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Resumen  

Se plantea un esquema inteligente que, mediante aprendizaje automático, reconoce en 

milisegundos las fallas de tierra que suelen pasar inadvertidas en redes con neutro aislado; se 

persigue reducir el tiempo de despeje y aumentar la continuidad operativa, formulándose la 

hipótesis de que un clasificador liviano puede superar a las lógicas fijas sin añadir hardware 

costoso. Para comprobarla, se modeló en MATLAB-Simulink un sistema IEEE-14 barras; se 

simularon más de 30 000 escenarios con variaciones de carga y cortocircuitos aleatorios, y las 

corrientes primarias fueron escaladas a valores secundarios mediante relaciones típicas de 

transformadores de corriente. Las magnitudes RMS, picos y componentes de secuencia fueron 

extraídas y, con ellas, se entrenó un bosque aleatorio de 300 árboles; posteriormente el modelo fue 

validado con archivos inéditos. Se logró clasificar fallas monofásicas, bifásicas y trifásicas con un 

índice de confianza superior al 0,96 y una latencia de 16 a 25 ms, mientras los disparos indebidos 

se mantuvieron por debajo del 2 %. Se concluye que la propuesta ofrece una detección veloz, 

adaptable y económicamente ventajosa para redes críticas que operan sin neutro conectado. 

Palabras Clave: Sistema aislado, Transitorios, Bosque aleatorio, Simulink, transformadores 
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Abstract 

An intelligent scheme is proposed that uses machine learning to recognize ground faults in 

milliseconds, which often go unnoticed in isolated neutral networks. The aim is to reduce 

clearance time and increase operational continuity, based on the hypothesis that a lightweight 

classifier can outperform fixed logic without adding expensive hardware. To test this hypothesis, 

an IEEE 14-bus system was modeled in MATLAB-Simulink. More than 30,000 scenarios were 

simulated with load variations and random short circuits, and the primary currents were scaled 

to secondary values using typical current transformer ratios. The RMS magnitudes, peaks, and 

sequence components were extracted and used to train a random forest of 300 trees; the model 

was then validated with unpublished files. Single-phase, two-phase, and three-phase faults were 

classified with a confidence index greater than 0.96 and a latency of 16 to 25 ms, while false trips 

remained below 2%. It is concluded that the proposal offers fast, adaptable, and cost-effective 

detection for critical networks operating without a connected neutral. 

 

Keywords: Isolated system, Transients, Random Forest, Simulink, Transformers 
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1.1 Introducción  

En los sistemas eléctricos con neutro aislado, la detección de fallas de una sola fase es un desafío 

debido a las bajas corrientes [1], un problema agravado por los sistemas que limitan la corriente. 

Para solucionar esto, se ha desarrollado un nuevo método de protección. Este sistema utiliza 

transformadores de corriente para medir las formas de onda en tiempo real. Luego, por medio de 

un algoritmo de inteligencia artificial. En donde el algoritmo extrae características clave de la 

curva mediante la toma de toma de datos. 

Con esta información, el modelo de IA buscará detectar fallas en un menor tiempo medido en 

milisegundos y enviar una orden de desconexión. Las simulaciones, realizadas por medio de 

software de un modelo modificado del ya conocido IEEE-14 barras.  

1.2 Descripción Del Problema  

En los sistemas con neutro aislado, una falla monofásica a tierra genera corrientes capacitivas 

de baja magnitud, pocos amperios [2], tal que los relés de sobre corriente tradicionales la detecten. 

Cuando el sistema de protecciones clásico no detecta el defecto, la aislación se degrada [3]. 

La tesis propone una solución ligera que aprovecha la señal ya disponible del transformador de 

corriente (TC), procesando cada ciclo por medio de IA, capaz de decidir de forma rápida si la 

forma de onda corresponde a una falla incipiente y, de ser así, enviar una orden de apertura al 

interruptor (CB). El enfoque se apoya en tres hechos: los TC suministran datos suficientes para 

extraer patrones sutiles; los relés digitales modernos pueden ejecutar algoritmos simples de IA si 

se limita el número de características; y validar el esquema en un modelo IEEE-14 modificado con 

registros locales haciendo así su adaptación a la realidad. 

1.3 Justificación Del Problema  

Los sistemas de protección tradicionales de sistemas aislados a tierra utilizan equipos como 

relés electromecánicos o digitales con configuraciones estáticas que no se adaptan al 

comportamiento dinámico del sistema, siendo esta rigidez operativa lo que limita su capacidad 

para detectar fallas en condiciones cambiantes, especialmente en redes con generación distribuida. 

Por eso, la integración de algoritmos basados en inteligencia artificial en esquemas de protección 

representa una alternativa adaptable pues aprenden del comportamiento histórico del sistema, 

mejoran la clasificación de eventos y reducen el tiempo de operación de los relés, incrementando 

así la seguridad y confiabilidad de la red [4]. Al tiempo, un sistema de protección que integre IA, 
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conectado a transformadores de corriente y a un interruptor automático, podría operar con menor 

infraestructura física ofreciendo mejor relación costo-beneficio al minimizar el tiempo de despeje 

de fallas, pudiendo evitar desconexiones innecesarias y reducir las pérdidas económicas asociadas 

a interrupciones no planificadas que inciden directamente en la calidad del servicio eléctrico y en 

la continuidad del suministro [5]. 

1.4 Objetivos  

1.4.1 Objetivo General  

Desarrollar un diseño de protección inteligente en sistemas eléctricos aislados a tierra con 

generación distribuida, mediante la integración de técnicas de inteligencia artificial, logrando la 

detección y mitigación de fallas eléctricas de manera oportuna y eficiente. 

1.4.2 Objetivos Específicos  

1. Generar una base de datos utilizando el sistema de barras IEEE de 14 barras para que el 

algoritmo aprenda patrones característicos de operación normal y en falla. 

2. Simular múltiples escenarios de fallas eléctricas mediante programas de simulación 

computacional para el desarrollo de estrategias de protección. 

3. Crear un algoritmo que detecte anomalías empleando técnicas procesamiento de datos 

recopilados para el desarrollo de un modelo que detecte eventos anómalos. 
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1.5 Marco Teórico 

1.5.1 Características De Las Señales De Falla En Sistemas De Potencia 

En redes con neutro sólidamente aterrizado y generadores síncronos, las fallas entre fases 

generan corrientes de cortocircuito de grandes magnitudes, que puede conllevar a caídas abruptas 

de tensión, en donde las fallas asimétricas inducen componentes de secuencia negativa y cero 

fácilmente detectables. En contraste, los esquemas en donde el neutro se encuentra aislado limitan 

su corriente a unos cuantos amperios donde pueden considerarse como valores normales [6]. 

Es así como la ausencia de una referencia a tierra desplaza los voltajes de fase: la fase en falla 

desciende a potencial de tierra, mientras las restantes se elevan hacia 𝑉𝐿𝐿√3. La corriente resultante 

es la suma de las capacitancias distribuidas y suele estar por debajo de 10 A en redes de media 

tensión [7]. 

