	00°,47
100.00	2 370	700 U		1010	020,0	7,080	0,014	24,999
00 00	1 050	204.0		0,138	0,041	2,227	0.012	25 55R
	DC8,-	0,237	0,201	0,128	0.033	, 804	0000	200
80,00	1,560	0,187	0.161	0 101	8000		000,0	R00,07
70,00	1,220	0.143	0 128	2,00	0,020	1,421	700'n	26,528
60,00	0.912	0 105	0 000	0,027	0,020	1,687	0,006	26,930
20.00	0.878	0 0	0,084	/cn'n	0,015	0,798	0,004	27,280
00 07		0,070	0,0,0	0,039	0,010	0.555	0 003	27 570
7000	U,449	0,047	0,046	0.025	0.007	0 257	200	7 7 7
30,00	0.267	ACM 0	acu 0	7,00	2000	3	0,002	27,813
		2	0,020	0,014		0.1981	17000	700 80

LONGITUD DE TUBERIA = 10,33 PIES

PRESION BAROMETRICA LOCAL = 29,75 Pig. DE MERCURIO
TEMPERATURA DE BOMBEO = 28 oC = 82,4 oF.

CARGA ESTATICA DE SUCCION = 1,25m. = 4,100 Pies.

ACCESORIOS; CANTIDAD COEFICIENTE DE FRICCICN K.
Codos 1 0,54
Váhvula de pie 1 7,6
unión 2 0,04

ANEXO B

SELECCION DE LOS ACOPLES

CLASIFICACION DE LOS ACOPLAMIENTOS

DIMENSIONES DE LAS BRIDAS TIPO "S"

Selección de los acoples

Para la operación satisfactoria del torquímetro MCRT, este debe estar adecuadamente instalado como parte integral del banco tal como lo detalla el manual del torquímetro. En esta instalación los acoples deben estar en capacidad de transmitir el torque deseado, compensar los desalineamientos; evitando introducir cargas indeseables al eje.

El acople recomendado por el manual es del tipo "doblemente flexible" debido a que el estator del torquímetro se lo une ríquidamente a la estructura del banco. Un esquema de la forma que van acoplados el sistema motortorquímetro- bomba se observa en la figura B.1.

El manual de acoples Martin recomienda un factor de seguridad de 1,5 para bombas centrifugas y axiales acopladas a motores reciprocantes, la potencia de accionamiento que necesitamos del motor es de 15 HP girando a 3000 RPM., procediendo a utilizar estos valores en la fórmula que se presenta a continuación.

La potencia por cada 100 RPM es :

HP a 100 RPM = (HP * Factor de servicio * 100) / (RPM del acopie)

HP a 100 RPM = (15 * 1,5 * 100) / (3000)

HP a 100 RPM = 0.75

Con 0,75 HP a 100 RPM, vamos a la tabla B.1 y observamos que en la columna para 100 RPM, el valor requerido (0,75) se encuentra entre las medidas 6(0.71HP) y 7(1,20HP), La selección correcta es la medida 7 con manguito de caucho termoplástico.

Posteriormente procedemos a verificar en las especificaciones para bridas tipo"S" en la tabla B.2, si en el tamaño 7 se permiten agujeros con diámetro de 1 pulgada encontrandose que se pueden agrandar hasta 1 5/8 de pulgada.

El acople elegido es de tamaño 7S marca "Martin" modelo cuadra flex, el cual además de transmitir el torque, es capaz de absorver desalineamientos paralelo, angular, torsional y axial.

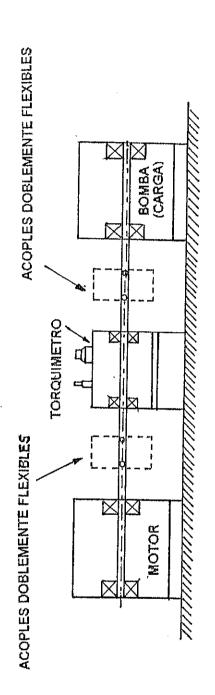


Figura B.1 Estator del torquímetro montado en forma rígida. (Memoria técnica #7850 SHC.)

Tabla B.1 Clasificación de los acopiamientos

CAUCHO TERMOPLASTICO (TPR)

Tamaño del acopte	Material del elemento	VE		SICO PO LO DADA		1.	Hezon Torqve	Fector de rigidez	RPM Méximo
	fiexible	100	860	1160	1750	3500	(PlgLb./ redienes	torsional# (pig-Lb/rad)	***************************************
3	TPA	.10	.8	1.1	1.7	3.3	60	229	9200
4	TPA	.19	1.6	2.2	3.3	6.7	120	458	7600
5	TPA	.38	3.3	4.4	6,7	13,0	240	916	7600
6 .	TPR	.71	6.1	8.3	12.5	25.0	450	1718	6000
7	TPA	1.20	10.0	13.0	20.0	40.0	725 ₩	2769	5250
8	TPR	1.80	16,0	20.0	32.0	63.0	1135	4335	4500
9	TPA	2.80	25.0	33.0	50.0	100.0	1800	6875	3750
10	TPA	4.GO	39.0	53.0	80.0	160.0	2875	10980	3600

EPDM & NEOPREND

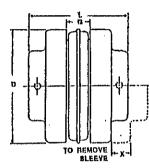
Tamaño del acopia	Material del	VE		SICO PO DIDADA 1			Rezón Torque	Factor de rigidaz	RPM
	flaxible	100	860	1160	1750	3500	(PkgL.b./ radiones	torsional # (plg-Lb/red)	Måximo
11	EPDM & Neoprens	7.20	62,0	83.0	126.0	252.0	4530	17300	3600
12	EPDM & Neoprene	11.40	98.0	132.0	200.0		7200	27500	2800
13	EPDM & Neoprene	18.00	155,0	209.0	315.0		11350	43350	2400
14	EPDM & Neoprene	28.60	246.0	331.0	500,0	Pun	18000	68755	2200
16	EPDM	75.00	645.0	670.0	**-	***	47250	180480	1500

HYTREL

Tamaño del scople	Metarial del elemento	1		SIČO PO DADA I		l. _.	Hezon Torque	rigidez	RPM
•	flexióle	100	060	1160	1750	3500	(PlgL.b./ radianes	torsion±i # (pig-Lb/rad)	Méximo
з •	HYTREL]			***				
4 '	HYTREL								488
5 *	HYTREL				,				***
6	HYTREL	2.9	25.0	33.0	50.0	100.0	1800	10000	6000
7	HYTREL.	4,6	39,0	53.0	0.08	100.0	2075	20000	5250
8 .	HYTREL	7.2	62.0	84.0	126.0	252.0	4530	30000	4500
9	HYTHEL	11.4	98.0	132.0	200.0	400.0	7200	47500	3750
10	HYTREL	18.0	155.0	209.0	315.0	630.0	11350	100000	3600
11	HYTREL	28.6	246.0	331.0	500,0	1000.0	18000	125000	3600
12	HYTREL.	50.0	430.0	580.0	875,0		31500	225000	2600
13	HYTREL	75.0	645.0	870.0	1312.0	***	47268	368900	2400
14	HYTREL	115.0	986.0	1334.0	2013.0		72480	593250	2200

Valorez mostrados son a temperatura embiente de 75º F (24º C.)

