

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

INTEGRACIÓN DE LOS MÓDULOS DE HISTORIAS MÉDICAS Y

REGISTRO DE BENEFICIARIOS DEL SISTEMA INTEGRADO DEL

PATRONATO PROVINCIAL DEL SERVICIO SOCIAL DE PASTAZA

INFORME DE PROYECTO INTEGRADOR

Previo a la obtención del Título de:

INGENIERO EN COMPUTACIÓN

Por:

César Augusto Ramírez Ávila

Wellington Andrés Martínez Flores

GUAYAQUIL – ECUADOR

AÑO: 2019

AGRADECIMIENTOS

Agradezco a Dios, por todo lo que me ha brindado, a mis Padres por todo la

paciencia, compresión y apoyo que me han dado, a mis Hermanos y

Hermanas por siempre confiar en mí, a mi familia, a mi mujer y mis hijos por

estar conmigo; también a mi profesor de materia integradora PHD. Boris

Vintimilla y mi tutor PHD. Luis Mendoza.

Cesar Ramírez Avila.

DEDICATORIA

Dedico el presente proyecto a Dios

por siempre estar ahí, a mi abuela y

mi padre que están en el cielo, a mi

querida madre por su amor eterno, a

mis hermanos y hermanas por su

cariño, a mi familia paterna y materna

por su presencia, a mi mujer y mis

hijos por estar conmigo.

Cesar Ramírez Avila.

DECLARACIÓN EXPRESA

"La responsabilidad y la autoría del contenido de este Trabajo de Titulación, nos

corresponde exclusivamente; y damos nuestro consentimiento para que la ESPOL

realice la comunicación pública de la obra por cualquier medio con el fin de promover

la consulta, difusión y uso público de la producción intelectual"

César Augusto
Ramírez Ávila

 Wellington Andrés
Martínez Flores

 I

RESUMEN

En proyectos integradores anteriores fueron creados los módulos Historias

Médicas y Registro de Beneficiarios, con el objeto de automatizar la

información de las actividades diarias de atención médica que brinda el

Patronato Provincial de Servicio Social de Pastaza, PPSSPz. Sin embargo,

estos módulos funcionan independientemente y no permiten el flujo de

información necesaria entre ellos para evitar el registro de información

duplicada. Por ello, el presente proyecto integrador tuvo por objetivo la

integración de estos módulos para que funcionen como un solo sistema, y que

pueda ser utilizado en el menor tiempo posible. Como solución al problema

descrito, se creó una Interfaz de Programación de Aplicaciones (API, del inglés

Application Programming Interface) integradora que permite que los módulos

Historias Médicas y Registro de Beneficiarios funcionen conjuntamente,

interactuando y compartiendo información implícitamente, y permitiendo la

navegación de los usuarios entre los distintos módulos como un solo sistema

llamado Sistema Integrado del Patronato Provincial de Servicio Social de

Pastaza, SIPPSSPz. La API integradora fue implementada usando NodeJS, y

usa SQLite como base de datos; también usa Sequelize como ORM y JSON,

para intercambio de información. Además, se analizaron y revisaron las

interfaces de cada módulo para garantizar su correcto funcionamiento. Como

resultado de la integración, se cuenta con un proceso integrado que diferencia

entre los roles de los usuarios finales e intercambiar información de forma

concisa y coherente, el cual ya puede ser utilizado por los usuarios finales en

las actividades diarias que el PPSSPz brindan a la ciudadanía.

Palabras Clave: Servicio social, Integración de sistemas, API, Historias

médicas, Registro de beneficiarios.

II

ABSTRACT

In previous integrating projects, the modules for Medical Stories and

Beneficiary Records were created, in order to automatize the information of the

daily health care activities provided by the Pastaza Provincial Social Service

Board PPSSPz. However, these modules work independently and do not allow

the flow of necessary information between them to avoid duplicating records or

information. Therefore, this integrating project aimed at integrating these

modules so that all functions are in one system, and they can be used in the

shortest possible time. As a solution to the problem described, an integrating

Application Programming Interface (API) was created. It allows the Medical

History and Beneficiary Records modules to work together, interacting and

sharing information implicitly, and allowing the navigation of users among the

different modules as a single system called the Integrated System of the

Provincial Board of Social Service of Pastaza, SIPPSSPz. The integrating API

was implemented using NodeJS and uses SQLite as a database. It also uses

Sequelize as ORM and JSON, for information exchange. In addition, the

interfaces of each module were analyzed and reviewed to ensure proper

operation. As a result of the integration, there is an integrated process that

differentiates between the roles of the end users and exchange information in a

concise and coherent way, which can already be used by the end users in the

daily activities that the PPSSPz provide to the citizens.

