
Escuela Superior Politécnica del Litoral

Facultad de Ingeniería en Electricidad y Computación

Mejora de Diseño para Horno Industrial con Control por PLC para Secado de

Motores

INGE-2834

Proyecto Integrador

Previo la obtención del Título de:

Ingeniería en electricidad

Presentado por:

Villamar Calderón Diego Antonio

Córdova Sánchez Delia Fiorella

Guayaquil - Ecuador

Año: 2025

Dedicatoria

Este trabajo está dedicado a mi familia,

que siempre me han apoyado y motivado a

ser mejor persona.

Agradecimientos

Agradezco a mi familia, a mis amigos y a

Dios por ser los pilares en mi vida y

fuente de mi mayor motivación e

inspiración.

Agradezco a mi abuelita Mercy, por todo

su amor y apoyo que me ha brindado, por

ser una madre para mí.

Agradezco a mi tío Andrés por haberme

enseñado tanto no solo en conocimiento

académico sino también a crecer como

persona.

Declaración Expresa

Nosotros Delia Fiorella Córdova Sánchez y Diego Antonio Villamar Calderón acordamos y

reconocemos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de

graduación corresponderá al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este

acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra

con facultad de sublicenciar, incluyendo la autorización para su divulgación, así como para la

creación y uso de obras derivadas. En el caso de usos comerciales se respetará el porcentaje de

participación en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invención,

modelo de utilidad, diseño industrial, secreto industrial, software o información no divulgada

que corresponda o pueda corresponder respecto de cualquier investigación, desarrollo

tecnológico o invención realizada por mí/nosotros durante el desarrollo del proyecto de

graduación, pertenecerán de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del

porcentaje que me/nos corresponda de los beneficios económicos que la ESPOL reciba por la

explotación de mi/nuestra innovación, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigación (OTRI) de la

ESPOL comunique los autores que existe una innovación potencialmente patentable sobre los

resultados del proyecto de graduación, no se realizará publicación o divulgación alguna, sin la

autorización expresa y previa de la ESPOL.

Guayaquil, 12 de septiembre de 2025.

Delia Córdova Diego Villamar

Evaluadores

Ing. Sixifo Falcones

Profesor de Materia

Ing. Douglas Aguirre

Tutor de proyecto

Resumen

El presente proyecto tiene como objetivo diseñar y validar mediante simulación un sistema de

automatización para optimizar el control operativo de un horno industrial de convección,

utilizado en el secado de motores en la empresa Electro Industrial Micabal S.A.. La solución

busca mejorar la eficiencia energética, la seguridad y la supervisión remota del proceso,

integrando sensores, electroválvulas, mecanismos de seguridad y una interfaz Hombre-

Máquina (HMI). La arquitectura se diseñó de manera modular, garantizando su escalabilidad

hacia otros hornos de la planta.

Para la implementación, se utilizó TIA Portal con un PLC Siemens S7-1200 simulado en

PLCSIM, organizando las variables mediante UDT y bloques de datos. La comunicación

externa se estableció a través de NetToPLCSIM, permitiendo la integración con Node-RED,

donde se desarrollaron flujos y dashboards en modos automático y manual. Con el fin de

asegurar conectividad remota segura, se implementó Tailscale como red privada virtual.

Finalmente, se desarrolló un gemelo digital en Minecraft mediante el mod CC:Tweaked y

scripts en Lua, que gestionan la comunicación por WebSocket con Node-RED.

Los resultados muestran mejoras en el control de parámetros críticos, validando escenarios de

histéresis, activación de actuadores, paro de emergencia y detección de fallas, con potencial de

replicabilidad en entornos industriales similares.

Palabras clave: Automatización industrial, PLC simulado, Node-RED, Gemelo digital,

WebSocket

Abstract

This project aims to design and validate, through simulation, an automation system to optimize

the operational control of an industrial convection oven used for motor drying at Electro

Industrial Micabal S.A. The solution seeks to improve energy efficiency, safety, and remote

supervision, integrating sensors, solenoid valves, safety mechanisms, and a Human-Machine

Interface (HMI). The architecture was designed in a modular way, ensuring scalability to other

ovens in the plant.

The implementation was carried out in TIA Portal with a Siemens S7-1200 PLC simulated in

PLCSIM, structuring variables through UDTs and data blocks. External communication was

enabled via NetToPLCSIM, allowing integration with Node-RED, where flows and dashboards

were developed for automatic and manual operation. To ensure secure remote connectivity,

Tailscale was used as a private virtual network.

Finally, a digital twin in Minecraft was developed using the CC:Tweaked mod and Lua scripts,

which handle communication with Node-RED via WebSocket. The results demonstrate

improvements in the control of critical parameters, validating hysteresis operation, actuator

activation, emergency stop, and fault detection, with potential replicability in similar industrial

environments.

Keywords: Industrial automation, Simulated PLC, Node-RED, Digital twin, WebSocket

Índice general

Resumen .. 6

Abstract ... 7

Índice general ... 7

Capítulo 1... 1

1.1 Introducción ...1

1.2 Descripción del Problema ...2

1.3 Justificación del Problema ..4

1.4 Objetivos ..5

1.4.1 Objetivo general ...5

1.4.2 Objetivos específicos ...5

1.5 Marco teórico..6

1.5.1 Controladores Lógicos Programables (PLC) ...6

1.5.2 Softwares de Simulación y Supervisión ...8

1.5.3 Protocolos de comunicación ...12

1.5.4 Gemelos digitales (Digital Twins) ...14

1.5.5 Normativas técnicas relacionadas ..14

Capítulo 2... 15

2. Metodología .. 15

2.1 Análisis del sistema y definición de requerimientos ...15

2.1.1 Requerimientos técnicos y empresariales ...15

2.1.2 Restricciones ..16

2.1.3 Modos de operación ..16

2.1.4 Razonamiento de diseño ..16

2.2 Justificación del uso de NETtoPLCSIM sobre OPC UA en entornos Siemens S7-1200

 17

2.3 Etapas de desarrollo del proyecto ..17

2.3.1 Etapa 1: Programación del control...17

2.3.2 Etapa 2: Simulación del PLC ..20

2.3.3 Etapa 3. Integración con Node-RED ..23

2.3.4 Etapa 4: Comunicación segura con Tailscale ..24

2.3.5 Etapa 5. Gemelo digital en Minecraft ..25

Capítulo 3... 27

3. Resultados y Análisis ... 27

3.1 Simulación del PLC ...27

3.2 Integración con Node-RED ...28

3.3 Resultados del modo automático ...28

3.4 Resultados del modo manual...30

3.5 Selección de modos y navegación ..31

3.6 Comunicación con Minecraft ..32

3.7 Diseño eléctrico del panel ...33

3.8 Diseño del sistema alternativo con lógica de relés..38

3.9 Comparación de soluciones ..39

3.10 Análisis de resultados ..41

Capítulo 4... 43

4. Conclusiones y recomendaciones ... 43

Bibliografía .. 45

Apéndice A – Programación en TIA Portal ... 47

Listado A.1. Fragmento de la lógica en OB1 (Main) – control por histéresis. 47

Listado A.2. Bloque OB100 (Startup) – inicialización segura. ... 49

Apéndice B – Archivos de configuración Lua (Minecraft) .. 50

Listado B.1. startup.lua – script de arranque en CC:Tweaked. 50

Listado B.2. main.lua – funciones principales de comunicación y control. 54

Apéndice C – Archivo de configuración de network.toml ... 58

Listado C.1. network.toml – mapeo de variables del PLC a tópicos Websocket. 58

ANEXOS ... 60

Anexo 1: .. 60

Anexo 2 ... 61

Anexo 3 ... 62

Anexo 4 ... 63

Anexo 5 ... 64

Anexo 6 ... 65

Anexo 7 ... 66

Anexo 8 ... 67

1

Capítulo 1

1.1 Introducción

La automatización industrial constituye en la actualidad un eje estratégico para

mejorar la competitividad, la seguridad y la eficiencia energética en los procesos productivos.

En particular, empresas dedicadas al mantenimiento y reacondicionamiento de equipos

eléctricos, como Electro Industrial Micabal S.A., enfrentan desafíos significativos en la etapa

de secado de motores eléctricos. Esta fase, realizada en hornos industriales de convección,

resulta crítica para garantizar la calidad del aislamiento y el correcto funcionamiento

posterior de los equipos. Sin embargo, al ser ejecutada de manera manual y sin un sistema

centralizado de supervisión, se generan limitaciones en la trazabilidad, la ergonomía del

trabajo y la capacidad de respuesta ante fallos.

En este contexto, se plantea el diseño de un sistema de automatización que integre

tecnologías de control basadas en PLC Siemens S7-1200, interfaces de supervisión (HMI) y

mecanismos de seguridad, con el fin de optimizar la operación del horno, reducir riesgos y

permitir un monitoreo en tiempo real. No obstante, debido a restricciones de recursos y a la

naturaleza académica del presente trabajo, la solución se desarrolla como un prototipo

simulado, validado en un entorno virtual que permite reproducir fielmente las condiciones de

operación del proceso sin necesidad de hardware físico.

Para ello, se utiliza TIA Portal como plataforma de programación, junto con PLCSIM

para emular el controlador, y NetToPLCSIM para asignar una dirección IP accesible al PLC

virtual. La comunicación con Node-RED posibilita la creación de dashboards en modos

automático y manual, mientras que el uso de Tailscale garantiza una conectividad remota

segura entre dispositivos. Finalmente, se implementa un gemelo digital en Minecraft,

mediante el mod CC:Tweaked y scripts en Lua, que permite visualizar en un entorno

tridimensional el comportamiento de actuadores y sensores, logrando una representación

didáctica e interactiva del sistema.

De esta manera, el proyecto se enmarca como un prototipo académico de validación

virtual, que no pretende reemplazar directamente los sistemas físicos de la empresa, pero que

aporta una base sólida para futuras implementaciones. Asimismo, constituye una contribución

al campo de la Industria 4.0, al integrar controladores virtuales, conectividad en red y

gemelos digitales como herramientas de formación y experimentación académica, con

potencial de replicabilidad en entornos industriales reales.

1.2 Descripción del Problema

Electro Industrial Micabal S.A. es una empresa ecuatoriana dedicada al

mantenimiento, reparación y reacondicionamiento de motores eléctricos industriales. Uno de

sus procesos clave es el secado de motores en hornos de convección a gas, etapa crítica

posterior al bobinado que garantiza la eliminación de humedad y preserva el aislamiento del

equipo. En la actualidad, este proceso se realiza de forma manual y sin un sistema

centralizado de supervisión, lo cual genera limitaciones técnicas y riesgos operativos.

El problema principal radica en la ausencia de un sistema automatizado que permita

controlar y monitorear en tiempo real las variables físicas del proceso (temperatura interna,

tiempo de operación, presión en tuberías) y los estados de operación (apertura de puerta,

modo de trabajo manual o automático, estado del proceso de histéresis). Esta carencia impide

realizar ajustes precisos, aumenta la dependencia del operador y expone al personal a riesgos

en pruebas reales, además de dificultar la supervisión remota.