Figura 1.1 

Diagrama de un sistema de tierra aislada y corriente capacitiva a causa de una falla a tierra. 

 

1.5.2 Protecciones Tradicionales Y Esquemas Adaptativos 

Los sistemas de distribución tradicionales coordinan relés temporizados de sobre corriente 

desde el extremo de alimentación a la carga. Estos dispositivos suponen flujos unidireccionales y 

corrientes de falla significativamente mayores que la carga. La red aislada (RA) puede llegar a 

modificar la direccionalidad y reduce la corriente de cortocircuito, provocando descoordinación: 

un relé próximo a la subestación puede captar corriente inversa procedente de la RA y disparar 
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incorrectamente. El fenómeno de asignación a ciegas que se produce cuando las corrientes no 

alcanzan los umbrales de disparo establecidos [8]. 

Figura 1.2 

Relé numérico Sel-751A. 

 

Nota: Usado como protección de alimentador (Feeder) en redes de media y alta tensión. 

Los esquemas adaptativos introducen lógicas que ajustan umbrales y retardos conforme al 

estado de la red. Algunas soluciones centralizadas recopilan información de interruptores y flujos 

para actualizar parámetros de los relés en tiempo real, mientras otras incluyen inteligencia local 

que combina criterios de corriente, subtensión rápida y dirección. La estrategia dual corriente más 

tensión mejora la detección de faltas en redes aisladas y suprime falsas actuaciones al considerar 

el hundimiento de tensión como disparador adicional. 

1.5.3 Dinámica Del Sistema Aislado 

En redes eléctricas con neutro aislado, la detección de fallas a tierra de alta impedancia o 

transitorias es un reto clásico para la protección convencional. Los modelos de IA supervisados ya 

sean RNA o Arboles de Decisión (Random Forest) han surgido como herramientas prometedoras, 

pues pueden modelar relaciones no lineales complejas entre variables de señal (corriente de 

secuencia cero, tensión residual, ángulo de fase, transitorios, etc.). En particular, arquitecturas 

como el Perceptrón Multicapa (MLP) han demostrado buena capacidad para clasificar eventos 

eléctricos diversos: Distinguen fallas reales de conmutaciones de carga u otros transitorios 

benignos mediante vectores de características extraídos, por ejemplo, con transformadas wavelet 

o análisis espectral. Esta capacidad de aprendizaje no lineal y generalización convierte a las RNA 

o los RF en candidatas ideales para esquemas de protección adaptativa, incluso en entornos 
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industriales ruidosos con sensores inteligentes. Por ejemplo, estudios recientes integran la 

Transformada Wavelet Discreta (DWT) con redes neuronales para extraer rasgos tempo-espaciales 

relevantes de la señal y luego clasificar la falla [9]. 

Figura 1.3 

Comparación de la respuesta ante una falla: generador convencional vs. inversor rápido vs. inversor 

ultrarrápido. 

 

1.5.4 Aprendizaje Supervisado En Protecciones De Sistemas Con Neutro Aislado A Tierra 

El aprendizaje supervisado es el marco más utilizado para entrenar modelos predictivos en 

sistemas de protección. Se basa en el uso de datos históricos, donde cada muestra está asociada a 

una salida deseada, como la activación o no de una función de protección. En sistemas con neutro 

aislado, este enfoque es crucial para clasificar fallas a tierra de alta impedancia, identificar la fase 

involucrada o incluso anticipar condiciones peligrosas antes de que se activen los elementos de 

corte. 

Durante el entrenamiento, el modelo ajusta sus parámetros para minimizar una función de error 

entre la salida esperada y la salida real. Algoritmos como retro propagación del error 

(backpropagation) junto con descenso de gradiente permiten que modelos como redes neuronales, 

bosques aleatorios o Super Vector Machine (SVM) adquieran una capacidad de decisión confiable 

[10].  
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En el caso específico de sistemas aislados a tierra, el aprendizaje supervisado permite mejorar 

la sensibilidad sin sacrificar la selectividad, ya que puede aprender a distinguir patrones complejos 

de corriente y tensión que no se observan claramente con umbrales fijos.  

1.5.5 Comparativa De Modelos De IA Para La Detención De Fallas 

La identificación de fallas en sistemas eléctricos con aislación a tierra ha experimentado un 

avance notable debido a la inclusión de la IA en los últimos años. Se han incorporado múltiples 

modelos que ayuden a optimizar la exactitud, rapidez y fiabilidad de los sistemas de protección. 

Cada modelo posee distintas características que relacionan la capacidad de aprendizaje, 

complejidad computacional, interpretabilidad, factores que condicionan la viabilidad de su 

implementación en condiciones operacionales del día a día.  

 En la Tabla 1.1, se presenta una comparativa que evalúa los principales modelos de IA 

empleados en la clasificación y diagnóstico de fallas eléctricas, resaltando tanto las ventajas como 

las limitaciones. 
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Tabla 1.1 

Comparativa de los modelos empleados para detección de fallas en sistemas de potencia. 

 

  

Modelos de IA 

Enfoque Ventaja Desventaja 

Árboles de decisión/ Bosques 

aleatorios 

Fácil de interpretar, robustos y 

puede estimar importancia de 

variables, mejorando la 

precisión y evita sobreajuste 

[11]. 

Puede ser lento con grandes 

datasets. 

Máquina de Vector de Soporte 

(SVM) 

Alta precisión para clasificar 

fallas y buena discriminación 

con pocos datos. 

El modelo resultante no es tan 

interpretable, requiero mucho 

tiempo y memoria [11]. 

Redes Neuronales (Perceptrón 

Multicapa-MLP) 

Capaz de modelar relaciones 

no lineales en señales de voltaje 

y corriente. También, detecta 

patrones sutiles en mediciones 

[9]. 

Requieren una gran base de 

datos de fallas etiquetadas para 

entrenamiento. Sin embargo, 

posee diagnósticos reducidos. 

Redes Neuronales 

Convolucionales (CNN) 

Extrae automáticamente 

características relevantes y 

detecta eventos de falla. 

Requieren gran dataset y 

cómputo. Mayor complejidad 

en implementación y afinación 

para tiempo real. 

Aprendizaje por Refuerzo 

Profundo (DRL) 

Aprende disparo sin datos 

etiquetados, optimiza 

estrategias de aislamiento y 

reconexión automática [12]. 

Entrenamiento complejo, 

impredecible fuera de 

escenarios simulados. 

Transformada Wavelet 

(DWT/CWT) 

Excelente preprocesamiento y 

permite localizar en tiempo-

frecuencia las fallas a tierra. 

Sensible a ruido y requiere 

selección cuidadosa de 

Wavelet 
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Tabla 1.2 

Comparación del método tradicional para la protección de sistemas en eventos de falla vs el método 

propuesto.  