Keywords: PPSSPz, MHMRB, SIPPSSPz, API integrator, end users

III

ÍNDICE GENERAL

DEDICATORIA .. 3

RESUMEN ... I

ABSTRACT ... II

ÍNDICE GENERAL ... III

ABREVIATURAS .. VI

ÍNDICE DE FIGURAS ... VII

íNDICE DE TABLAS .. IX

CAPÍTULO 1 ... 11

1. Introducción .. 11

1.1 Antecedentes ... 11

1.2 Descripción del problema .. 11

1.3 Justificación ... 12

1.4 Objetivos .. 12

1.4.1 Objetivo General .. 12

1.4.2 Objetivos Específicos .. 12

1.5 Marco Teórico .. 13

1.5.1 Integración de sistemas ... 13

1.5.2 Interfaz de Programación de Aplicaciones API 15

1.5.3 Arquitectura de una aplicación web ... 16

1.5.4 JavaScript .. 17

1.5.5 JavaScript Como Backend y Frontend .. 18

1.5.6 ReactJS y NodeJS ... 18

CAPÍTULO 2 ... 20

2. Metodología .. 20

IV

2.1 Plan de recolección de datos ... 20

2.2 Fiabilidad de los datos ... 20

2.3 Análisis de los datos .. 21

2.4 Propuesta de solución – Arquitectura de la API 23

2.4.1 Vista de Escenarios ... 23

2.4.2 Vista Lógica ... 25

2.4.3 Vista de Desarrollo .. 28

2.4.4 Vista de Procesos .. 29

2.4.5 Vista de Física ... 29

2.5 Plan de Implementación .. 30

CAPÍTULO 3 ... 32

3. IMPLEMENTACIÓN DE LA SOLUCION ... 32

3.1 API integrador .. 32

3.1.1 Entorno físico del SIPPSSPz ... 32

3.1.2 Implementación API ... 34

3.2 Actualizaciones adicionales a los módulos historias médicas y

registro de beneficiaros ... 38

3.2.1 Acceso al sistema PPSSPZ y módulo registro de beneficiarios .. 38

3.2.2 Módulo Historias Médicas .. 44

3.3 Análisis de resultados .. 47

3.3.1 Funcionalidad .. 47

3.3.2 Datos antes de la integración .. 49

3.3.3 Resultados después de la integración ... 49

Conclusiones Y RECOMENDACIONES ... 50

Conclusiones ... 50

Recomendaciones .. 50

V

Bibliografía .. 54

ANEXOS ... 56

VI

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

FIEC Facultad de Ingeniería en Electricidad y Computación

PPSSPz Patronato Provincial de Servicio Social de Pastaza

API Application Programming Interface

W3C Consortium World Wide Web

MHMRB Módulos de Historias Médicas y Registro de Beneficiarios

SIPPSSPz Sistema Integrado del PPSSPz

VII

ÍNDICE DE FIGURAS

Figura 1.1 Actividades de Integración [2]. ... 14

Figura 1.2 Interación del API ... 15

Figura 1.3 Arquitectura Aplicaciones Web [4]. ... 16

Figura 2.1 Esquema general Sistema Integrado del PPSSPZ. 21

Figura 2.2 Proceso derivación de cita médica a atención médica [11]. 22

Figura 2.3 Modelo de “4+1” vistas [10]. ... 23

Figura 2.4 Diagrama de Clases del API. ... 25

Figura 2.5 Diagrama de Secuencia para historia de usuario HU002. 26

Figura 2.6 Diagrama de Secuencia para historia de usuario HU004. 27

Figura 2.7 Modelo Conceptual de la base de datos del API. 27

Figura 2.8 Diagrama de Despliegue. ... 30

Figura 3.1 Estructura física del sistema PPSSPz. ... 33

Figura 3.2 Estructura archivos del API. ... 35

Figura 3.3 Carpeta de DB.. 35

Figura 3.4 Carpeta routers. ... 36

Figura 3.5 Archivo principal del API. ... 36

Figura 3.6 Tablas de la Base de Datos del API. .. 37

Figura 3.7 Código para acceder a la tabla Api_recurso. 37

Figura 3.8 Interfaz de inicio de sesión del sistema PPSSPz. 38

Figura 3.9 Interfaz de Unidad. ... 39

Figura 3.10 Menú principal del sistema PPSSPz. ... 39

Figura 3.11 Interfaz de Ingreso y modificación de Pacientes. 40

Figura 3.12 Interfaz de Consulta de Paciente. .. 41

Figura 3.13 Interfaz de Ingreso de Citas Médicas. .. 42

Figura 3.14 Interfaz de Citas programadas. .. 42

Figura 3.15 Menú principal del Módulo Historias Médicas. 44

Figura 3.16 Interfaz de Historia Médica Medicina General. 45

Figura 3.17 Usuario con Rol atendiendo una cita médica. 48

Figura 3.18 Usuario con Rol Médico registrando la historia médica. 48

Figura R.1 Procedimiento onClickIrAsistencia. .. 51

VIII

Figura R.2 Procedimiento obtenerUbi_fun. ... 51

Figura R.3 Método componentDidMount. .. 52

Anexo A2.1 Interfaz Terapia Física ... 57

Anexo A2.2 Interfaz Terapia de Lenguaje ... 58

Anexo A2.3 Interfaz Psicología ... 58

Anexo A2.4 Interfaz Odontología .. 59

IX

ÍNDICE DE TABLAS

Tabla 1.1 Elementos de Integración para Sistemas de Productos [2]. 15

Tabla 2.1 Personal entrevistado para recolectar datos. 20

Tabla 2.2 Rol indirecto. ... 24

Tabla 2.3 Roles principales del API. .. 24

Tabla 2.4 Historias de Usuario. ... 24

Tabla 2.5 Descripción detallada historia de usuario Conseguir uri destino. 25

Tabla 2.6 Planificación de Actividades. ... 31

X

CAPÍTULO 1

1. INTRODUCCIÓN

En este capítulo exponemos la descripción del problema, justificación, así como los

objetivos que se quiere llegar a solucionar; también definimos el marco teórico,

donde mostramos los conceptos necesarios que vamos a utilizar en el

desarrollo de nuestro proyecto.

1.1 Antecedentes

En el segundo semestre del año 2018, el Patronato Provincial de Servicio

Social de Pastaza (PPSSPz) [1] inicia un proceso de automatización de sus

procesos medulares. Para ello, como parte de un convenio entre el PPSSPz y

la Escuela Superior Politécnica del Litoral (ESPOL), estudiantes de la materia

integradora de Ingeniería de la Computación de la ESPOL procedieron a crear

los módulos de Historias Médicas y de Registro de Beneficiarios (MHMRB)

para el PPSSPz. El objetivo general de estos módulos fue sistematizar los

registros manuales de atención médica a la ciudadanía en general, que se

ejecutan en los diferentes proyectos de servicio social que ofrece el PPSSPz.

1.2 Descripción del problema

A pesar de que los MHMRB funcionan correctamente, todavía no pueden ser

utilizados por los usuarios finales de una forma integrada. Cada módulo

funciona de forma independiente, con acceso y registros de información a

distintas bases de datos, hay diferencias entre las interfaces de usuario, no

hay un proceso común que relacione la interacción entre los dos módulos y no

se cuenta con algún reporte que muestre información resultante de la

integración de los datos que cada módulo procesa. Otro aspecto que hay que

considerar es que en el futuro se van a crear nuevos módulos y que, en

conjunto, todos los módulos conformarán lo que se ha denominado el

Sistema Integrado del PPSSPz (SIPPSSPz).

12

1.3 Justificación

En la actualidad, el personal del PPSSPz que interactúa con los beneficiarios

y pacientes del patronato, no utilizan los MHMRB para registrar la

información. Por consiguiente, siguen manejando la información de forma

manual. Por otro lado, dado que a la fecha todavía los servidores del PPSSPz

no están a tono para alojar los módulos desarrollados, se ha visto como una

oportunidad lograr la integración de los MHMRB antes de que éstos pasen a

producción.

1.4 Objetivos

1.4.1 Objetivo General

Integrar los módulos de Historias médicas y de Registro de

Beneficiarios (MHMRB) del Sistema Integrado del Patronato Provincial

de Servicio Social de Pastaza (SIPPSSPz), automatizando el flujo de

información entre los módulos, para soportar la atención, seguimiento y

control de los pacientes y beneficiarios de los servicios que el PPSSPz

ofrece a la ciudadanía.

1.4.2 Objetivos Específicos

1) Analizar el diseño e implementación de los MHMRB.

2) Diseñar la arquitectura de Interfaz de Programación de

Aplicaciones (API, del inglés Interfaz de Programación de

Aplicaciones) requerida para la integración.

3) Implementar el API para automatizar el flujo de información.

4) Efectuar las pruebas de sistema para verificar el correcto

funcionamiento del API.

5) Efectuar las pruebas de los MHMRB junto con el API.

13

1.5 Marco Teórico

1.5.1 Integración de sistemas

La Integración de sistemas [2] es un proceso muy útil cuando una

organización o institución tiene sistemas de productos de software

funcionando paralelamente e independiente, haciendo que los

productos puedan interactuar conjuntamente y que el flujo de

información sea coherente y consistente a la vista del usuario final.

Hoy en día la información es muy importante para cada empresa; pero,

a veces, el acceso a la información puede ser complicada cuando en la

misma empresa utilizan varios sistemas que trabajan

independientemente, dando como resultado datos separados [2]. Por

esta razón, la integración de sistemas es una gran solución para poder

mejorar el acceso a la información, el flujo de información entre cada

sistema independiente y que permita a la empresa mejorar el

desempeño de su giro de negocio [2].

El integrar sistemas independientes o subsistemas supone obtener los

componentes discretos del sistema; es decir, sistemas de productos

que son elementos de software o hardware, que se van a unir a un

único sistema con el objetivo de que trabajen en conjunto, sin alterar

las características o propiedades con que fueron diseñados [2].

Además, se debe seguir un flujo de actividades de integración (ver

Figura 1.1) que ayude a ensamblar de forma concisa los componentes

discretos del sistema.

14

Figura 1.1 Actividades de Integración [2].

La Figura 1.1 muestra los pasos o actividades de integración y

verificación, para poder ensamblar los componentes discretos del

sistema. El primer paso es recibir los componentes discretos del

sistema [2], analizarlos, verificar su funcionamiento, arquitectura y

tecnologías con que fueron creados. El segundo paso es ensamblar

los componentes discretos, usando técnicas de integración como:

integración global, flujo, incremental, subconjuntos, etc. El tercer paso

es la revisión del funcionamiento y errores de configuración del

componente mientras se está integrando al sistema. El último paso es

la validación del sistema final, junto con las pruebas necesarias de

funcionamiento, rendimiento, flujo de información y posibles errores

de configuración no considerados en el paso de revisión [2].

