Escuela Superior Politécnica del Litoral

Facultad de Ingenieria en Electricidad y Computacion

Prototipo Sistema de Deteccion de Intrusiones Militar: Disefio y Validacion con

Modelo Hibrido

INGE-2865

Proyecto Integrador

Previo la obtencion del Titulo de:

Ingeniero en Telecomunicaciones

Presentado por:
Josué Javier Tigrero Panchana

Jacinto Javier Ortiz Fernandez

Guayaquil - Ecuador
Afo: 2025



Dedicatoria

Este trabajo estd dedicado con todo mi
carino:

A mis padres Galo Tigrero y Karina
Panchana, por su apoyo constante y por la
invaluable oportunidad de estudiar en la
ESPOL. Su confianza en mis capacidades
fue la motivacion que necesité en cada
paso para llegar hasta aqui.

A mi abuela Isabel, cuyo amor y ejemplo
me han ayudado a convertirme en la
persona que soy ahora.

A Erick, Kevin, Andrés, Steven y Boris,
por el buen humor que disipaba el estrés y
por hacer de la wuniversidad una
experiencia memorable. Su amistad fue

clave para mantener el equilibrio.

Javier Josué Tigrero Panchana



Dedicatoria

Dedico primeramente este proyecto a
Dios, quien me ha dado la fortaleza,
sabiduria y bendiciones necesarias para
culminar esta etapa de mi formacion
académica.

A mis queridos padres, Rosa y José,
quienes con su amor incondicional, me
brindaron todo su apoyo para alcanzar esta
meta.

A mis hermanos José Andrés y Carlos, por
su compaiiia y por celebrar conmigo cada
pequeno logro durante estos afios de
estudio.

A mi querido abuelito Hilario, que aunque
ya no estd fisicamente presente, sigue
siendo una luz y guia en mi vida.

Y a mis compaieros de carrera, por
compartir conmigo este camino de

aprendizaje.

Jacinto Javier Ortiz Fernandez



Agradecimientos

Mi mas sincero agradecimiento a mi tutor,
Germéan, por su invaluable guia y
paciencia, las cuales fueron fundamentales
para la consecucion de este proyecto.
Agradezco también a mi profesora,
Patricia, por sus acertados consejos
durante el desarrollo de la materia
integradora.

Extiendo mi gratitud al Ing. Marcos y a la
DINDES, por la oportunidad y Ila
confianza depositadas en este trabajo.

Un reconocimiento especial a mi
compafiero de proyecto Jacinto, por su
dedicacion 'y trabajo en equipo.
Finalmente, un profundo agradecimiento a
mi familia por su incondicional apoyo y
motivacion, los cuales me permitieron

alcanzar esta meta.

Josue Javier Tigrero Panchana



Agradecimientos

Mi maés sincero agradecimiento a mis
docentes, por su dedicacion y contribucion
a mi formacién académica.

A mi tutor German, por su guia experta y
orientacion durante este proyecto.

A Leonardo, quien fue mi compaiero de
trabajo, por ensefiarme todo lo necesario
para crecer profesionalmente y compartir
generosamente su experiencia.

A mi compafiero Josue, por su apoyo
constante para culminar este proyecto.

A mi querida familia, por la confianza
puesta en mi y por creer siempre en mis
capacidades.

Mi reconocimiento a todos quienes

hicieron posible este logro.

Jacinto Javier Ortiz Fernandez



Declaracion Expresa

Nosotros Jacinto Javier Ortiz Fernandez, Josué¢ Javier Tigrero Panchana acordamos y

reconocemaos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de
graduacion correspondera al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este
acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra
con facultad de sublicenciar, incluyendo la autorizacion para su divulgacion, asi como para la
creacion y uso de obras derivadas. En el caso de usos comerciales se respetara el porcentaje de

participacion en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invencion,
modelo de utilidad, disefio industrial, secreto industrial, software o informaciéon no divulgada
que corresponda o pueda corresponder respecto de cualquier investigacion, desarrollo
tecnoldgico o invencion realizada por nosotros durante el desarrollo del proyecto de
graduacion, perteneceran de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del
porcentaje que nos corresponda de los beneficios economicos que la ESPOL reciba por la

explotacion de nuestra innovacion, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigacion (OTRI) de la
ESPOL comunique los autores que existe una innovacion potencialmente patentable sobre los
resultados del proyecto de graduacion, no se realizard publicacion o divulgacion alguna, sin la

autorizacion expresa y previa de la ESPOL.

Guayaquil, 31 de Mayo del 2025.

A NFOIAVE ER
ORTI Z' FERNANDEZ
| i dar

Jacinto Javier Ortiz Josué Javier Tigrero

Fernandez Panchana



krFi rmado_el ect r oni carent e_por

EPATRI G A XI VENA
FCHAVEZ = BURBANO

Evaluadores

Patricia Ximena Chavez Burbano,

Ph.D.

Profesor de Materia

A

5 1 mdo el ectr ni cament e por

3 GERMAN R CARDO
VARGAS LOPEZ

Gk

ief Val i dar Gni canente con Fi r nREC

German Ricardo Vargas Lopez,

Ph.D.

Tutor de proyecto



Resumen

El presente proyecto desarrolla y valida un modelo de inteligencia artificial para un
Sistema de Deteccion de Intrusiones (IDS), con el objetivo de identificar amenazas cibernéticas
en tiempo real dentro de redes locales militares. La justificacion se fundamenta en la necesidad
critica de superar las limitaciones de los sistemas tradicionales ante ataques sofisticados,
proponiendo un enfoque autonomo y adaptable para infraestructuras de alta seguridad.

Para el desarrollo, se realizd una evaluacion experimental comparativa entre cuatro
arquitecturas de Deep Learning, utilizando el dataset CICIDS2017 y herramientas como
TensorFlow y Keras. Como resultado de esta competicion, se seleccion6 el modelo hibrido 1D-
CNN + LSTM por su rendimiento superior, el cual alcanz6 un F1-Score de 0.9894 y la menor
cantidad de falsos negativos, el error mas critico en este contexto. Posteriormente, un prototipo
funcional integré este modelo y valido su eficacia al detectar exitosamente un ataque de
escaneo de puertos en vivo.

En conclusion, el trabajo demuestra la viabilidad de aplicar arquitecturas hibridas de
IA para crear sistemas de seguridad precisos, estableciendo una base solida para la

modernizacion de la ciberdefensa.

Palabras Clave: Ciberseguridad, Inteligencia Artificial, Redes Neuronales, Deteccion de

Anomalias.



Abstract

This project develops and validates an artificial intelligence model for an Intrusion
Detection System (IDS) with the goal of identifying cyber threats in real time within local
military networks. The justification is based on the critical need to overcome the limitations of
traditional systems in the face of sophisticated attacks, proposing an autonomous and
adaptable approach for high-security infrastructures.

For the development, a comparative experimental evaluation was conducted between
four Deep Learning architectures, using the CICIDS2017 dataset and tools such as
TensorFlow and Keras. As a result of this competition, the hybrid ID-CNN + LSTM model was
selected for its superior performance, achieving an F1 score of 0.9894 and the lowest number
of false negatives, the most critical error in this context. Subsequently, a functional prototype
integrated this model and validated its effectiveness by successfully detecting a live port
scanning attack.

In conclusion, the work demonstrates the feasibility of applying hybrid Al architectures
to create precise security systems, establishing a solid foundation for modernizing cyber

defense.

Keywords: Cybersecurity, Artificial Intelligence, Neural Networks, Anomaly Detection.
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Capitulo 1



1 Introduccion

En la era digital contemporanea, la seguridad cibernética constituye uno de los pilares
fundamentales para la proteccion de infraestructuras criticas a nivel global. Las organizaciones
gubernamentales, empresas privadas e instituciones militares enfrentan un panorama de
amenazas que evoluciona constantemente en sofisticacion y frecuencia, donde los ciberataques
representan riesgos estratégicos de magnitud nacional. El informe Global Cybersecurity
Outlook 2025 del Foro Econémico Mundial (World Economic Forum, 2025) revela que el 72%
de las organizaciones reporta un incremento en los riesgos cibernéticos durante el ultimo afio,
evidenciando un panorama de amenazas cada vez mds complejo. Este aumento refleja la
creciente sofisticacion de las actividades cibercriminales y la expansion de las superficies de
ataque en un entorno digital interconectado.

El sector militar representa uno de los ambitos mas vulnerables y estratégicos en
términos de seguridad cibernética, debido a que administra una amplia gama de recursos de
alto valor que constituyen objetivos prioritarios para diversos actores maliciosos, tanto estatales
como no estatales. Entre estos recursos se incluyen informacion clasificada de naturaleza
critica, sistemas de comunicaciones militares, infraestructura estratégica y tecnologias
especializadas. Segun el Plan Estratégico Institucional de Defensa 2021-2025, las Fuerzas
Armadas del Ecuador cuentan con estructuras tecnologicas para los enlaces de
telecomunicaciones e informdtica, las cuales requieren constante modernizacion,
estandarizacion y fortalecimiento para disponer de herramientas y soluciones de Tecnologias
de Informacion y Comunicacion (TIC) especificas que permitan gestionar sus procesos y
operaciones de forma integral. Estas estructuras incluyen un sistema de mando y control que
integra varios subsistemas, proporcionando al mando la informacién necesaria de sus unidades
y medios de deteccion para la toma de decisiones acertadas (Ministerio de Defensa Nacional,

2023). La naturaleza critica de estas operaciones determina que cualquier compromiso de



seguridad puede generar consecuencias devastadoras no so6lo para la institucion militar
especifica, sino para la seguridad nacional integral.

Los sistemas de redes locales en entornos militares presentan caracteristicas distintivas
que los diferencian de las redes corporativas convencionales. Estas redes operan bajo
protocolos de seguridad extremadamente estrictos, mantienen la confidencialidad absoluta de
la informacion, garantizan la integridad de los datos y aseguran la disponibilidad continua de
servicios criticos (National Institute of Standards and Technology, 2018). Adicionalmente,
frecuentemente funcionan en condiciones adversas, con recursos limitados y en ubicaciones
remotas donde el acceso a soporte técnico especializado puede ser restringido o inexistente.

Las amenazas cibernéticas han experimentado una evolucion significativa,
transforméandose desde simples virus disefiados por entusiastas, hasta sofisticadas herramientas
de espionaje y sabotaje utilizadas por actores estatales y criminales organizados para ejecutar
campanas de amenazas persistentes avanzadas (ESET, 2024). Los vectores de ataque
contemporaneos incluyen técnicas avanzadas de ingenieria social, explotacion de
vulnerabilidades de dia cero, ataques de denegacion de servicio distribuido (DDoS), infiltracion
lateral, y el uso emergente de inteligencia artificial para automatizar y optimizar los procesos
de ataque (CrowdStrike, 2025).