Protección de sistemas aislado:  método tradicional vs tradicional 

Criterio Método Tradicional Esquema con IA 

Sensibilidad Limitada por la baja magnitud de 

corriente de falla y como los 

umbrales suelen quedar por 

encima, la falla pasa inadvertida 

[9]. 

Alta sensibilidad, detecta 

fallas de alta impedancia 

incluso bajo niveles bajos de 

corriente residual. 

Selectividad Dificultad para identificar el 

alimentador exacto en fallas 

monofásicas. 

Algoritmos de IA como redes 

neuronales permiten 

identificar con precisión la 

ubicación de la falla. 

Rapidez Retardo inherente por el uso de 

relés de sobretensión o detección 

por bobina de alta impedancia. 

Alta velocidad de respuesta 

(en ms) gracias a clasificación 

en tiempo real de las señales 

de corriente por medio de los 

TC y su postprocesado. 

Confiabilidad Afectada por perturbaciones y 

condiciones de carga. 

Algoritmos autoajustables 

permiten mantener 

rendimiento bajo condiciones 

variables. 

 

1.5.6 Extracción De Características Y Construcción Del Dataset Supervisado 

La extracción de características es el proceso de transformar datos brutos en información 

significativa que pueda ser empleada por modelos de IA [13]. Esto implica seleccionar o calcular 

atributos relevantes (llamados características o features) a partir de las señales o datos originales, 

de modo que se reduzca la complejidad de los datos sin perder la información esencial. Una buena 

extracción de características permite aislar la información más importante y descartar el ruido o 

datos redundantes, facilitando así el entrenamiento del modelo con mejores resultados. [13] 
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En el contexto de detección de fallas eléctricas (como en sistemas de potencia), la extracción 

de características presenta retos adicionales debido a la gran cantidad de información involucrada 

y a la variabilidad de las condiciones de falla. Se requiere analizar múltiples parámetros y señales, 

lo cual hace compleja la identificación de los atributos más relevantes [14]. Por ello, suele ser 

necesario aplicar criterios de ingeniería de características basados en conocimiento del dominio 

eléctrico, para resumir cada evento de falla en un conjunto de métricas representativas. Entre las 

métricas más comunes empleadas como características en señales eléctricas se encuentran, por 

ejemplo, el valor eficaz (RMS), el valor pico y el valor medio de la corriente o voltaje en el 

intervalo de análisis. 

Una vez extraídas las características pertinentes, se procede a la construcción del dataset 

supervisado. En un aprendizaje supervisado típico, el conjunto de datos (dataset) se organiza como 

una tabla donde cada fila corresponde a un ejemplo o instancia (por ejemplo, una simulación de 

cierta condición de falla), con columnas para cada característica calculada y para la etiqueta o clase 

asignada [15]. Durante la preparación del dataset, es común realizar también tareas de 

preprocesamiento adicionales, como la normalización o escalado de las características (para que 

todas tengan rangos comparables) y la segmentación del dataset en subconjuntos de entrenamiento, 

validación y prueba [15]. 

1.5.7 Árbol De Decisión (Random Forest) 

El árbol de decisión es un modelo de aprendizaje supervisado en forma de estructura jerárquica 

de decisiones, donde se realizan preguntas o comprobaciones lógicas sobre las características de 

entrada para subdividir iterativamente los datos [16]. Cada nodo interno del árbol representa una 

pregunta (por ejemplo, "¿La corriente RMS supera cierto umbral?") y las ramas corresponden a 

las posibles respuestas (ej. sí o no), dividiendo el conjunto de datos según dicha condición. Este 

proceso de particionado continúa hasta llegar a nodos hoja, que representan la decisión o 

clasificación final. Los árboles de decisión se entrenan eligiendo en cada paso la división que mejor 

separa los datos de acuerdo con alguna métrica de pureza (como la ganancia de información o el 

índice Gini), construyendo así un modelo que aprende reglas de decisión a partir de los datos 

etiquetados [16]. Su resultado es fácil de interpretar, dado que se visualiza como un conjunto de 

reglas if-then anidadas. Sin embargo, un solo árbol de decisión puede ser inestable y propenso al 

sobreajuste (overfitting), ya que tiende a ajustarse muy específicamente los datos de 

entrenamiento, perdiendo capacidad de generalización, para mitigar estos efectos Breiman y Cutler 

propusieron el algoritmo Random Forest (Bosque Aleatorio) [16]. 
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Figura 1.4 

Representación visual del algoritmo de bosque aleatorio y su modo de operación. 

 

Nota: Obtenida del portal IBM. 

La idea central es entrenar muchos árboles, cada uno ligeramente diferente, y combinar sus 

resultados para obtener una respuesta más robusta. En el método clásico de Random Forest, a cada 

árbol se le asigna un subconjunto aleatorio de instancias de entrenamiento (mediante Bootstrap 

sampling, es decir, muestreo con reemplazo) y, adicionalmente, en cada nodo de cada árbol se 

selecciona aleatoriamente solo un subconjunto de características para evaluar posibles divisiones 

[16]. Estas dos fuentes de aleatoriedad (en los datos y en las variables) aseguran que los árboles 

individuales sean poco correlacionados entre sí. Como consecuencia, cuando se combinan las 

predicciones de muchos árboles, los errores tienden a promediarse y cancelarse, logrando un 

resultado final más preciso y generalizable [17]. En problemas de clasificación, la combinación se 

realiza típicamente por votación mayoritaria: cada árbol emite un voto por la clase predicha, y la 

clase con más votos es la salida del bosque [17]. En problemas de regresión, se suele promediar el 

valor numérico estimado por cada árbol. Gracias a este esquema, el Random Forest aprovecha la 

fuerza conjunta de modelos débiles para conformar un modelo de alto rendimiento, capaz de 

manejar tanto tareas de clasificación como de regresión con buenos resultados. 

  

Resultado Final 
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1.5.8 Criterios Matemáticos del Árbol De Decisión (Random Forest) 

Impureza Gini (criterio de clasificación): En un árbol de decisión de clasificación, la calidad de 

una división se mide con índices de impureza como el índice de Gini. Matemáticamente, la 

impureza de Gini de un nodo con “c” - clases se define como: 

Gini = 1 − ∑ pK
2

C

K=1

 

(1.1) 

Donde:  

- Pk:  es la proporción de instancias pertenecientes a la clase “k” en ese nodo 

Si se tiene un valor de Gini = 0 indica un nodo puro (todas las instancias son de la misma clase) 

mientras que valores mayores indican mezcla de clases (impureza) 

El Error Cuadrático Medio (criterio de regresión), es donde la variable objetivo es continua, se 

utiliza un criterio basado en la variabilidad de los valores numéricos. El más común es la suma de 

cuadrados residuales (RSS), equivalente al error cuadrático, que calcula la dispersión de los 

valores respecto a la media del nodo. 