La situación se enmarca en los desafíos comunes de la automatización industrial, donde

destacan:

 Costos elevados en la adquisición de hardware y simuladores industriales.

 Riesgos en pruebas en planta real, que comprometen la seguridad operativa.

 Limitaciones en capacitación, al no contar con herramientas virtuales accesibles para

entrenar al personal.

Frente a estos retos, los métodos tradicionales de prueba suelen ser extensos, costosos

y rígidos, mientras que un prototipo simulado ofrece rapidez, menor costo y mayor

flexibilidad. Bajo estas condiciones, se plantea el desarrollo de un sistema de automatización

validado en un entorno simulado académico, que permita evaluar la factibilidad técnica de la

propuesta, optimizar el control del proceso y servir como base para futuras implementaciones

reales en la empresa o en entornos industriales similares.

Entre las restricciones más relevantes se encuentran:

 La disponibilidad limitada de presupuesto para la adquisición de hardware.

 La necesidad de cumplir con normativas de seguridad industrial vigentes.

 La compatibilidad con las plataformas ya utilizadas en la empresa, como el PLC

Siemens S7-1200 y el entorno de desarrollo TIA Portal.

Por otra parte, los requerimientos técnicos y académicos del proyecto contemplan:

 Diseñar un sistema de control que pueda operar en modo manual y automático,

aplicando un control por histéresis.

 Simular la comunicación entre el PLC virtual y plataformas externas mediante

NetToPLCSIM, Node-RED y WebSocket.

 Desarrollar una interfaz de usuario (HMI) accesible local y remotamente, con

visualización de las principales variables de proceso.

 Representar el comportamiento del horno en un entorno tridimensional interactivo, a

través de un gemelo digital en Minecraft.

La problemática descrita es observable, medible y susceptible de análisis técnico, lo

que la convierte en un escenario adecuado para el desarrollo de un prototipo simulado que

integre automatización industrial, conectividad en red y gemelos digitales, como aporte

académico y con potencial de aplicación futura en la industria.

1.3 Justificación del Problema

La automatización del proceso de secado de motores en hornos industriales de

convección resulta fundamental para mejorar la eficiencia, la seguridad y la calidad del

servicio que ofrece Electro Industrial Micabal S.A. En su estado actual, la operación manual

del horno limita la precisión en el control de variables críticas como la temperatura, el tiempo

y la presión, lo que aumenta la probabilidad de errores humanos y reduce la confiabilidad del

proceso. Resolver esta problemática es importante porque incide directamente en la vida útil

de los motores eléctricos, en la seguridad del personal que opera los equipos y en la

capacidad de la empresa para ofrecer un servicio competitivo en el mercado.

Desde la perspectiva académica, el proyecto aborda los desafíos típicos de la

automatización industrial, tales como el costo elevado de hardware especializado, los riesgos

de realizar pruebas en planta real y las limitaciones en la capacitación del personal. Ante estas

barreras, la construcción de un prototipo simulado se convierte en una alternativa viable y

económica para validar la arquitectura de control, capacitar operadores y probar diferentes

escenarios sin exponer recursos físicos.

La solución propuesta integra herramientas modernas como PLC simulado, Node-

RED, Tailscale y un gemelo digital en Minecraft, demostrando que es posible combinar

plataformas de software, comunicación segura y entornos 3D interactivos en proyectos de

Industria 4.0. Su importancia radica no solo en solventar las necesidades técnicas de la

empresa de referencia, sino también en generar un modelo replicable en otros procesos

industriales que enfrenten retos similares.

1.4 Objetivos

1.4.1 Objetivo general

 Diseñar, implementar y validar mediante simulación un sistema de automatización

para un horno industrial, integrando un PLC virtual, una interfaz de control en Node-

RED y un gemelo digital en Minecraft, empleando WebSocket como protocolo de

comunicación, con el fin del análisis del desempeño y la optimización de la

interacción hombre-máquina en un entorno de prueba.

1.4.2 Objetivos específicos

 Diseñar la lógica de control del horno en TIA Portal, estructurando las variables

mediante tipos de datos definidos por el usuario (UDT) y bloques de datos (DB).

 Simular el comportamiento del PLC Siemens S7-1200 mediante PLCSIM, asegurando

la ejecución de la programación y la validación de las rutinas de control.

 Configurar la comunicación entre el PLC virtual y plataformas externas a través de

NetToPLCSIM, garantizando la asignación de una dirección IP accesible bajo el

protocolo ISO-on-TCP.

 Implementar en Node-RED flujos de datos y dashboards de operación en modos

automático y manual, que permitan la interacción con las principales variables del

proceso.

 Desarrollar un gemelo digital en Minecraft con el mod CC:Tweaked y scripts en Lua,

para representar gráficamente actuadores, sensores y estados de operación mediante

comunicación por WebSocket.

 Validar el sistema a través de escenarios de prueba que incluyan control por histéresis,

activación de actuadores, cambio de modos de operación, paro de emergencia y

detección de fallas.

1.5 Marco teórico

1.5.1 Controladores Lógicos Programables (PLC)

1.5.1.1 Tipos de PLC y características del Siemens S7-1200

El Controlador Lógico Programable (PLC) es un dispositivo electrónico diseñado para

ejecutar operaciones de control secuencial en tiempo real dentro de sistemas industriales. Su

arquitectura incluye una Unidad Central de Procesamiento (CPU), módulos de memoria de

trabajo y programa (RAM, EEPROM), interfaces de entradas/salidas (E/S), y un bus de datos

interno para la comunicación entre componentes. Las señales de entrada, provenientes de

sensores digitales o analógicos, son procesadas por la CPU de acuerdo con la lógica

almacenada en la memoria, generando respuestas que activan actuadores como

electroválvulas, motores o indicadores [1].

Los PLC pueden clasificarse por su tamaño (nano, compacto, modular). El S7-1200

de Siemens es un PLC modular compacto que destaca por su escalabilidad, capacidad de

comunicación (PROFINET, OPC UA, TCP/IP), y compatibilidad con TIA Portal [2].

1.5.1.2 PLC Siemens S7-1200

Como parte del sistema de automatización del horno de secado, se ha seleccionado el

PLC Siemens S7-1200 por su compatibilidad con arquitecturas modulares, su capacidad para

Ilustración 1. Arquitectura general de los PLCs.

manejar señales analógicas y digitales, y su facilidad de integración con sistemas HMI.

Ofrece un entorno robusto para aplicaciones industriales críticas, especialmente aquellas que

requieren control preciso de variables como temperatura, tiempo y estado del proceso.

Además, permite la programación y monitoreo a través del entorno TIA Portal, y su

arquitectura soporta comunicación Ethernet, facilitando la expansión futura del sistema.

En el presente proyecto se emplea el PLC Siemens S7-1200, modelo CPU 1214C

AC/DC/Relé. Esta unidad central es ideal para tareas de control secuencial y de procesos en

aplicaciones de tamaño pequeño a mediano, como el horno industrial automatizado del

presente estudio.

Especificaciones técnicas clave que se indican en el manual de usuario del equipo:

 Alimentación: 120/230 V AC.

 Entradas digitales (DI): 14 canales (24 V DC).

 Salidas digitales (DO): 10 canales de tipo relé, lo que permite manejar cargas AC

y DC.

 Entradas analógicas: 2 canales integrados (0–10 V).

Ilustración 2. PLC Siemens S7-1200 modelo

CPU 1214C AC/DC relé

 Memoria de programa: 100 KB.

 Memoria de carga: 4 MB.

 Interfaz de comunicación: 1 puerto Ethernet integrado (soporta PROFINET y

OPC UA).

 Capacidad de expansión: hasta 8 módulos de señal adicionales.

 Soporte para HMI y comunicación externa a través del entorno TIA Portal y

protocolos como Modbus TCP/IP u OPC UA.

1.5.1.3 Arquitectura modular del S7-1200

La familia S7-1200 está diseñada con una arquitectura modular que permite la expansión

del sistema mediante la adición de diferentes tipos de módulos:

 Módulos de señal (entradas/salidas digitales o analógicas).

 Módulos de comunicación (por ejemplo, RS485, RS232, Ethernet).

 Módulos de tecnología (como contadores rápidos o módulos de medición de

temperatura).

El controlador CPU puede soportar hasta:

 8 módulos de señal (SM).

 3 módulos de comunicación (CM).

 1 módulo de tecnología (TM).

1.5.2 Softwares de Simulación y Supervisión

1.5.2.1 TIA Portal (Totally Integrated Automation)

El Totally Integrated Automation Portal (TIA Portal) es el entorno de desarrollo

integrado de Siemens que permite la programación, configuración, monitoreo y diagnóstico

de sistemas de automatización industrial. Este software centraliza el diseño de proyectos que

involucren controladores lógicos programables (PLC), interfaces Hombre-Máquina (HMI),

redes industriales y dispositivos de entrada/salida distribuidos. Gracias a su interfaz unificada

y herramientas de diagnóstico avanzadas, TIA Portal facilita la gestión del ciclo de vida

completo de una instalación automatizada, desde la planificación hasta la puesta en marcha y

mantenimiento (Siemens, 2024).

En el presente proyecto, TIA Portal ha sido esencial para la programación del PLC

Siemens S7-1200. La estructura de programación del software está basada en la organización

por bloques, donde los Organizational Blocks (OB) definen el ciclo principal del programa,

los Function Blocks (FB) encapsulan funciones reutilizables con memoria propia, y los

Function Calls (FC) permiten operaciones sin retención de datos. Además, el entorno permite

la gestión de variables globales y locales, promoviendo una programación modular y

estructurada (Siemens, 2024).

Una funcionalidad clave utilizada en este proyecto es la facilidad de poder trabajar

con PLCSIM. TIA Portal permite habilitar el S7/ISO-on-TCP vía NetToPLCSIM “integrado

“en el PLC, lo que posibilita la exposición de variables definidas como nodos accesibles para

aplicaciones externas. Esta configuración resulta fundamental para establecer la

comunicación entre el entorno virtual 3D desarrollado y el sistema automatizado, mediante el

intercambio de datos en tiempo real (Siemens, 2024).

1.5.2.2 PLCSIM

La simulación virtual de controladores lógicos programables (PLC) representa una

fase crítica en el diseño y validación de sistemas automatizados. En este proyecto, se hace

uso de PLCSIM, como plataforma para ejecutar el programa del PLC Siemens S7-1200 sin

requerir hardware físico. Esta herramienta permite reproducir fielmente el comportamiento

lógico del sistema de control, ofreciendo un entorno seguro para verificar la funcionalidad del

programa antes de su implementación real.

PLCSIM permite la ejecución paso a paso del código, así como la supervisión en

tiempo real de las variables internas, entradas y salidas digitales, lo que facilita el ajuste fino

de la lógica de control. Su integración con TIA Portal proporciona un flujo de trabajo

continuo entre el desarrollo y la simulación, permitiendo probar reacciones ante distintos

escenarios operativos, como fallos de sensores, condiciones límite o secuencias

automatizadas complejas [3].