Los actores de amenazas han diversificado significativamente sus motivaciones y
capacidades, pasando de los ataques cibernéticos perpetrados historicamente por individuos
con motivaciones personales o financieras, a un panorama actual caracterizado por un
incremento exponencial en ataques patrocinados por estados, grupos terroristas organizados y
organizaciones criminales que poseen recursos y capacidades técnicas avanzadas. Estos actores
invierten recursos considerables en el desarrollo de herramientas de ataque sofisticadas y en la

realizacion de reconocimiento extensivo de sus objetivos estratégicos (Microsoft, 2024).



En el contexto militar especifico, las amenazas incluyen espionaje cibernético dirigido
a obtener informacion de inteligencia, sabotaje de sistemas criticos, manipulacion de
comunicaciones, compromiso de sistemas de armas, y ataques disefiados para interrumpir
operaciones militares. La proliferacion de dispositivos conectados (IoT) en entornos militares
ha expandido exponencialmente la superficie de ataque, creando nuevos vectores de
vulnerabilidad que requieren enfoques de seguridad innovadores y adaptativos.

Los sistemas tradicionales de deteccion de intrusiones presentan limitaciones criticas
para abordar el panorama actual de amenazas. Los sistemas basados en firmas, que constituyen
la base de numerosas soluciones comerciales actuales, dependen de bases de datos de patrones
conocidos de ataques. Esta aproximacion presenta deficiencias significativas: requiere
actualizaciones constantes de las bases de datos de firmas, resulta inefectiva contra ataques de
dia cero o variantes desconocidas, genera volimenes elevados de falsos positivos en entornos
dinamicos, y presenta dificultades para detectar ataques que utilizan técnicas de evasion
sofisticadas.

Los sistemas de deteccion basados en anomalias, aunque tedricamente superiores para
detectar ataques desconocidos, enfrentan desafios significativos en su implementacion
practica. Estos sistemas requieren perfiles de comportamiento normal extremadamente
precisos, son sensibles a cambios en los patrones de trafico legitimo, y frecuentemente generan
tasas inaceptables de falsos positivos que sobrecargan a los equipos de seguridad (Kumari et
al., 2024).

La integracién de técnicas de inteligencia artificial y aprendizaje automadtico en
sistemas de ciberseguridad representa una evolucion necesaria para superar las limitaciones de
los enfoques tradicionales. Los algoritmos de ML pueden procesar y analizar volimenes
masivos de datos de red en tiempo real, identificar patrones complejos que resultan imposibles

de detectar manualmente, adaptarse dindmicamente a nuevos tipos de amenazas, y mejorar



continuamente su precision a través del aprendizaje incremental. Sin embargo, estos sistemas
también presentan desafios propios, incluyendo la posibilidad de generar falsos positivos
debido a cambios en los patrones de trafico normal, o mds critico atn, falsos negativos que
permitan que ataques sofisticados pasen desapercibidos (Dini et al., 2023).

Los modelos de ML contemporaneos, incluyendo algoritmos de ensemble como
XGBoost, redes neuronales profundas, y maquinas de vectores de soporte, han demostrado
capacidades superiores para la clasificacion de trafico de red y la deteccion de anomalias. Estos
modelos pueden aprender representaciones complejas de comportamientos normales y
maliciosos, generalizar a partir de datos de entrenamiento para detectar variantes de ataques, y
operar con tasas de falsos positivos significativamente menores que los sistemas tradicionales.

El desarrollo de plataformas de computacion especializadas para aplicaciones de IA en
el borde, como la NVIDIA Jetson Orin Nano, ha creado oportunidades sin precedentes para el
despliegue de sistemas inteligentes en entornos con restricciones de recursos. A diferencia de
los enfoques basados en servidores centralizados, que requieren conectividad externa constante
e introducen latencias de comunicacion inaceptables para la deteccion de amenazas en tiempo
real, las plataformas Edge computing permiten el procesamiento local de datos de red sin
dependencias externas. Estas plataformas combinan capacidades de procesamiento de IA
aceleradas por hardware con factores de forma compactos y eficiencia energética optimizada,
caracteristicas esenciales para aplicaciones militares donde el espacio, el peso y el consumo de

energia constituyen factores criticos (Washington Technology, 2025).

1.1 Descripcion del Problema

El problema central que aborda este proyecto consiste en la necesidad critica de
desarrollar un sistema de deteccion de intrusiones inteligente y autdbnomo que proporcione

capacidades de seguridad avanzadas para redes locales en infraestructuras militares. Las



instituciones de defensa nacional enfrentan desafios complejos para proteger sus redes contra
amenazas cibernéticas sofisticadas, utilizando tecnologias que frecuentemente resultan
inadecuadas para el panorama actual de riesgos.

La organizacidn cliente para este proyecto corresponde a una institucion militar de
defensa nacional reconocida, especializada en operaciones de seguridad y defensa del territorio
nacional. Esta institucion opera multiples instalaciones distribuidas geograficamente, maneja
informacion clasificada de alto valor estratégico, y requiere sistemas de seguridad cibernética
que cumplan con estandares militares rigurosos. La institucion ha identificado vulnerabilidades
significativas en sus sistemas actuales de deteccion de intrusiones y busca implementar
soluciones tecnoldgicas avanzadas que mejoren su postura de seguridad cibernética.

Los requerimientos especificos del problema incluyen el desarrollo de un sistema que
debe detectar amenazas cibernéticas en tiempo real con alta precision, operar de manera
completamente autdbnoma sin dependencia de conectividad externa, funcionar continuamente
en entornos con recursos computacionales limitados, adaptarse dindmicamente a nuevos tipos
de amenazas, y generar alertas accionables con latencias minimas. El sistema debe procesar
volumenes significativos de trafico de red, analizar patrones complejos de comportamiento, y
distinguir eficazmente entre actividad legitima y maliciosa.

Las restricciones operacionales del proyecto incluyen limitaciones estrictas de
seguridad operacional (OPSEC) que prohiben el uso de servicios externos o conectividad a
internet, restricciones de recursos de hardware que limitan la capacidad de procesamiento y
memoria disponible, requisitos de resistencia ambiental para operacion en condiciones
adversas, y necesidades de mantenimiento minimo debido a la ubicacién remota de muchas
instalaciones.

Las variables de interés primarias incluyen la precision de deteccion de amenazas

medida a través de métricas como precision, recall y F1-score, la tasa de falsos positivos que



debe mantenerse por debajo de umbrales aceptables para evitar fatiga de alertas, el tiempo de
respuesta del sistema desde la deteccion hasta la generacion de alertas, el consumo de recursos
computacionales incluyendo CPU, GPU y memoria, y la capacidad de adaptacion del sistema
a nuevos patrones de ataque (Khraisat et al., 2019).

La importancia del problema radica en varios factores criticos que convergen para crear
una necesidad imperativa de soluciones avanzadas. Primero, las amenazas cibernéticas contra
infraestructuras militares han incrementado exponencialmente tanto en frecuencia como en
sofisticacion, creando riesgos estratégicos de seguridad nacional. Segundo, los sistemas
tradicionales de deteccion de intrusiones han demostrado ser inadecuados para detectar
amenazas contemporaneas, particularmente ataques de dia cero y campafias APT sofisticadas.
Tercero, la naturaleza critica de las operaciones militares requiere sistemas de seguridad que
operen con niveles de confiabilidad y precision superiores a los estdndares comerciales
convencionales.

La actualidad del problema se evidencia en el incremento documentado de incidentes
cibernéticos contra infraestructuras militares a nivel global, la evolucion constante de técnicas
de ataque que superan las capacidades de los sistemas existentes, y la disponibilidad reciente
de tecnologias de IA y hardware especializado que hacen viable el desarrollo de soluciones
avanzadas. Los reportes de seguridad nacional indican que los ciberataques contra
infraestructuras criticas han experimentado un incremento significativo durante los ultimos
afios, mientras que los sistemas tradicionales de deteccion enfrentan crecientes desafios para
mantener su efectividad ante amenazas cada vez més sofisticadas (Industrial Cyber, 2024).

El problema es susceptible de observacion y medicion a través de multiples
metodologias. La efectividad del sistema puede medirse utilizando datasets estandar de la
industria como CICIDS2017 y NSL-KDD, que proporcionan benchmarks reconocidos para la

evaluacion de sistemas de deteccion de intrusiones; en particular, el dataset CICIDS2017,



desarrollado por el Canadian Institute for Cybersecurity, incluye trafico benigno y ataques
comunes actualizados, lo que lo hace representativo de escenarios del mundo real (Sharafaldin
et al., 2018). El rendimiento puede observarse mediante métricas cuantitativas de precision,
recall, F1-score, y andlisis de curvas ROC (Receiver Operating Characteristic), que representan
graficamente la relacion entre la tasa de verdaderos positivos y la tasa de falsos positivos,
permitiendo evaluar el rendimiento del clasificador en diferentes umbrales de decision. La
eficiencia operacional puede medirse a través del monitoreo de recursos computacionales,
tiempos de respuesta, y andlisis de throughput de red.

Las capacidades de andlisis incluyen la evaluacién comparativa con sistemas existentes,
analisis de sensibilidad para diferentes tipos de ataques, estudios de ablacion para determinar
la contribucion de diferentes componentes del modelo, y andlisis de robustez bajo diversas
condiciones operacionales, ya que la evaluacion de datasets juega un papel vital en la
validacion de cualquier enfoque de IDS, permitiendo evaluar la capacidad del método
propuesto para detectar comportamiento intrusivo (Khraisat et al., 2019). El proyecto permitira
andlisis longitudinales del comportamiento del sistema, estudios de adaptabilidad a amenazas

emergentes, y evaluacion de la escalabilidad de la solucion.

1.2 Justificacion del Problema

La justificacion para resolver este problema se fundamenta en multiples dimensiones
criticas que convergen para crear una necesidad imperativa de desarrollo de soluciones
avanzadas de seguridad cibernética para entornos militares.

Desde la perspectiva de seguridad nacional, la proteccion de infraestructuras militares
contra amenazas cibernéticas constituye una prioridad estratégica fundamental. Los sistemas
de defensa nacional almacenan y procesan informacién clasificada cuyo compromiso podria

resultar en consecuencias devastadoras para la seguridad del pais. La naturaleza evolutiva de



las amenazas cibernéticas requiere soluciones tecnologicas que puedan adaptarse
dinamicamente a nuevos vectores de ataque, superando las limitaciones de los enfoques
tradicionales basados en firmas estaticas.