RSS = ∑ (y1 −  yRJ
)

2

i∈Rj

 

(1.2) 

Donde:  

- (y1 − yRJ
)

2

:  es la proporción de instancias pertenecientes a la clase “k” en ese nodo 

Este criterio penaliza la heterogeneidad dentro del nodo (desviaciones grandes aumentan el 

RSS). Al construir el árbol de regresión, en cada posible división se calcula la suma de RSS de los 

nodos hijo, y se escoge la partición que minimiza el RSS total (es decir, la que produce los nodos 

más homogéneos en términos de $y$) 
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Una vez entrenado el bosque aleatorio, las predicciones de los múltiples árboles se combinan 

para dar el resultado final más robusto. En clasificación, esto se realiza mediante votación por 

mayoría: cada árbol emite un voto por la clase predicha, y la clase que recibe más votos entre los 

“T” árboles es la predicción final del Random Forest 

YRF(x) = argmaxc ∑ I(y(t)(x) = c)
T

t=1
 

(1.3) 

Donde:  

- y(t)(x):  es la clase predicha por el árbol “t” para la instancia “x” 

- I = C: es la función indicadora (que vale 1 si el árbol “t” predice la clase “c”, y 0 en caso 

contrario) 

En regresión, la combinación es mediante promedio: la predicción final YRF(x) es la media de 

las salidas numéricas de todos los árboles individuales, entonces:  

YRF(x) =
1

T
∑ (y(t)(x))

T

t=1
 

(1.4) 

lo cual tiende a reducir la varianza del modelo combinado en comparación con cualquier árbol 

individual. En ambos casos (votación mayoritaria o promedio), este esquema de agregación es la 

clave que le da al Random Forest su mayor precisión y generalización respecto a un solo árbol, 

aprovechando la sabiduría colectiva de múltiples modelos débiles para producir una predicción 

final sólida. 
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2. Metodología  

2.1 Diagrama De Flujo 

La Figura 2.1, describe el diagrama del flujo metodológico para la detección de fallas. 

Figura 2.1 

Flujo general del proceso metodológico implementado para la detección de fallas en el sistema aislado de 

tierra. 

 

En la figura 2.1, se aprecian las etapas de simulación, procesamiento de datos, modelado con 

IA y validación que se emplearon para el desarrollo del algoritmo. 

2.2 Diseño Del Sistema De Simulación 

El sistema de potencia se modeló en MATLAB/Simulink usando Simscape Electrical. Se 

adoptó el caso de prueba estándar IEEE 14-barras desarrollado por Joshua Armah Dantuo, de la 

Universidad de Energía y Recursos Naturales de Ghana (14 barras, 5 generadores y 11 cargas), el 

sistema ampliamente conocido y utilizado en el análisis de sistemas de potencia.  

A dicho modelo se incluyeron bloques de generador, líneas de transmisión y cargas para 

reproducir condiciones reales, y se acondicionó en base a nuestras necesidades de un sistema 

aislado; siendo así, se cambió su configuración en Y a una en delta en los transformadores 

elevadores; en las Tablas 2.1 y 2.2, se describen tanto los parámetros de carga como las 

configuraciones de los generadores. 
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Figura 2.2  

Imagen representativa del modelo de 14 barras propuesto por la IEEE. 

 

Nota: Obtenida de Research Gate. 

Tabla 2.1 

Parámetros de potencia empleados para la carga conectada en cada barra, valores en Mega. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
  

LOAD/ 

BARRA 

Potencia 

Activa (P) 

[MW] 

Potencia 

Reactiva (QL) 

[MVAR] 

Potencia 

Reactiva (QC) 

[MVAR] 

Load 2 26.04 15.24 0 

Load 3 113.04 22.86 0 

Load 4 57.36 0 4.64 

Load 5 9.12 1.92 0 

Load 6 13.44 9 0 

Load 9 35.4 19.92 0 

Load 10 10.8 6.96 0 

Load 11 4.2 2.16 0 

Load 12 7.32 1.92 0 

Load 13 16.2 6.96 0 

Load 14 17.88 6 0 
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Tabla 2.2 
Valores seteados en los generadores ubicados en el sistema de potencia de la IEEE 14 Bus. 

Generador Voltaje Fase 

(VLL)-kV 

Angulo de 

Generación 

(δ°) 

Resistencia 

del Gen (Ω) 

Inductancia 

del Gen (H) 

GEN 1 150,7723 37,7080 0,8929 0,0166 

GEN 2 146,5967 -15,8323 0,8929 0,0166 

GEN 

SINCRONO 1 

140,9648 -34,4800 0,8929 0,0166 

GEN 

SINCRONO 2 

145,3426 -36,2022 0,8929 0,0166 

GEN 

SINCRONO 3 

149,6863 -36,1424 0,8929 0,0166 

Nota: Datos extraídos de la simulación dada por Joshua Armah Dantuo, de la Universidad de Energía y 

Recursos Naturales de Ghana. 

Para simular fallas a tierra, se usaron bloques de falla trifásica de Simulink, que permiten activar 

cierres programados entre fases y de fases a tierra. En cada simulación se programó una falla con 

una resistencia de tierra variable como se ve en la Figura 2.3. De forma aleatoria se generaron 

parámetros de simulación en cada ejecución: resistencia de puesta a tierra (Rg), resistencia entre 

líneas (Ron) y tiempo de inicio y fin de la falla (aleatorizados en rangos predefinidos), se variaron 

las cargas activas y reactivas dentro de límites para representar distintos escenarios operativos. 

Figura 2.3  

Bloque Three-Phase Fault usado como catalizador de falla para el estudio. 
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Figura 2.4  
Representación del sistema Three-Phase Fault usado para una determinar las fallas en el sistema. 

 

Durante la ejecución del modelo, se adquirieron las señales de corriente por fase en puntos 

clave: corriente de falla (Ifault), corrientes en líneas y generadores seleccionados (p. ej. IG2A, 

ILINE1_2A, ILINE2_3A, etc.). Estas señales se almacenaron en archivos CSV junto con la marca 

de tiempo. Paralelamente, se guardaron en otro archivo los parámetros de cada simulación 

(resistencia de tierra, tiempos de falla, valores de carga), para documentar las condiciones de cada 

caso. Este proceso se lleva a cabo para obtener la generación de características específicas 

(features) con el que se entrenó la IA. Cabe resaltar que la elección del entorno Simulink ofreció 

bloques especializados para fallas y mediciones en sistemas eléctricos, facilitando una simulación 

realista. 

2.3 Generación De La Base De Datos 

Para entrenar el modelo basado en inteligencia artificial (IA), se utilizó MATLAB con 

Simulink, tomando como base el modelo estándar libre IEEE 14 barras, adaptado con 

modificaciones para cumplir los objetivos del estudio. La generación de datos se llevó a cabo 

mediante simulaciones controladas por un script conectado a MATLAB, el cual permitía 

configurar diversas condiciones. 