....Tabla B.2 Dimensiones de las bridas tipo "S"


BRIDAS TIPO "S"

ACOPLES QUADRA-FLEX[®] TIPO "S"-(Medidas de perforaciones)

Los acoples flexibles lipo "s" son taladrados a la medida de fijación para cualquier eje estándar. Su material es hierro fundido de alta resistencia. Estas unidades son fáciles de instalar y remover.

DIMENSIONES

Tanaka	Oken.	P	erforeción	(Plg.)	O	antro (PK	J.)					Poso
Tamello del acopte	brida (D)	Stock	Rec. Mex.	Pec. Max.	Diam, centrel (H)	Long. recor. (C)	Proy. Contra (E)	G_	L	T	×	(Lbs.
68	3,250	7/1	1 7/10	1 1/4	1 7/1	1"/#	27/01	1/4	2 1710	11/xt	**/x	1.0
8 \$	4,000	7,	170	1 % 1 % 1 %	2 1/2 2 1/2 2 11/10	1 % 1 % 1 % 1 %	n 2 1, 21 1, 24	7/4	3 /t 3 /t 4	# x	1 ³ /21	2.1
78	4,025	. 1/1	170	1 1/0	2 11/15	11/2	n/a	1	3 1/11	kla	17/11	2.7
83	5,450	7/.	111/10	2 '/4 2 '/4	3 7/4	2 1/2 1 1/10	1/4 1 70	171	4 7 to 5	** x	11/2	4.5
95	0.350	1/0	2 7/4	2 '/: 2 '/:	3 1/1 4 1/0	2 ¹⁷ /20 2 ¹ /20	74/22 1 74	\$ 7/10	5 Yu 0	1 ¹ /24	\$ 7 ₄	6.5
188	7,500	1 1/0	27/1	3%	43/0	21/n 21/n	17/14 117/21	1 3/0	5 ⁽¹ /H	17/11	. 2	11.5
113	6,025	11/4	2 1/4 2 1/4 3 1/4	37/0	3 % 4 % 5 % 6 %	3 70 3 70 3 70 3 70	1 1/0 1 1/0 1 1/4 1 1/4	17,	7 '/ ₄ 7 '/0 7 '/0 8	1 1/2	2711	17.5
128	10,000	1 1/4	27.	3 "Ju	2 40 4 70 5 70	1	19/34	2 1/11	67,	17/0	2 "/#	27.2
(35	11,750	2	21/0		4 %	A 7/e	1 70	2 1/14	0 1/4	1 11/20	3 7.4	45.0
148	13.875	2	27/0		4 1/0	4 1/2	1 70	3 7/1	9 1/0	2 7.	3 1/4	70.0
188	10,876	2	51/1	8	B	6	2	47/1	14 %	274	4 7/4	120.0

^{*} Perforación máxima recomendada con chavetas estandar.

[&]quot; Perforación sásina recomendada con chavetas de poco espeso:

^{&#}x27;s Peso aproximado por cada brida.

ANEXO C

FIGURAS Y TABLAS DE LAS TUBERIAS Y ACCESORIOS

TABLA DE VAPOR

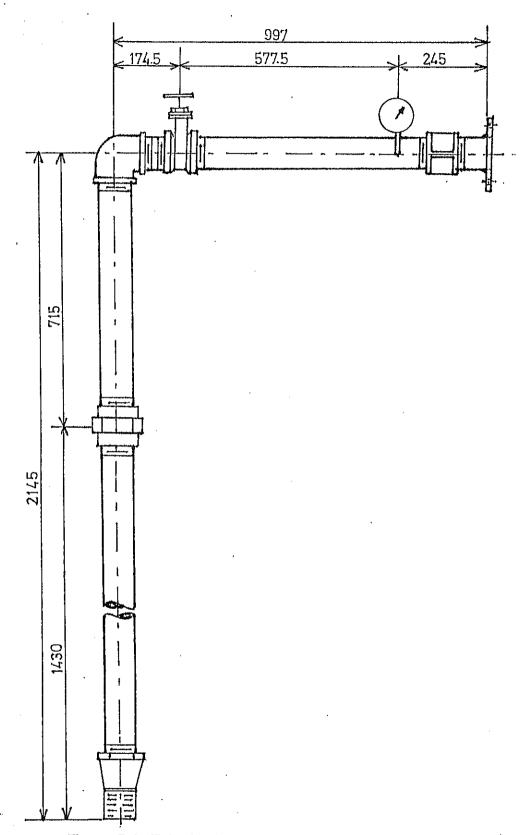


Figura C.1 Tubería de succión

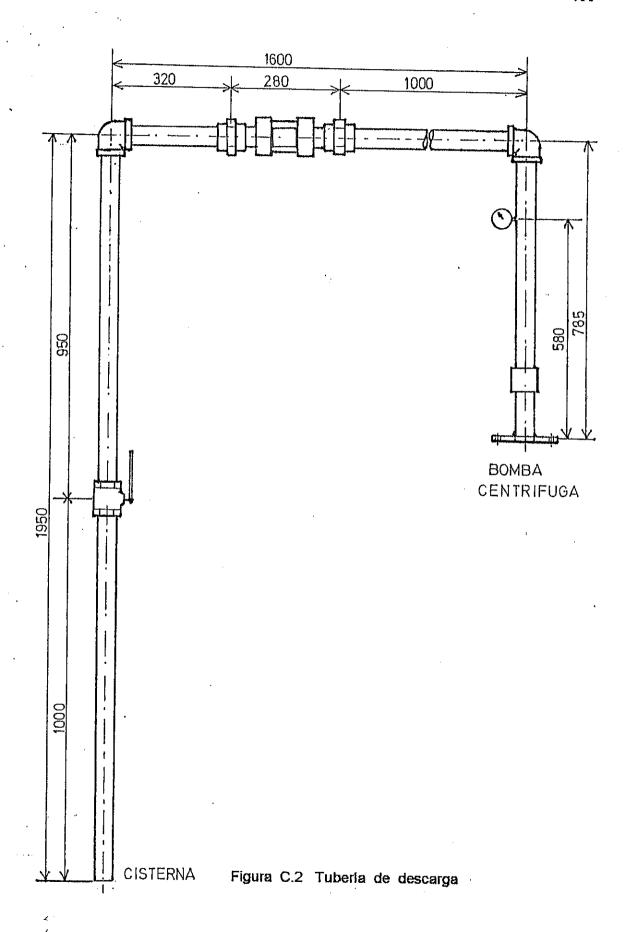


Tabla C.1 FRICCION EN TUBERIAS DEBIDO AL AGUA
INGERSOLL-RAND CAMERON HYDRAULIC DATA

Fricción debido al agua

Hierro fundido - asfattado y tubos nuevos de acero (Basado en la fórmula de Darcy's)
3 Pulgadas