También hay que considerar los tipos de elementos de integración [2]

para los sistemas de productos, dado que no es igual un sistema de

producto que sistemas de servicios y sistemas empresariales. En la

Tabla 1 se muestran los elementos que se deben considerar cuando

se van a integrar sistemas de productos a un sistema final.

15

Elemento Sistema de Producto
Elementos del Sistema Partes de Hardware

Partes de Software
Usuarios

Interfaces Físicas Procedimientos
Protocolos
APIs

Herramientas de Ensamblaje Tecnologías de desarrollo

Herramientas de Verificación Simuladores

Herramientas de Validación Ambiente Operacional

Técnicas de Integración
recomendadas

Técnicas de Integración de arriba hacia abajo
Técnicas de Integración de abajo hacia arriba

Tabla 1.1 Elementos de Integración para Sistemas de Productos [2].

Además, cuando se integren los subsistemas se deberán hacer las

respectivas verificaciones y validaciones del funcionamiento

(pruebas), para detectar defectos o fallas del sistema total [2].

1.5.2 Interfaz de Programación de Aplicaciones API

API es un conjunto de conceptos y protocolos que sirven, de una forma

simplificada, para poder comunicar o integrar aplicaciones sin

necesidad de conocer o entender como fueron implementadas; así

también, permite exponer y acceder a ciertas funcionalidades entre las

aplicaciones que está comunicando [11].

Figura 1.2 Interación del API

16

1.5.3 Arquitectura de una aplicación web

Una aplicación web [4] está basada en la arquitectura cliente –

servidor, en donde el cliente es el navegador y el servidor es el servidor

web, donde están alojadas las páginas web que son mostradas en el

navegador y que interactúan con el usuario, tal como se muestra en la

Figura 1.2.

Figura 1.3 Arquitectura Aplicaciones Web [4].

Las aplicaciones web se pueden ejecutar en un solo servidor o en

varios servidores [4]. La comunicación entre el navegador y el servidor

puede ser mediante una intranet o Internet, y la base de datos puede

estar alojada en la misma máquina donde está instalado el servidor

web o en otro servidor de forma local o mediante Internet [4]. Hay

varias formas en que una aplicación web puede ser diseñada e

implementada, utilizando desde una máquina de escritorio hasta

grandes servidores, sin olvidar la posible implementación en la nube

[6].

Además, para crear aplicaciones web hay que seguir ciertos

estándares de desarrollo web que se encuentran en el Consorcio World

Wide Web (W3C, por las siglas en inglés de World Wide Web

Consortium) [5], que es una organización donde los miembros

desarrollan estándares para el desarrollo web, como son el Lenguaje

de Marcas de Hipertexto (HTML, por las siglas en inglés de HyperText

17

Markup Language), las Hojas de Estilo en Cascada (CSS, por las siglas

en inglés de Cascading Style Sheets), el lenguaje JavaScript web api,

internacionalización (Para crear aplicaciones web que funcionen en

diferentes culturas o idiomas), accesibilidad, gráficos, los protocolos de

comunicación, los formatos de texto para paso de información, entre

otros [5].

1.5.4 JavaScript

En la década de los 90, cuando Internet estaba comenzando a hacer

protagonista en el mundo tecnológico, comienza a surgir el lenguaje de

programación JavaScript [3], con el objetivo de ayudar al navegador

para que las páginas sean más interactivas con el usuario, y aumentar

el rendimiento de acceso a las aplicaciones web.

Algunas características de JavaScript son [3]: es un lenguaje de

programación interpretado, no necesita compilador; puede ejecutar

diferentes acciones, tanto en el lado del cliente como en el lado del

servidor; es orientado a objetos, aunque la declaración de clases y

objetos es muy diferente al estándar de ciertos lenguajes programación

como Java [3]; y es de tipado blando; es decir, que no se necesita que

se declaren el tipo de datos de las variables antes de ser utilizarlas.

Con el pasar de los años, JavaScript ha evolucionado inmensamente,

ya que en la actualidad hay muchos frameworks o librerías que ayudan

a los programadores a crear páginas web fuertes y robustas con mejor

rendimiento y acceso de solicitudes y respuestas entre navegador y

servidor web [3].

En la actualidad existen librerías derivadas de JavaScript que se

utilizan para crear aplicaciones web, robustas, eficientes, presentables

y de gran rendimiento; como ReactJS [7] enfocada a la visualización o

interfaz de usuario, usando componentes que pueden ser reutilizables,

interactivos y renderizados en páginas web, y que, junto con NodeJS

18

[8], que es un entorno de ejecución de código abierto en el lado del

servidor; permiten crear y ejecutar aplicaciones web de una forma

extremadamente rápida.

1.5.5 JavaScript Como Backend y Frontend

Muchos roles intervienen en el desarrollo de aplicaciones web

modernas. Dos de ellos son [9]: El frontend y el backend. En conjunto,

éstos cubren el desarrollo de cómo funciona y cómo se ve una página

web [5]. Un desarrollador que conozca JavaScript puede programar a

plenitud una aplicación web, pudiendo ejercer el rol tanto del frontend

como del backend. Es por esto que JavaScript ha ido evolucionando,

incorporando nuevas tecnologías para solucionar los problemas

propios de estos dos roles, volviéndose así compatible con todos los

navegadores web modernos y la mayoría de los sitios web.

En el frontend, JavaScript cumple el papel de hacer interactivas las

aplicaciones web, especialmente mejorando las capacidades de las

aplicaciones web de una sola página [9].

En el backend, JavaScript se encarga de otorgar servicios de API

RESTful, que generalmente se relaciona con la modificación de bases

de datos, procesos de autenticación, almacenamiento de imágenes y

otras funciones no relacionadas con la interfaz de usuario [9].

1.5.6 ReactJS y NodeJS

ReactJS [7] es una biblioteca escrita en JavaScript, cuyo objetivo es

crear interfaces de usuario interactivas de manera fácil y sencilla, crea

y utiliza componentes haciendo que el código sea declarativo,

predecible y reutilizable, para poder ser renderizados sin

complicaciones en una aplicación web [5]. Por otra parte, NodeJS [8],

un entorno de ejecución orientado a eventos asíncronicos, construido

19

netamente con JavaScript, que gestiona conexiones concurrentes y

libres de bloqueo de procesos, en el cual se puede crear una aplicación

muy rápida y escalable. Estas dos herramientas juntas, permiten crear

aplicaciones web robustas y escalables, de una manera facil y sencilla.

20

CAPÍTULO 2

2. METODOLOGÍA

En este capítulo se expone el diseño de la API que integra los MHMRB, en base al

procesamiento de la información recolectada de los distintos involucrados en el

desarrollo del proyecto.

2.1 Plan de recolección de datos

Para desarrollar la API destinada a integrar los MHMRB, se tuvo que analizar

la documentación de ambos módulos por separado, y luego analizar toda esta

información de forma conjunta; es decir, que se analizó el sistema que se

forma con los dos módulos puestos en producción. En paralelo a dicho

análisis, se entrevistó a los desarrolladores de ambos módulos por separado,

con el fin de entender el funcionamiento completo de estos para así llevar a

cabo la tarea de integrarlos. En la Tabla 2.1, se detallan las personas que

fueron entrevistadas.

Módulo de historias médicas Módulo de Registro de beneficiarios

Desarrolladores Área de desarrollo Desarrolladores Área de desarrollo

Branny Chito Back-end Erick Pérez Back-end

Israel Zurita Front-end Julián Adams Front-end

Tabla 2.1 Personal entrevistado para recolectar datos.