Se buscó una estructura clara para el operador y la IA en el manejo de archivos; con esto se 

generaron en formato CSV con la siguiente nomenclatura: 
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2.3.1 Corrientes_(Normal/Load)(NumeroDeBarra)_(Falla) 

Esta convención facilita la interpretación de los eventos simulados. En donde el nombre del 

archivo indica si el sistema opera en condiciones normales (sin variaciones de carga) o con carga 

variable ("Load"), así mismo describe la barra en que se está simulando, además del tipo de falla 

registrada. Por ejemplo, “AG” representa una falla de la fase A a tierra; “AB”, una falla entre fases; 

y combinaciones como “BGAC”, una falla simultánea de fase B a tierra y entre fases A y C. Los 

datos detallados de este archivo se describen en la Tabla 2.3. 

Tabla 2.3 

Valores de fallas presente en los CSV de corrientes. 

TIEMPO Ifault_A Ifault_B Ifault_C IG2A IG2B IG2C …. Simulación 

0 111.287 -36.901 -74.386 332.753 531.117 531.11 … 1 

n … ... … … … … … n 

 

2.3.2 Datos_Corrientes_(Normal/Load)(NumeroDeBarra)_(Falla) 

Este caso sigue la misma lógica del ejemplo anterior, donde la estructura del nombre del archivo 

es similar, sin embargo, con una diferenciación relacionada a los datos incluidos. Estos datos 

conforman la base principal utilizada para el entrenamiento del modelo de inteligencia artificial 

(IA). Cada archivo contiene información relevante como el número específico de la simulación, 

los valores de resistencia entre fases y resistencia a tierra. Es importante decir que, en caso de que 

una falla específica no involucre resistencia de fase o tierra, la simulación se realiza igualmente, 

aunque la IA omite dichos valores en su análisis gracias a su filtrado a través del nombre del 

archivo. 

Además, el archivo contiene datos cruciales como el Tiempo Antes de la Falla (TAF) y el 

Tiempo de Finalización de la Falla (TPF). Así mismo, se registran valores de potencia aparente, 

activa y reactiva, los cuales se detallan en la Tabla 2.4. 
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Tabla 2.4  

Datos de cada simulación acorde a la falla. 

Simulación R_Ground Res_Row taf tpf Load Active Reactive 

1 409.214 9.14 0.07705 0.08631 … … … 

n … … … … … … … 

 

Todo lo anteriormente descrito fue generado por medio de MATLAB. Posteriormente, se lleva 

a cabo un segundo proceso mediante un código desarrollado en Python, cuya función principal es 

transformar los valores primarios de corriente en valores secundarios. Para identificar claramente 

esta transformación en los archivos resultantes, se añade el prefijo "TC_" al nombre. Es importante 

decir que los valores secundarios obtenidos tras la conversión son los datos utilizados 

específicamente para el entrenamiento del modelo de inteligencia artificial (IA). 

Tabla 2.5 

Valores de la simulación con la corriente reflejada como si proviene de un TC. 

TIEMPO Ifault_A Ifault_B Ifault_C IG2A IG2B IG2C …. Simulación 

0 2.782 -0.922 -1.859 -1.662 2.655 … … 1 

n … ... … … … … … n 

 

2.4 Conversión De Corrientes Primarias A Valores Secundarios De Tc 

En realidad, las corrientes de la línea nunca se miden de forma directa, sino que pasan por un 

TC, que reducen el valor primario a un nivel convencional usado como protección o medición 

(típicamente 1/5 A secundarios). Por lo que, asemejando a dicha práctica, se desarrolló un script 

en Python que toma los archivos CSV generados por el Simulink y aplica las relaciones de 

transformación de cada lectura, en base a la Tabla 2.6. 

Estos valores fueron elegidos basándonos en la corriente base del sistema y la carga de cada 

línea. El script divide cada medición primaria por la relación correspondiente, generando la señal 

secundaria esperada en el lado de protección. Tras la conversión, los nuevos datos se guardaron 

en archivos intermedios para su análisis posterior. Este paso permitió tener dos archivos unos con 

los datos de corriente reales y otro como si fueran obtenidos por un TC. 
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Tabla 2.6 

Relación de los transformadores de corriente (Tc) empleados en el estudio de fallas, que conectan a la 

barra 2. 

Medida Relación CT (Ip/Is) 

Corriente de falla (Ifault) 200:5 

Corriente en generador G2 (IG2) 1000:5 

Corriente en línea 1–2 (IL1_2) 800:5 

Corrientes en líneas 2–4 y 2–5 (IL2_4, IL2_5) 700:5 

Corriente en línea 2–3 (IL2_3) 500:5 

 

2.5 Extracción De Características Y Construcción Del Dataset Supervisado 

Con estos datos se agregan un valor que superan las 30,000 simulaciones entre todas las fallas 

que se pueden construir con las limitaciones técnicas de simulink. Entre las características 

calculadas figuraron el valor RMS, el valor pico (peak) y la media de cada señal en el intervalo de 

análisis. Además, se identificaron los instantes de inicio y fin de cada falla, obteniendo los cambios 

de la señal (por ejemplo, umbrales o diferencias sucesivas). De esta manera, cada simulación 

generó una característica única (“features”) con los valores RMS, pico y otros parámetros del 

segmento de falla, junto con etiquetas de salida como lo son: la magnitud de corriente de falla, el 

porcentaje de confianza y el tiempo de ocurrencia. 

Como síntesis de las características empleadas, la Tabla 2.7 muestra las principales métricas 

extraídas de la señal de corriente.  

Tabla 2.7 

Métricas usadas como características (features) del sistema con el que se entrenó la IA.  

Característica Descripción/Formulación 

RMS 
Raíz cuadrática media: √

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1  

Valor pico (Peak) Valor máximo de la señal (𝑚𝑎𝑥𝑖𝑥𝑖) 

Valor medio (Media) Promedio aritmético: 
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 . 

Duración de falla Tiempo entre detección de inicio y fin de la falla. 
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También se consideraron otras métricas estadísticas, (como desviación estándar o factor de 

forma), usadas en la IA. Sin embargo, para fines del modelo supervisado se enfatizaron los datos 

RMS, pico y media por su sencillez e interpretabilidad. El conjunto de datos resultante fue una 

tabla donde cada fila corresponde a una simulación con sus características calculadas y dos 

etiquetas: la magnitud de corriente máxima de falla y el instante de inicio de la misma. 

2.6 Entrenamiento 

2.6.1 Registro Sin Falla 

En la figura 2.5 de la prueba 1 no se detectó sobrecorrientes, por lo que corresponde a una 

operación normal con variaciones de carga dentro de los límites admisibles.   

Figura 2.5  

Comando para identificar falla en prueba1 
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Figura 2.6  

Resultado de prueba1. 