La dimension tecnologica de la justificacion radica en la convergencia de varios
factores habilitadores. El desarrollo de algoritmos de inteligencia artificial avanzados ha
alcanzado un nivel de madurez que permite su aplicacion efectiva en dominios de seguridad
critica. La disponibilidad de plataformas de computacion en el borde especializadas, como la
NVIDIA Jetson Orin Nano, proporciona las capacidades de procesamiento necesarias para
ejecutar modelos de IA complejos en entornos con restricciones de recursos. La proliferacion
de datasets de alta calidad para entrenamiento de modelos de deteccion de intrusiones permite
el desarrollo de sistemas con capacidades de generalizacion superiores.

La justificacion econdémica se basa en el costo potencial de incidentes cibernéticos
exitosos contra infraestructuras militares. Segun el reporte "The Hidden Costs of Cybercrime"
del Center for Strategic and International Studies en asociacion con McAfee, las pérdidas
globales por cibercrimen se acercan a 1 billén de ddlares, representando mas del 1% del PIB
mundial, lo que subraya el impacto econdmico significativo de los incidentes cibernéticos en
infraestructuras criticas (McAfee & CSIS, 2020). Los costos asociados incluyen no solo los
dafios directos a sistemas y datos, sino también los costos de remediacion, pérdida de
capacidades operacionales, comprometimiento de operaciones en curso, y potencial exposicion
de informacion clasificada. El desarrollo de un sistema de deteccion avanzado representa una
inversion preventiva que puede evitar costos exponencialmente mayores asociados con
incidentes de seguridad exitosos.

Desde una perspectiva operacional, los sistemas militares requieren capacidades de
seguridad que operen de manera autonoma en entornos desafiantes. Las ubicaciones remotas

de muchas instalaciones militares, combinadas con restricciones de personal especializado,



crean la necesidad de sistemas que puedan funcionar efectivamente con minima intervencion
humana. La capacidad de detectar y responder a amenazas en tiempo real, sin depender de
conectividad externa o soporte remoto, constituye un requisito operacional critico que justifica
el desarrollo de soluciones especializadas.

La justificacion cientifica y académica del proyecto radica en su contribucién al avance
del conocimiento en la interseccion de la inteligencia artificial y la ciberseguridad. El proyecto
aborda desafios técnicos significativos relacionados con la optimizacién de modelos de A para
hardware con restricciones de recursos, el desarrollo de técnicas de deteccion adaptativas, y la
validacion de sistemas de seguridad en entornos operacionales realistas. Los resultados del
proyecto contribuirdn al cuerpo de conocimiento académico y proporcionaran metodologias y
mejores practicas aplicables en otros contextos criticos.

La urgencia temporal de la justificacion se fundamenta en la escalada continua de
amenazas cibernéticas y la brecha creciente entre las capacidades de ataque y defensa. Reportes
publicos de agencias como el FBI Internet Crime Complaint Center documentan que en 2023
se recibieron 880,418 quejas con pérdidas potenciales que excedieron los $12.5 mil millones,
representando un aumento de 22% en pérdidas comparado con 2022 (FBI IC3, 2023). Analisis
de tendencias del MITRE ATT&CK framework indican que los actores de amenazas estan
adoptando técnicas automatizadas y herramientas potenciadas por inteligencia artificial para
mejorar sus capacidades de reconocimiento, evasion de deteccidbn y explotacion de
vulnerabilidades (MITRE, 2024), creando una carrera armamentistica cibernética donde las
organizaciones defensoras deben implementar contramedidas tecnoldgicas avanzadas para
mantener la paridad.

La viabilidad técnica del proyecto se justifica a través de la convergencia de multiples
factores tecnologicos maduros. Los algoritmos de aprendizaje automatico han demostrado

efectividad superior en tareas de clasificacion y deteccion de anomalias en dominios similares.



Los resultados experimentales muestran que métodos como Random Forest y Autoencoder son
altamente efectivos en la deteccion de anomalias, con Random Forest alcanzando precisiones
de hasta 99.9% en tareas de clasificacion supervisada y Autoencoder logrando 99.2697% de
precision en enfoques no supervisados (Krzyszton et al., 2024). Las plataformas de hardware
especializadas proporcionan las capacidades computacionales necesarias. Los datasets de
entrenamiento de alta calidad, como CICIDS2017 del Canadian Institute for Cybersecurity,
UNSW-NBIS5 de la Universidad de New South Wales y NSL-KDD, se encuentran disponibles
en repositorios académicos y proporcionan datos etiquetados con ataques modernos,
caracteristicas extraidas automaticamente y configuraciones de entrenamiento y prueba
validadas, lo que los convierte en recursos fundamentales para el desarrollo de sistemas de
deteccion de intrusiones (IDS). Las herramientas de desarrollo y frameworks de software han
alcanzado un nivel de madurez que facilita la implementacion eficiente de soluciones
complejas.

La justificacion se refuerza por el potencial de impacto transformador de la solucion.
Un sistema de deteccion de intrusiones basado en [A exitoso no solo proporcionara capacidades
de seguridad mejoradas para la organizacion cliente, sino que también establecerd un
precedente para la adopcion de tecnologias avanzadas en el sector de seguridad nacional. La
solucion puede servir como modelo para implementaciones similares en otras instituciones
militares y de seguridad, multiplicando el impacto del proyecto.

En conclusidn, la justificacion para resolver este problema se basa en la convergencia
de necesidades operacionales criticas, disponibilidad de tecnologias habilitadoras maduras,
potencial de impacto significativo en la seguridad nacional, y oportunidades de contribucion al
avance del conocimiento cientifico y tecnologico. La urgencia de las amenazas cibernéticas

contemporaneas y las limitaciones de los enfoques tradicionales crean una ventana de



oportunidad para el desarrollo de soluciones innovadoras que pueden transformar

fundamentalmente las capacidades de seguridad cibernética en entornos militares.

1.3 Objetivos

Los objetivos del presente proyecto es estructurar de manera jerarquica para abordar de

forma sistematica el desarrollo del sistema de deteccion de intrusiones propuesto. El objetivo

general establece el proposito principal del proyecto, mientras que los objetivos especificos

detallan las metas particulares que deben alcanzarse para cumplir con objetivo principal.

1.3.1

1.3.2

Objetivo general

Desarrollar y validar un modelo de inteligencia artificial integrado en un prototipo de
Sistema de Deteccion de Intrusiones (IDS) para identificar amenazas cibernéticas en

redes locales militares mediante andlisis de trafico de red en tiempo real.

Objetivos especificos

Establecer el marco teorico y metodoldgico mediante revision bibliografica exhaustiva
sobre sistemas de deteccion de intrusiones, técnicas de inteligencia artificial aplicadas
a ciberseguridad y datasets de trafico de red para fundamentar el disefio del modelo
propuesto.

Desarrollar y evaluar modelos de inteligencia artificial a través del preprocesamiento
de datasets especializados, aplicacion de técnicas de machine learning y deep learning,
y evaluaciéon del rendimiento mediante métricas de precision, recall y F1-score para
seleccionar el modelo 6ptimo de clasificacion de amenazas.

Implementar un prototipo funcional de software IDS que integre el modelo de 1A
seleccionado con capacidades de captura de trafico en tiempo real, preprocesamiento

automatico y generacion de alertas para demostrar la viabilidad del sistema.



4. Validar el rendimiento del modelo y prototipo mediante pruebas en escenarios
controlados que simulen trafico normal y ataques cibernéticos comunes para evaluar la
efectividad, precision y establecer las bases para la implementacion futura en hardware

embebido.

1.4 Marco Teérico

Este marco tedrico aborda los conceptos fundamentales de los Sistemas de Deteccion
de Intrusiones (IDS) y su evolucion mediante la inteligencia artificial, asi como los datasets y
plataformas de hardware especializado que son cruciales para su desarrollo o implementacion

en infraestructuras criticas.
1.4.1 Sistemas de deteccion de intrusiones (IDS)

Los Sistemas de Deteccion de Intrusiones constituyen una tecnologia fundamental en
la ciberseguridad moderna, disefiada para identificar y alertar sobre actividades maliciosas o
no autorizadas en redes de computadoras. Segun Scarfone y Mell (2007), los IDS se clasifican
en dos categorias principales: sistemas basados en red (NIDS) que monitorean el trafico de red,
y sistemas basados en host (HIDS) que supervisan actividades en sistemas individuales.

La evolucion de estos sistemas ha sido documentada extensamente por investigadores
como Liao et al. (2013), quienes identifican tres generaciones de IDS: la primera basada en
firmas, la segunda en anomalias estadisticas, y la tercera incorporando técnicas de inteligencia
artificial. Esta progresion refleja la necesidad de adaptarse a amenazas cada vez mas

sofisticadas y evasivas.
1.4.2  Aplicacion de inteligencia artificial en ciberseguridad

La integracion de técnicas de inteligencia artificial en ciberseguridad ha experimentado

un crecimiento significativo en la ultima década. Buczak y Guven (2016) realizaron una



revision exhaustiva de métodos de machine learning aplicados a deteccion de intrusiones,
identificando algoritmos como Support Vector Machines (SVM), Random Forest, y redes
neuronales como los mas efectivos para la clasificacion de amenazas.

Investigaciones recientes de Aldweesh et al. (2020) demuestran que los modelos de
deep learning, particularmente las redes neuronales profundas y los autoencoders, superan
consistentemente a los métodos tradicionales en la deteccion de ataques zero-day y variantes
de malware. Estos estudios establecen que los modelos de IA pueden identificar patrones
complejos en grandes volumenes de datos de trafico de red que serian imposibles de detectar

mediante métodos convencionales.
1.4.3 Redes Neuronales Convolucionales 1D (1D-CNN)

Las Redes Neuronales Convolucionales unidimensionales representan una adaptacion
de las CNN tradicionales para el procesamiento de datos secuenciales como el trafico de red.
A diferencia de las CNN bidimensionales utilizadas en procesamiento de iméagenes, las 1D-
CNN operan sobre secuencias temporales aplicando filtros convolucionales que pueden

detectar patrones locales en los datos.

En el contexto de ciberseguridad, las 1D-CNN han demostrado efectividad superior
para la extraccion automatica de caracteristicas relevantes del trafico de red. Kim et al. (2018)
demostraron que las 1D-CNN pueden identificar automaticamente firmas de ataques sin
requerir ingenieria manual de caracteristicas, superando en precision a métodos tradicionales

de machine learning.
1.4.4 Redes LSTM (Long Short-Term Memory)

Las redes LSTM constituyen una arquitectura especializada de redes neuronales
recurrentes disefiada para superar el problema del desvanecimiento del gradiente en secuencias

largas. Introducidas por Hochreiter y Schmidhuber (1997), las LSTM incorporan mecanismos



de compuertas que regulan el flujo de informacion, permitiendo el mantenimiento selectivo de
informacion relevante a largo plazo.