2.2 Fiabilidad de los datos

Se puede asegurar que los datos obtenidos son fiables porque fueron

recopilados a través de constantes entrevistas con los desarrolladores de

ambos módulos, los mismos que presentaban diversas documentaciones las

cuales fueron estudiadas cuidadosamente previo a las entrevistas

mencionadas, para corroborar el conocimiento necesario para desarrollar la

solución.

21

2.3 Análisis de los datos

Una vez de haber analizado y resumido la información investigada, se

procedió a crear un esquema global de cómo funcionan los MHMRB, para

clarificar nuestras dudas y poder diseñar la mejor solución de interacción

entre estos dos módulos.

Figura 2.1 Esquema general Sistema Integrado del PPSSPZ.

La Figura 2.1 muestra que el módulo de Registro de Beneficiarios tiene dos

submódulos: (1) Pacientes o Beneficiarios, que es donde la enfermera registra

a los pacientes que se van a hacer atender en el PPSSPz, y (2) Citas

Médicas, que es donde la enfermera agenda las citas médicas que van a

hacer atendidas por un Médico. Por su parte, según la Figura 2.1, el módulo

de Historias Médicas no tiene submódulos y es donde el Médico registra la

historia médica del paciente o beneficiario en el momento que lo está

atendiendo. Podemos ver en la Figura 2.1 que no hay un enlace o integración

entre el submódulo Citas médicas, del módulo Registro de Beneficiarios, con

el módulo de Historias Médicas.

22

Siguiendo con nuestro análisis de datos pudimos determinar que ambos

módulos intervienen en la sistematización de un proceso de negocio, el cual

se muestra en la Figura 2.2.

Figura 2.2 Proceso derivación de cita médica a atención médica [11].

En el proceso de la Figura 2.2 se observa que el flujo de actividades

establece que la actividad Derivación al médico o terapeuta se hace después

de la actividad Ingreso Admisión / Agendar cita y antes de la Atención médica.

La actividad del negocio Ingreso Admisión / Agendar cita está soportada por

el Módulo de Registro de Beneficiarios, mientras que la actividad de negocio

Atención médica está soportada por el Módulo de Historias Médicas,

quedando por fuera de la automatización actual para el PPSSPz, la actividad

de negocio Derivación al médico o terapeuta. En este sentido, tal como se

señala en la Figura 2.2, el API a desarrollar a través de este proyecto

integrador tiene por objetivo integrar los módulos antes mencionados para

lograr la sistematización completa del proceso de la Figura 2.2.

23

2.4 Propuesta de solución – Arquitectura de la API

La propuesta de solución para realizar la integración de los módulos de

Historias Médicas y Registro de Beneficiarios se documenta a través del

Modelo de Arquitectura 4+1 Vistas de Kruchten [10], en el cual se manifiesta

que la arquitectura de la solución de un proyecto de software se divide en

cinco vistas, las cuales se muestran en la Figura 2.3.

Figura 2.3 Modelo de “4+1” vistas [10].

2.4.1 Vista de Escenarios

Durante el tiempo que se recolectaron y analizaron los datos sobre los

MHMRB del SIPPSSPz, se identificaron los requerimientos funcionales

que sirven para integrar dichos módulos. Además, se detectó que

existe un rol indirecto llamado Médico, mostrado en la Tabla 2.2, que

interactúa directamente con el submódulo Citas Médicas y el módulo

Historias Médicas, y que dicha interacción ejecuta los roles que se

muestran en la tabla 2.3 siendo estos últimos los principales roles para

el diseño del API integrador.

Actor Descripción

24

Médico Es la persona que brinda la atención médica en el submódulo Citas
Médicas del Módulo Registro de Beneficiarios y registra la historia médica
del paciente o beneficiario en el módulo de Historias Médicas

Tabla 2.2 Rol indirecto.

Actor Descripción

Submódulo Citas
Médicas

Es el responsable de manejar la información general de los
pacientes o beneficiarios del PPSSPz y de gestionar las citas
médicas de estos con los distintos servicios del PPSSPz.

Módulo Historias
Médicas

Es el responsable de gestionar toda la información relacionada
con las historias médicas que los beneficiarios pueden tener
como usuarios de los distintos servicios que ofrece el PPSSPz.

Tabla 2.3 Roles principales del API.

Una vez definidos los roles principales se definieron las historias de

usuarios como se muestra en la Tabla 2.4.

Código Descripción

HU001 Conseguir uri destino

HU002 Dirigirme a uri destino

HU003 Conseguir uri origen

HU004 Dirigirme a uri origen

HU005 Conseguir Cita Médica

HU006 Conseguir Usuario que inicio sesión

HU007 Establecer cita médica a atendida

Tabla 2.4 Historias de Usuario.

En la Tabla 2.5 se muestra una historia de usuario detallada, donde se

especifican el rol, la funcionalidad de la necesidad y los posibles

escenarios que se deben considerar cuando se vaya a codificar el API.

El resto de las historias de usuario detalladas se muestran en el Anexo

A1.

Código HU001

Rol Submódulo Citas Médicas

Funcionalidad Conseguir uri destino

Razón Para poder dirigirme al módulo Historias Médicas

Escenarios o criterios
de validación

Si existe uri destino entonces crear la url destino para dirigirme al
módulo de Historias Médicas

Si no existe uri destino entonces mostrar un mensaje donde se
explique que no se puede continuar

25

Tabla 2.5 Descripción detallada historia de usuario Conseguir uri destino.

2.4.2 Vista Lógica

Esta vista muestra la lógica de funcionamiento del API, la cual es

presentada gráficamente en el Diagrama de Clases de la Figura 2.4.

Figura 2.4 Diagrama de Clases del API.

El diagrama de clases que nos muestra la Figura 2.4, podemos

observar que la clase Uri es la encargada de conectarse a la base de

datos y conseguir los recursos uri que se van a necesitar en la clase

Enlace. La clase Enlace es la encargada de interactuar con el

submódulo Citas Médicas, del módulo Registro de Beneficiarios, y el

módulo Historias Médicas, mediante los métodos conseguirUri,

conseguirCitaMedica, conseguirUsuarioSesion,

establecerCitamedicaAtendida, por lo tanto, esta clase es la

que provee los recursos uri a los MHMRB para que exista el enlace de

26

integración entre los MHMRB como se muestra arriba del API en la

Figura 2.4.

La Figura 2.5 nos muestra el diagrama de secuencia para la historia de

usuario HU002, dirigirme a uri destino, cuando el rol indirecto Médico

va a atender un paciente y escoge una cita médica del submódulo

Citas Médicas en el módulo de Registro de Beneficiarios, y este

módulo, a su vez pide al API el uri destino; entonces el API mediante

la clases Enlace y Uri devuelve el recurso uri al submódulo Citas

Médicas del módulo Registro de Beneficiarios, y así poder dirigirse al

módulo Historias Médicas.

Figura 2.5 Diagrama de Secuencia para historia de usuario HU002.

La Figura 2.6 nos muestra el diagrama de secuencia para la historia de

usuario HU004, dirigirme a uri origen, cuando el rol indirecto Médico ha

finalizado la atención médica y procede a registrar el historial médico

del paciente o beneficiario en el módulo de Historias Médicas, y este

módulo, a su vez, pide al API el uri origen; entonces el API mediante la

27

clases Enlace y Uri devuelve el recurso uri al módulo Historias

Médicas, y así poder dirigirse submódulo Citas Médicas en el módulo

de Registro de Beneficiarios.

Figura 2.6 Diagrama de Secuencia para historia de usuario HU004.

El modelo conceptual de la base de datos de la Figura 2.7, nos muestra

la tabla api_recurso, que almacena información de los recursos uri,

que son básicamente las direcciones url del grupo de páginas que se

encuentran definidas en el módulo de Historias Médicas y la url de la

página cita médica del submódulo Citas Médicas del módulo Registro

de Beneficiarios; y que por lo tanto estos recursos uri van hacer

fundamentales en el API, para que haya la integración entre los

MHMRB.