 

Se observa en la Figura 2.6, el algoritmo evaluó 3183 ventanas de 20ms y les asignó etiquetas 

de “nominal” con un alto nivel de confianza, lo cual indica que las corrientes de fase no superaron 

en ninguna ventana el umbral de 3 veces la corriente nominal y tampoco mostraron componentes 

destacables en la secuencia 0, por lo que se encuentra dentro del rango de operación normal.   
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2.6.2 Registro Con Falla  

A diferencia de la Figura 2.5, en la prueba 2 de la Figura 2.7, se observa que en cada ventana 

se superó los umbrales de sobrecorriente tanto en la secuencia 0 y 2 que caracterizan al 

cortocircuito. Cabe destacar que la predicción fue realizada por el algoritmo código_prueba.py. 

Figura 2.7  

Comando para identificar falla en prueba2. 

 

Figura 2.8  

Resultado de prueba2. 
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La continuidad de la etiqueta de falla en todo el archivo indica que la falla persiste durante el 

intervalo analizado, además que refleja el grado de confianza varía entre 0.98 y 1 esto se debe a 

que existe un patrón de sobrecorrientes que se encuentra fuera de los rangos de operación normal. 

2.6 Prueba 

2.6.1 Archivos Con Fallas En Barras Distintas 

Se realizaron simulaciones en distintas barras, las cuales fueron utilizadas para afinar el modelo. 

En la Figura 2.9, fueron representadas las barras 9 y 14 para la obtención de datos, al estar estas 

alejadas de la generación principal serán útil para conocer su comportamiento y flujo. El total de 

barras empleadas para la simulación, tanto para el entrenamiento como para pequeñas pruebas, 

fueron las siguientes: Barra 2 (Principal), Barra 3, 4, 5, 6, 9 y 14. 

Figura 2.9  

Obtención de datos de la barra 9 y 14.  

 

Nota: Simulación creada y subida en la página de Matlab, hecha por Joshua Armah Dantuo, de la 

Universidad de Energía y Recursos Naturales de Ghana. 
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2.6.2 Validación 

En la Figura 2.10 se observó se clasificó como falla bifásica debido a que la fase b y fase c, que 

presentaron corrientes elevadas. Por tanto, es correcta la etiqueta proporcionada por el algoritmo 

entrenado, el cual colocó como falla con alta probabilidad, respaldando así el modelo. Por otro 

lado, el algoritmo determinó el tiempo de duración de falla, en menos de 2 ciclos. 

Figura 2.10  

Resultado del tipo de falla. 

 

 

2.6.3 Tiempo De Duración De La Falla  

Ahora se muestra de forma gráfica como el sistema lograría despejar una falla. En la Figura 

2.11, se tiene una curva, en la cual a los 52ms ocurre una falla entre fases (AG) que hace que su 

corriente se eleve a valores fuera de lo normal.   
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Figura 2.11  

Simulación de una falla trifásica y el pick up de la corriente, obtenido por Matlab y Simulink en la carga 

2 del sistema conectada a la barra 2. 

 

 

Una vez generados los datos de corriente en valores primarios, se procede a procesarlos 

mediante el programa que simula el funcionamiento de un transformador de corriente (TC). Este 

paso previo convierte las magnitudes primarias en valores secundarios más manejables y 

adecuados para el entrenamiento de la IA. 

Posteriormente, estos datos transformados se anexan al conjunto de entrenamiento, haciendo 

que la IA analice tanto la magnitud de la corriente como el instante temporal en que ocurre. Así se 

buscó que la identificación y clasificación de eventos, tal como se muestra en la Figura 2.12, 

detecten el valor de corriente censado y la estimación aproximada del tiempo en que ocurre dicha 

falla. 

  

FASE B 

FASE C 

FASE A 

Pick up de la 

corriente de falla 
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Figura 2.12 

 Datos obtenidos por la IA, de su corriente de falla (valores secundarios) y tiempo de ocurrencia. 

 

El tiempo estimado para la detección de una falla se encuentra en un rango de entre 1 y 1.5 

ciclos de la onda de 60 Hz, lo que equivale aproximadamente a 16 a 25 milisegundos. Este es el 

lapso que inicia el evento hasta que se genera y transmite la señal de disparo. Tal como se muestra 

en Figura 2.14, el sistema busca minimizar el tiempo de respuesta, permitiendo una actuación casi 

instantánea ante este tipo de contingencias. 

Figura 2.13  

Diferencias de los tiempos de donde inicia la falla y el tiempo en el cual la IA detecta dicha eventualidad 

como falla, con un tiempo menor a los 10ms. 

  

 

  

 

 

 

Diferencias de la 

corriente acordes a 

la falla. 

Diferencias del tiempo en 

donde se detectó la corriente de 

cortocircuito 
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Figura 2.14  

Señal de disparo que simularía el valor enviado por el relé hacia un interruptor ideal que despejaría la 

falla. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Señal de disparo que 

simularía el despeje del 

interruptor enviada por el 

relé. 
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Capítulo 3 
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3. Resultados 

3.1 Tablas De Porcentajes de confianza 

Son los resultados de pruebas sobre eventos de fallos en un sistema eléctrico, expresados en 

porcentaje de confianza que el modelo logró clasificar. Estas métricas permiten medir la capacidad 

del algoritmo para distinguir entre los distintos aciertos al identificar un tipo de falla o estado de 

operación normal. La comparación entre ambas tablas permite identificar la solidez del modelo. 

Tabla 3.1 

Prueba con el archivo Corrientes_Load2_BG. 

Clase Ventanas Conf_media Conf_min Conf_max 

Monofásica 12655 0,964 0,339 1 

Bifásica 3926 0,497 0,339 0,871 

Trifásica 87 0,421 0,339 0,628 

 

Para este caso, se colocó un archivo con el que ya fue entrenado el modelo, la cual fue una falla 

monofásica en la barra 2, para poder determinar el porcentaje de confianza del modelo, en el cual 

podemos observar en la Tabla 3.1 que el modelo tiene una elevada confianza media en fallas 

monofásicas con un 0.964, esto indica que posee una alta sensibilidad. La variabilidad entre los 

valores mínimos y máximos sugiere que, aunque existan momentos con baja confiabilidad, en la 

mayoría de los eventos la clasificación en precisa.  

Por otro lado, las fallas bifásicas y trifásicas muestran valores promedios de confianza menores, 

esto significa que el modelo posee mayor dificultad para identificarlas de forma consistente.  

Tabla 3.2  

Prueba con el archivo Corrientes_Load14_AG. 

Clase Ventanas Conf_media Conf_min Conf_max 

Nominal 7148 0,782 0,28 1 

Monofásica 8604 0,54 0,26 0,907 

Bifásica 14107 0,41 0,263 0,753 

Trifásica 4613 0,423 0,263 0,91 
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En el caso de la Tabla 3.2, se colocó un archivo nuevo para determinar el porcentaje de 

confianza del modelo frente a distintas condiciones de simulación que no se habían realizado 

anteriormente como lo fue la simulación de una falla monofásica en la barra 14. El cual obtuvimos 

que la confiabilidad fue de 0.54, El comportamiento evidencia que el modelo logra identificar las 

fallas monofásicas, pero con un nivel de confianza moderado y una alta dispersión en los 

resultados. La reducción de la confianza respecto a pruebas sin operación nominal se explica por 

el solapamiento entre condiciones nominales desbalanceadas y fallas reales, lo que obliga al 

clasificador a redistribuir su sensibilidad. 