		Nistro for	vido		acero	Jagr **	7 Tas					
	1	Ariated		ĺ	C BOLING		Ace	rto Hodzia Cácillia 80	recipter)(a)		cero - cé	uluta 160
Flac	, j	ola. Interi			la, Interio	7 3.008 °	dta	. Interior	2.900	di	a. Interior	2,624"
U.8 gal	Velo- cidad	Ceba	L Pard.	Velo- cided	Cabas veto-	Perd caba					Catrez	Pert.
par min	fipor 899.	ckied Ft.	ft por 1911 Pt	ft por	cktad Ft.		1 1 por			ft por	ckhad Ft.	R por
10	.454 .681	.00	.042	434	.003	.038	19	.00	.050	593	-	.080
20	.908	.01	.149	65' 868	.007	.129	.73 .97	-01	.101	390		164
25	1.13	.02	.225	1.09	.018	.192	1.21	.02	.169 .253	1,19		.275
30	1.36	.03	.316	1.30	.026	.267	1.45	.03	,351	1.78		.411 .572
35 40	1.59	.04 .05	.421	1,52	.036 .047	.353	1.70	.04	.464	2,08		.757
45	2.04	.06	.676	1,95	.059	.449 .557	2.18	,06 ,07	.592	2,37		933
50	2,27	.08	.825	2.17	.073	.676	2.43	,09	.860	2,67 2,97		1,16
55 	2.50	.10	.990	2.39	.089	.776	2.67	-11	1.03	3.26		1,41
60 65	2.72 2.95	.12	1,17	2,60	105	.912	2.91	.13	1.21	3,56	,197	1,99
70	3.18	6	1.57	2,82 3,04	124	1.06	3,16	.15	1 40	3,86	,231	2.31
75	3.40	.18	1.79	3.25	165	1.38	3.40	,18 ,21	1.61	4,15	.268	2,65
80	3.63	.21	2.03	3,47	.187	1.56	3,88	.23	2.07	1.45 1.75	,307	3.02
85 90	3.86	.23	2.28	3,69	.211	1,75	4.12	.26	2.31	5,04	.395	3.83
95	4.08	.26 .29	2.55 2.83	3,91 4,12	.237 .264	1.95	4.37	.29	2.5B	5.34	143	4,27
100	4.54	.32	3.12	1,34	.293	2.16 2.37	4.61 4.85	.33	2.86	5,63	.493	4.73
110	4.99	.39	3.75	1,77	354	2.84	5.33	.14	3.15 3.77	5.93 6.53	,546 ,661	5,21 6.25
120 130	5.45 5.90	.46 .54	4,45 5,19	5 21	,421	3.35	5,81	.52	4.45	7, 12	.787	7,38
140	6.35	.63	6.00	5 64 6.08	.495 .574	3.90 4.50	6.30	,62 ,71	5.19	7,71	.923	8.61
150	6.81	.72	6.67	6.51	.659	5.13	6.79 7.28	.82	5.98 5.82	8.31 8.90	1,07	9,92
160	7.26	.82	7.79	6.94	.749	5.80	7,76	93	7.72	9,49	1.23	11.3
180 200	8 17 9 08	1.04	9.81 12.1	781	.948	7,27	0.72	1.01	9.68	10,68	1.77	16.1
220	9 98	1 55	14.5	8 68 9 55	1,17	8.90	9.70	1,46	11.86	11.87	2.19	19.8
240	109	1.84	17.3	10.4	1,69	10.7 12.7	10.7 11.6	1.78	14.26	13,05	2,64	23.8
260	F1.8	2.16	20,2	11.3	1.98	14.8	12.6	2,07 2.46	16.88 19.71	14 <u>,2</u> 4 15,43	3.15 3.69	28.2 32.9
280	12.7	2.51	23,4	12.2	2,29	17,1	13,6	2,88	22,77	16,61	4,28	38.0
300 320	13.6 14.5	2.88 3.28	25.8 30.4	13.0	2.63	19.5	14,5	3,26	26.04	17.80	4.92	43.5
340	15.4	3.70	34.3	13.9	3.00 3.38	22.1 24.9	15.5	3,77	29.53	18.99	5,59	49.4
360	16.3	4.15	38.4	15,6	3.79	27.8	16.5 17.5	4.22	33.24 37.16	20,17 21,36	6.32 7.08	55.6 62.2
380 400	17.2 18.2	4,62	42.7	16,5 17,4 18.2	4, 23	30.9	18.4	5.27	41.31	22,55	7,89	69.2
420	19.1	5.12 5.65	47,3 52,1	17.4	4.68 5.16	34.2 37.6	19.4	5,81	45.67	23.73	8.74	76,5
440	20 0	6.20	57,1	19.1	5.67	41.2	20.4	6,43 7,13	50.25 55.05	24.92	9,64	84.2
460	20.9	6.77	62.4	20.0	6.19	44.9	22.3	7.75	60,06	26,11 27,29	10.58 11.56	92.2 101
480 500	21.8 22.7	7.38	67.9	20,8	6.74	48.6	23.3	8,37	65,30	28.48	12.59	109
550	25.0	8,00 9,68	73.6 88.9	21.7	7,32 8.85	52.9	24.2	9,15	70.75	29 66	13.66	119
600 {	27.2	11.5	106	25.0	10.5	63.8 75.7	26.7	11.1	05.33 101	32.60	16.53	143
650	29.5	13.5	124	28.2	12.4	8.8	31.6	15.5		35,60 38,56	19.67	170 199
l		i.										

Tabla C,2 FRICCION EN ACCESORIOS DE TUBERIAS CON AGUA.

Fricción con agua Pérdidas por fricción en accesorios de tuberlas Coeficiente de resistencia K (usado en la fórmula $h_t = K \left(V^2 / 2g \right)$).