La arquitectura LSTM incluye tres tipos de compuertas: la compuerta de olvido que
determina qué informacion descartar del estado celular, la compuerta de entrada que decide
qué nueva informacion almacenar, y la compuerta de salida que controla qué partes del estado
celular utilizar para generar la salida. Esta estructura permite el procesamiento efectivo de

secuencias largas manteniendo informacion relevante para la clasificaciéon de amenazas.

1.4.5 Modelos Hibridos 1D-CNN + LSTM

Los modelos hibridos que combinan 1D-CNN y LSTM representan un enfoque
avanzado que aprovecha las fortalezas complementarias de ambas arquitecturas. Las capas
convolucionales extraen caracteristicas locales relevantes del trafico de red, mientras que las
capas LSTM capturan dependencias temporales a largo plazo entre estas caracteristicas.

Investigaciones de Tang et al. (2020) demostraron que los modelos hibridos 1D-
CNN+LSTM superan significativamente el rendimiento de modelos individuales en tareas de
deteccion de intrusiones. La combinacion permite la extraccion automatica de caracteristicas

espaciales y temporales sin requerir preprocesamiento manual extensivo.

1.4.6 Datasets y benchmarks para evaluacion de IDS

La evaluacion rigurosa de sistemas IDS requiere datasets estandarizados que
representen condiciones realistas de trafico de red. El dataset CICIDS2017, desarrollado por
Sharafaldin et al. (2018), ha emergido como un estandar de facto en la comunidad cientifica,
conteniendo trafico de red capturado durante cinco dias con ataques contemporaneos como
DDoS, ataques de fuerza bruta, infiltracion, y botnet.

Anteriormente, el dataset NSL-KDD, una version mejorada del clasico KDD Cup 99,

fue ampliamente utilizado por investigadores como Tavallaee et al. (2009) para evaluar



algoritmos de deteccion. Sin embargo, estudios posteriores de Ring et al. (2019) han sefialado
limitaciones en datasets mas antiguos debido a su falta de representatividad con respecto a

ataques modernos y patrones de trafico actuales.
1.4.7 Desafios en infraestructuras militares

La ciberseguridad en contextos militares presenta requisitos tnicos documentados por
organizaciones como NIST y el Departamento de Defensa de Estados Unidos. Segin
Cybersecurity Framework del NIST (2018), las infraestructuras criticas requieren sistemas de
deteccion con capacidades de operacion continua, alta disponibilidad y resistencia a ataques
sofisticados.

Estudios de caso realizados por Singer y Friedman (2014) en "Cybersecurity and
Cyberwar" documentan la evolucion de amenazas en entornos militares, desde ataques
convencionales hasta amenazas persistentes avanzadas (APT). Estos andlisis subrayan la
necesidad de sistemas IDS adaptativos capaces de evolucionar con el panorama de amenazas,
justificando el enfoque basado en IA del presente proyecto.

La literatura revisada establece que la convergencia de técnicas de inteligencia
artificial, hardware embebido especializado y datasets contemporaneos representa una
oportunidad significativa para desarrollar sistemas IDS de proxima generacion,
particularmente para aplicaciones en infraestructuras criticas donde la deteccion temprana y

precisa de amenazas es fundamental para la seguridad nacional.



Capitulo 2



2 Metodologia

Este capitulo detalla la estrategia metodoldgica seguida para el disefio y la validacion
del prototipo de Sistema de Deteccion de Intrusiones (IDS). Se describe la formulacion y
evaluacion de las alternativas de solucion, el disefio conceptual y detallado del sistema, la
seleccion de recursos tecnologicos, y la rigurosa metodologia de evaluacion que permitid
identificar la arquitectura de Inteligencia Artificial més eficaz para el contexto de la

ciberseguridad militar.

2.1 Formulacion de Alternativas de Solucion

El desafio principal fue desarrollar un sistema capaz de detectar amenazas avanzadas
con alta precision y en tiempo real, superando las limitaciones de los enfoques tradicionales
que son ineficaces ante ataques novedosos o de dia cero. La naturaleza critica de las redes
militares demandd un sistema capaz de detectar amenazas sofisticadas con alta precision y
minimas tasas de falsos positivos. En lugar de evaluar alternativas teéricas, la metodologia se
centrd en una competicion experimental entre diferentes arquitecturas de Deep Learning para
determinar empiricamente cudl era la mas idonea.

Se formularon cuatro alternativas, cada una representada por un modelo de red neuronal
con capacidades distintas, para ser entrenados y evaluados bajo las mismas condiciones.

Alternativa 1: Modelo Hibrido 1D-CNN + LSTM. Esta fue la alternativa principal,
donde la hipotesis planteaba que la combinacion sinérgica de la extraccion de caracteristicas
espaciales locales proporcionada por la CNN con el modelado de secuencias temporales de la
LSTM permitiria detectar ataques complejos y coordinados que se desarrollan en multiples
pasos, algo que los modelos no secuenciales no podrian capturar eficazmente.

Alternativa 2: Red Neuronal Artificial (ANN). Se implementé un modelo de red

neuronal denso tradicional como linea base. Su propodsito era establecer un umbral de



rendimiento fundamental para cuantificar de manera objetiva la ganancia en eficacia obtenida
por las arquitecturas recurrentes y la hibrida, que son computacionalmente mas costosas.

Alternativa 3: Modelo Bi-LSTM. Se evalu6 un modelo basado en LSTM
Bidireccional, considerando que al procesar las secuencias de datos en ambas direcciones
(hacia adelante y hacia atras), el modelo podria capturar un contexto mas completo de los
patrones de ataque, potencialmente mejorando la precision en la deteccion de amenazas cuyas
pistas clave no se encuentran al inicio de la secuencia de datos.

Alternativa 4: Modelo Bi-GRU. Similar a la anterior, esta alternativa utilizé unidades
GRU (Gated Recurrent Unit) bidireccionales, una variante mas ligera que las LSTM, cuyo
objetivo era investigar si se podia alcanzar un rendimiento comparable al de la Bi-LSTM pero
con una menor complejidad computacional y, por ende, tiempos de entrenamiento mas rapidos,

un factor relevante para futuros reentrenamientos del sistema.

2.2 Seleccion de la Mejor Alternativa

La seleccion de la mejor alternativa se realiz6 tras una fase de evaluacion exhaustiva,
utilizando un conjunto de métricas de rendimiento criticas para la seguridad. La decision se
baso en los resultados empiricos obtenidos de la competicion de modelos, donde el modelo
hibrido ID-CNN + LSTM fue seleccionado como la solucion superior.

Esta seleccion se justificd por su destacada capacidad para obtener el mejor equilibrio
entre todas las métricas, especialmente el F1-Score, y su habilidad para minimizar los Falsos
Negativos (ataques no detectados), el tipo de error mas critico en un entorno militar. En la
figura 2.1, extraido de los resultados experimentales, ilustra visualmente la superioridad del
modelo CNN-LSTM en las métricas clave en comparacion con las otras arquitecturas

evaluadas.
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Figura 2.1 Evaluacion comparativa de métricas de rendimiento en los diferentes modelos

2.3 Diseiio Conceptual del Sistema

El disefio conceptual del sistema se estructur6 en cuatro modulos principales
interconectados para facilitar el mantenimiento, la escalabilidad y la integracion. El flujo de
datos fue disenado siguiendo un pipeline de procesamiento en tiempo real, donde los paquetes
de red son capturados, procesados y clasificados por el modelo de IA, tal como se ilustra en la

figura 2.2.
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Figura 2.2 Arquitectura Conceptual del Prototipo IDS

Este disefio conceptual guio el desarrollo de un prototipo funcional capaz de analizar

trafico y generar alertas basadas en las predicciones del modelo de IA seleccionado.

2.4 Metodologia de Desarrollo Experimental

Se adoptd una metodologia mixta que combind una rigurosa investigacion experimental
con un desarrollo de software iterativo. La estrategia de Machine Learning se baso en el
framework CRISP-DM, adaptado al dominio de la ciberseguridad.

a) Comprension del Negocio y los Datos: Se analizaron los requerimientos para un IDS
militar y se condujo un andlisis exploratorio de varios datasets, incluyendo UNSW-

NB15 y NSL-KDD. Se determin6 que CICIDS2017 era el méas adecuado para el



b)

d)

entrenamiento debido a que, como se muestra en la siguiente grafica en la figura 2.3,
posee un volumen y una diversidad de ataques significativamente mayores, lo que

permite entrenar un modelo mas robusto y generalizable.
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Figura 2.3 Comparacion de la cantidad de registros de ataque por Dataset

Preparacion de los Datos: Se desarrollo un pipeline de preprocesamiento que incluyo
la consolidacion y limpieza de los datos de CICIDS2017, la codificacion de etiquetas a
formato binario (0 para benigno, 1 para ataque), y la normalizacion de todas las
caracteristicas numéricas.

Modelado y Experimentacion: Se construyeron las cuatro arquitecturas de Deep
Learning (CNN-LSTM, ANN, Bi-LSTM, Bi-GRU) y se entrenaron usando los datos
de CICIDS2017.

Evaluacion: Se realiz6 la evaluacion comparativa que llevo a la seleccion del modelo
CNN-LSTM, como se detallo en la seccion 2.2.

Despliegue (Prototipo): El modelo ganador se integr6 en un script de Python que

simulaba un prototipo funcional, validando la solucién completa.



2.5 Disefio Detallado del Modelo Seleccionado (1D-CNN + LSTM)

La arquitectura del modelo hibrido fue disefiada para procesar secuencialmente los
datos de trafico de red, combinando la extraccion de caracteristicas con el analisis de
dependencias temporales. El flujo de datos a través de las capas del modelo se detalla en el

siguiente diagrama mostrado en la figura 2.4.

Entrada de Datos
Forma: [None, 1, 78 Caracteristicas]

Datos de entrada
\

Capa Convolucional 1D (Conv1D)
« Filtros: 64, Tamano Kernel: 3, Activacion: ReLU
» Propdsito: Extraer patrones locales
« Salida: [None, 1, 64]

Caracteristicas extraidas
\/

Capa de Memoria (LSTM)
» Unidades: 50, Activacion: ReLU
 Propdsito: Modelar dependencias temporales
« Salida: [None, 50]

Secuencias procesadas

\/

Capa de Regularizacion (Dropout)
e Tasa: 0.2 (20%)
« Propdsito: Prevenir sobreajuste
« Salida: [None, 50]

Caracteristicas regularizadas

\/

Capa de Salida (Dense)
» Unidades: 1, Activacion: Sigmoid
« Propésito: Clasificacidn binaria
« Salida: Probabilidad de Ataque (0 a 1)

Figura 2.4 Arquitectura Detallada del Modelo 1D-CNN + LSTM

La sinergia de esta arquitectura fue clave: la capa Conv1D actudé como un extractor de
caracteristicas de bajo nivel, identificando patrones locales en las 78 caracteristicas de entrada.