3.2 Gráficas De Corriente 

Las siguientes figuras ilustran la huella temporal de las corrientes de falla registradas durante 

dos escenarios representativos del conjunto de pruebas. En cada gráfica se muestran, muestra a 

muestra, las amplitudes instantáneas de las fases A (azul), B (naranja) y C (verde) tal y como 

fueron obtenidas del sistema IEEE-14 barras después de añadirse la perturbación programada. La 

Figura 3.1, corresponde a un evento “AG” de alta energía, por lo que la rama de la fase A exhibe 

excursiones de cientos a miles de amperios, mientras que las fases restantes apenas se alteran. En 

contraste, la segunda figura representa un caso “Load2” con múltiples disturbios superpuestos: las 

tres fases presentan dispersión de picos de magnitud similar, lo que genera firmas menos 

diferenciadas y, en consecuencia, promedios de confianza más bajos —especialmente para las 

categorías bifásica y trifásica reportadas en la Tabla 3.2.  
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Figura 3.1  

Gráficas de corrientes del Archivo: Corrientes_IEEE14.csv. 

 

Figura 3.2  

Gráficas de corrientes del Archivo: Corrientes_Load2.csv. 
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3.3 Análisis 

En los informes generados fueron reflejados dos indicadores clave, el primero da la proporción 

de ventanas a las que la etiqueta dominante fue asignada; un 100 % de ventanas clasificadas como 

“Nominal” significó que indicios de sobrecorriente ni de secuencia cero anómala no fueron 

detectados. El segundo indicador, denominado confianza media, midió el grado de seguridad con 

que cada predicción fue emitida dentro de la clase ganadora, valores cercanos a uno implicaron 

firmas de corriente muy claras, mientras que medias inferiores a 0,6 revelaron que el patrón fue 

contaminado. 

Conforme a la Tabla 3.1, correspondiente a la evaluación con el archivo Corrientes_Load2_BG 

que incorpora una falla monofásica en la barra 2 utilizada en el proceso de entrenamiento, el 

algoritmo alcanzó un índice de confiabilidad promedio del 96,4% en la clasificación de este 

evento. Este alto porcentaje refleja una sensibilidad y robustez elevadas en la identificación de 

fallas monofásicas a tierra, las normativas IEEE Std C37.230 e IEC 60909 reportan que entre el 

65% y el 80% de las fallas en sistemas de potencia corresponden a esta categoría. Según la norma 

IEC 60255-151, los sistemas de protección deben garantizar detección rápida y segura de estas 

contingencias, requisito que el modelo cumple. 

No obstante, el análisis de la misma tabla para fallas bifásicas y trifásicas indica una reducción 

significativa en los índices de confiabilidad, con valores promedio de 49,7% y 42,1% 

respectivamente. Esto evidencia limitaciones del modelo en la discriminación de fallas más 

complejas, atribuidas a un menor volumen de datos de entrenamiento representativos para estas 

categorías y a la similitud entre las firmas de corriente de estas fallas y perturbaciones nominales 

complejas. Conforme a la normativa IEEE C37.110 para la aplicación de transformadores de 

corriente, este comportamiento también podría estar influenciado por fenómenos de saturación y 

la presencia de contenido armónico en las corrientes durante eventos de cortocircuito. 

En el análisis de la Tabla 3.2, relacionada con el archivo Corrientes_Load14_AG, se evaluó el 

modelo en un escenario no incluido en el conjunto de entrenamiento, permitiendo medir su 

capacidad de generalización. Si bien el clasificador identificó las fallas monofásicas, la 

confiabilidad promedio disminuyó a un 54%, con variabilidad marcada con valores mínimos del 

26% y máximos cercanos al 91%. Esta disminución indica que, bajo condiciones nominales con 

cierto grado de desbalance, la superposición de corrientes normales y fallas a tierra induce 

incertidumbre en la clasificación. Esto recalca la necesidad de establecer umbrales de sensibilidad 
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ajustados al desbalance de carga, tal como recomiendan la norma IEEE 1159 sobre calidad de 

potencia y la IEC 60255 para evitar disparos intempestivos por corrientes residuales en 

condiciones normales. Las gráficas de corriente complementan estos hallazgos, en la Figura 3.1 

muestra un evento tipo “AG” con una disrupción clara en la fase A, con magnitudes de corriente 

que van de cientos a miles de amperios, mientras que las fases B y C permanecen prácticamente 

inalteradas, en concordancia con la teoría clásica de fallas monofásicas a tierra y justificando la 

alta confiabilidad en su detección. En contraste, la Figura 3.2 presenta un escenario “Load2” con 

perturbaciones superpuestas y picos de corriente en las tres fases, generando patrones menos 

diferenciados que explican la disminución de la confiabilidad en la detección de fallas bifásicas y 

trifásicas. Esto enfatiza la necesidad de enriquecer el modelo con variables adicionales, tales como 

componentes de secuencia, fasores angulares y criterios temporales de persistencia, conforme a 

los lineamientos de la IEC 60255-121 sobre protecciones direccionales y de distancia. 

Por ende, el análisis confirma que el modelo cumple eficazmente la función primaria de 

detección de fallas monofásicas, con índices de confiabilidad alineados con los requerimientos de 

las normas IEEE e IEC para contingencias críticas. No obstante, persisten desafíos en la 

clasificación de fallas bifásicas y trifásicas, sugiriendo la integración de estrategias de balance de 

datos, mejora en la extracción de características y validación bajo distintos escenarios de 

cortocircuito, para garantizar un desempeño uniforme y conforme a los estándares internacionales 

en protección de sistemas eléctricos. 

3.4 Comparativa A Otra IA (SVM) 

El sistema fue evaluado con un modelo distinto para identificar la base de conversión más 

eficiente, siendo el modelo de Máquinas de Vectores de Soporte (SVM) el seleccionado. 

Tabla 3.3 

Comparación del modelo usado con otra IA. 

 
Bosques Aleatorios SVM 

Cantidad de datos Presentaron mejores 

valores de confianza a 

menor cantidad de datos. 

El SVM necesita casi el 

doble de los datos que se 

usó en bosques 

aleatorios. 
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Ejecución El tiempo de aprendizaje 

es mayor. 

SVM su tiempo de 

aprendizaje es un 25% 

menor. 

Uso de datos de apoyo El sistema necesita una 

referencia externa de los 

datos a simular. 

No es necesario esa 

cantidad de datos 

externos. 

Confiabilidad Su confianza llega al 

80%, para los casos de 

estudios 

La confiabilidad del 

sistema oscila un 40%.  