	11	1 7	1		. 1	1				97 J·
		18-24			6.22	9738	£0.1			D. 19
		12-16			0.23	0 39	-	3	3 6	0.21
	.	8-10			0.25	0.42	1 26	ć	2 2	220
		9		0.02	0.27	8,0	1,35	ů, c	0.24	25.0
	3	4		0.03	0.3 :	1 0 31	1.53	10	120	0 27
	Modes do tubo nominal	21/3-3		0.04	0.32	0.54	1.62	0.54	1-	
	<u> 9</u>	2	×	. O. 65	0.34	0.57	1.7.1	0.57	0.30	6.3
	₩	1,72		0.08	0.38	0 63	1.89	0.63	전 0	25.
		17%		0.07	0.40	0 65	86	0.63	0.35	0.35
·		-		0.03	1	ල.සි <u>ල</u>	2 0 7	0.69	0.37	0.37
		*		0.10	0.45	0.75	2.25	0.75	0.40	0 40
		2		0.12	0.49	0.81	2.43	0.81	0.43	0.43
		(3		82	30	06	ဗ္ဗ	16	5
		\$			a directo)	(bryd oc	Po ph.g)	*06	45:	long radios 90°
		&ccasorios	1		Válvuta de macho (paso directo)	Vähusa de tres vias (tipo plug)	Válvula da tres vias (tipo plug)	estandar	`	
			Accord		nda de n	in de t	shuta da	Codos estandar		
				ļ	ኝ .	*	>		W.	

Note: Los accesorios son estándar con abentura total.

Fricción con agua Pérdidas por fricción en accesorios de tuberías Coeficiente de resistencia K (usado en la fórmula $h_f = K \left(V^2 / 2g \right)$).

													*
				!		Medic	4 45 4	Medica de tubo nominal	78				
40/2000		45	*		11%	17,2	2	2,4-3	4	و	9-10	12-16	18-24
eccesor res	ινο						×						
Vávulas de compuerta	89	0.22	020	81,0	91.0	51,0	51.0	0.14	0.34	0.12	0.11	0.10	0.10
		1											
Agwins of grown	340	9.2	8.5	7.8	7.5	7.1	ري در	1.0	8 8		4 &	4	‡
Valvuies de ánguio	55	1.48	1.35	1.27	, 121	1.16	50.1	56.0	0.94	0.83	77.0	0,72	6.55
Vátvules de ángulo	150	4,05	3.75	3,45	3.30	3,15	2,85	2.70	2.55	2.25	2,10	٠ کو	1.30
Vahviles de globo	м	0.08	0.08	0.67	0.07	0.05	0.06	0.05	0.05	0.05	\$0.0 \$	0.04	70.0

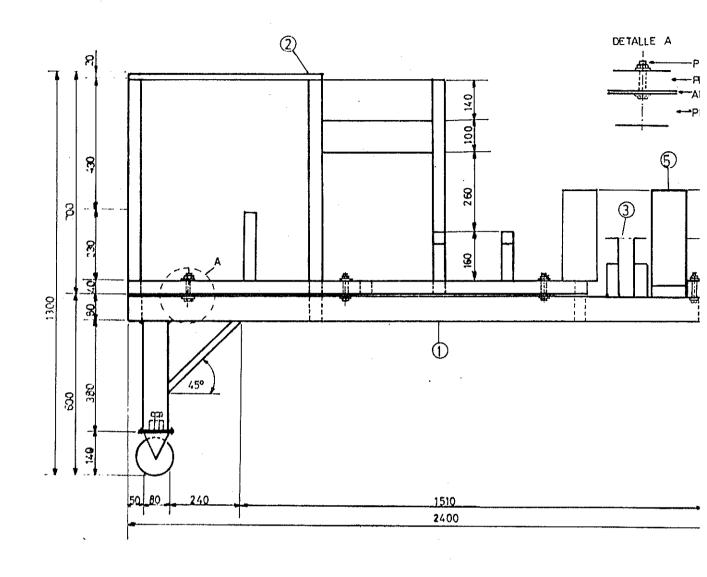
Note: Los accesortos son estándar con abertura total.

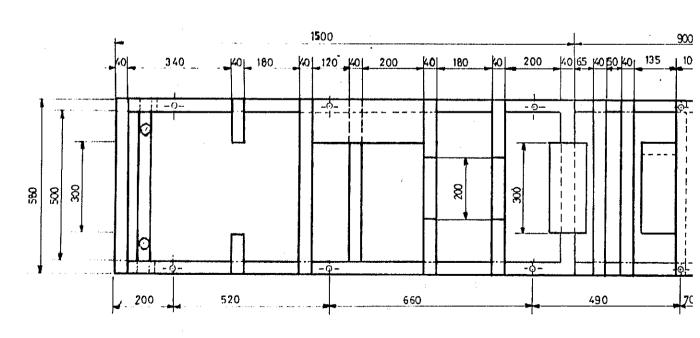
Tabla C.4 FRICCION EN ACCESORIOS DE TUBERIAS CON AGUA.

Fricción con agua

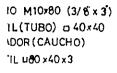
Pérdidas por fricción en accesorios de tuberlas

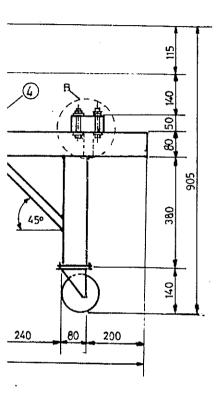
	····	·						Ž,	Mecica co	de tubo nominal	COTTACK				
&ccesorios		general	20	2	4	-	177	411	2	21,2-3	4	9	8-10	12-16	18-24
	9	trseg1	4						2.	Y POR					
Stands chouse stands ofto others	š	35 &5	4.43	27	25	23	22	2.1	e:	1.8	1.7	1.5	4.4	1.3	1.2
7 2	S S	48 √√	6.08	4	13	1.2	=	=	1.0	0.9	9:0	27.	2	59	ιĢ
Milita checus accentante	8	40 VV	9.06	16.2	15	13.8	13.2	12.6	= 4	108	10.2	0.6	4	7.8	7.2
\\ }	55	140 VV	17.7	1.5	7	£ 3	12	1.2	=	1.0	98	.83	77.	72	ĝę
vályta checue basodarte	5	80 VV	10.13						76	72	88	99	Se	66	7.
	2.	₹	9 8						£ 23	2.5	2.0	6	17	1.2	22
reducts do pid secondaris con fitto	420	15 √√	8	£	5 0	2 o	φ (C)	ω	0 80	7.8	2	φ 3	တ	5.5	5.0
son fro	75	35 VV	4,43	2.0	6.1	7.7	1.7	7:	4	4.	£ ,	7	=	0.1	88
						1	1	1				•	-		-

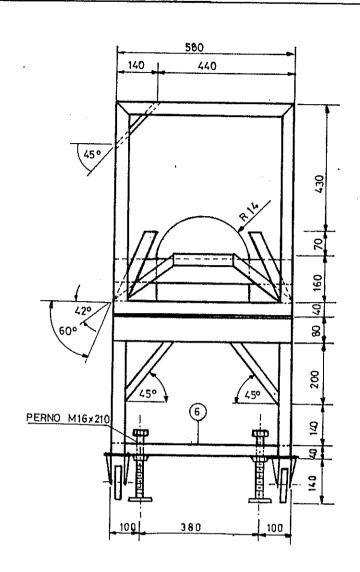

Note: Los accesortos son estándar con abentura total.