Figura 2.7 Modelo Conceptual de la base de datos del API.

28

2.4.3 Vista de Desarrollo

Para el desarrollo del API de integración nos basamos en el patrón de

arquitectura Modelo Vista Controlador (MVC). En la Figura 2.8 se

presenta el Diagrama de Componentes del API de integración.

Figura 2.8 Diagrama de Componentes.

La capa Vista, representada en la Figura 2.8 mediante los

componentes <<interfaz>> de color verde, está conformada por

Beneficiario, Uri, HistoriaMedica, y son las interfaces del API

que van a interactuar con los MHMRB.

La capa Controlador, representada en la Figura 2.8 mediante los

componentes <<Controlador>> de color naranja, está conformada por

enlace y recurso de enlace, son los encargados de recuperar los

recursos de la base de datos y enviarlos a las vistas.

La capa Modelo, representada en la Figura 2.8 mediante el

componente <<Tablas>> de color naranja oscuro, que solo contiene el

componente Recursos, es el encargado de interactuar con la base de

datos que contiene la tabla donde están almacenados los recursos uri.

29

2.4.4 Vista de Procesos

En esta vista nos encargamos de garantizar que los requerimientos no

funcionales de rendimiento y concurrencia sean satisfechos. Para el

diseño del API se cuenta con las herramientas tecnológicas NodeJS y

PostgreSQL, la cuales nos garantizan una solución a los aspectos de

rendimiento y concurrencia. Por lo anterior, para esta vista no se

especifica algún tipo de diagrama.

2.4.5 Vista de Física

El API de integración está desplegado en el servidor, específicamente

en el lado del Backend; pero, en base a los conceptos de integración

de sistemas [2] necesitamos considerar el funcionamiento del sistema

como un todo, entre API de integración, módulo de Historias Médicas y

el módulo de Registro de Beneficiarios. Por eso, en la Figura 2.9 se

muestra el diagrama de despliegue para el SIPPSSPZ, donde podemos

apreciar que están los programas y/o tecnologías utilizas por los

usuarios finales y los programas, librerías y/o tecnologías que se van a

utilizar en el lado del servidor.

30

Figura 2.8 Diagrama de Despliegue.

2.5 Plan de Implementación

Para gestionar y poner en funcionamiento nuestro proyecto, vamos a utilizar

el marco de trabajo SCRUM por ser una metodología ágil y que puede ser

adaptable a cualquier proyecto. La planificación de las actividades o tareas

que tendremos que desarrollar semanalmente se muestran en la Tabla 2.6.

Actividades Inicio Fin

Levantar y probar funcionamiento Módulo Registro de Beneficiario y Módulo
Historias Médicas. 24/06/2019 30/06/2019

Implementar Historia de Usuario HU001, HU002. 01/07/2019 03/07/2019

Implementar Historia de Usuario HU003, HU004. 04/07/2019 07/07/2019

Implementar Historia de Usuario HU005, HU006. 08/07/2019 10/07/2019

Implementar Historia de Usuario HU007 y pruebas funcionales de todas las
historias de usuarios implantadas. 11/07/2019 14/07/2019

Corrección de errores encontrados en las pruebas funcionales de todas las
historias de usuarios implantadas. 15/07/2019 18/07/2019

Pruebas funcionales entre los módulos Historias Médicas y Registro de
Beneficiarios y API. 19/07/2019 21/07/2019

Corrección de inconvenientes presentados en las pruebas funcionales. 22/07/2019 25/07/2019

Revisión y corrección de novedades presentadas en el funcionamiento del
módulo Registro de Beneficiarios. 26/07/2019 30/07/2019

31

Revisión y corrección de novedades presentadas en el funcionamiento del
módulo Historias Médicas. 31/07/2019 04/08/2019

Pruebas funcionales entre Registro de Beneficiarios, Historias Médicas y API. 05/08/2019 08/08/2019

Corrección de inconvenientes presentados en las pruebas funcionales. 09/08/2019 11/08/2019

Tabla 2.6 Planificación de Actividades.

32

CAPÍTULO 3

3. IMPLEMENTACIÓN DE LA SOLUCION

En este capítulo explicaremos la solución que implantamos para integrar los

MHMRB. Comenzaremos revisando la implementación de nuestro API integrador,

para luego revisar las modificaciones adicionales a las interfaces de los MHMRB y,

por último, el análisis de resultados de todo el SIPPSSPz.

3.1 API integrador

Para implementar el API integrador se tuvo que analizar los MHMRB, como se

definió en el Capítulo 2 de este documento, para especificar y definir los

requerimientos funcionales necesarios del API integrador; es por ello, que lo

que primero se hizo fue definir el entorno del SIPPSSPz, para luego proceder

a crear el API integrador. El API integrador es un API REST intermedio que

interactúa con los MHMRB, enviando y recibiendo información, para que

dichos módulos puedan procesar la información que reciben del API y poder

navegar entre ellos.

3.1.1 Entorno físico del SIPPSSPz

Para definir el entorno del SIPPSSPz, se tuvo que analizar los MHMRB

para conocer cómo estaban creados y la forma en que se ejecutan; es

por esto que se detectó que cada módulo estaba compuesto por un

backend y un frontend que se ejecutan por separado; además, se

detectó que los MHMRB no se podían ejecutar al mismo tiempo,

porque había conflicto con los puertos de salida entre los backend y

frontend de cada módulo.

Después de detectar los inconvenientes, se procedió a definir el

entorno, estructura física del SIPPSSPz, como se muestra en la Figura

3.1, donde se aprecia una carpeta global SISTEMA_PPSSPZ, que

33

contiene al API y los backend y frontend de los MHMRB por

separado, como se describe a continuación:

Figura 3.1 Estructura física del sistema PPSSPz.

• Carpeta SISTEMA_PPSSPZ, es la carpeta principal que contiene

todas carpetas y archivo de codificación que definen al

SIPPSSPz.

• Carpeta API, que contiene los archivos de codificación del API.

• Carpeta HM, para el módulo Historias Médicas, que a su vez está

compuesta por las subcarpetas hm_backend y hm_frontend,

donde están los archivos de codificación de cada uno

respectivamente.

• Carpeta RB, para el módulo Registro de Beneficiarios, que a su

vez está compuesta por las subcarpetas rb_backend y

rb_frontend, donde están todos los archivos de codificación de

cada uno respectivamente.

Además, se tuvo que reasignar los puertos de los backend y

frontend de cada módulo para que funcionen conjuntamente y sin

conflictos, tal como se muestra a continuación:

• Puerto 3003 para el API.

• Módulo Registro de Beneficiarios:

o Puerto 3001 para el frontend.

34

o Puerto 5000 para el backend.

• Módulo Historias Médicas:

o Puerto 3002 para frontend.

o Puerto 3000 para backend.

Por último, se configuró el API y los backends y frontends de cada

módulo para que se ejecuten con el comando npm run start.

3.1.2 Implementación API

Nuestro API integrador es un API REST que interactúa con los

frontend y backend de los MHMRB y que fue implementado

utilizando las herramientas tecnológicas que se describen a

continuación:

• NodeJS, un entorno de ejecución en el lado del servidor para

crear el API REST de nuestra API, y que interactúa enviando y

recibiendo datos de los MHMRB.

• SQLite, como base de datos liviana para almacenar los recursos

URI que el API necesita para interactuar con los MHMRB.

• Sequelize como ORM, mapeo relacional Objeto, para poder

interactuar entre la base de datos SQLite y NodeJS.

• JSON como formato de intercambio de datos, para poder

intercambiar datos entre el API integrador y los MHMRB.