1.5.2.3 NetToPLCSIM

NetToPLCsim es una extensión de red diseñada para el software PLCSIM,

permitiendo que un PLC simulado en TIA Portal (como el S7-1200 o S7-1500) sea accesible

desde aplicaciones externas a través de una red TCP/IP local. Esto es posible gracias a que

NetToPLCsim actúa como un puente entre la simulación y la capa de transporte de datos,

representando un servidor virtual que redirige la comunicación hacia el simulador del PLC

mediante la interfaz S7online de Siemens [4].

A diferencia de los PLC físicos, los simuladores PLCSIM no exponen directamente

una dirección IP accesible por red. NetToPLCsim resuelve este inconveniente al generar una

IP virtual que otras herramientas como Node-RED u otros sistemas SCADA pueden utilizar

para intercambiar datos con el PLC simulado. Esta solución resulta especialmente útil para

entornos de pruebas, desarrollo e implementación de sistemas de automatización sin requerir

hardware real [4].

1.5.2.4 Node-RED

Node-RED es una plataforma de desarrollo basada en flujos, diseñada para facilitar la

conexión de dispositivos físicos, APIs y servicios en línea. Esta herramienta se basa en un

entorno gráfico donde los flujos de datos se construyen mediante nodos que representan

funciones, entradas/salidas o transformaciones lógicas.

En el trabajo de referencia de Herrera Flores & Valdiviezo Vilema, 2022, Node-RED

fue implementado como interfaz de comunicación con un PLC simulado, utilizando la red

TCP/IP para capturar, procesar y representar gráficamente el estado de variables como

entradas digitales, señales de activación o estados del sistema. Además, se configuró como un

panel HMI básico accesible desde navegadores web, lo que facilitó la visualización del

proceso desde distintos dispositivos.

Esta lógica es replicada en el presente proyecto, donde Node-RED actúa como

intermediario entre el entorno de simulación del PLC (PLCSIM + NetToPLCSIM) y el

entorno virtual Minecraft. Su utilización permite no solo visualizar el estado del horno

industrial automatizado en tiempo real, sino también interactuar con variables de proceso

desde una interfaz web, simular condiciones de operación y validar el sistema sin la

necesidad de hardware físico.

1.5.2.5 Minecraft

En este proyecto, Minecraft se emplea como un entorno representativo virtual que

permite crear un gemelo digital interactivo del horno industrial. Una de sus ventajas es la

Ilustración 3. Comunicación entre NetToPLCsim con Node Red a partir de la dirección IP.

Fuente: Elaboración propia.

posibilidad de instalar mods especializados, como CC:Tweaked, que extiende las

funcionalidades del juego para programar computadoras internas con el lenguaje Lua. A

través de este mod es posible editar archivos internos como startup.lua (documento de texto

ejecutado al inicio de la computadora virtual) y network.toml (archivo de configuración de

red), lo cual permite definir la lógica de comunicación y la asociación de variables entre el

entorno gráfico y el sistema de control.

La interacción entre Minecraft y Node-RED se realiza mediante WebSocket, un

protocolo de comunicación en tiempo real basado en TCP, que mantiene un canal de

conexión persistente y bidireccional entre cliente y servidor. Gracias a esta integración, el

dashboard de Node-RED puede enviar comandos y recibir retroalimentación de los elementos

representados en el mundo virtual, logrando un control remoto y seguro del prototipo

simulado.

Diversos estudios han explorado el uso de Minecraft como plataforma de aprendizaje

y de investigación. Por ejemplo, Perkins et al. (2015) lo plantean como una herramienta de

investigación en entornos educativos, mientras que Marek et al. (2022) lo aplican para la

enseñanza de mecánica de materiales mediante simulaciones lúdicas. Estos trabajos

evidencian que Minecraft puede trascender su función de videojuego para convertirse en una

plataforma académica y experimental.

1.5.3 Protocolos de comunicación

1.5.3.1 TCP/IP

El TCP/IP es un conjunto de protocolos que permite la comunicación entre

dispositivos en red. TCP garantiza la entrega íntegra y ordenada de los datos dividiéndolos en

paquetes, mientras que IP se encarga de direccionarlos correctamente hasta su destino

(Fortinet, s.f.).

En este proyecto, TCP/IP se utiliza para que el PLC simulado en PLCSIM, a través de

NetToPLCSIM, disponga de una dirección IP accesible. Esto permite su integración con

Node-RED y posteriormente con el gemelo digital en Minecraft, asegurando el intercambio

confiable de información entre todos los componentes.

1.5.3.2 WebSocket

WebSocket es un protocolo de comunicación basado en TCP que establece un canal

bidireccional y persistente entre cliente y servidor. A diferencia del modelo tradicional de

HTTP, permite un intercambio de mensajes en tiempo real con baja latencia y menor

sobrecarga. Fue estandarizado por la IETF en la RFC 6455, lo que asegura su

interoperabilidad en aplicaciones modernas [5].

En el ámbito académico, estudios como el de Wang et al. (2013) destacan que

WebSocket ofrece una solución eficiente para aplicaciones que requieren transmisión

continua de datos en tiempo real.

En este proyecto, WebSocket se emplea como protocolo de comunicación entre Node-

RED y el entorno virtual en Minecraft (mod CC:Tweaked), permitiendo enviar comandos y

recibir estados del horno simulado de forma bidireccional. Gracias a esta integración, el

dashboard de Node-RED puede controlar y visualizar en tiempo real el comportamiento del

gemelo digital desarrollado en Minecraft.

1.5.3.3 Diagrama de arquitectura de comunicación

Ilustración 4. Flujo de conexión entre programas, servidores y protocolos de comunicación.

Fuente: Elaboración propia.

1.5.4 Gemelos digitales (Digital Twins)

1.5.4.1 Definición y relación con la Industria 4.0

Un gemelo digital es una representación virtual de un sistema físico, que replica su

comportamiento en tiempo real. Es un componente clave en la digitalización industrial y la

Industria 4.0. Permiten validar procesos, predecir fallas, optimizar rendimientos y capacitar

operarios sin necesidad de interacción directa con equipos reales.

1.5.5 Normativas técnicas relacionadas

Normativas de seguridad de equipos eléctricos:

IEC 60204-1 establece requisitos para la seguridad de los equipos eléctricos de

máquinas.

IEC 61439 regula los tableros de baja tensión.

El diseño de la arquitectura adoptada está alineado con:

IEC 61131-3, que promueve la abstracción del hardware mediante estructuras lógicas

como bloques de datos (DB), evitando el acceso directo a entradas físicas desde sistemas

externos.

IEEE 1451, que establece las directrices para sensores y transductores inteligentes,

permitiendo digitalizar variables físicas simuladas mediante entornos virtuales.

ISA-95, que sugiere la estructuración de sistemas industriales en niveles funcionales;

en este caso, Node-RED opera como la capa de conectividad (Nivel 3) entre el PLC y los

sistemas externos.

Recomendaciones de Siemens, que sugieren usar marcas (%M) o bloques de datos

(DB) en lugar de forzar entradas físicas, especialmente en escenarios de simulación o

virtualización.

GAMP 5, que promueve el uso de entornos simulados trazables y validados antes del

despliegue real de sistemas automatizados, garantizando la calidad y confiabilidad del diseño.

Capítulo 2

2. Metodología

2.1 Análisis del sistema y definición de requerimientos

Para el desarrollo del sistema de automatización y control de un horno industrial por

histéresis en Electro Industrial Micabal S.A., se planteó un prototipo simulado con el fin de

validar el comportamiento del proceso en un entorno seguro y de bajo costo. El objetivo fue

reproducir de manera virtual la lógica de control y la supervisión remota, utilizando

herramientas de programación, simulación y conectividad industrial, sin necesidad de

hardware físico.

2.1.1 Requerimientos técnicos y empresariales

La empresa colaboradora ha manifestado la necesidad de contar con un sistema

automatizado que sea capaz de operar un horno de convección utilizado para el secado de

motores, el cual presenta limitaciones físicas que deben respetarse: temperatura máxima de

operación de 150 °C y presión límite de 2 psi. Asimismo, se requiere que el horno funcione

en dos modos de operación (manual y automático) seleccionables desde una interfaz HMI

accesible desde la planta o remotamente desde la oficina del operador.

La empresa ha facilitado datos históricos de temperatura, tiempo y normativas

técnicas, que han sido esenciales para modelar el comportamiento térmico del horno, definir

tiempos de operación óptimos y establecer protocolos de seguridad. Esta cooperación ha

permitido construir un modelo de control confiable y alineado a las condiciones reales del

proceso.

Los requerimientos definidos para el proyecto son:

 Diseñar un sistema de control con modo manual y automático, aplicando un control

por histéresis.

 Simular la comunicación entre el PLC virtual y plataformas externas mediante

NetToPLCSIM, Node-RED y WebSocket.

 Desarrollar una interfaz HMI en Node-RED, accesible local y remotamente, con

visualización de las principales variables del proceso.

 Representar el comportamiento del horno en un entorno 3D interactivo, mediante un

gemelo digital en Minecraft.

2.1.2 Restricciones

 Presupuesto limitado para la adquisición de hardware físico.

 Cumplimiento de normativas de seguridad industrial vigentes.

 Compatibilidad con plataformas utilizadas en la empresa, como el PLC Siemens S7-

1200 y el entorno TIA Portal.

2.1.3 Modos de operación

Modo Manual: permite al operador activar actuadores directamente desde el HMI o el

entorno 3D. Incluye pruebas de encendido de resistencias, válvulas y ventiladores con

medidas de seguridad básicas.

Modo Automático: el usuario ingresa una temperatura de consigna y un tiempo de

operación. El sistema regula el proceso mediante un control por histéresis y bloquea reinicios

prematuros hasta que la temperatura descienda a 40 °C, garantizando seguridad en la

operación.

2.1.4 Razonamiento de diseño

Se optó por una solución completamente virtual que permitiera validar la lógica de

control, la conectividad y la visualización de datos. La dinámica lenta del horno hace

innecesario un control PID, siendo suficiente un control por histéresis con un margen de ±10

°C.

2.2 Justificación del uso de NETtoPLCSIM sobre OPC UA en entornos Siemens S7-

1200

Si bien el protocolo OPC UA es estándar en la industria, el S7-1200 no soporta de

forma nativa esta funcionalidad sin licencias adicionales. En cambio, NetToPLCSIM permite

exponer una IP virtual del PLC simulado, habilitando la comunicación con Node-RED bajo

protocolo S7, sin costos adicionales. Esto lo convierte en la mejor opción académica y de

prototipado.

2.3 Etapas de desarrollo del proyecto

Con el fin de organizar el proceso metodológico, el proyecto se desarrolló en seis

etapas consecutivas que integran la programación del controlador, la simulación, la

comunicación y la validación final del sistema.

2.3.1 Etapa 1: Programación del control

El desarrollo del sistema inició con la programación en TIA Portal, donde se

definieron estructuras de datos que permitieran organizar de manera clara y escalable la

información del proceso. Para ello, se crearon UDT (User Defined Types) destinados a las

entradas, salidas y variables generales, como por ejemplo la temperatura que es un valor por

definir por el usuario, lo tenemos como variable “i” de int (entero) o las variables que tienen

“b” que corresponden a valores booleanos a usar dentro de la programación. El uso de UDT

responde a la necesidad de establecer un orden lógico y facilitar futuras modificaciones en la

programación, ya que agrupar variables en estructuras permite mantener consistencia y

simplificar la lectura del código.