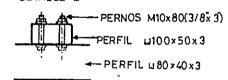

Tabla C.5 Tabla de Vapor (Temperatura de saturación)

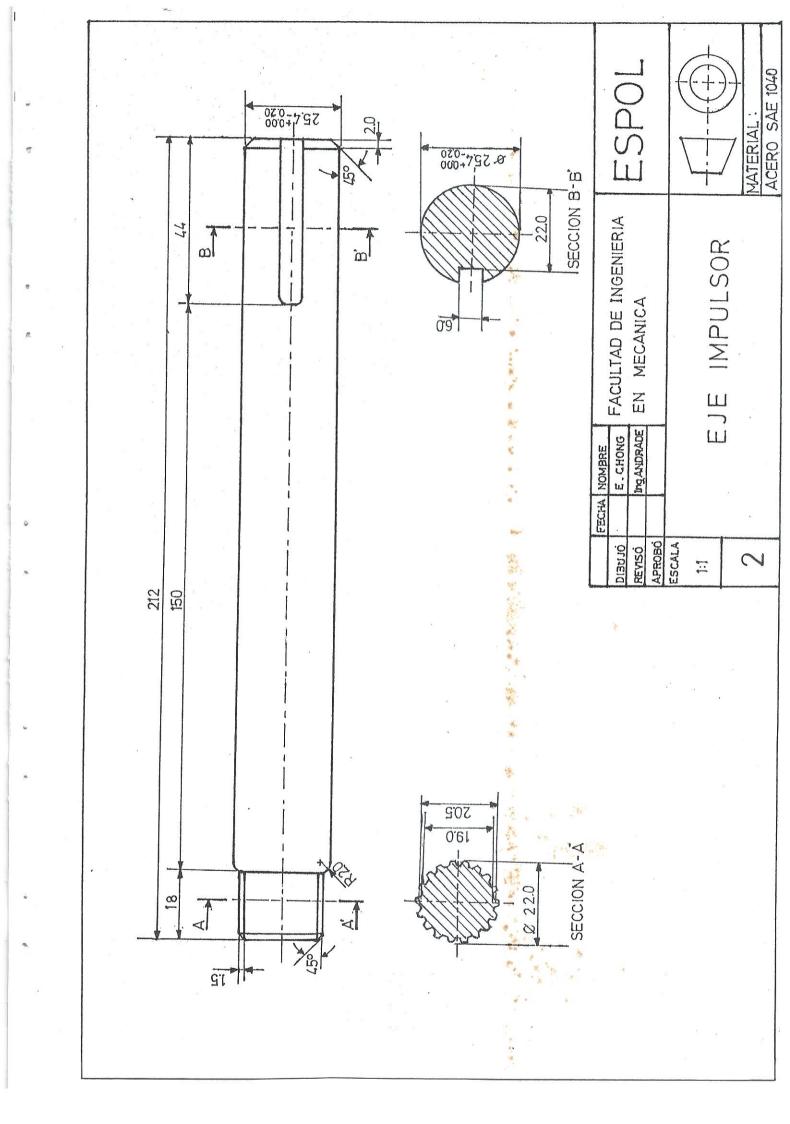
			_											4			
Tar	mp.	Abs Lb	. Pr	CSBLLT	e	S_{po}	cific \	/olume		E	nthe	dpy .					
Fa	hr.			In. Hg		Snt.	d Eva	Sat		Sat		~ .			Entro	,	
1			р			V _I	Y _f		or L	ાંવુધાંત્ર	Evap	· Vapo	r Li	nt. quid	Evnp	Snt. Vapo	Temp
3; 3;		380.0	154	0.1803	0.0	0160	2 336			li _l	lug	lig		8(,	Ste	S.	ŧ
34).092).096	73 03	0.1878 0.1955		0160	2 31{			700 1 10.1	075. 075	8 1075. 2 1076.		0000	2.1877	7 2 187	7 900
						0160	2 300	il 306.	l 2	.02 î	074.	1076.	^ւ Մ.(020	2.1821	2 194	1 33
3t 36		.099	95 (0.2035	0.0	160	2 294	7 294						04 T	4.1709	2.180	5 34
37		.104 .108	01 (21 (0.2118 0.2203	0.0	11607	283	7 283		.02 1	074.] 073 <i>(</i>	1077.0 1077.0		061	2.1709	2.1770	35°
38	ŏ	.112	56 (1.2292	0.0)1602)1602	, .,		, 3	.04 1	073.0	1078 (0.0	081	2.1654	2 172	36
39	0	.117	05 ().2383		1602			• 6	.04 10	072.4	1078 4	0.0	LZZ	2,1544	2.1700	. 90
40	۰ 0	.121	70 r	.2478					′ ′	104 T	371.9	1078.9	0.0	142	2.1489	2.1631	39
41	0.	.126	52 C	2576		$\frac{1602}{1602}$.05 10	071.3	1079.3	0.0	162	2 1424	2.1597	
42 43	0.	.1315	50 O	.2677	0.0	1602	227		9	.05 10	270.7	1079 7	0.0	182	2.1381	2.1563	41
44	ő.	1419) 0 10 N	.2782 .2891		1602		0 2190	ĨĬ.	UG 10)69 K	1080.2 1080.6	0.02	30Z	2.1327	2 1520	4n
4 = 4					0.0	1602	2112	2 2112	12.	06 10	68.9	1081.0		42	2.1274 2.1220	2.1496 2.1462	
46°		1475	2 0	.3004	0.0	1602	2036.	4 2036.4	1 12								
47	0.	1502 1501	3 U	.3120 .3240	0.0.	LOUZ	1964.	3 1064 1	1 1 4	06 In	67.R	1081.5 1081.9	0.02	62	2.1167	2.1429	45°
48	0.	1652	5 O.	.3364	0.03	1603	1895, 1828.	1 1895.1 6 1828.6	. J.5.	V7 10	67.3	1082.4	0.02	6 <i>4</i> ; 02 ;	2.1113 2.1060	2.1395 2.1362	46
49	0.	1715	70.	3493	0.01	603	1764.	7 1764.7		07 10	66.7	1082.8	0.03	21 2	2.100R	2.1320	47 48
50°	0.	1781	1 0	3626		•				37 XU	n0,1	1083.2	0.03	41 2	2.0956	2.1297	49
51	0.3	848	6 O.	3764	0.01	603	1703.3	2 1703.2 2 1544.2		7 10	65.6	1083.7	0.03	61 9	0002	2.1264	500
52 53	0,3	L918:	υ.	3906	0.01	603	15877	3 ገናየን ራ	1.9.0)7 10ı	55.0	1084.1	0.03	<i>9</i> 0 2	0852	2 1939	Б0° б1
54	0.2	10642	2 0.	1052 1203	0.01	603	1533	1 1577 7	21.0	77 - 106	53.9	ገበጸና ሰ	0.040	<i>X</i> 0 2	.0790	2 1100	Ğ2
	•				0.01	003	1481.0	1481.0	. 22.0	77 100	3.3	1085.4	0.043	su 2 19 2	.0747	2.1167 2.1136	ទួល
56° 56		2141 2220		1359	0.01	603	1430.7	1430.7	23.0	7 100	(O)	1085.8					54