Tiempos de detención 

de falla 

Menores a los 2 ciclos 

de onda (<32 ms) y 

siempre detecta un 

tiempo 

Sus tiempos llegaron a 

los 3 ciclos, no siempre 

determina un tiempo 

Tipos de falla Mayor acierto en el tipo 

de falla del sistema. 

No determina el tipo de 

falla presente. 

 

Acorde a la Tabla 3.3, para una rápida detección con una elevada robustez frente a ruido con 

una probabilidad confiable que trabaje con conjunto de datos limitados, el método de aprendizaje 

supervisado, bosques aleatorios, es la mejor opción. Por otro lado, SVM, es capaz de alcanzar un 

rendimiento similar en escenarios altamente controlados que dispongan de un ajuste exhaustivo y 

requiere mayor cantidad de datos. 

3.5 Presupuesto 

Dentro del presupuesto para el proyecto se estima un precio de $4,185, los cuales serán 

desarrollados en la Tabla 3.4. 
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Tabla 3.4  

Presupuesto general.  

 

Presupuesto 

Desarrollo, prueba y validación del algoritmmo 

# Concepto Entregables concretos Horas 

trabajadas 

(h) 

Tarifa 

referencial   

Sub-

total 

1 Simulación en Matlab Diseño de fallas en 

sistema de 14 barras 

IEEE 

35 22,5 787,5 

2 Levantamiento y 

analisis de archivos 

Matriz de requisitos, 

especificación de 

formato de datos y 

cronograma 

15 22,5 337,5 

3 Pre-procesamiento y 

limpieza de datasets 

Manejo de valores 

nulos, normalización 

15 22,5 337,5 

4 Ingeniería de 

características 

Cálculos de RMS, 

secuencias, ventanas 

deslizantes. 

20 22,5 450 

5 Implementación del 

clasificador (Random 

Forest)+pipeline CLI 

Módulo rf_detector.py 

con entrenamiento, 

persistencia y modo 

predict 

35 22,5 787,5 

6 Generador de datos 

sintéticos para pruebas 

Síntesis del código de 

fallas con cabeceras 

idénticas a plantilla 

14 22,5 315 

7 Pruebas unitarias y 

validación cruzada 

Reporte con métricas de 

precisión, recall, matriz 

30 22,5 675 
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8 Optimización y tuning 

(n árboles) 

Busqueda automatizada 

de la red, exportación de 

hiper parámetros 

óptimos 

10 22,5 225 

9 Soporte de integración 

para transferencia de 

conocimiento 

Sesión online y entrega 

de código y modelos 

4 22,5 90 

10 Contigencia Cobertuta de ajustes 

menores y 

retroalimentación de 

iteraciones 

8 22,5 180 

 
      Total 4185 
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Capítulo 4 
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4.1 Conclusiones y recomendaciones   

4.1.1 Conclusiones 

Luego de la ejecución secuencial de las fases planteadas en la propuesta, se logró las siguientes 

conclusiones que evidencian la eficacia del diseño y su aplicación en la industria para la protección 

de redes con neutro aislado integrando la detección inteligente de fallas mediante inteligencia 

artificial. 

• La generación de la base de datos a partir del sistema de IEEE de 14 barras permitió 

estructurar un conjunto de registros eléctricos con patrones característicos de operación 

normal y de eventos de falla en distintas condiciones de carga y generación. La base se 

conformó de valores de corrientes de secuencia y corriente eficaz lo que permitió una 

mayor discriminación por parte del algoritmo. En la identificación de corrientes de falla 

y nominal se obtuvo una confianza por encima del 0.99 sin falsos positivos lo que 

evidencia la consistencia estadística del patrón de normalidad. Disponer de una base de 

datos estructurada facilitó el entrenamiento del algoritmo y se convirtió en un recurso 

vital para la implementación de protecciones predictivas en sistemas de generación 

distribuida. 

• La simulación de múltiples escenarios de fallas mediante programas de análisis 

computacionales permitió validar estrategias de protección adaptadas a sistemas con 

neutro aislado. Se simuló sobrecorrientes monofásicas, bifásicas y trifásicas, así como 

fallas de distinta duración. El algoritmo detectó sobrecorriente en las fases B y C con 

valores que superaron el umbral de operación normal, clasificando el evento como falla 

a tierra con una probabilidad de 0,996. Solo dos ventanas en la transición de pre fallan 

y falla descendieron a valores entre 0,980 y 0,993 lo que corrobora la estabilidad incluso 

en intervalos de cambio abrupto.  

• El desarrollo de algoritmo de detección basado en técnicas de procesamiento de datos, 

implementando mediante un modelo de clasificación de bosques aleatorios con 300 

árboles demostró una precisión elevada en la identificación de fallas a tierra. En la 

prueba de detección de fallas de corta duración, el algoritmo no solo respondió en un 

tiempo mínimo, sino que también diferenció entre perturbaciones transitorias y fallas 

sostenidas, evitando disparos innecesarios. Esta capacidad de respuesta rápida 
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combinada con una alta selectividad y sensibilidad propone una metodología escalable 

facilitando la transición hacia esquemas de protección más inteligentes que van 

alineados a los requerimientos de continuidad y seguridad de operación para sistemas 

aislados a neutro. 

4.1.2 Recomendaciones 

Después de culminar, se establecen las siguientes recomendaciones que están orientadas en 

ampliar el alcance del presente trabajo y abordan aspectos como limitaciones de factibilidad que 

no fueron tratados en profundidad pero que resultan relevantes para la optimización y robustez de 

la protección en sistemas aislados de tierra mediante inteligencia artificial. 

• Ampliar la base de datos por medio de registros reales de campo, si bien la base de 

datos ha demostrado ser representativa para el entrenamiento del algoritmo, su 

naturaleza sintética se ve limitada frente a las variaciones y perturbaciones 

presentes en un sistema real por lo que se recomienda recopilar datos que incluyan 

eventos transitorios, armónicos y condiciones de carga no línea para robustecer y 

minimizar posibles sesgos de simulación. 

• Optimizar el modelo para reducir la carga computacional, pues el algoritmo basado 

en 300 árboles presentó un buen desempeño frente a precisión, sin embargo, su 

carga de procesamiento podría ser alta para dispositivos con recursos limitados por 

lo que una línea de trabajos futuros sería explorar técnicas para reducir el consumo 

de recursos y sea más sencillo su implementación. 

• Integrar funciones de aprendizaje continuo, debió a que el modelo opera de forma 

estática tras el entrenamiento inicial, implementar la capacidad de actualizarse 

automáticamente con nuevos datos y patrones es clave para mantener su precisión 

a largo plazo. Se sugiere desarrollar una versión de aprendizaje incremental que 

permita recalibrar el algoritmo ante cambios en la red sin requerir un 

reentrenamiento completo lo que reduciría tiempo de ejecución.  
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