Ilustración 5. UDT que definen los tipos de datos para las variables de salida.

A partir de estas definiciones, se construyeron bloques de datos (DB): los DB de

entradas agrupan las señales provenientes del operador (botón de marcha, paro, consignas),

los DB de salidas representan los actuadores simulados (válvulas, resistencias, ventiladores) y

el DB general integra las variables de proceso (temperatura, estados de histéresis, modos de

operación y alarmas).

Ilustración 6. UDT que definen los tipos de dato para las variables de entrada.

Ilustración 7. UDT que definen variables generales que se usarán para la programación PLC.

Ilustración 8. Bloques de datos (DB) para las variables de salida.

Ilustración 9. Bloques de datos (DB) para las variables generales, datos que vamos a usar durante la

programación.

La lógica principal del sistema se implementó en el OB1 (Main), donde se

programaron los modos de operación manual y automático, así como el control por histéresis.

Este bloque constituye el núcleo del proceso, ya que gestiona el encendido de actuadores

según consignas y condiciones de seguridad. Además, se utilizó el OB100 (Startup) para

garantizar una inicialización segura del PLC virtual cada vez que la CPU se pone en marcha.

En este bloque se incluyeron rutinas de reinicio de remanencias y la verificación de fallos de

sensores; por ejemplo, en el caso de que la temperatura se registre en cero, el sistema

interpreta este valor como indicio de un error de medición y activa las banderas de alarma

correspondientes.

La programación general (Main) para el proceso de control de histéresis, automático y

manual se muestra en el Apéndice A, Listado A.1. Luego, la programación Startup para

“reiniciar” el PLC cuyo detalle completo puede consultarse en el Apéndice A, Listado A.2.

Ilustración 11. Bloques de datos (DB) para las variables de entrada.

Ilustración 10. Tablas de forzado para observar las variables de interés (datos de diferentes bloques la que

sea de interés en el momento).

2.3.2 Etapa 2: Simulación del PLC

Una vez construida la lógica, se procedió a la simulación del PLC mediante PLCSIM.

Sin embargo, se debe destacar que la dirección IP que PLCSIM genera no es una dirección

real de red, por lo que no es posible establecer comunicación directa con aplicaciones

externas. Para solventar esta limitación se empleó la herramienta NetToPLCSIM, que actúa

como puente y expone una dirección IP válida y accesible en la red local.

Ilustración 12. La dirección IP que proporciona el programa no es una dirección IP real como tal, que

se pueda usar para la conexión entre TIA PORTAL y Node-RED.

Fuente: Elaboración propia.

Ilustración 13. Se ejecuta el programa (como administrador) para que nos proporcione una IP real

para la comunicación.

Fuente: Elaboración propia.

Ilustración 14. Selección de la dirección IP para comunicar el PLC con otros dispositivos mediante

internet.

Fuente: Elaboración propia.

Ilustración 15. Finalmente, para la parte de PLCSIM Rack/Slot seleccionamos 0/1 que corresponde para

el modelo que tenemos S7-1200 como se indica en la ventana emergente Station.

Fuente: Autoría propia

Ilustración 16. Para la selección de la dirección IP de PLCSIM seleccionamos el botón de opciones

(…) como indica en la imagen para poder asignar la IP real.

Fuente: Autoría propia

Ilustración 17. Tenemos la dirección IP para la red y para el PLC (mediante PLCSIM), en donde se puede

observar que el PLC simulado se encuentra en estado “Running”.

Fuente: Autoría propia

Este procedimiento permitió asignar una dirección IP real al PLC virtual,

configurando la comunicación a través del protocolo ISO-on-TCP en el puerto estándar 102.

De esta manera, Node-RED y otros clientes pudieron acceder a las variables internas del

controlador como si se tratara de un PLC físico. Finalmente, el sistema fue puesto en estado

RUNNING, condición necesaria para ejecutar y validar la lógica implementada.

2.3.3 Etapa 3. Integración con Node-RED

Con la IP obtenida mediante NetToPLCSIM, se configuró la conexión entre el PLC

simulado y Node-RED. En esta etapa se emplearon nodos específicos de comunicación S7

que permitieron la lectura y escritura de los bloques de datos previamente definidos en TIA

Portal. Esta integración garantizó la transferencia bidireccional de información: Node-RED

podía leer los estados de entradas y salidas, y al mismo tiempo enviar órdenes que

modificaran el comportamiento del PLC virtual.

Ilustración 18. Agregamos un bloque S7 (en este caso de entrada) y vamos al apartado “Edit s7 endpoint

node” en donde ingresamos la IP obtenida anteriormente mediante NetToPLCSIM en el apartado

Address.

Fuente: Elaboración propia.

Posteriormente, se diseñaron dashboards interactivos que permiten al usuario operar

el horno simulado en dos modalidades:

Modo Automático, en el cual el sistema regula la temperatura de acuerdo con

consignas predefinidas aplicando control por histéresis.

Modo Manual, que otorga al operador control directo sobre cada actuador, con

funciones de encendido y apagado supervisadas.

Adicionalmente, se desarrolló un flujo que expone las variables hacia un servidor

WebSocket, lo que posibilita la conexión con el entorno tridimensional de Minecraft. Este

paso resultó fundamental para habilitar la interacción entre la simulación lógica del PLC y su

representación gráfica en el gemelo digital.

2.3.4 Etapa 4: Comunicación segura con Tailscale

Para habilitar la comunicación entre dispositivos ubicados en distintas redes físicas se

implementó Tailscale, una solución basada en el protocolo WireGuard que permite establecer

redes privadas virtuales. Cada dispositivo que instaló Tailscale recibió una dirección IP

privada en el rango 100.x.x.x, independiente de la red local en la que estuviera conectado.

Ilustración 19. Uso de Tailscale para convertir los dispositivos en una red privada.

Fuente: Elaboración propia.

Gracias a esta capa de seguridad, la comunicación entre Node-RED, el PLC simulado

y el entorno 3D en Minecraft pudo realizarse de manera segura y cifrada, sin necesidad de

abrir puertos en Internet público. De esta forma, se garantizó que la arquitectura propuesta no

solo fuese funcional, sino también robusta desde el punto de vista de la ciberseguridad.

2.3.5 Etapa 5. Gemelo digital en Minecraft

La última fase consistió en la creación del gemelo digital en el entorno tridimensional

de Minecraft. Para ello se utilizó la plataforma Forge, sobre la cual se instalaron los mods

CC:Tweaked y dependencias adicionales que permiten programar computadoras virtuales

dentro del juego.

Ilustración 20. Verificación de instalación del mod CC:Tweaked.

Fuente: Elaboración propia.

En estas computadoras se configuraron scripts en Lua, principalmente startup.lua y

main.lua, que establecen la conexión con Node-RED a través de WebSocket. La

programación permitió que los actuadores representados en Minecraft (palancas, luces,

mecanismos redstone) se activaran o desactivaran en función de las órdenes recibidas desde

Node-RED, mientras que las entradas físicas del entorno virtual eran leídas y enviadas

nuevamente al PLC simulado.

Ilustración 21. Ubicación de los scripts main.lua y startup.lua en nuestro proyecto, cuyos archivos de

texto serán modificados para la conexión entre Node-RED y el entorno Minecraft a través de

Websocket.

Fuente: Elaboración propia.

La programación completa para la parte de startup.lua y main.lua se encuentra en el

apartado de Apéndice B, Listado B.1 y Listado B.2, la programación es la misma, ya que

startup.lua funciona únicamente para inicializar el programa y ejecutarlo automáticamente.

El archivo network.toml cumplió la función de mapa de configuración, asociando las

variables internas del PLC (por ejemplo, DB2_UDT_SALIDAS_bEV_Superior) con los

tópicos manejados en WebSocket (ej. bEV_Superior). De esta manera, se estableció una

correspondencia directa entre las variables del controlador y los objetos interactivos en

Minecraft.

El fragmento de código completo para network.toml puede verificarse en el Apéndice C,

Listado C.1.

Capítulo 3

3. Resultados y Análisis

3.1 Simulación del PLC

La primera fase de validación consistió en ejecutar la lógica desarrollada en TIA

Portal mediante el simulador PLCSIM. Como se explicó en la metodología, la dirección IP

interna generada por PLCSIM no es accesible desde aplicaciones externas. Para solventar

esta limitación se empleó NetToPLCSIM, que expone una dirección IP válida en la red local,

permitiendo así la comunicación con Node-RED y otras plataformas.

La Ilustración 22 muestra la configuración de NetToPLCSIM con el PLC en estado

RUNNING, lo que confirma que el simulador está operativo y listo para el intercambio de

datos.

Fuente: Elaboración propia

Ilustración 22. Configuración de NetToPLCSIM con el PLC simulado en ejecución.

3.2 Integración con Node-RED

Una vez obtenida la IP accesible, se configuraron los nodos s7 in/out en Node-RED

para establecer comunicación con los bloques de datos creados en TIA Portal. En la

Ilustración 23 se observa el flujo denominado Escritura_Datos, que envía señales hacia el

PLC simulado. Este flujo asegura que las entradas provenientes del dashboard y las salidas

hacia los actuadores se encuentren correctamente enlazadas con las variables internas del

PLC.

3.3 Resultados del modo automático

En el modo automático, el operador únicamente debe seleccionar el comando de

marcha, definir una temperatura objetivo y establecer un tiempo de operación. El sistema

ejecuta la lógica de control por histéresis programada en el OB1, activando o desactivando

las salidas según la condición de proceso.

Ilustración 23. Flujo Escritura_Datos en Node-RED para el intercambio de variables con el PLC.

Fuente: Elaboración propia.

La Ilustración 25 muestra el dashboard en modo automático, en el que se representan

las entradas (botones de marcha y paro, sensores de puerta y llama) y las salidas (generador

de chispa, electroválvula superior e inferior).

Ilustración 24. Flujo para el dashboard en Node-RED para el modo automático.

Fuente: Elaboración propia.

Ilustración 25. Interfaz HMI en Node-RED para el modo automático, con control por histéresis y

consignas de temperatura y tiempo.

Fuente: Elaboración propia.

3.4 Resultados del modo manual

En el modo manual, el operador tiene control directo de los actuadores y variables de

proceso, sin intervención del algoritmo de histéresis. Esto permite ajustar en tiempo real la

presión y la temperatura mediante controles deslizantes (sliders), así como operar los botones

de marcha y paro.

En la Ilustración 27 se observa el dashboard diseñado para este modo, donde las

variables controladas se representan con indicadores tipo gauge. Este esquema resulta

especialmente útil para pruebas y ajustes, aunque carece de la optimización automática que

ofrece el modo anterior.

Ilustración 26. Flujo para el dashboard en Node-RED para el modo manual.

Fuente: Elaboración propia.

3.5 Selección de modos y navegación

El sistema de control contempla un dashboard principal, desde el cual el operador

puede seleccionar el modo manual o el modo automático. Este flujo se presenta en la

Ilustración 29, donde además se incluyen botones de retorno que facilitan la navegación entre

pantallas.