En la Figura 3.2 mostramos la estructura física del API integrador, que

a su vez consta de dos carpetas principales DB y routers. Estas

carpetas corresponden a los artefactos ROUTER y BD del componente

BACKEND del API que se muestra en el diagrama de despliegue de la

Figura 2.9 del Capítulo 2.

35

Figura 3.2 Estructura archivos del API.

La Figura 3.3 muestra la carpeta DB que contiene el archivo de base de

datos, api-db.sqlite, así como los archivos de definición de las

tablas y el código para poder autenticarse y tener acceso a la base de

datos.

Figura 3.3 Carpeta de DB.

La Figura 3.4 muestra la carpeta routers, la cual contiene los enlaces

del API integrador que van a hacer la comunicación entre el API y los

36

MHMRB. Además, se puede apreciar el código del archivo uri.js que

el API define y que es utilizado por estos módulos para poder navegar

entre ellos.

Figura 3.4 Carpeta routers.

La Figura 3.5 muestra la cabecera del archivo principal index.js que

está en la carpeta src; este archivo es el que se ejecuta cuando el API

comienza a funcionar.

Figura 3.5 Archivo principal del API.

La Figura 3.6 muestra las tablas de la base de datos SQLite que el API

utiliza para integrar los MHMRB. La tabla Api_recurso almacena los

37

recursos URI, que son la URL específicas de las páginas web que ya

están creadas en los MHMRB. La tabla Session almacena las

sesiones que se crean cuando un usuario inicia sesión al sistema

PPSSPz.

Figura 3.6 Tablas de la Base de Datos del API.

La Figura 3.7 muestra el código del API; donde el API recibe el código

de la URI, idUri, que es enviada de los frontends de los MHMRB;

para luego acceder a la base de datos y retornar la URI que se está

solicitando.

Figura 3.7 Código para acceder a la tabla Api_recurso.

38

3.2 Actualizaciones adicionales a los módulos historias médicas y registro

de beneficiaros

Una de las actividades fundamentales en la integración de sistemas es

analizar y hacer las pruebas de funcionamiento de los componentes discretos,

como se definió en el Capítulo 1, sección 1.5.1 del marco teórico. Es por ello

que se tuvo que hacer actualizaciones adicionales a las interfaces de los

MHMRB que presentaban inconvenientes en el funcionamiento y

almacenamiento de la información en la base de datos.

3.2.1 Acceso al sistema PPSSPZ y módulo registro de beneficiarios

En el módulo de registro de beneficiario está la interfaz de iniciar

sesión, donde los usuarios van a poder ingresar sus credenciales y

poder acceder a las opciones del sistema del PPSSPz, como se

muestra en la Figura 3.8.

Figura 3.8 Interfaz de inicio de sesión del sistema PPSSPz.

Una vez que el usuario se ha autenticado con éxito, se presenta la

interfaz de Seleccionar Unidad, como se muestra en la Figura 3.9. Esta

interfaz fue modificada para que presente las unidades físicas,

39

consultorio tipo A o CITET, donde se prestan los servicios médicos, y

no los roles de los usuarios que acceden al sistema.

Figura 3.9 Interfaz de Unidad.

Una vez que el usuario ha escogido la unidad, el sistema muestra al

usuario el menú principal (ver Figura 3.10) del sistema PPSSPz, así

como también el nombre del usuario que esta autenticado.

Figura 3.10 Menú principal del sistema PPSSPz.

Se puede observar que hay dos submódulos que son Pacientes y Cita

Médica.

40

La Figura 3.11 muestra la interfaz de registro de pacientes. Esta

interfaz fue analizada y no presentaba ninguna novedad por lo que no

se hizo ninguna modificación.

Figura 3.11 Interfaz de Ingreso y modificación de Pacientes.

La Figura 3.12 muestra la interfaz de consulta de pacientes registrados

en el sistema PPSSPz; al pulsar el botón editar, el sistema carga los

datos en la interfaz de registro de pacientes para poder modificarlos. Al

analizar esta interfaz, no se encontró ninguna novedad por lo que no se

hizo ninguna modificación.

41

Figura 3.12 Interfaz de Consulta de Paciente.

La Figura 3.13 muestra la interfaz de Ingreso de Citas Médicas. A esta

interfaz se le hicieron varios cambios, tal como se detalla a

continuación:

• Se agregó el campo unidad proyecto, por lo que una cita médica

puede ser registrada en cualquiera de las unidades existentes del

PPSSPz, donde un paciente se puede hacer atender.

• Se quitó el bloque de consulta detallada de los pacientes y se

agregó el campo paciente.

• Se agregó el campo observación para ingresar alguna descripción

de la cita médica.

• Se reescribió el código del campo Valor, para poder consultarlos

en la lista, ya que no se consultaban.

• Se actualizó el código para poder grabar los datos de la cita

médica, ya que al momento de registrar datos de la Cita Médica

no se almacenaban en la base de datos.

42

Figura 3.13 Interfaz de Ingreso de Citas Médicas.

La Figura 3.14 muestra la interfaz de Citas Programadas. A esta

interfaz se le hicieron las siguientes actualizaciones:

Figura 3.14 Interfaz de Citas programadas.

• Se actualizó el código del campo tipo, ya que inicialmente

consultaba todos los tipos de atención como son: medicina

general, odontología, psicología, terapia física y terapia de

lenguaje; y no había coherencia con el tipo de atención del

43

Médico que había iniciado sesión. Por ejemplo, si el tipo de

atención del Médico es medicina general, entonces cuando él

inicia sesión en el sistema y vaya a atender las citas médicas

programadas, sólo se deberían mostrar las que sean medicina

general y no todas; por esto, se reescribió el código para que sólo

se presenten los tipos de atención que están relacionados con el

tipo de atención del Médico que ha iniciado sesión.

• Se actualizó el código del campo fecha, por lo que cuando se

escogía una fecha no se mostraban las citas programadas.

• Se quitó el botón marcar cita en la columna de Acciones, por

lo que no tenía sentido cambiarle el estado de la cita médica a

atendido, si el sistema lo debe hacer automáticamente cuando el

Médico registra el historial médico del paciente.

• Al botón eliminar, forma de x de color rojo de la columna

Acciones, se le reescribió el código para que no elimine el

registro de la base de datos, sino que sólo cambie el estado y

quede el registro como un histórico.

• Al botón ficha médica, forma de persona color azul de la

columna Acciones, se le agregó el código para que interactúe

con el API integrador y poder integrar las citas programadas con

el registro de la ficha médica del paciente del módulo de Historias

Médicas. Aquí podemos mencionar el siguiente proceso al pulsar

este botón:

o Citas Programadas pide al API, según el tipo de atención, el

URI de la interfaz de Historia médica donde se va a

registrar el historial médico del paciente.

o El API toma el código del URI, que le envía la interfaz de

Citas Programadas, y consulta en la base de datos; si

existe el código, el API envía la URI; en caso contrario,

envía un error.

o La interfaz de Citas Programas recibe la URI del API; si no

hubo error, entonces forma una URL agregando como

44

parámetros el código de la cita programa y la sesión del

usuario que esta autenticado, y hace la redirección a la URL

que ha formado del módulo de historia médicas.

3.2.2 Módulo Historias Médicas

El módulo de Historias Médicas tiene las interfaces para registrar el

historial médico de los pacientes que se hacen atender en el PPSSPZ.

En la Figura 3.15 podemos observar los tipos de atención que existen

en el sistema PPSSPz, como son: Medicina General, Terapia Física,

Terapia de Lenguaje, Psicología y Odontología. A todas estas

interfaces se las revisó y se procedió a agregar el código para poder

integrarlas con la interfaz de Citas Programadas del módulo de

Registro de Beneficiarios.

Figura 3.15 Menú principal del Módulo Historias Médicas.