67		2302		1520 1686	U.Q.L	UU3	1382.4	12024	24.0	$\omega \pm 0c$	2.2	1086.1		9 2	.0645	2.1104	550
58	0.2	2386	0.4	858	0.01	504	1335,9 1201-1	1335.9	25.0	6 - 100	1.6	1086 ሃ	0.049	7 2.	.0594 .0544	11011	56 57
59	0.2	473	0.5	035	0.010	504	1248.1	1248.1	27.0	o 106	1.0 0.5	1087.1	0.051	72.	0493 3	2 1010	ชื่อ
000		563	0.5	218				1206.7					0.053	6 2.	0443 2	3.0979	59
$\frac{61}{62}$		655		107	0.01(XU4	1166.8	1166 R	28.0	6 105 5 105	9.9	1088.0 1088.4	0.055	5 2.	0393 2	.0948	60°
63		751 850	0.5 0.5	803 601	0.010	3U4	1128.4	1128 /	30,03	5 - 105	8.2	เกรร ช	0.057	12.	0343 2	10017	81
64	0.2	951	0.6	002	0.016	ሀተ ሰና	1091.4	1091.4 1055.7	31.03	1051	3.2 - 1	በበጸባ ፕ	0.039. 0.061:	2.	0393 2 0243 2	0886	62
05°	0.2	050							32.05	1057	7.6]	089.7	0.0632	2.	0194 2	.0826	68 64
06	0.3	056 164	0.6		0.016	05	1021.4	1021,4	33.05	1057	7.1 1	100n 2					
67	0.32		0.6		0.016		988.4 956.6	988.4	34.05	1050	i.S 1	ባዕባ ፈ	0.0676	2,0	0145 2 0096 2	.0796	65°
68 69	0.33		0.69		0.016	05	925,9	956,6 925,9	35.05	1050 1055	.0 1	091.0	0.0689	2.6	M47 2	ハフスに	66 67
_	V.J.)US	0.7	144	0.016	05	896.3	896,3	37.04	1054	.9 1	091.9	0.0708	1.0	1998 2	በלמל	68
70°	0.36		0.73	192	0.016	76	867.8	ደረሃ ሰ							950 2		69
$\begin{array}{c} 71 \\ 72 \end{array}$	0.37	56	0.76	48	0.0160)5	840,4	867 . 9 840.4	38.04 39.04	1054	$\frac{3}{9}$ 1.	092.3	0.0745	1.9	902 2,	0647	70°
73	0.40	•	0.79 0.81		0.0160		813.9	813.9	40.04	1053	.2 - 16	1012	U.U/64	1.9	854 2	በናነደ	71
74	0.41		0.84		0.0160		788,3 763,7	788.4 763.8	41.03	1052.	6 - 10	193.6	0.0783 0.0802	-1.9	757 2.1	በኖናם	72. 73
75°	0.42	ag i	ለ ወጎ፣	ťn			001,	703.0	42.03	1052.	1 10	094.1	0.0820	1.9	710 2.	0530	74
76	0.44		0.87. 0.904		0.0160	:	740.0	740.0	43.03	1051.	5 10	94.5	0.0839				
77 78	0.459	93 (0.935	52	0.0160		717.1 94.9	717.1 694.9	44.03	1050	9 10	D/I O	0.0858	-1.96	SIS 27	1/1/2	75° 76
79	0.474		0.960 0.998		0.0160	7 6	73.6	673.6	45.02 46.02	1050.4 1040.1	4 10 8 10	95.4	0.0876	1.95	569 2.6	144 S	77
					0.01608	i G	53.0	653.0	47.02	1049.2	10	96.2	0.0895 0.0913	1.92	21 2.0 25 2.0	1416 1389	78
80° 81	0.506		.032		0.01608		33.1	633.1	48.02								79
82	0.541		.066 .101		90010.0 80010.0		13.9	613.9	49.02	1048.1	100	77 1	0.0932 0.0950	1.94	28 2.0	360	80°
	0.558	81	.137	មួ .	0.01609	5		595.3 577.4	50.01	1047.5	ำกา	17.5	0.0969	1.93	35 2 n	304	81 82
- II	0.577	ı 1	.175		0.01609	-		560.2	51.01 52.01	1046.9 1046.4	201. 201	17.9	0.0987	1.92	90 2.n	クケな	83
										1017	A1/2	- OF	0.1005	1.92	44 2. 0	249	84