Ilustración 28. Flujo para el dashboard principal de selección de modo de operación.

Fuente: Elaboración propia.

Ilustración 27. Interfaz HMI en Node-RED para el modo manual, con control directo de actuadores,

presión y temperatura.

Fuente: Elaboración propia.

3.6 Comunicación con Minecraft

Para validar la interacción con el gemelo digital, se desarrolló un flujo en Node-RED

que expone las variables hacia un servidor WebSocket, configurado para ser consumido por

Minecraft mediante el mod CC:Tweaked.

La Figura 27 muestra el flujo Comunicación_Entorno, encargado de enviar las salidas

del PLC (EV superior, EV inferior y generador de chispa) hacia Minecraft, y de recibir las

señales de entrada desde el entorno virtual.

Ilustración 30. Flujo Comunicación_Entorno para la integración Node-RED–Minecraft mediante

WebSocket.

Fuente: Elaboración propia.

Ilustración 29. Dashboard principal en Node-RED para la selección de modo de operación (manual o

automático).

Fuente: Elaboración propia.

Finalmente, la Figura 28 evidencia la operación conjunta del sistema: en el

computador se observa el entorno virtual en Minecraft con los elementos programados,

mientras que en la tableta se visualiza el dashboard en Node-RED con las variables en tiempo

real. Esta validación confirma la sincronización entre el PLC simulado, Node-RED y el

gemelo digital.

3.7 Diseño eléctrico del panel

El conexionado de la CPU Siemens S7-1200 1214C AC/DC/Relé se realizó

considerando la separación entre señales de control a 24 VDC y cargas de potencia a 220

VAC, con el fin de garantizar la seguridad y la correcta operación del sistema.

Las entradas digitales (DI) de la CPU se alimentaron con 24 VDC provenientes de la

fuente auxiliar. Se cablearon de la siguiente manera:

 I0.0: pulsador de Marcha (contacto NO).

 I0.1: pulsador de Paro (contacto NC, fail-safe).

 I0.2: sensor de puerta cerrada (contacto de seguridad).

Ilustración 31. Integración del dashboard Node-RED con el gemelo digital en

Minecraft.

Fuente: Elaboración propia.

 I0.3: señal de “llama OK” proveniente del controlador de llama.

Todas las entradas comparten como referencia el borne 1M, conectado al negativo de

la fuente de 24 VDC.

Para reforzar la seguridad del sistema, se incorporó un Paro de emergencia físico (E-

Stop) cableado en serie con la salida de la fuente de 24 VDC. De esta forma, al presionar el

pulsador de emergencia se interrumpe de inmediato la alimentación de todos los dispositivos

de entrada, evitando que el PLC reciba cualquier señal desde los sensores o pulsadores. Este

esquema asegura que, en condiciones críticas, el sistema quede inhabilitado en su totalidad

sin depender de la lógica programada.

Las entradas analógicas (AI) se conectaron al módulo de expansión SM1231 AI

(4x13-bit). Se integraron dos transmisores 4–20 mA:

 AI0: transmisor de temperatura del horno.

 AI1: transmisor de presión.

Los lazos se alimentaron con la fuente de 24 VDC, asegurando la puesta a tierra de

blindajes para evitar interferencias electromagnéticas.

Las salidas digitales (DO) de la CPU son contactos de relé que no suministran

tensión; por lo tanto, se emplearon para energizar las bobinas de relés intermedios Finder de

24 VDC. Estas bobinas fueron alimentadas con la fuente auxiliar, de modo que cada salida Q

controla un relé:

 Q0.0 → Relé K1 → Transformador de ignición (AC).

 Q0.1 → Relé K2 → Electroválvula superior (AC).

 Q0.2 → Relé K3 → Electroválvula inferior (AC).

Los contactos de potencia de los relés intermedios conmutan la fase AC hacia las

cargas, mientras que el neutro se cablea en forma directa. Se incluyó un disyuntor de control

bipolar para la CPU y otro para la fuente 24 VDC, además de fusibles de protección en cada

rama de potencia.

El esquema completo de conexiones, con detalle de bornes X10, X11, X12 y módulo

SM1231, se presenta en el Anexo 1.

El conexionado de fuerza del sistema se diseñó considerando la separación entre el

circuito de control (24 VDC) y el circuito de potencia (220 VAC), con el objetivo de

garantizar seguridad y confiabilidad en la operación.

Cada una de las cargas principales, el generador de chispa y las electroválvulas de gas

(superiores e inferiores), es gobernada a través de relés intermedios (K1, K2 y K3), cuya

bobina se alimenta con 24 VDC desde la fuente auxiliar, controlada por las salidas digitales

del PLC Siemens S7-1200. De esta forma, las salidas del PLC (Q0.0, Q0.1 y Q0.2) no

conmutan directamente cargas en AC, sino que activan las bobinas de los relés, aislando la

electrónica de la CPU de los transitorios de potencia.

Los contactos de potencia de cada relé se conectan a través de un disyuntor bipolar de

10 A, el cual interrumpe simultáneamente las líneas de fase y neutro (L1 y N). Esto permite

que cada carga esté protegida de manera independiente y evita retroalimentaciones peligrosas

en caso de falla. El esquema eléctrico unifilar muestra claramente el recorrido de la

alimentación desde la red AC hasta cada una de las cargas:

 K1: gobierna el transformador de ignición para el generador de chispa.

 K2: controla la electroválvula de gas superior.

 K3: controla la electroválvula de gas inferior.

El tablero se dimensionó con una cara útil aproximada de 400 × 400 mm (profundidad

típica 180–220 mm), priorizando: i) separación entre potencia (230 VAC) y control (24

VDC), ii) espacios para canalizaciones y mantenimiento, iii) reserva para futuras expansiones

(≈ 20 %). La selección de este tamaño se justifica por el conjunto de equipos a montar en riel

DIN y sus claros requerimientos de holgura.

Equipos y dimensiones (ancho × alto × fondo):

 CPU Siemens S7-1200 1214C AC/DC/Relé (6ES7 214-1BG40-0XB0): 110 × 100 ×

75 mm.

 Módulo analógico SM1231 AI (p. ej., 4 canales): 45 × 100 × 75 mm.

 Fuente 24 VDC (tipo riel DIN, 60–100 W): ≈ 65–90 × 90–125 × 55–120 mm (varía

por modelo; se consideró 80 mm de ancho como referencia).

 Relés/intermedios o mini-contactores para cargas AC (3 uds): ≈ 27–45 mm c/u de

ancho según base/serie.

 Interruptores automáticos (MCB) bipolares 10 A (3 uds): ≈ 36 mm c/u.

 Borneras y seccionadores: ≈ 60–90 mm de ancho total (según polos).

 Canaletas porta-cables: 25–40 mm de ancho por lado (2 laterales).

Cálculo de ocupación horizontal (referencial):

 CPU (110) + SM1231 (45) + PSU (80) + 3 relés (3×30=90) + 3 MCB (3×36=108) +

borneras (70) ≈ 503 mm de suma lineal.

Para una distribución ergonómica se dispusieron dos filas en riel DIN (potencia

arriba, control abajo), reduciendo el ancho efectivo de cada fila a ≈ 250–300 mm. Con

canaletas laterales (2×30=60 mm) y márgenes de borde (2×25=50 mm), un frente de ≈ 400

mm permite alojar una fila por nivel con holgura.

Cálculo de ocupación vertical (referencial):

 Altura de equipos (100–125 mm) + canaleta superior (30 mm) + canaleta inferior (30

mm) + separación entre filas (40–50 mm) + margen superior/inferior (2×25 mm) ≈

320–360 mm, compatible con 400 mm de alto.

Criterios de disposición:

 Separación de dominios: fila superior para potencia AC (MCB, contactos de potencia

de relés/contactor) y fila inferior para control 24 VDC (PSU, PLC, SM1231, bobinas

de relés).

 Canalización y servicio: canaletas laterales y pasillos verticales de ≥ 25 mm para

radios de curvatura y pruebas.

 Clareo térmico: ≥ 25 mm libres sobre/bajo equipos, y ≥ 10 mm entre laterales de

módulos para convección natural.

 Reserva de expansión: ≥ 20 % del riel libre (espacio para un segundo módulo

SM12xx o borneras adicionales).

 Seguridad: el E-Stop frontal actúa sobre la salida positiva de la PSU 24 V; la potencia

AC dispone de MCB bipolares independientes por cada rama (ignitor, EV superior,

EV inferior).

 Puesta a tierra: carril DIN y chasis a PE; blindajes de señales analógicas aterrizados

en un solo punto.

Frente del tablero: piloto “Horno encendido” (verde) y Pulsador de Paro de

Emergencia (rojo) accesibles; distribución conforme a criterios de visibilidad y alcance del

operador.

Las ilustraciones de la disposición interna se presentan con representación

esquemática y no a escala; las cotas anteriores se emplearon para el dimensionamiento,

dejando holguras para canaletas, borneras, radios de cable y expansión.

Con este dimensionamiento, un gabinete 400×400×200 mm cubre los requerimientos

de montaje, ventilación pasiva, seguridad y mantenibilidad del prototipo, manteniendo

separación clara entre circuitos AC y DC y dejando reserva para crecimiento.

De igual manera, el diseño del tablero de control con la disposición de los

componentes y el esquema de fuerza también se incluye en los Anexos, sirviendo de

complemento gráfico a la descripción metodológica.

3.8 Diseño del sistema alternativo con lógica de relés

Como alternativa al control mediante PLC, se desarrolló un esquema de

automatización basado en lógica de relés, en el que se implementó tanto el diagrama de

control como el de fuerza. En esta opción se tomaron las electroválvulas como un conjunto

único, gobernado a través de un contactor principal, y se utilizó un timer ON-delay para

garantizar la seguridad en la secuencia de encendido. Este temporizador retrasa la activación

del transformador de ignición, de manera que solo se permita la chispa si la electroválvula ya

está habilitada y se interrumpe el ciclo en caso de no detectarse la señal de llama dentro del

tiempo programado.

Se incorporaron elementos de seguridad adicionales como el presostato, encargado de

fijar límites máximos y mínimos de presión en la línea de gas, y el sensor de puerta cerrada,

que condiciona el arranque del sistema. Asimismo, se integraron alarmas visuales y acústicas,

así como el paro de emergencia, que corta inmediatamente la alimentación del circuito de

control en caso de falla.

El diagrama de fuerza se diseñó en corriente alterna (AC), dado que las cargas

principales (electroválvulas y transformador de ignición) operan en 220 VAC, mientras que

el diagrama de control se implementó en corriente continua (DC) debido a que los sensores y

señalizaciones funcionan a 24 VDC.

El tablero de control para esta opción mantiene el mismo dimensionamiento de 40 ×

40 cm, justificado en función de los componentes a instalar: relés, temporizadores,

contactores, protecciones y canaletas. Al igual que en la solución con PLC, se consideró

espacio para canalización, ventilación pasiva y reserva de expansión. Cabe destacar que el

dibujo presentado no está a escala, pero representa fielmente la disposición de los equipos y

el conexionado interno.

Los diagramas completos, así como el diseño del tablero, se encuentran en los

siguientes anexos:

 Anexo 5: Diagrama de control con lógica de relés.