La salida de esta capa, un conjunto refinado de 64 caracteristicas fue luego alimentada a la capa



LSTM, que esta especializada en encontrar relaciones a lo largo del tiempo en estas secuencias

de caracteristicas, permitiendo asi la deteccion de ataques coordinados y persistentes.

2.6 Seleccion de Recursos y Tecnologias

Dataset Principal: Se seleccion¢ el dataset CICIDS2017 como la fuente principal de
datos para el entrenamiento y la evaluacion del modelo. Esta decision se basé en su
representatividad de ataques contemporaneos, su gran volumen de datos y su diversidad de
vectores de ataque, caracteristicas que son esenciales para desarrollar un modelo robusto capaz
de generalizar a diferentes tipos de amenazas.

Plataforma y Herramientas: Se implement6 un conjunto de herramientas de cddigo
abierto, estandar en la industria, para maximizar la reproducibilidad y eficiencia del proyecto.

o Google Colab: Se utilizO como la plataforma de desarrollo principal,
proporcionando acceso gratuito a recursos de GPU que fue fundamental para
acelerar significativamente el proceso de entrenamiento de los modelos complejos,
reduciendo los tiempos de experimentacion de dias a horas.

o Frameworks: Se empleo la dupla TensorFlow y Keras, donde Keras, con su API
de alto nivel, facilit6 la implementacion rapida de prototipos y la experimentacion
agil con las diferentes configuraciones arquitectonicas evaluadas.

e Librerias: Se integré el ecosistema estandar de ciencia de datos en Python,
incluyendo Pandas y NumPy para la manipulacién y procesamiento de datos, y
Scikit-learn para tareas de preprocesamiento, division de datos y calculo de métricas

de rendimiento.



2.7 Especificaciones Técnicas y de Evaluacion

Las especificaciones técnicas fueron definidas de manera integral para cubrir todos los
aspectos del desarrollo, evaluacion y despliegue del sistema de deteccion de intrusiones basado

en deep learning.
2.7.1 Meétricas de evaluacion y su significado operacional

Se estableci6 un conjunto completo de métricas para obtener una vision
multidimensional del rendimiento del modelo, cada una con un significado operacional claro
en el contexto de la ciberseguridad militar.

Accuracy (Exactitud): Representa la proporcion total de predicciones correctas,
aunque puede ser engafiosa en datasets desbalanceados al no reflejar adecuadamente el
rendimiento en clases minoritarias.

Precision (Precision): Mide cuantas de las alertas de "ataque" generadas fueron
realmente ataques, siendo critica para mantener la confianza del operador y minimizar el
tiempo perdido investigando falsas alarmas.

Recall (Sensibilidad): Mide cuédntos de los ataques reales que ocurrieron fueron
detectados por el sistema, siendo esencial para no pasar por alto amenazas reales que podrian
tener consecuencias graves.

F1-Score: Representa la media armoénica de Precision y Recall, constituyendo la
métrica mas importante para un IDS al buscar el equilibrio 6ptimo entre no abrumar a los
operadores con falsas alarmas y no fallar en detectar ataques reales.

AUC-ROC: Mide la capacidad del modelo para discriminar entre trafico benigno y
malicioso a través de todos los posibles umbrales de decision, proporcionando una evaluacion

integral del rendimiento clasificatorio.



2.7.2 Protocolo de validacion

Se implemento6 una estrategia de validacion robusta para asegurar la imparcialidad de
los resultados, dividiendo los datos del dataset CICIDS2017 en 80% para el conjunto de
entrenamiento y 20% para el conjunto de prueba, manteniendo este ultimo completamente
aislado durante todo el proceso de entrenamiento y ajuste para utilizarlo una Unica vez al final.
Este protocolo garantiza que el rendimiento reportado refleje fielmente la capacidad del modelo

para generalizar a datos completamente nuevos y no vistos previamente.
2.7.3 Requerimientos del sistema

Las especificaciones fueron definidas para la fase de desarrollo y el futuro despliegue.
1. Hardware: Procesador Intel Core i5 0 AMD equivalente, minimo 8GB de RAM (16GB
recomendados) y 5S0GB de almacenamiento.
2. Software: El entorno de desarrollo se bas6 en las siguientes versiones, compatibles con
Ubuntu 20.04 LTS o Windows 10/11:
e Python: 3.11.13
e TensorFlow: 2.18.0
e NumPy: 2.1.3
e Pandas: Utilizado extensivamente en el entorno de desarrollo de Google Colab, pero

no es una dependencia estricta para el script de despliegue final del prototipo.

2.8 Consideraciones Eticas y Legales

El desarrollo del sistema considerd principios éticos fundamentales relacionados con la
privacidad de datos y el uso responsable de tecnologias de inteligencia artificial. Se

implementaron medidas para asegurar que el procesamiento de datos de red se realizara



exclusivamente con fines de deteccion de amenazas, sin comprometer la privacidad de usuarios
legitimos, utilizando para ello datasets publicos y anonimizados.

El disefio del sistema considerd los marcos regulatorios aplicables y se establecieron
principios para el uso responsable del sistema, incluyendo la necesidad de supervision humana
en la toma de decisiones criticas de seguridad, la transparencia en el funcionamiento del sistema

y procedimientos para la evaluacion continua del rendimiento en entornos operacionales.



Capitulo 3



3 Introduccion a la Fase Experimental

Este capitulo detalla los resultados de la fase experimental, disefiada para evaluar y
comparar de manera cuantitativa el rendimiento de cuatro arquitecturas de redes neuronales. El
propdsito principal consiste en seleccionar el modelo més robusto y fiable para la
implementacion de un prototipo de Sistema de Deteccion de Intrusiones (IDS) para redes
militares, cuyo analisis se centra no solo en la precision final, sino también en la estabilidad
del rendimiento y, de manera critica, en la capacidad de minimizar los errores que representan

mayor riesgo para la seguridad operacional.

3.1 Rendimiento Comparativo de los Modelos

Los cuatro modelos propuestos (CNN + LSTM, ANN, Bi-LSTM y Bi-GRU) fueron
entrenados y evaluados bajo condiciones idénticas con el dataset CICIDS2017, asegurando que

las diferencias de rendimiento se deban exclusivamente a las capacidades de cada arquitectura.

3.1.1 Analisis de métricas de clasificacion

La efectividad de un IDS no se mide solo por la exactitud (Accuracy), dado que los
datasets de trafico de red suelen estar desbalanceados. Por ello, se prioriz6 un analisis
multidimensional que incluye Precision, Sensibilidad (Recall) y, de forma destacada, el F1-
Score, que equilibra ambas métricas. La Tabla 3.1 resume el rendimiento de cada modelo en el
conjunto de prueba:

Tabla 3.1

Comparacion de Métricas de Rendimiento por Modelo

Modelo Accuracy | Precision | Recall | F1-Score

CNN-LSTM 0.9964 0.9925 0.9862 0.9894




ANN 0.9653 0.996 0.7977 0.8859
Bi-LSTM 0.9835 0.9651 0.9359 0.9503
Bi-GRU 0.9829 0.9797 0918 0.9479

De los resultados se desprende que el modelo hibrido CNN + LSTM supera a las demaés
arquitecturas en las métricas mas criticas. Aunque el modelo ANN muestra una precision muy
alta, su bajo Recall (0.7977) indica que falla en detectar mas del 20% de los ataques reales, un
riesgo inaceptable en un entorno de alta seguridad. Los modelos Bi-LSTM y Bi-GRU ofrecen
un rendimiento solido y balanceado, pero no alcanzan el equilibrio superior del modelo hibrido.
Para complementar el anélisis, se evaluo la estabilidad de cada modelo durante la fase de
validacion. La Tabla 3.2 presenta el promedio y la desviacion estandar de las métricas clave
durante las ultimas 10 épocas de entrenamiento, donde una desviacion estdndar baja indica que
el rendimiento del modelo es consistente y no sufre de fluctuaciones abruptas, lo que se traduce
en mayor fiabilidad.

Tabla 3.2

Estabilidad del Rendimiento de los Modelos (Promedio + Desviacion Estandar en las Ultimas

10 Epocas de Validacién)

Modelo Validation Accuracy | Validation Precision | Validation Recall
CNN-LSTM 0.9944 + 0.0032 0.9838 +0.0182 0.9835 + 0.0060
ANN 0.9628 £ 0.0021 0.9966 + 0.0024 0.7825 £ 0.0136
Bi-LSTM 0.9832 +0.0012 0.9634 + 0.0039 0.9362 £ 0.0105
Bi-GRU 0.9784 + 0.0047 0.9578 +0.0234 0.9131+£0.0144

El analisis de estabilidad confirma la superioridad del modelo CNN + LSTM, el cual

no solo alcanz6 las mejores métricas promedio en Accuracy y Recall, sino que también mostro




una desviacion estandar muy baja, especialmente en Recall (+0.0060), lo que demuestra un

aprendizaje consistente y fiable.
3.1.2 Analisis de errores de clasificacion: falsos positivos vs. falsos negativos

En la ciberseguridad militar, el error mas critico es el Falso Negativo (FN), que
representa un ataque real no detectado e implica vulnerabilidades catastréficas. Los Falsos
Positivos (FP), aunque menos criticos que los FN, generan alertas innecesarias que consumen
recursos operativos y pueden ser explotados como vector de ataque para ahogar los recursos

del objetivo mediante la saturacion del sistema de respuesta.

Tabla 3.3

Comparacion de Errores de Clasificacion por Modelo

Modelo Falsos Positivos (FP) | Falsos Negativos (FN)
CNN + LSTM 633 1174
ANN 275 17227
Bi-LSTM 2878 5460
Bi-GRU 1616 6981

La Tabla 3.3 revela que el modelo CNN + LSTM obtuvo la menor cantidad de Falsos
Negativos (1174), validando su robustez para detectar amenazas reales. Aunque la ANN generd
menos FPs, su alarmante cifra de 17,227 ataques no detectados lo hace completamente inviable,
mientras que los modelos Bi-LSTM y Bi-GRU registraron entre 4 y 6 veces mas FNs que el
modelo hibrido. La capacidad de minimizar el error més perjudicial fue un factor decisivo en

la seleccion del modelo CNN + LSTM.



3.2 Analisis Detallado del Modelo Seleccionado: 1D-CNN + LSTM

Tras confirmar su superioridad en las métricas comparativas, se realizé un analisis mas

profundo del modelo hibrido para comprender su comportamiento y validar su idoneidad.
3.2.1 Estabilidad y convergencia del entrenamiento

El andlisis de las curvas de entrenamiento y validacion a lo largo de las épocas ofrece
una vision clara de la estabilidad del aprendizaje del modelo. Tal como se puede observar en

la figura 3.1, las curvas del modelo CNN + LSTM muestran una convergencia suave y estable.