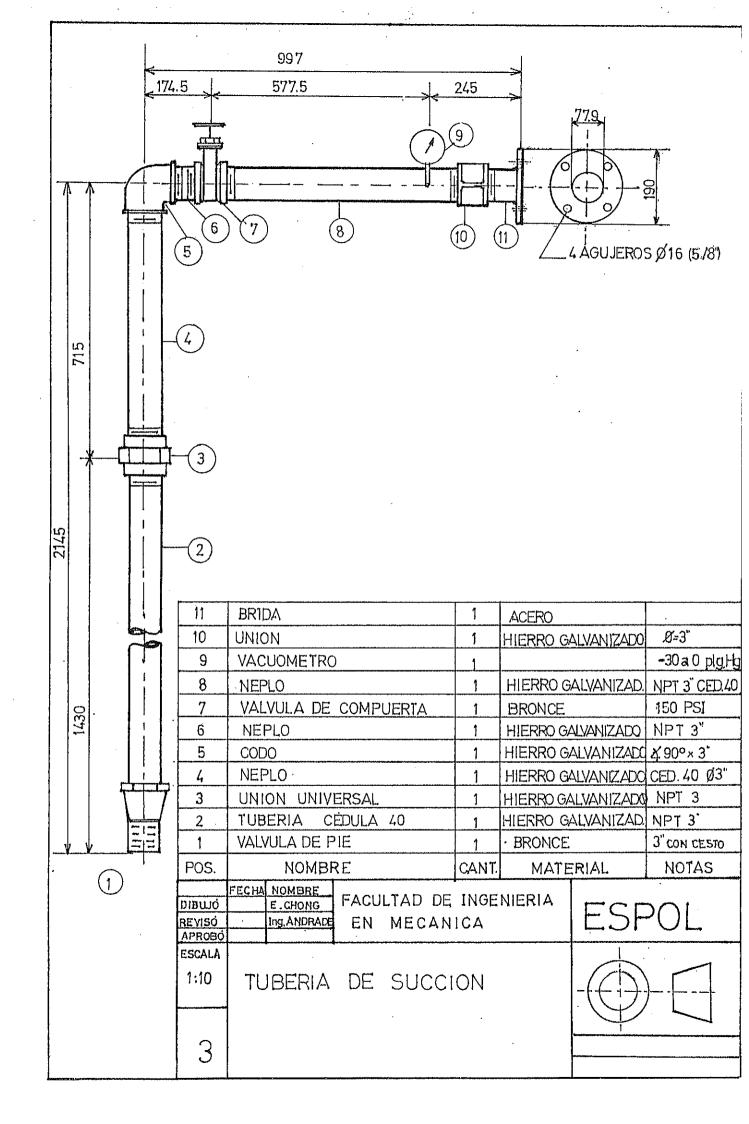

ANEXO D

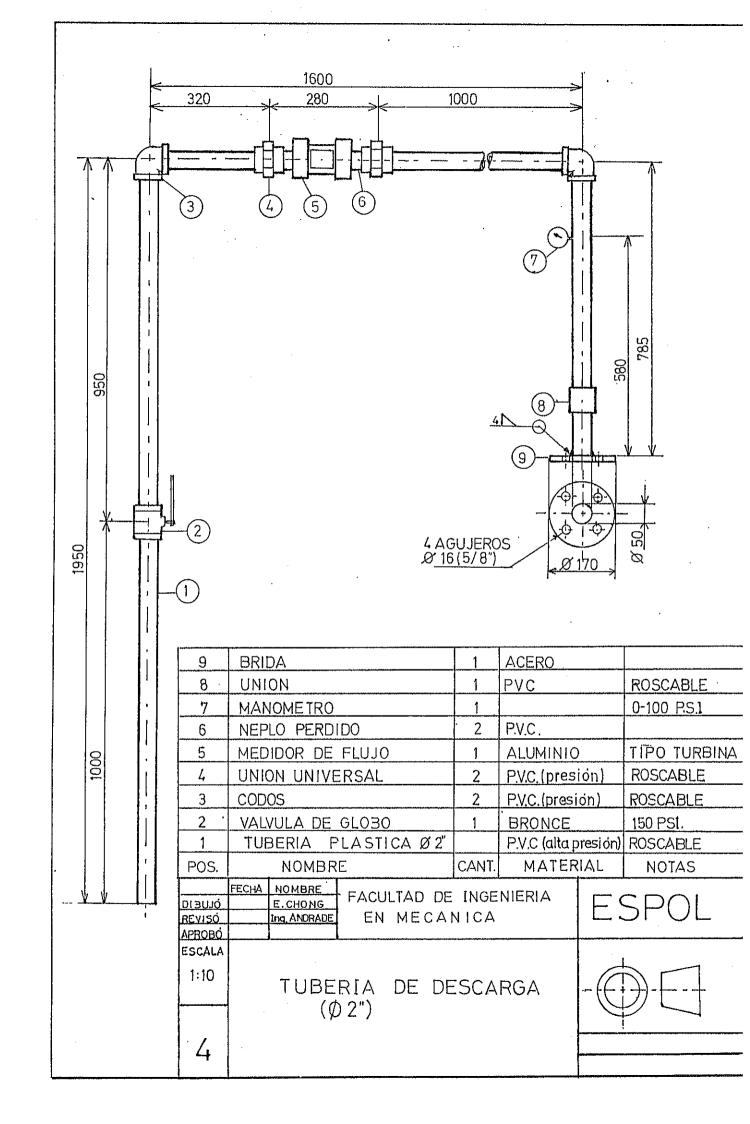

PLANOS




NOTA:
TODAS LAS UNIONES PERMANENTES CON SOLDADURA EN ÁNGULO




DETALLE B



220	1_100	150
	<u>다</u> - 항	
	1 1	
		AGUJEROS Ø 10mm
	φ <u>-</u> φ	
2 40	70	150

	6	VIGA	DE NIVELA	ACION	1	PERF	IL ESTRUCTURAL #40x40 x 3
5	5	CUBIE	RTA DE PRO	TECION	2	LAMI	NA 60x 120x 0,8
	4	BASE	ASIENTO PA	ARA LA BOMBA	2	PERF	L ESTRUCTURAL v100x50x3
<u></u>	3	SOPOF	RTE PARA E	L TORQUÍMETRO	2	PERF	IL ESTRUCTURAL D 40x40x3
2	2	BASTI	DOR DEL M	OTOR	1	PERF	IL ESTRUCTURAL II 40×40×2
	1	ESTR	UCTURA PR	INCIPAL	1	PERF	IL ESTRUCTURAL & 80x40x3
POS	SIC.		NOMBR	E	Nº PIEZAS		NOTAS
`		FECHA	NOMBRE				
DIBL	กาด		E. CHONG	FACULTAD DE INC	GENIERI,	Д	I C C C C I
REV	ISÓ		ing ANDRADE	EN MECANICA			IESPOLI
APR	(OBÓ						
ESC	ALA						
1:12	2.5	EST	RUCTURA	DEL BANCO DE F	RUEBAS	3	
-		PAR	A BOMB	AS CENTRIFUGAS			
'	1					, f	MATERIA L ACERO