 Anexo 6: Diagrama de fuerza con lógica de relés.

 Anexo 7: Diseño del tablero de control (vista interior).

 Anexo 8: Diseño del tablero de control (vista exterior).

3.9 Comparación de soluciones

El análisis de costos entre un sistema de control industrial basado en PLC y uno con

lógica de relés constituye un aspecto clave para evaluar la factibilidad técnica y económica de

la automatización de un horno. Aunque los relés presentan una inversión inicial más baja y

son de uso extendido en sistemas tradicionales, los PLC ofrecen una mayor capacidad de

integración, flexibilidad y reducción de tiempos de intervención en caso de fallas o

modificaciones. A través de las tablas siguientes se detallan los costos estimados para cada

alternativa, lo que permite realizar una comparación directa de los requerimientos de

inversión en función de los equipos y accesorios considerados.

En esta tabla se detallan los equipos necesarios para la implementación del control

con un PLC Siemens, incluyendo módulos de entradas analógicas, módulos RTD,

transmisores, sondas de temperatura y detectores de seguridad. Se muestran los precios

unitarios, la cantidad requerida y el costo total real por cada componente. Este desglose

permite evidenciar la inversión inicial necesaria en equipos de automatización moderna.

Cantidad Descripción técnica Precio unitario Precio real Marca

1 Módulo entradas analógicas 4AI 13-bit (0–10 V / 4–20 mA) 586,00$ 586,00$ Siemens

1 Módulo RTD 4 canales (PT100/PT1000) 600,00$ 600,00$ Siemens

1 Sonda temperatura PT100 con vaina + transmisor 4–20 mA 22,81$ 22,81$ WIKA

1 Transmisor de presión 0–1 psi (0–70 mbar) salida 4–20 mA 200,00$ 200,00$ Dwyer

1 Detector de llama UV para quemador industrial 185,00$ 185,00$ Honeywell

1 Fin de carrera (microswitch) 1,80$ 1,80$ Omron

1 Interruptor de seguridad de puerta (codificado) 352,79$ 352,79$ Schmersal

1 Transformador de ignición (activador de chispa) para gas 250,00$ 250,00$ Brahma

1 Electrodo de encendido cerámico con cable HV 15,00$ 15,00$ Genérico industrial

5 Cable alta tensión silicona para ignición (15 kV) 5,00$ 25,00$ Genérico industrial

3 Relé intermedio, bobina 24 V DC 8,00$ 24,00$ Finder

2 Base para relé 1,50$ 3,00$ Finder

2 Fuente conmutada 24 VDC, 60 W, carril DIN 100,00$ 200,00$ Mean Well

2 Breaker MCB 2 A curva C (carril DIN) 50,00$ 100,00$ Siemens/Schneider

1 Borneras/regletas de señal y potencia 1,00$ 1,00$ Phoenix Contact / WAGO

30 Cable blindado 2 hilos 18–22 AWG 2,05$ 61,50$ Condumex / General Cable

1 Gateway Node-RED (Raspberry Pi 4 + microSD + carcasa DIN + fuente 5 V) 170,00$ 170,00$ Raspberry/Genérico

1 Panel/HMI genérico con navegador o cliente VNC (7–10") 230,00$ 230,00$ Genérico industrial

1 PLC Siemens S7-1200 (CPU) 650,00$ 650,00$ Siemens

1 Botón paro de emergencia 2,30$ 2,30$

1 Boton marcha 1,57$ 1,57$

1 Luz piloto roja 2,32$ 2,32$

1 Luz piloto verde 2,32$ 2,32$

4 Cable #16 (Rollos de 100m) 31,00$ 124,00$

1 Gabinete doble fondo 40x30x15 38,00$ 38,00$

2 Canaletas ranuradas 2.5 x 2 cm 4,50$ 9,00$

1 Controlador/relé de llama (flame safeguard) + base + amplificador UV 455,00$ 455,00$ Honeywell

4.312,41$

Tabla 1. Costos de implementación del sistema con PLC

Fuente: Autoría propia.

Descripción técnica Precio unitario Precio real Marca

Breaker 2P-10A 6,85$ 20,55$ Siemens

Breaker 2P-6A 4,32$ 8,64$ Siemens

Transformador de ignición (activador de chispa) para gas 250,00$ 250,00$ WIKA

Transmisor de presión 0–1 psi (0–70 mbar) salida 4–20 mA 200,00$ 200,00$ Dwyer

Detector de llama UV para quemador industrial 185,00$ 185,00$ Honeywell

Fuente conmutada 24 VDC, 60 W, carril DIN 1,80$ 1,80$ Omron

Contactores 10,25$ 20,50$ Schmersal

Timer On.Delay 9,84$ 9,84$ Brahma

Luz piloto amarilla 2,32$ 6,96$ Genérico industrial

Luz piloto verde 2,32$ 2,32$ Genérico industrial

Botonera paro rojo 1,57$ 1,57$ Finder

Botonera paro emergencia rojo 2,30$ 4,60$ Finder

Botonera marcha verde 1,57$ 1,57$ Mean Well

cable apantallado 2 hilos 22 2,05$ 61,50$

Gabinete doble fondo 30x30x15 31,00$ 31,00$

Canaletas ranuradas 2.5 x 2 cm 4,50$ 9,00$

Cable #16 (Rollos de 100m) 31,00$ 124,00$

938,85$

Aquí se listan los componentes necesarios para el esquema de control basado en relés

y protecciones convencionales, como breakers, transformadores de ignición, transmisores y

detectores de llama. Los costos están expresados de forma similar al caso anterior, reflejando

la menor inversión inicial en comparación con el PLC, aunque con limitaciones en cuanto a

flexibilidad y escalabilidad.

3.10 Análisis de resultados

El diseño de la lógica de control del horno, implementado en TIA Portal, aprovecha la

capacidad de estructurar las variables de forma ordenada y modular mediante el uso de UDTs

(User Defined Types) y DBs (Data Blocks). Esta estructura permite una programación

escalable, reutilizable y clara, lo que facilita tanto el mantenimiento como la expansión futura

del sistema. La modularidad de esta metodología garantiza que, en caso de futuras

modificaciones del proceso, se puedan realizar ajustes de manera eficiente y rápida.

La simulación en PLCSIM es un paso crucial para validar la lógica de control antes de

realizar una implementación en hardware real. Al probar rutinas como secuencias de

arranque, condiciones de seguridad y estrategias de control, se minimizan los riesgos de

errores y se optimiza el tiempo de puesta en marcha, lo que contribuye a la confiabilidad del

sistema.

La comunicación mediante NetToPLCSIM, que habilita la conexión del PLC virtual con

plataformas externas a través de ISO-on-TCP, agrega una capa fundamental de integración.

Esto permite simular un entorno industrial real, proporcionando la posibilidad de supervisión

y control remoto, lo cual es esencial para garantizar el monitoreo continuo del proceso sin

intervención física directa.

Por otro lado, la implementación de Node-RED como plataforma para la interfaz hombre-

máquina (HMI) introduce un enfoque moderno y flexible para la visualización de variables y

estados del horno. A través de flujos de datos y dashboards interactivos, el operador puede

Tabla 2. Costos de implementación del sistema con lógica de relés

Fuente: Autoría propia.

gestionar tanto el modo automático como el manual, monitorear el estado de los actuadores y

sensores, y tomar decisiones informadas en tiempo real.

El uso de Minecraft como gemelo digital, integrado con el mod CC:Tweaked y programado

mediante scripts en Lua, representa una innovación significativa en este proyecto. Este

entorno 3D proporciona una representación visual interactiva de los actuadores, sensores y

estados operativos del sistema, facilitando la validación de la lógica de control y ofreciendo

una herramienta didáctica que permite una mejor comprensión del proceso y su interacción.

Finalmente, la validación mediante escenarios de prueba permite comprobar la robustez del

sistema bajo diferentes condiciones. La implementación de control por histéresis, la

activación de actuadores, los cambios de modos de operación, el paro de emergencia y la

detección de fallas aseguran que el sistema sea confiable y cumpla con los requisitos de

seguridad del proceso.

La comparación de costos entre la solución con PLC Siemens S7-1200 y la solución basada

en lógica de relés demuestra diferencias significativas en términos de inversión inicial y

escalabilidad a largo plazo.

Sistema con PLC

El costo total de la implementación del sistema con PLC Siemens S7-1200 fue de $4,312.41,

lo que cubre los costos de la CPU, los módulos de expansión, el HMI, los sensores, los

actuadores y la infraestructura de comunicación (Node-RED, WebSocket, etc.). Este enfoque,

aunque más costoso inicialmente, ofrece una mayor flexibilidad, capacidad de expansión y

control remoto, lo que lo convierte en una solución ideal para procesos industriales que

requieren una automatización avanzada y supervisión remota.

Sistema con Lógica de Relés

En contraste, el sistema basado en lógica de relés tiene un costo significativamente menor,

alcanzando un total de $938.85. Este sistema utiliza relés, temporizadores y contactores, lo

que implica una solución más económica, pero con limitaciones en términos de escalabilidad

y flexibilidad. Además, carece de las capacidades de control remoto y supervisión avanzadas

que ofrece el sistema basado en PLC. Sin embargo, es una opción válida para procesos más

sencillos o cuando el presupuesto es un factor crítico.

Capítulo 4

4. Conclusiones y recomendaciones

 La implementación del sistema de automatización utilizando el PLC Siemens S7-1200

permitió lograr un control preciso y flexible del horno de secado, cumpliendo con los

objetivos de optimizar la eficiencia energética y la seguridad del proceso. La

integración del módulo SM1231 para entradas analógicas y la comunicación con

Node-RED para la supervisión remota proporcionaron una solución escalable que

puede adaptarse a futuras expansiones del proceso, garantizando tanto el control local

como la posibilidad de supervisar y ajustar parámetros de manera remota. Además, la

simulación previa en PLCSIM, combinada con NetToPLCSIM, aseguró que el

sistema fuera probado de manera virtual antes de su implementación física,

reduciendo el riesgo de errores operativos.

 El gemelo digital en Minecraft proporcionó una visualización 3D interactiva, que no

solo fue útil para la validación del sistema en un entorno visual, sino que también

sirvió como herramienta educativa para comprender el comportamiento del proceso y

la interacción entre los sensores y actuadores del sistema.

 La implementación del paro de emergencia directamente sobre la fuente de

alimentación de 24 VDC, además de las señalizaciones de alarma y presostato para

controlar límites de presión, demostró ser esencial para garantizar la seguridad

operacional. El control por histéresis implementado para el encendido y apagado de

los actuadores de gas (ignitor y electroválvulas) permitió una gestión eficiente de las

cargas inductivas, mientras que la detección de fallas como la falta de llama o la

variación de temperatura y presión contribuyó a mantener un entorno seguro tanto

para el operador como para los equipos.

 La comparación de costos entre las dos alternativas de automatización (PLC vs. lógica

de relés) mostró que, aunque el sistema con PLC representa una mayor inversión

inicial (aproximadamente $4,312.41 frente a $938.85 para la lógica de relés), su

capacidad de integración, flexibilidad y facilidad para escalar el sistema en el futuro

son factores determinantes para su elección en procesos industriales donde se requiere

monitoreo remoto y control avanzado. Por otro lado, el sistema con lógica de relés

sigue siendo una opción viable para procesos más simples o cuando el presupuesto es

limitado.