Métricas de Entrenamiento y Validacién - Modelo A (CNN-LSTM)
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Figura 3.1 Métricas de entrenamiento y validacion del Modelo CNN + LSTM

La curva de pérdida de validacion (Validation Loss) desciende consistentemente junto
a la pérdida de entrenamiento, y ambas se estabilizan en un valor bajo, indicando que el modelo

generaliza bien a datos no vistos sin mostrar signos significativos de sobreajuste. Este



comportamiento estable, reflejado en la baja desviacion estandar de sus métricas (Tabla 3.2),

contrasta con la mayor volatilidad observada en los otros modelos, especialmente en la ANN.
3.2.2 Capacidad de discriminacion: curvas ROCy PR

La capacidad del modelo seleccionado para distinguir entre clases se evalué mediante
las curvas ROC (Receiver Operating Characteristic) y Precision-Recall (PR), ilustradas en la

figura 3.2.
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Figura 3.2 Curva ROC 'y Precision-Recall del modelo evaluado

Curva ROC: El modelo alcanz6 un valor de AUC (Area Under the Curve) de 1.00
(redondeado de 0.9998), como se ve en la curva ROC. Un valor tan cercano a 1.0 indica una
capacidad de discriminacion casi perfecta entre el trafico benigno y el malicioso a través de
todos los posibles umbrales de decision.

Curva Precision-Recall: Para datasets desbalanceados, la curva PR es a menudo mas
informativa, y el modelo obtuvo un AUC-PR de 1.00 (redondeado de 0.9990). Esto confirma
que el modelo puede mantener una alta precision y sensibilidad (recall) simultaineamente, lo

cual es el escenario ideal para un IDS.



3.2.3 Optimizacion del umbral de decision

Por defecto, el umbral de clasificacion es de 0.5, pero en aplicaciones de seguridad
puede ser beneficioso ajustarlo para priorizar la deteccion de ataques (Recall) a costa de un
ligero aumento en falsas alarmas (menor Precision). Se realizd una prueba evaluando el
rendimiento del modelo CNN + LSTM con un umbral de decision de 0.2, y la tabla 3.4 compara
el rendimiento antes y después de este ajuste.

Tabla 3.4
Efecto del Ajuste del Umbral en el Modelo CNN + LSTM

Umbral 0.5 Umbral 0.2
Métrica Cambio/Impacto
(Defecto) (Optimizado)
-55.40% de reduccion de
Falsos Negativos (FN) 1174 524
riesgo
+259.7% de aumento de
Falsos Positivos (FP) 633 2277
alertas
Aumento de la capacidad
Recall (Sensibilidad) 0.986 0.99
de deteccion
Rendimiento general se
F1-Score 0.99 0.98
mantiene excelente

Como muestra la Tabla 3.4, este simple ajuste estratégico permitid reducir los ataques
no detectados en mas de un 55%. Si bien esto incrementé el numero de falsas alarmas, el F1-
Score se mantuvo en un extraordinario 0.98, demostrando que el modelo puede ser calibrado

para un perfil de seguridad mas agresivo sin sacrificar su rendimiento general.



3.2.4 Visualizacion de la separabilidad de caracteristicas

Para confirmar cualitativamente que el modelo aprendié a diferenciar las clases, se
utilizaron técnicas de reduccion de dimensionalidad como PCA y t-SNE para visualizar las
representaciones internas de los datos de prueba.

Proyeccion PCA de los Datos Proyeccion t-SNE de los Datos
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Figura 3.3 Visualizacion de la separabilidad de datos de prueba

Como se observa en la figura 3.3, el grafico de Proyeccion t-SNE muestra una clara
separacion entre los puntos de datos correspondientes al trafico benigno (azul) y los de ataque
(rojo). Se forman dos cimulos densos y bien definidos, con una minima superposicion. Esto
demuestra visualmente que la arquitectura hibrida CNN + LSTM ha sido capaz de transformar
el complejo espacio de 78 caracteristicas de entrada en una representacion interna donde las
dos clases son facilmente separables, lo cual es fundamental para el éxito de la capa de

clasificacion final.

3.3 Validacion Funcional del Prototipo

Tras la validacion cuantitativa y la optimizacion estratégica del modelo, el proyecto

progreso6 hacia su etapa mas critica: el desarrollo y evaluacion del prototipo en un ambiente



operacional simulado. Esta fase, alineada con el objetivo especifico de "Elaborar y probar un
prototipo del software IDS en una computadora", pretendid superar el analisis de datos estaticos
enfrentando al sistema con situaciones dindmicas en tiempo real.

Se establecio un laboratorio virtualizado que permitié una evaluacion integral bajo
condiciones controladas pero realistas. Este procedimiento verificd tanto la capacidad del
modelo de IA como la implementacion correcta de la ingenieria de software del motor de

captura, integrando todos los elementos en una solucion coherente y operativa.
3.3.1 Configuracion del entorno de laboratorio virtualizado

La base para la validacion funcional fue la creacion de un laboratorio de red aislado y
seguro, utilizando el hipervisor VMware Workstation. Esta aproximacion permite la ejecucion
de pruebas de ciberseguridad sin riesgo para la red anfitriona, proporcionando un control
granular sobre el entorno. La topologia del laboratorio se compuso de dos maquinas virtuales

(VMs) que desempenaron roles antagdnicos.

Figura 3.4 Escritorio de la Maquina Virtual Objetivo (Ubuntu 20.04 LTS)

La primera, actuando como el sistema objetivo a defender, fue una maquina virtual con

el sistema operativo Ubuntu 20.04 LTS, cuyo entorno se muestra en la Figura 3.4, donde se



desplego el prototipo del IDS. Para garantizar la consistencia en las pruebas, se le asignd una

direccion IP estatica dentro de la red privada del laboratorio: 192.168.199.129.

Welcome to the Calamares installer for Parrot 0S 6.2
Welcome (Lorikeet)

This program wil 2sk you seme questions and st up Parmot Securiy on your computer

Figura 3.5 Entorno de la Maquina Virtual del Atacante (Parrot OS Security)

La segunda, representando al actor malicioso, fue una maquina virtual con la
distribucion Parrot OS Security, una plataforma especializada en pruebas de penetracion, tal
como se aprecia en la Figura 3.5. Se le asigné una IP en el mismo segmento de red:
192.168.199.128.

Ambas maquinas virtuales se configuraron para operar en un modo de "Red Interna",
creando una LAN virtual completamente aislada que permite la comunicacion entre ellas pero
impide cualquier trafico hacia o desde la red fisica del anfitrion. Este aislamiento de seguridad
garantiza que las actividades maliciosas generadas permanezcan contenidas dentro del

laboratorio experimental.
3.3.2 Despliegue y arquitectura del prototipo en el sistema objetivo

El siguiente paso consistié en la migracion del proyecto desde el entorno de desarrollo
en la nube al entorno operacional final en la VM de Ubuntu. Se transfirieron los artefactos

esenciales generados durante el entrenamiento: el modelo de IA binario optimizado,



modelo_ A optimizado_earlystopping.h5, y su correspondiente escalador de datos,
escalador_estandar.joblib. Posteriormente, se replico el entorno de software de Python en la
maquina objetivo, creando un entorno virtual (z/~env) con Python 3.11 e instalando todas las
librerias requeridas, destacando tensorflow, scikit-learn y, crucialmente, scapy y psutil para la
interaccion con la red.

El prototipo se consolid6 en un tnico script de Python, detector ids.py, que integra toda
la logica de captura y analisis. La arquitectura incluye un Mddulo de Carga de Activos que
carga el modelo de IA y escalador, y un Motor de Gestion de Flujos en Tiempo Real que usa
scapy para capturar paquetes y un diccionario para rastrear conversaciones activas. Este motor
determina el fin de flujos por cierre explicito (flags FIN/RST) o inactividad (Timeout),
asegurando gestion eficiente de memoria.

El corazén de la ingenieria del prototipo reside en el Extractor de Caracteristicas, que
al terminar un flujo calcula en tiempo real las 78 caracteristicas estadisticas requeridas por el
modelo de IA. El Modulo de Clasificacion y Alerta toma este vector de caracteristicas, lo
normaliza usando el escalador cargado y lo pasa al modelo de IA. Aplicando el umbral de
decision estratégico de 0.2, el sistema imprime una alerta de alta visibilidad en la terminal si

se detecta una anomalia.

3.3.3 Validacion funcional estdtica (prueba de componentes)

Antes de la prueba en vivo, se realiz6 una validacion funcional estatica para verificar
la correcta integracion de los componentes de software. Esta prueba consistid en un script que
cargaba el modelo y el escalador y los utilizaba para clasificar dos muestras aisladas y
preseleccionadas del conjunto de prueba: una garantizada como BENIGN y otra como

ATTACK.



--- Iniciando Prototipo IDS ---
WARNING: abs1:Compiled the loaded model, but the compiled metrics have
Activos necesarios para el prototipo cargados.

--- Analizando Flujo 1 (Se espera BENIGNO) ---
Resultado: Trafico Benigno (Confianza de ataque: 6.86%)

--- Analizando Flujo 2 (5e espera ATAQUE) ---
Resultado: jjj ALERTA DE ATAQUE DETECTADO !!! (Confianza: 186.66X%)

Figura 3.6 Resultado de la prueba estatica del prototipo

Los resultados mostrados en la Figura 3.6, confirmaron la correcta implementacion: la
muestra benigna se clasifico como Trafico Benigno (0.00% confianza de ataque), mientras la
muestra maliciosa generd jjjALERTA DE ATAQUE DETECTADO!!! (99.99% confianza).
Esta prueba preliminar valido que la l6gica completa funcionaba correctamente como sistema

cohesivo.
3.3.4 Prueba de fuego: deteccion de un ataque de escaneo de puertos en vivo

La validacion culminante consistié en una prueba de fuego en un escenario dindmico.
Se lanzo el prototipo en la maquina Ubuntu para monitorear la red. Simultdneamente, desde
Parrot OS, se ejecutd un ataque de escaneo de puertos TCP SYN con Nmap, cuya ejecucion se

observa en la Figura 3.7.

Figura 3.7 Ejecucion del ataque de escaneo de puertos con la herramienta Nmap

Tan pronto como nmap comenz6 a enviar paquetes, la terminal del IDS empez6 a

mostrar los flujos de red que estaban siendo procesados, gestionando correctamente los cientos



de flujos cortos y distintos caracteristicos de un escaneo de puertos. Tras unos pocos segundos,
comenzaron a aparecer las alertas en la terminal, como se evidencia en la Figura 3.8, mostrando
mensajes de alta visibilidad como: !!! ALERTA DE ATAQUE DETECTADO (Confianza:
100.00%) !!!. El hecho de que se generaran multiples alertas para una sola campafia de nmap
valido la estrategia de priorizar la deteccion, demostrando que cada flujo de sondeo fue
suficiente para que el extractor de caracteristicas generara un vector clasificado como malicioso
por el modelo.