La Figura 3.16 muestra la interfaz de registro de historia médica del tipo

de atención Medicina General. A esta interfaz se le modificó para

45

que pueda recibir los datos del paciente que viene de la interfaz Cita

Programada del módulo Registro de Beneficiario.

Figura 3.16 Interfaz de Historia Médica Medicina General.

Cuando la interfaz Medicina General es llamada por la interfaz

Cita Programada del módulo de Registro de beneficiario, ésta

procede hacer lo siguiente:

• Interfaz Medicina General recibe los parámetros de la URL

que son el código de la cita programa y la sesión del usuario

conectado.

• Interfaz Medicina General pide al API los datos del paciente o

beneficiario pasándole como parámetro el código de la cita

programada.

• El API recibe como parámetro el código de la cita programada y

le pide al backend del módulo de Registro de Beneficiarios los

datos del paciente; una vez que el API recibe los datos del

paciente, éstos son enviados a la interfaz de Medicina

General.

46

• Cuando la interfaz Medicina General recibe los datos del

paciente, entonces los carga en los campos de la interfaz.

Una vez cargados los datos del paciente en el navegador, el usuario

Médico procede a ingresar la historia médica del paciente. Al finalizar el

ingreso de la historia médica del paciente, el usuario o Médico pulsa el

botón guardar y se procesa lo siguiente:

• Interfaz Medicina General guarda la información de la historia

médica del paciente en la base de datos.

• Interfaz Medicina General llama al API, enviándole como

parámetro el código de la cita programada, para que actualice el

estado de la cita programa a Atendida.

• API recibe como parámetro el código de la cita programada y le

pide al backend del módulo de Registro de Beneficiarios que

ponga el estado “A” a la cita programada.

• API notifica la actualización del estado de la cita programada a la

interfaz Medicina General.

• Interfaz Medicina General pide al API la URI de la interfaz Cita

Programada del módulo de Registro de Beneficiarios, enviándole

como parámetro el código de la URI.

• El API recibe como parámetro el código de la URI, consulta en la

base de datos y procede a enviar la URI.

• Interfaz Medicina General recibe la URI del API y crea la URL

para regresar a la interfaz de Citas Programadas del módulo

de Registro de Beneficiarios.

Podemos concluir que las demás interfaces como Terapia física,

Terapia de Lenguaje, Psicología y Odontología, tienen el mismo

procedimiento que la interfaz de Medicina General, por lo que se

mostraran las interfaces en el Anexo A2.

47

3.3 Análisis de resultados

Aquí vamos a revisar la funcionalidad del sistema del PPSSPz, compuesto

por los MHMRB y el API integrador, siendo implícito para el usuario que inicie

sesión, la interacción y navegación entre los componentes del sistema

PPSSPz.

3.3.1 Funcionalidad

Cuando el usuario inicia sesión al sistema PPSSPz, el sistema

diferencia entre los roles Médico y Asistente. En las interfaces de

beneficiarios, tanto el usuario con rol Asistente como con rol Médico,

pueden ingresar y consultar pacientes, beneficiarios; pero en las

interfaces de citas médicas van a tener diferentes privilegios, de tal

forma que un usuario con rol asistente puede crear una cita médica,

pero no la puede atender, porque el sistema no le va a permitir. En la

interfaz de citas programadas, Figura 3.14, sólo va a mostrar las citas

médicas a los usuarios que tengan rol de Médico y que estén

relacionadas con el tipo de atención que el Médico brinda; como, por

ejemplo, si un Médico brinda el tipo de atención medicina general,

entonces cuando él inicie sesión al sistema PPSSPz y vaya a la

interfaz de citas programadas, esta interfaz le mostrará sólo las citas

médicas que pertenezcan a medicina general. Esto mismo se aplicará

con el resto de los tipos de atención.

La Figura 3.17 muestra al usuario que ha iniciado sesión, su nombre en

la esquina superior izquierda, y que va a atender una cita médica.

Usando la interfaz citas programadas, cuando da clic en el botón para

atender la cita, el sistema lo redirige a la interfaz de historia médica

dependiendo del tipo de atención que, para la Figura 3.17, es medicina

general.

48

Figura 3.17 Usuario con Rol atendiendo una cita médica.

La Figura 3.18 muestra al usuario Médico, nombre se presenta en la

esquina superior izquierda, que está atendiendo la cita médica y que

ahora va a registrar el historial médico del paciente en la interfaz de

historia médica tipo de atención medicina general.

Figura 3.18 Usuario con Rol Médico registrando la historia médica.

Por lo expuesto en los casos anteriores, se quiere demostrar que el

usuario que inicie sesión para usar el sistema PPSSPz, en su

interacción, validación, navegación y flujo de información, solo percibe

49

la usabilidad como un solo sistema y no por módulos separados, tal

como estaba antes de este proyecto integrador.

3.3.2 Datos antes de la integración

• Los módulos se ejecutaban independientemente.

• Los MHMRB no funcionaban conjuntamente, porque el frontend

y backend de cada módulo utilizaban el mismo puerto de salida.

• Cuando un usuario iniciaba sesión, se presentaban los roles,

mas no el sitio físico donde se iban a realizar las citas médicas.

• Las interfaces del módulo Citas Médicas no funcionaban

completamente.

• El nombre del usuario sólo aparecía en el módulo de registro de

Beneficiario.

• Las interfaces del módulo de Historia Médicas almacenaban en

la base de datos información de un solo beneficiario.

3.3.3 Resultados después de la integración

• Los MHMRB funcionan conjuntamente, ya que se volvieron

asignar los puertos como se muestra en la sesión 3.1.1 de este

capítulo.

• Todas las interfaces de los dos módulos funcionan

correctamente.

• Se mejoró la amigabilidad del sistema con el usuario, debido a

que anteriormente existían campos en las diversas interfaces de

los distintos módulos que manipulaban información de forma

inconsistente, especialmente al momento de actuar en conjunto

con los demás módulos del sistema.

50

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Con lo expuesto en este documento podemos concluir que se logró integrar los

módulos de Historias Médicas y de Registro de Beneficiarios (MHMRB) del Sistema

Integrado del Patronato Provincial de Servicio Social de Pastaza (SIPPSSPz).

Ahora los MHMRB funcionan como un único sistema que automatiza el flujo de

información entre los dos módulos; además, el SIPPSSPz está listo para ser utilizado

por el personal que labora en el PPSSPz.

Los MHMRB fueron integrados exitosamente como resultado de haber seguido todas

las actividades del proceso de Integración de Sistemas establecido por el SEBoK [2], el

cual fue una gran ayuda desde el punto de vista metodológico.

Finalmente, a través del diseño de la arquitectura el API integrador, se sentaron las

bases para que los futuros módulos que se desarrollen para ir completando el

SIPPSSPz, se puedan integrar a este sistema de una forma efectiva y consistente.

Recomendaciones

Para los nuevos módulos que se vayan a desarrollar se recomienda que utilicen el

código de integración que se definió en los MHMRB como son:

• Para el módulo Registro de Beneficiarios, actualizar el método

onClickIrAsistencia que se muestra en la Figura R.1, para que agreguen el

código uri de las nuevas interfaces de historias médicas.

51

Figura R.1 Procedimiento onClickIrAsistencia.

• En las nuevas interfaces de historias médicas, deben utilizar el procedimiento

obtenerUbi_fun, para obtener los datos del beneficiario y el usuario que ha

iniciado sesión; como se muestra en la Figura R.2.

Figura R.2 Procedimiento obtenerUbi_fun.

• El procedimiento obtenerUbi_fun, debe ser definido en el método

componentDidMount que ReactJS define cuando la interfaz se está inicializando,

como se muestra en la Figura R.3

52

Figura R.3 Método componentDidMount.