 El tablero de control, se dimensionó correctamente para albergar todos los

componentes esenciales, incluyendo la CPU, fuente de 24 VDC, relés de control, y

disyuntores de protección. El diseño modular y el uso eficiente del espacio aseguraron

un montaje ordenado y seguro, permitiendo el fácil acceso a los componentes para su

mantenimiento. Este diseño también proporciona flexibilidad para futuras

expansiones del sistema, asegurando que se puedan añadir más componentes o

módulos sin la necesidad de rediseñar el tablero completo.

 La fase de validación realizada con escenarios de prueba resultó ser fundamental para

garantizar la robustez del sistema en condiciones tanto normales como anormales. Las

pruebas incluyeron la activación de actuadores, cambio de modos de operación, paro

de emergencia, y detección de fallas, lo que permitió verificar que el sistema

respondiera correctamente a las diferentes situaciones planteadas. Además, la

integración con Minecraft para la validación visual del sistema proporcionó una

herramienta útil para la simulación de condiciones y la verificación de la interacción

entre los componentes del proceso.

Bibliografía

[1] A. A. Ba Villarreal, «Desarrollo y diseño de una interfaz para una red de PLC's

basada en internet de las cosas,» Chetumal, 2021.

[2] Process Solutions Inc., «Process Solutions,» 19 Marzo 2025. [En línea].

 Available: https://processsolutions.com/a-brief-history-of-programmable-logic-

controllers-plcs/.

[3] C. A. Valverde Serrano y J. E. Endara López, «SIMULACIÓN DE UN PROCESO

 DE MOLIENDA DE BALANCEADO PARA CAMARÓN USANDO LAS

HERRAMIENTAS PLCSIM Y TIA PORTAL,» Guayaquil, 2024.

[4] T. Wiens, NetToPLCsim - Network extension for Plcsim, 2016.

[5] A. Dianocu, The WebSocket Handbook, Ably, 2021.

[6] N. Bong, «Progressive Automations,» 26 Abril 2022. [En línea].

Available: https://www.progressiveautomations.com/blogs/news/the-evolution-of-

automation.

[7] N. Agudelo, G. Tano y C. A. Vargas, «Historia de la Automatización,» Bogota, 2020.

[8] «Alciro,» [En línea].

Available: http://www.alciro.org/alciro/arduino_32/control-motor-marcha-paro-

enclavamiento_553.htm.

[9] L. C. Espinoza Endara y K. A. Loja Rodas, «Análisis de la herramienta Unity 3D

para la creación de procesos virtuales y su automatización con el PLC Simatic S7-1500,»

Cuenca, 2024.

[10] J. J. Herrera Flores y M. Á. Valdiviezo Vilema, «Automatización de un Sistema de Riego

para la Empresa Sisantu mediante el Internet de las Cosas (IoT),» Guayaquil, 2022.

[11] Z. Beck, B. Alpert, A. Bowman, W. R. Watson y A. Buganza Tepole,

«Research Gate,» 2021. [En línea]. Available:

https://www.researchgate.net/publication/366397811_Elasticity_Solver_in_Minecraft_

for_Learning_Mechanics_of_Materials_by_Gaming.

[12] H. A. Engelbrecht, «Research Gate,» 2014. [En línea]. Available:

https://www.researchgate.net/publication/271472055_Transforming_Minecraft_into_a_

research_platform.

[13] Fortinet, «Fortinet,» [En línea]. Available:

https://www.fortinet.com/lat/resources/cyberglossary/tcp-ip.

[14] Q. Liu y X. Sun, «Research of Web Real-Time Communication Based on Web Socket,»

Scientific Research, 2013.

Apéndice A – Programación en TIA Portal

Listado A.1. Fragmento de la lógica en OB1 (Main) – control por histéresis.

Fuente: Elaboración propia.

// Flanco de subida para enclavamiento de Marcha

#bMarchaEdge := NOT #bMarchaPrev AND "DB_Entradas".bBoton_Marcha;

#bMarchaPrev := "DB_Entradas".bBoton_Marcha;

// Enclavamiento del ciclo de marcha

IF #bMarchaEdge THEN

 #bProcesoActivo := TRUE;

END_IF;

// Botón de paro: abre EVs y apaga ciclo

IF "DB_Entradas".bBoton_Paro THEN

 #bProcesoActivo := FALSE;

 // Abrir EVs (energizar)

 "DB_Salidas".bEV_Superior := TRUE;

 "DB_Salidas".bEV_Inferior := TRUE;

 // Apagar chispa

 "DB_Salidas".bGenerador_Chispa := FALSE;

 // Reset de llama detectada

 "DB_Entradas".bSensor_Llama := FALSE;

ELSE

 // Lógica principal del proceso

 IF #bProcesoActivo THEN

 IF ("DB_Entradas".iPresion_Actual >= 6) AND "DB_Entradas".bSensor_Puerta

THEN

 // Activar electroválvulas directamente

 "DB_Salidas".bEV_Superior := TRUE;

 "DB_Salidas".bEV_Inferior := TRUE;

 // Activar generador de chispa

 "DB_Salidas".bGenerador_Chispa := TRUE;

 // Detectar llama

 IF "DB_Entradas".bSensor_Llama THEN

 #bLlamaDetectada := TRUE;

 END_IF;

 ELSE

 // Si condiciones no se cumplen, mantener todo apagado

 "DB_Salidas".bEV_Superior := FALSE;

 "DB_Salidas".bEV_Inferior := FALSE;

 "DB_Salidas".bGenerador_Chispa := FALSE;

 #bLlamaDetectada := FALSE;

 END_IF;

 // Control de histeresis si ya hay llama detectada

 IF #bLlamaDetectada THEN

 #TempAlta := "DB_General".Automatico.iTiempo_Secado + 10;

 #TempBaja := "DB_General".Automatico.iTiempo_Secado - 10;

 IF "DB_Entradas".iTemp_Actual < #TempBaja THEN

 "DB_Salidas".bEV_Superior := TRUE;

 "DB_Salidas".bEV_Inferior := TRUE;

 ELSIF "DB_Entradas".iTemp_Actual > #TempAlta THEN

 "DB_Salidas".bEV_Superior := FALSE;

 "DB_Salidas".bEV_Inferior := TRUE;

 END_IF;

 END_IF;

 ELSE

 // Si no hay ciclo activo (ni paro), resetear salidas

 "DB_Salidas".bEV_Superior := FALSE;

 "DB_Salidas".bEV_Inferior := FALSE;

 "DB_Salidas".bGenerador_Chispa := FALSE;

 #bLlamaDetectada := FALSE;

 END_IF;

END_IF;

Listado A.2. Bloque OB100 (Startup) – inicialización segura.

Fuente: Elaboración propia.

// FB_Reset

 "DB_General".Startup.bReset_En_Progreso := TRUE;

 // Reset general de control

 "DB_General".Control.bProceso_Activo := FALSE;

 "DB_General".Control.bModo_Manual := FALSE;

 "DB_General".Control.bModo_Automatico := FALSE;

 // Reset seguridad

 "DB_General".Seguridad.bSeguridad_OK := FALSE;

 "DB_General".Seguridad.bPuerta_OK := FALSE;

 "DB_General".Seguridad.bLlama_OK := FALSE;

 "DB_General".Seguridad.bEmergencia_OK := FALSE;

 // Reset temperatura

 "DB_General".Temperatura.iTemp_Actual := 0;

 "DB_General".Temperatura.bQuemadores_Encendidos := FALSE;

 "DB_General".Temperatura.bTemp_OK := FALSE;

 // Reset presión

 "DB_General".Presion.iPresion_Actual := 0;

 "DB_General".Presion.bPresion_OK := FALSE;

 // Reset estado general

 "DB_General".Estado.iCodigo_Alarma := 0;

 "DB_General".Estado.bAlarma_Activa := FALSE;

 // Reset salidas físicas (por si están activas)

 "DB_Salidas".bGenerador_Chispa := FALSE;

 "DB_Salidas".bEV_Superior := FALSE;

 "DB_Salidas".bEV_Inferior := FALSE;

 // Finaliza reset

 "DB_General".Startup.bPLC_Startup := FALSE;

 "DB_General".Startup.bReset_En_Progreso := FALSE;

Apéndice B – Archivos de configuración Lua (Minecraft)

Listado B.1. startup.lua – script de arranque en CC:Tweaked.

Fuente: Elaboración propia.

-- ========= util: leer archivo por líneas =========

local function read_lines(path)

 if not fs.exists(path) then return {} end

 local f = fs.open(path, "r"); if not f then return {} end

 local s = f.readAll() or ""; f.close()

 local t = {}

 for line in (s.."\n"):gmatch("(.-)\n") do table.insert(t, line) end

 return t

end

-- ========= lector TOML sencillo =========

local function read_toml(path)

 local cfg = { palanca = {} }

 local current = nil

 for _, line in ipairs(read_lines(path)) do

 line = line:gsub("^%s+",""):gsub("%s+$","")

 if line == "" or line:match("^#") then

 -- skip

 else

 local sec = line:match("^%[([^%]]+)%]$")

 if sec then

 current = sec

 else

 local k,vq = line:match('^([%w_%.-]+)%s*=%s*"(.-)"$')

 local k2,vn = line:match("^([%w_%.-]+)%s*=%s*([%d%.]+)$")

 if current and current:match("^palanca%.") then

 local key = current:sub(("palanca."):len()+1)

 cfg.palanca[key] = cfg.palanca[key] or {}

 if k then cfg.palanca[key][k] = vq

 elseif k2 then cfg.palanca[key][k2] = tonumber(vn) end

 else

 if k then cfg[k] = vq

 elseif k2 then cfg[k2] = tonumber(vn) end

 end

 end

 end

 end

 return cfg

end

-- ========= cargar config =========

local cfg = read_toml("network.toml")

local WS_URL = cfg.ws_url or "ws://127.0.0.1:1880/ws/minecraft"

local AUTH_TOKEN = cfg.auth_token or ""

local HZ = tonumber(cfg.telemetry_hz or 2) -- 2 Hz = 500 ms

local MON_SIDE = cfg.monitor_side or "top"

-- palancas (nombres locales ↔ tópico WS corto)

local palancas, ws_to_local = {}, {}

for local_name, t in pairs(cfg.palanca or {}) do

 palancas[local_name] = {

 lado = t.lado or "right",

 ws_topic = t.ws_topic or local_name,

 estado_in = false,

 estado_out = false,

 anterior = false

 }

 ws_to_local[palancas[local_name].ws_topic] = local_name

end

-- si no hay TOML, añadir dos por defecto (opc.)