FLUJO TERMINADO: 192.168.199.12B8:36899-192.168.199.129:3871-TCP
Razén: Flag FINSRST
Flujo procesado con 2 paquetes. Llamando al clasificador...

11! ALERTA DE ATAQUE DETECTADO ( ianza: 98.11%) !!!
NI RRER RN RN RN R RN Y IR RN RN ENY

FLUJO TERMINADO: 192.168.199.12B8:36899-192.168.199.129:10856-TCP
Razén: Flag FIN/RST
Flujo procesado con 2 paquetes. Llamando al clasificador...

11! ALERTA DE ATAQUE DETECTADO ( ianza: 1008.00%) !!!
RN R R RN R RN R R RN RN RN RN

FLUJO TERMIMNAD 92.168.199.128:36899-192.168.199.129:8291-TCP
tazon: Flag FIN/RST
Flujo procesado con 2 paquetes. Llamande al clasificador...

Figura 3.8 Deteccion del ataque Nmap por parte del prototipo IDS en la terminal

Esta validacion en tiempo real represent6 el punto culminante de la etapa de prototipado
en terminal, consolidando la efectividad del ntcleo del sistema: la integracion entre el motor
de captura basado en Scapy y el modelo de inteligencia artificial. Al confirmarse su
funcionamiento fiable y preciso, se establecieron las bases necesarias para avanzar hacia la
siguiente fase del desarrollo: la construccion de una aplicacion completa con interfaz grafica

de usuario.



3.4 Evolucion a un Centro de Comando Grafico (GUI)

Aunque el prototipo de terminal valido la eficacia del motor de deteccion, su utilidad
operacional era limitada. Los analistas de ciberseguridad necesitan herramientas visuales para
interpretar el estado de red, gestionar multiples amenazas y responder inmediatamente. Por
ello, se inici6 la fase mas compleja: transformar el script monolitico en una aplicacion de

escritorio robusta y profesional.

3.4.1 Justificacion y arquitectura de software modular

El primer paso fue refactorizar la base del codigo, ya que un script inico no es escalable
y presenta un problema fundamental: las tareas de larga duracidon congelan la interfaz de
usuario. Para resolverlo, se adoptd una arquitectura modular y concurrente, desacoplando
backend del frontend.

El proyecto se dividi6 en dos componentes principales: detector_ids motor.py
(Backend) encapsula toda la logica de captura, gestion de flujos, extraccion de caracteristicas
y clasificacion por IA dentro de una clase IDSEngine. Esta clase se disefi¢ para ejecutarse en
un hilo secundario heredando de threading.Thread, permitiendo operacion intensiva en
segundo plano sin afectar la responsividad.

gui_ids.py (Frontend) desarroll6 una nueva clase App usando Tkinter para construir la
interfaz gréfica, responsable de renderizar ventanas, botones, paneles y visualizaciones como
hilo principal de la aplicacion.

La comunicacion entre hilos se implement6é mediante una queue.Queue segura, donde
el motor IDSEngine deposita mensajes (logs, alertas) en lugar de imprimirlos directamente. La
interfaz grafica sondea peridodicamente esta cola para mostrar los mensajes en los paneles
correspondientes. Esta arquitectura productor-consumidor asegura una aplicacion estable y

libre de bloqueos.



3.4.2 Diseiio e implementacion del centro de comando

Como se muestra en la Figura 3.9, la interfaz se disefio para presentar informacion clara
y herramientas de accion directa. La ventana principal se dividi6 verticalmente mediante un
PanedWindow, creando dos areas funcionales:

Panel Izquierdo - Registro de Actividad: Area de texto con scroll mostrando log
detallado y en tiempo real del motor, incluyendo carga de activos, finalizacion de flujos,
advertencias, errores y alertas de ataque destacadas. Se utilizaron etiquetas de colores para
diferenciar criticidad (azul para informacion, rojo para alertas).

Panel Derecho - Panel de Amenazas: Disefiado para mostrar vista consolidada de
amenazas activas, agrupando por direccion IP origen y actualizando contadores de alertas para
indicar persistencia del atacante.

Se implementd una barra de control superior con menu desplegable para seleccionar

interfaz de red, botones "Iniciar/Detener Captura" y herramientas de gestion adicionales.
3.4.3 Validacion funcional del prototipo grdfico

Una vez completada la implementacion modular y la interfaz grafica, se realizé una
validacion funcional integral para verificar la operacion cohesionada en un escenario de ataque
real. El objetivo era confirmar que la aplicacion grafica era un sistema de deteccion
completamente operativo, no solo una capa visual. La prueba replicod el escenario anterior:

escaneo TCP SYN desde Parrot OS contra Ubuntu ejecutando gui_ids.py.



IDS Prototipo Militar - Centro de Comando vd. -3 @

Interfaz: |ens33 |  Iniciar Captura | | Ver Historial de Alertas  Gestionar Lista Blanca | Exportar Registro

Panel de Amenazas

E | 1P 192.168.199.128 (N/A (P Prvacal}

Confanza: 100.009% | Netzs: 18 Masinfo | Bloguear | No Malicioso

126-102.168.199. 129:5966- TCP

clasificador...

168.199.128:35426- 182 168. 199, 129:8689- TCP

clasificador...

[Estado: Detenido

Figura 3.9 Interfaz Grafica mostrando la deteccion de un ataque en tiempo real

El resultado como se observa en la figura 3.9, fue un éxito rotundo que demostro la

correcta implementacion de la arquitectura de software:

e Deteccion en Backend: El motor IDSEngine, operando en hilo secundario, capturd
y analiz6 correctamente los flujos anomalos de nmap.

e Comunicacion Asincrona: Las alertas del modelo de IA fueron depositadas en la
queue.Queue y recibidas por el hilo principal sin bloqueos ni congelamientos.

e Visualizacion en Tiempo Real: El panel "Registro de Actividad" mostrd
instantaneamente cada alerta con su confianza, confirmando comunicacion fluida
entre hilos.

e Consolidacion de Amenazas: El "Panel de Amenazas" identifico inteligentemente
que todas las alertas provenian de la misma IP (192.168.199.128), creando una
entrada tinica y actualizando su contador en tiempo real.

Esta prueba valido exitosamente la transicion del prototipo terminal a aplicacion grafica

con arquitectura concurrente, sentando bases para funcionalidades avanzadas.



3.5 Fortalecimiento y Funcionalidades Avanzadas de la GUI

Con la arquitectura basica de la GUI validada, se inici6 un ciclo iterativo de pruebas y
fortalecimiento para abordar los complejos desafios del mundo real y dotar al operador de

herramientas de respuesta efectivas.

3.5.1 Desafio 1: autoconocimiento de red y falsos positivos

La primera prueba revel6 que el trafico de la propia maquina Ubuntu y el broadcast
local generaban flujos incorrectamente clasificados como andmalos. Para solucionarlo, se
implement6 autoconocimiento de red en el IDS.

Al iniciar captura, el script gui ids.py ejecuta ip address show dev <interfaz>,
extrayendo mediante expresiones regulares y la libreria ipaddress informacion critica:
direccion IP del anfitrion, direccion de red del segmento LAN, direccion de broadcast y puerta
de enlace estimada.

Estas direcciones se afiaden a un conjunto de exclusion temporal. La funcion
update threat verifica si la IP atacante pertenece a este conjunto antes de mostrar alertas,

descartando eficazmente falsos positivos del trafico local legitimo.

3.5.2 Desafio 2: identificacion precisa de atacante vs. victima

Un desafio complejo surgi6 al probar ataques entre maquinas virtuales externas: la
logica inicial, basada en el primer paquete, era susceptible a condiciones de carrera e
identificaba incorrectamente victimas como atacantes.

Se desarrolld una heuristica multicapa robusta en la funcion calcular y clasificar,
siguiendo un orden de prioridad 16gico:

e Regla de Prioridad Maxima: Si la IP del IDS forma parte del flujo, se asume

categdricamente como victima.



o Analisis de Comportamiento TCP: Para flujos TCP entre maquinas externas, el
motor analiza flags de todos los paquetes. La maquina que envio el paquete SYN
inicial sin ACK es designada atacante.

o Heuristica de Puertos: Como fallback para trafico UDP o TCP ambiguo, la
maquina usando puerto alto (>1023) para conectar a puerto bajo (<1024) es
considerada atacante.

Esta logica avanzada erradico errores de identificacion, permitiendo discernir

correctamente los roles en escenarios de red complejos.
3.5.3 Funcionalidad Afiadida: Modulo de Inteligencia de Amenazas y Proteccion Web

Para extender la capacidad defensiva mdas alld del analisis de trafico local, se
implement6 un moddulo de inteligencia de amenazas que enriquece las alertas y proporciona
proteccion proactiva durante la navegacion web.

Proteccion Web con VirusTotal: Se reemplazd la consulta a URLHaus por una
integracion mas potente con la API de VirusTotal. El motor sigue detectando los dominios que
un usuario intenta visitar mediante la captura de paquetes DNS (UDP puerto 53), pero ahora
consulta a VirusTotal, que agrega los resultados de decenas de motores de antivirus y servicios
de escaneo de sitios web. Si un numero significativo de motores marca el dominio como
malicioso, la GUI genera una alerta detallada en el "Panel de Amenazas Web". Como se
observa en la Figura 3.10, esta alerta ahora incluye la razén especifica del bloqueo (p. €j., "2
motor(es) de seguridad lo marcaron como malicioso"), proporcionando al operador un contexto
claro y confiable.

Enriquecimiento de Alertas por IP: Para las amenazas detectadas por el modelo de
IA en el "Panel de Amenazas de Red", el sistema ahora realiza un paso de enriquecimiento de

datos consultando automaticamente un servicio de geolocalizacion de IP para identificar el pais



y la ciudad de origen del trafico sospechoso. Esta informacion es crucial para que los analistas

puedan evaluar rapidamente el perfil de riesgo de una amenaza y su posible procedencia.
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Figura 3.10 Interfaz Grdfica con Modulo de Inteligencia de Amenazas Integradas

La Figura 3.10 ilustra estas funcionalidades avanzadas en accion, mostrando tanto
alertas de red enriquecidas con geolocalizacion como una alerta de amenaza web basada en la

inteligencia de VirusTotal.