También se debe crear el módulo de acceso y permisos, donde se definan las

interfaces de usuarios, roles, opciones, usuarios por roles y roles por opciones; ya que

están interfaces van a ser útil para que el administrador del SIPPSSPz pueda crear

nuevos accesos a las nuevas personas que vayan a utilizar el SIPPSSPz

También se debe crear una interfaz que se llame consulta de historias

medicas detallada, donde se muestre un histórico detallado de las historias

médicas de un paciente o beneficiario. Esta interfaz puede ser accedida de la siguiente

manera:

• Cuando un Médico quiere revisar el historial médico de un paciente o beneficiario

antes de atender una cita médica en el módulo de Registro de Beneficiarios;

entonces la interfaz debe permitir al Médico buscar un paciente o beneficiario y una

vez buscado, mostrar el histórico detallado de las historias médicas de ese

paciente o beneficiario

• Cuando el Médico este registrando el historial médico de un paciente o beneficiario

en el módulo de Historias Médicas y quiera consultar las historias médicas de ese

paciente, entonces la interfaz se debe abrir en una nueva pestaña del navegador y

53

mostrar los datos del paciente que se está haciendo atender junto con su histórico

detallado.

• Después que la interfaz le muestre al Médico el histórico y, a su vez, él escoja y

quiera revisar una historia médica específica, entonces la interfaz debe enviar esa

historia médica del paciente al módulo de Historias Médicas para que se presente

en modo lectura.

Consideramos que todas estas recomendaciones son necesarias porque van a ayudar

a que los desarrolladores de las nuevas interfaces de historias médicas las puedan

integrar sin mucha dificultad; y también, para complementar o extender el

funcionamiento del SIPPSSPz.

54

BIBLIOGRAFÍA

[1] Patronato Provincial de Pastaza, «Patronato Provincial de Pastaza,»

[En línea]. Available: https://www.patronatopastaza.gob.ec/.

[2] IEEE Computer Society, I. C. o. S. E. INCOSE y Systems

Engineering Research Center, «SEBoK,GUIDE TO THE SYSTEMS

ENGINEERING BODY OF KNOWLEDGE,» SEBoK, 12 Octubre

2018. [En línea]. Available:

https://www.sebokwiki.org/wiki/System_Integration#Methods_and_T

echniques. [Último acceso: 01 Junio 2019].

[3] MDN web docs, «Recurso para desarrolladores, creados para

desarrolladores,» developer.mozilla.org, [En línea]. Available:

https://developer.mozilla.org/es/.

[4] Instituto Tecnologico de Matehuala, «Programación Web,» 24

Febrero 2015. [En línea]. Available:

https://programacionwebisc.wordpress.com/2-1-arquitectura-de-las-

aplicaciones-web/. [Último acceso: 01 Junio 2019].

[5] Tim Berners-Lee, «World Wide Web Consortium,» [En línea].

Available: https://www.w3.org/. [Último acceso: 01 Junio 2019].

[6] IBMCloud y IBMCloud, «Infraestructura para la computación en la

nube,» IBMCloud, [En línea]. Available: https://www.ibm.com/mx-

es/cloud/learn/what-is-a-cloud-server. [Último acceso: 31 05 2019].

[7] F. O. Source, «React,» Facebook Open Source, 2019. [En línea].

Available: https://es.reactjs.org/. [Último acceso: 31 Mayo 2019].

[8] L. F. C. Projects, «Node JS,» Linux Foundation Collaborative

Projects, [En línea]. Available: https://nodejs.org/es/about/. [Último

acceso: 30 Mayo 2019].

[9] C. d. Biblios, «https://cosasdebiblios.blogspot.com/2018/03/el-front-

end-y-el-back-end-entendiendo.html,» 6 Marzo 2018. [En línea].

55

Available: https://cosasdebiblios.blogspot.com/2018/03/el-front-end-

y-el-back-end-entendiendo.html. [Último acceso: 30 Mayo 2019].

[10] P. Kruchten, «Planos Arquitect´onicos: El Modelo de “4+1” Vistas de

la Arquitectura del Software,» 1995. [En línea]. Available:

http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:

modelo4_1.pdf. [Último acceso: 20 Junio 2019].

[11] J. E. ADAMS ESCOBAR y E. A. PÉREZ ARGUELLO, «Proyecto

Integrador "DESARROLLO DEL MÓDULO DE REGISTRO DE

BENEFICIARIOS PARA EL SISTEMA INTEGRADO DEL SERVICIO

SOCIAL PROVINCIAL DE PASTAZA",» Octubre 2018. [En línea].

Available: https://espolec-

my.sharepoint.com/:w:/r/personal/lemendoza_espol_edu_ec/_layout

s/15/Doc.aspx?sourcedoc=%7BB2EFE85E-8D94-436D-9575-

F8E99A10445A%7D&file=Reg_Benef_Version5_LEMM.doc&action=

default&mobileredirect=true. [Último acceso: Junio 2019].

[12] W. Recommendation, «Glosario W3C,» [En línea]. Available:

https://www.w3.org/2005/03/DOM3Core-es/glosario.html.

56

ANEXOS

Anexo A1: Historias de Usuarios

Código HU002

Rol Submódulo Citas médicas

Funcionalidad Dirigirme a uri destino

Razón Para poder registrar el historial médico del paciente

Escenarios o criterios
de validación

Si existe el código de cita médica a atender y la sesión
de usuario entonces ir al módulo de Historias Médicas

Si no existe el código de la cita médica a atender o la
sesión de usuario entonces mostrar un mensaje donde
se muestre que no se puede ir al módulo de Historias
Médicas

Código HU003

Rol Módulo Historias Médicas

Funcionalidad Conseguir uri origen

Razón Para poder dirigirme al submódulo de Citas Médicas

Escenarios o criterios
de validación

Si existe uri origen entonces crear la url origen para
dirigirme al submódulo Citas Médicas

Si no existe uri origen entonces mostrar un mensaje
donde se explique que no se puede continuar

Código HU004

Rol Módulo Historias Médicas

Funcionalidad Dirigirme a uri origen

Razón Para continuar revisando las citas pendientes

Escenarios o criterios
de validación

Si se registró exitosamente el historial médico del
paciente entonces dirigirme al submódulo citas
médicas

Si no se registró exitosamente el historial médico del
paciente entonces mostrar un mensaje del error

Código HU005

Rol Módulo Historias Médicas

Funcionalidad Conseguir Cita Médica

Razón
Para conocer cuál es el código del paciente o
beneficiario que se está atendiendo

Escenarios o criterios
de validación

Si existe código de paciente o beneficiario entonces
continuar con el registro del historial médico

Si no existe código de paciente o beneficiario
entonces mostrar un mensaje que no existe código de
paciente o beneficiario y dirigirme al submódulo Citas
Médicas

57

Código HU006

Rol Módulo Historias Médicas

Funcionalidad Conseguir Usuario que inicio sesión

Razón
Para conocer que usuario va a registrar el historial
médico del paciente o beneficiario

Escenarios o criterios
de validación

Si existe usuario entonces continuar con el registro del
historial médico

Si no existe usuario entonces mostrar un mensaje que
no existe usuario que inicio sesión y dirigirme al
submódulo Citas Médicas

Código HU007

Rol Módulo Historias Médicas

Funcionalidad Establecer cita médica a atendida

Razón Para finalizar el registro del historial médico

Escenarios o criterios
de validación

Si se estableció el estado de la cita médica a atendida
entonces continuar con la finalización del registro del
historial médico del paciente o beneficiario

Si no se estableció el estado de la cita médica
atendida entonces mostrar un mensaje del error

ANEXO A2: Interfaces del módulo Historias Médicas

Anexo A2.1 Interfaz Terapia Física

58

Anexo A2.2 Interfaz Terapia de Lenguaje

Anexo A2.3 Interfaz Psicología

59

Anexo A2.4 Interfaz Odontología