if next(palancas) == nil then

 palancas["DB2_UDT_SALIDAS_bEV_Superior"] = {lado="right",

ws_topic="bEV_Superior", estado_in=false, estado_out=false, anterior=false}

 palancas["DB2_UDT_SALIDAS_bEV_Inferior"] = {lado="left",

ws_topic="bEV_Inferior", estado_in=false, estado_out=false, anterior=false}

 ws_to_local["bEV_Superior"] = "DB2_UDT_SALIDAS_bEV_Superior"

 ws_to_local["bEV_Inferior"] = "DB2_UDT_SALIDAS_bEV_Inferior"

end

-- ========= monitor opcional =========

local monitor = nil

if peripheral.isPresent(MON_SIDE) and peripheral.getType(MON_SIDE) == "monitor"

then

 monitor = peripheral.wrap(MON_SIDE)

 monitor.setTextScale(1)

 monitor.setBackgroundColor(colors.black)

 monitor.setTextColor(colors.white)

end

local function pintar()

 term.clear(); term.setCursorPos(1,1)

 print("== Estado de Palancas ==")

 if monitor then monitor.clear(); monitor.setCursorPos(1,1); monitor.write("==

Estado de Palancas ==") end

 local i = 2

 for nombre, d in pairs(palancas) do

 local linea = ("%s IN:%s OUT:%s"):format(nombre, tostring(d.estado_in),

tostring(d.estado_out))

 print(linea)

 if monitor then

 monitor.setCursorPos(1,i); monitor.write(nombre)

 monitor.setCursorPos(3,i+1); monitor.write(("IN:%s |

OUT:%s"):format(tostring(d.estado_in), tostring(d.estado_out)))

 i = i + 3

 end

 end

end

local function log(s) print(("[%s] %s"):format(os.date("%H:%M:%S"), s)) end

local function send(ws, tbl)

 if AUTH_TOKEN ~= "" then tbl.auth = AUTH_TOKEN end

 ws.send(textutils.serializeJSON(tbl))

end

-- ========= bucle de conexión SIN goto =========

while true do

 log("Conectando a "..WS_URL)

 local ws, err = http.websocket(WS_URL)

 if not ws then

 log("No se pudo conectar: "..tostring(err))

 sleep(2)

 else

 print("Conectado a Node-RED"); pintar()

 send(ws, { dir="hello", who="cc_tweaked", ts=os.epoch("utc") })

 -- --- hilos ---

 local function rx()

 while true do

 local raw = ws.receive()

 if not raw then error("WS cerrado") end

 local ok, msg = pcall(textutils.unserializeJSON, raw)

 if ok and type(msg)=="table" and msg.dir=="to-mc" and

type(msg.topic)=="string" then

 local local_name = ws_to_local[msg.topic] or msg.topic

 local p = palancas[local_name]

 if p and msg.type=="bool" and type(msg.value)=="boolean" then

 p.estado_out = msg.value

 redstone.setOutput(p.lado, p.estado_out)

 end

 end

 end

 end

 local function tx_inputs()

 local dt = 1 / (HZ > 0 and HZ or 2) -- 2 Hz = 0.5 s

 while true do

 for nombre, d in pairs(palancas) do

 d.estado_in = redstone.getInput(d.lado)

 if d.estado_in ~= d.anterior then

 send(ws, { dir="to-nr", topic=(d.ws_topic or nombre), type="bool",

value=d.estado_in })

 d.anterior = d.estado_in

 end

 end

 pintar()

 sleep(dt)

 end

 end

 local function heartbeats()

 while true do

 send(ws, { dir="heartbeat", ts=os.epoch("utc") })

 sleep(10)

 end

 end

 local ok, perr = pcall(function()

 parallel.waitForAny(rx, tx_inputs, heartbeats)

 end)

 pcall(function() ws.close() end)

 log("Desconectado: "..tostring(perr))

 sleep(2)

 end

end

Listado B.2. main.lua – funciones principales de comunicación y control.

Fuente: Elaboración propia.

-- ========= util: leer archivo por líneas =========

local function read_lines(path)

 if not fs.exists(path) then return {} end

 local f = fs.open(path, "r"); if not f then return {} end

 local s = f.readAll() or ""; f.close()

 local t = {}

 for line in (s.."\n"):gmatch("(.-)\n") do table.insert(t, line) end

 return t

end

-- ========= lector TOML sencillo =========

local function read_toml(path)

 local cfg = { palanca = {} }

 local current = nil

 for _, line in ipairs(read_lines(path)) do

 line = line:gsub("^%s+",""):gsub("%s+$","")

 if line == "" or line:match("^#") then

 -- skip

 else

 local sec = line:match("^%[([^%]]+)%]$")

 if sec then

 current = sec

 else

 local k,vq = line:match('^([%w_%.-]+)%s*=%s*"(.-)"$')

 local k2,vn = line:match("^([%w_%.-]+)%s*=%s*([%d%.]+)$")

 if current and current:match("^palanca%.") then

 local key = current:sub(("palanca."):len()+1)

 cfg.palanca[key] = cfg.palanca[key] or {}

 if k then cfg.palanca[key][k] = vq

 elseif k2 then cfg.palanca[key][k2] = tonumber(vn) end

 else

 if k then cfg[k] = vq

 elseif k2 then cfg[k2] = tonumber(vn) end

 end

 end

 end

 end

 return cfg

end

-- ========= cargar config =========

local cfg = read_toml("network.toml")

local WS_URL = cfg.ws_url or "ws://127.0.0.1:1880/ws/minecraft"

local AUTH_TOKEN = cfg.auth_token or ""

local HZ = tonumber(cfg.telemetry_hz or 2) -- 2 Hz = 500 ms

local MON_SIDE = cfg.monitor_side or "top"

-- palancas (nombres locales ↔ tópico WS corto)

local palancas, ws_to_local = {}, {}

for local_name, t in pairs(cfg.palanca or {}) do

 palancas[local_name] = {

 lado = t.lado or "right",

 ws_topic = t.ws_topic or local_name,

 estado_in = false,

 estado_out = false,

 anterior = false

 }

 ws_to_local[palancas[local_name].ws_topic] = local_name

end

-- si no hay TOML, añadir dos por defecto (opc.)

if next(palancas) == nil then

 palancas["DB2_UDT_SALIDAS_bEV_Superior"] = {lado="right",

ws_topic="bEV_Superior", estado_in=false, estado_out=false, anterior=false}

 palancas["DB2_UDT_SALIDAS_bEV_Inferior"] = {lado="left",

ws_topic="bEV_Inferior", estado_in=false, estado_out=false, anterior=false}

 ws_to_local["bEV_Superior"] = "DB2_UDT_SALIDAS_bEV_Superior"

 ws_to_local["bEV_Inferior"] = "DB2_UDT_SALIDAS_bEV_Inferior"

end

-- ========= monitor opcional =========

local monitor = nil

if peripheral.isPresent(MON_SIDE) and peripheral.getType(MON_SIDE) == "monitor"

then

 monitor = peripheral.wrap(MON_SIDE)

 monitor.setTextScale(1)

 monitor.setBackgroundColor(colors.black)

 monitor.setTextColor(colors.white)

end

local function pintar()

 term.clear(); term.setCursorPos(1,1)

 print("== Estado de Palancas ==")

 if monitor then monitor.clear(); monitor.setCursorPos(1,1); monitor.write("==

Estado de Palancas ==") end

 local i = 2

 for nombre, d in pairs(palancas) do

 local linea = ("%s IN:%s OUT:%s"):format(nombre, tostring(d.estado_in),

tostring(d.estado_out))

 print(linea)

 if monitor then

 monitor.setCursorPos(1,i); monitor.write(nombre)

 monitor.setCursorPos(3,i+1); monitor.write(("IN:%s |

OUT:%s"):format(tostring(d.estado_in), tostring(d.estado_out)))

 i = i + 3

 end

 end

end

local function log(s) print(("[%s] %s"):format(os.date("%H:%M:%S"), s)) end

local function send(ws, tbl)

 if AUTH_TOKEN ~= "" then tbl.auth = AUTH_TOKEN end

 ws.send(textutils.serializeJSON(tbl))

end

-- ========= bucle de conexión SIN goto =========

while true do

 log("Conectando a "..WS_URL)

 local ws, err = http.websocket(WS_URL)

 if not ws then

 log("No se pudo conectar: "..tostring(err))

 sleep(2)

 else

 print("Conectado a Node-RED"); pintar()

 send(ws, { dir="hello", who="cc_tweaked", ts=os.epoch("utc") })

 -- --- hilos ---

 local function rx()

 while true do

 local raw = ws.receive()

 if not raw then error("WS cerrado") end

 local ok, msg = pcall(textutils.unserializeJSON, raw)

 if ok and type(msg)=="table" and msg.dir=="to-mc" and

type(msg.topic)=="string" then

 local local_name = ws_to_local[msg.topic] or msg.topic

 local p = palancas[local_name]

 if p and msg.type=="bool" and type(msg.value)=="boolean" then

 p.estado_out = msg.value

 redstone.setOutput(p.lado, p.estado_out)

 end

 end

 end

 end

 local function tx_inputs()

 local dt = 1 / (HZ > 0 and HZ or 2) -- 2 Hz = 0.5 s

 while true do

 for nombre, d in pairs(palancas) do

 d.estado_in = redstone.getInput(d.lado)

 if d.estado_in ~= d.anterior then

 send(ws, { dir="to-nr", topic=(d.ws_topic or nombre), type="bool",

value=d.estado_in })

 d.anterior = d.estado_in

 end

 end

 pintar()

 sleep(dt)

 end

 end

 local function heartbeats()

 while true do

 send(ws, { dir="heartbeat", ts=os.epoch("utc") })

 sleep(10)

 end

 end

 local ok, perr = pcall(function()

 parallel.waitForAny(rx, tx_inputs, heartbeats)

 end)

 pcall(function() ws.close() end)

 log("Desconectado: "..tostring(perr))

 sleep(2)

 end

end

Apéndice C – Archivo de configuración de network.toml

Listado C.1. network.toml – mapeo de variables del PLC a tópicos Websocket.

Fuente: Elaboración propia.

Conexión a Node-RED (Laptop Servidor)

ws_url = "ws://100.121.146.103:1880/ws/minecraft"

auth_token = "" # deje vacío si no valida token en Node-RED

telemetry_hz = 2 # 2 Hz = revisa entradas cada 500 ms

monitor_side = "top" # "top", "left", "right", etc.

Mapeo local ↔ tópico WS (alias)

[palanca.DB2_UDT_SALIDAS_bEV_Superior]

lado = "right"

ws_topic = "bEV_Superior"

[palanca.DB2_UDT_SALIDAS_bEV_Inferior]

lado = "left"

ws_topic = "bEV_Inferior"

ANEXOS

ANEXO 1:

Diagrama de conexión de PLC

ANEXO 2

Diagrama de fuerza de PLC

ANEXO 3

Representación en 2D Interior de Tablero de PLC

ANEXO 4

Representación en 2D Exterior de Tablero de PLC

ANEXO 5

Diagrama de control de sistema mediante Relés

ANEXO 6

Diagrama de fuerza mediante uso de relés

ANEXO 7

Representación en 2D Interior Tablero de relés

ANEXO 8

Representación 2D de Exterior de Tablero de relés

		2025-09-12T21:22:52-0500

		2025-09-12T21:30:27-0500

		2025-09-12T21:34:16-0500

		2025-09-18T17:05:46-0500