ANEXO E

FOTOS DEL BANCO DE PRUEBAS

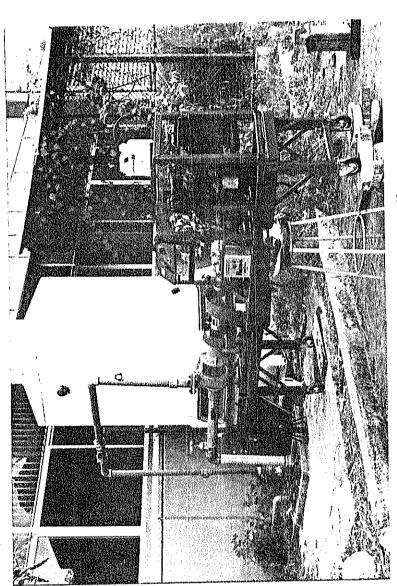


Fig. E.1: Banco de Pruebas para bombas centrífugas

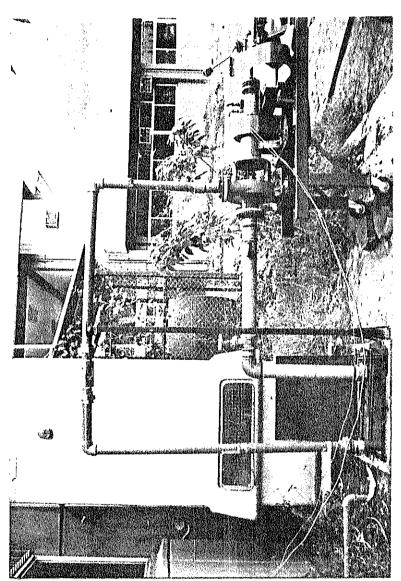


Fig. E.2: Bomba centrífuga conectada al sistema de tuberías del banco de pruebas

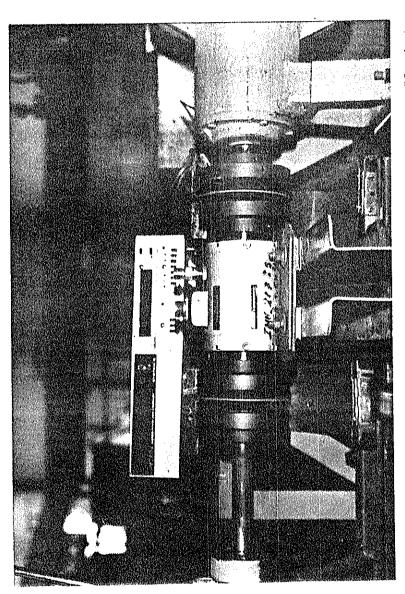


Fig. E.3 : Equipo Medidor de torque y velocidad (sensor-transductor-amplificador).

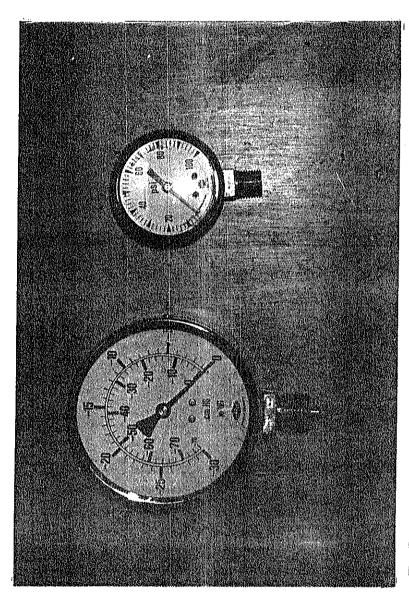


Fig. E.4: Medidores de presión tipo Bourdon (Vacuómetro y Manómetro).

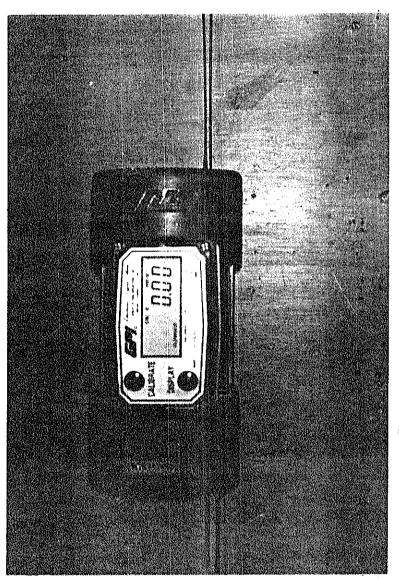


Fig. E.5: Medidor de Flujo tipo turbina

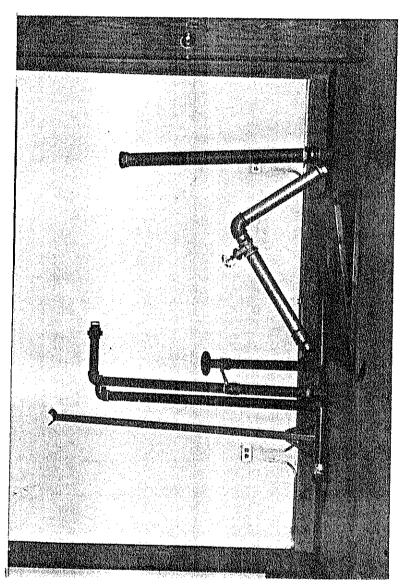


Fig. E.6: Tuberías y accesorios

BIBLIOGRAFIA

- CRANE.- "FLUJO DE FLUIDOS EN VALVULAS, ACCESORIOS Y TUBERIAS" EDITORIAL Mc. GRAW - HILL, PRIMERA EDICION, MEXICO, 1989.
- 2. HYDRAULIC INSTITUTE.-" HYDRAULIC INSTITUTE STANDARTS FOR CENTRIFUGAL, ROTARY AND RECIPROCATING PUMPS, 14 Th, EDICION., 1993.
- 3. HANCHI, J., "DISEÑO Y PRUEBAS DE EFICIENCIA DE UNA BOMBA CENTRIFUGA PARA IRRIGACIÓN AGRICOLA", TESIS, FACULTAD DE INGENIERIA MECANICA, ESPOL, GUAYAQUIL- ECUADOR, 1986.
- 4. INGERSOLL-RAND COMPANY, " CAMERUN HYDRAULIC DATA" 17 ava EDICION , 1992 USA.
- 5. KARASSIK, I., Y CARTER R.,"BOMBAS CENTRIFUGAS" EDITORIAL CECSA, MEXICO, PRIMERA EDICION, 1966.
- 6. KARASSIK; KRUTZSCH; FRASER; MESSINA.- "MANUAL DE BOMBAS"

EDITORIAL Mc. GRAW-HILL; 1983. MEXICO.

- 7. MATAIX CLAUDIO.- "MECANICA DE FLUIDOS Y MAQUINAS HIDRAU-CA; EDITORIAL HARLA, MEXICO, 2da. EDICION,1982.
- 8. McNAUGTON, K. "BOMBAS, SELECCION, USO Y MANTENIMIENTO " EDITORIAL Mc. GRAW-HILL, MEXICO, 1era. EDICIÓN, 1982.
- 9. MARTIN, "Manual de Acoples Martin" USA.
- 10. SYSKA R.E. Y BIRK J.R. "PUMPS ENGINEERING MANUAL" ;DURIRON COMPANY (DURCO); 15 ava. EDICION, 1980. USA.
- 11. WHITE, F.- "MECANICA DE LOS FLUIDOS" EDITORIAL Mc. GRAW-HILL, MEXICO, 1979.