Capitulo 4



4 Conclusiones y recomendaciones

El presente trabajo ha culminado con el desarrollo y la validacién de un prototipo de
Sistema de Deteccion de Intrusiones (IDS) que demuestra la viabilidad y superioridad de
aplicar modelos hibridos de inteligencia artificial para la ciberseguridad en infraestructuras
criticas. La fortaleza principal del proyecto radica en su enfoque empirico, que no solo
selecciono la arquitectura de red neuronal mas eficaz (1D-CNN + LSTM) a través de una
competencia rigurosa, sino que también la implementd en una aplicacion funcional capaz de
detectar amenazas en tiempo real en un entorno de laboratorio controlado. Los resultados
obtenidos, con un F1-Score de 0.9894 y una dréstica reduccion de falsos negativos, superan a
los enfoques tradicionales y a otras arquitecturas de Deep Learning evaluadas, lo que subraya
la importancia de combinar la extraccion de caracteristicas espaciales y el andlisis de
dependencias temporales para identificar ataques complejos.

Una debilidad inherente al alcance del estudio es que la validacion se realizd en un
entorno de laboratorio virtualizado y no en una red militar operativa real, lo que constituye una
simplificacion necesaria pero limitante. No obstante, las implicaciones de este trabajo son
significativas, ya que establece una base metodologica y tecnoldgica sélida para la
modernizacion de los sistemas de defensa cibernética, demostrando que es posible crear
herramientas de seguridad auténomas, precisas y adaptables, incluso para ser desplegadas en

hardware con recursos limitados.

4.1 Conclusiones

Tras aplicar las fases de investigacion, desarrollo y validacion, se establecen las
siguientes conclusiones primordiales, directamente alineadas con los objetivos del proyecto:
e Se cumplid con el establecimiento de un marco teorico y metodologico robusto,

donde la revision bibliografica confirm6 la brecha de rendimiento de los IDS



tradicionales y la creciente relevancia de los modelos de Deep Learning. Este
analisis fundament6 la decision de experimentar con una arquitectura hibrida 1D-
CNN + LSTM, cuya hipoétesis de rendimiento superior fue posteriormente validada
por los resultados experimentales.

El proceso de desarrollo y evaluacion de modelos de inteligencia artificial fue
exitoso, seleccionando la arquitectura 1D-CNN + LSTM como la mas 6ptima. Este
modelo no solo alcanz6 las métricas de rendimiento mds altas en Accuracy
(99.64%) y F1-Score (98.94%), sino que, de manera crucial, obtuvo la menor
cantidad de Falsos Negativos. Este hallazgo es de maxima importancia en un
contexto militar, donde un ataque no detectado representa el riesgo mas catastrofico.
Se logr6 implementar un prototipo funcional de software IDS que integra el modelo
de IA seleccionado. El prototipo demostro su capacidad para capturar trafico de red
en tiempo real, procesarlo mediante el pipeline de extraccion de caracteristicas y
clasificarlo de forma auténoma, validando la viabilidad técnica de la solucion
completa mas alla de la simple evaluacion sobre un dataset estatico.

La validacion del rendimiento del prototipo en un escenario controlado fue
concluyente, logrando detectar en tiempo real un ataque de escaneo de puertos
(Nmap) y confirmando su efectividad operacional. Ademas, se demostré que el
ajuste estratégico del umbral de decision es una herramienta eficaz para fortalecer
la postura de seguridad, logrando reducir los ataques no detectados en mas de un

55% sin sacrificar de manera significativa el rendimiento general del modelo.



4.2 Recomendaciones

A partir de los hallazgos y las limitaciones identificadas durante el desarrollo del

proyecto, se proponen las siguientes recomendaciones para trabajos futuros y la mejora

continua del sistema.

Se recomienda, como siguiente paso logico, migrar el prototipo validado a una
plataforma de hardware especializado como la NVIDIA Jetson Orin Nano. Esto
implicaria evaluar de manera integral el rendimiento del modelo, el consumo de
energia y la latencia de inferencia en este dispositivo, optimizando el modelo si
fuera necesario para operar de manera eficiente en un entorno de borde con recursos
restringidos y validar su despliegue en un contexto operacional real.

Es necesario fortalecer la capacidad de generalizacion del modelo mediante la
expansion del conjunto de datos de entrenamiento. Aunque el dataset CICIDS2017
fue efectivo, se sugiere combinarlo con datasets mds recientes y diversos como
CSE-CIC-IDS2018, que ofrece una mayor variedad de escenarios de ataque, y
UNSW-NBIS5. Esta unioén de datos crearia un corpus de entrenamiento mas robusto
y, adicionalmente, se podria investigar la implementacion de técnicas de
aprendizaje en linea (online learning) para que el IDS se adapte a nuevas amenazas
sin un reentrenamiento completo.

Se sugiere ampliar la funcionalidad del sistema para realizar una transiciéon de un
Sistema de Deteccion de Intrusiones (IDS) a un Sistema de Prevencion de
Intrusiones (IPS). Esta ampliacion, de gran valor operacional, consistiria en integrar
el prototipo con sistemas de control de red, como firewalls, para que, al detectar una
amenaza, pueda generar y aplicar automaticamente reglas que bloqueen la direccion
IP del atacante, transformando la solucion de una herramienta de monitoreo pasiva

a un sistema de defensa activa.



Resulta importante enriquecer la interfaz grafica de usuario (GUI) para convertirla
en un verdadero centro de comando y control, afiadiendo mddulos de visualizacion
avanzada como mapas de topologia de red interactivos, graficos de flujo de trafico
en tiempo real y paneles de control (dashboards) mas detallados. Estas mejoras
facilitarian significativamente el analisis forense y la toma de decisiones por parte
del operador de seguridad.

Finalmente, se recomienda realizar un estudio de escalabilidad para evaluar el
despliegue de la solucion en redes mas grandes y complejas. El prototipo actual esta
disefiado para monitorear un unico segmento de red, por lo que una investigacion
futura deberia abordar arquitecturas distribuidas, donde multiples sensores IDS se
desplieguen en diferentes puntos de la red y reporten a una consola central para la

correlacion de eventos y el andlisis de amenazas a gran escala.
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Apéndice

Script 1: Entrenamiento y Evaluacion de Modelos IDS
Este script crea un IDS con inteligencia artificial. Carga y limpia datos de trafico de red, entrena
varios modelos de deep learning, selecciona el mejor, lo optimiza y finalmente, demuestra

como clasifica el trafico como seguro o como un ataque.

# SCRIPT COMPLETO DE ENTRENAMIENTO Y EVALUACION DE IDS
#

#
# PARTE 1: CONFIGURACION INICIAL DEL ENTORNO
#
print("--- PARTE 1: Configurando el entorno ---")

# Importacion de librerias esenciales
import pandas as pd
import numpy as np
import glob
import os
import seaborn as sns
import matplotlib.pyplot as plt
from google.colab import drive
from joblib import dump, load
from sklearn.model selection import train_test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import (
classification_report, confusion matrix, roc_curve, auc,

precision_recall curve, roc_auc score, fl score, accuracy_score,



precision_score, recall score
)
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import time
from tensorflow.keras.models import Sequential, load model
from tensorflow.keras.layers import (
Conv1D, LSTM, Dropout, Dense, BatchNormalization, Bidirectional, GRU
)
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.metrics import Precision, Recall

from tensorflow.keras.regularizers import 12

# Montaje de Google Drive para acceso a archivos
try:

drive.mount('/content/drive")
except Exception as e:

print(f"ERROR al montar Google Drive: {e}")

# Definicion de rutas de guardado del proyecto

RUTA_ BASE = '/content/drive/MyDrive/TESIS IDS MILITAR/PROYECTO FINAL/
RUTA DATOS PROCESADOS = os.path.join(RUTA BASE, 'l datos procesados/')
RUTA ARTEFACTOS = os.path.join(RUTA BASE, '2 artefactos_auxiliares/')

RUTA MODELOS = os.path.join(RUTA_ BASE, '3 modelos_entrenados/")
RUTA_RESULTADOS = os.path.join(RUTA_BASE, '4 resultados_evaluacion/')

# Creacion de directorios si no existen
for path in [RUTA DATOS PROCESADOS, RUTA ARTEFACTOS, RUTA_ MODELOQOS,
RUTA_RESULTADOS]:

os.makedirs(path, exist_ok=True)

print("Entorno configurado y rutas listas.\n")



#
# PARTE 2: CARGA, LIMPIEZA Y ANALISIS EXPLORATORIO DE DATOS
#

print("--- PARTE 2: Cargando, limpiando y analizando datos ---")

# Carga y combinacion de los archivos CSV del dataset CIC-IDS2017

ruta_datos crudos =
'/content/drive/MyDrive/TESIS IDS MILITAR/DATASETS/CICIDS2017/
lista_archivos_csv = glob.glob(os.path.join(ruta_datos_crudos, '*.csv'))

df = pd.concat((pd.read csv(f, low memory=False) for f in lista archivos csv),
ignore index=True)

print(f'Dataset CIC-IDS2017 cargado. Dimension inicial: {df.shape}")

# Proceso de limpieza de datos

df.columns = df.columns.str.strip() # Limpiar espacios en nombres de columnas
df.replace([np.inf, -np.inf], np.nan, inplace=True) # Reemplazar infinitos por NaN
df.dropna(inplace=True) # Eliminar filas con valores nulos
df.drop_duplicates(inplace=True) # Eliminar filas duplicadas

print(f'Limpieza completada. Dimension final: {df.shape}")

# Analisis exploratorio visual del dataset principal

plt.figure(figsize=(12, 8))

sns.countplot(y=df['Label'], order=df]'Label'].value counts().index, palette='viridis')
plt.title('Distribucion de Clases en CIC-IDS2017")

plt.xlabel('Cantidad')

plt.ylabel('Tipo de Trafico')

plt.xscale('log")

plt.tight layout()

plt.savefig(os.path.join(RUTA RESULTADOS, 'distribucion_clases cicids2017.png"))
plt.show()

print("Analisis exploratorio completado.\n")




# PARTE 3: PREPROCESAMIENTO DE DATOS PARA MACHINE LEARNING
#

print("--- PARTE 3: Preprocesando datos para el entrenamiento ---")

# Codificar la variable objetivo: 0 para BENIGN, 1 para Ataque
df['Es_Ataque'] = df['Label'].apply(lambda x: 0 if x == "'BENIGN' else 1)

# Separar caracteristicas (X) y la variable objetivo (y)
X = df.drop(columns=['Label', 'Es_Ataque']).select_dtypes(include=np.number)
y =df['Es_Ataque']

# Dividir los datos en conjuntos de entrenamiento (80%) y prueba (20%)

X train, X test, y train, y test = train test split(X, y, test size=0.2, random_state=42,
stratify=y)

print(f'Datos divididos. X train: {X train.shape}, X test: {X test.shape}")

# Estandarizar las caracteristicas numéricas
scaler = StandardScaler()

X train_scaled = scaler.fit_transform(X train)
X test scaled = scaler.transform(X_test)

print("Caracteristicas estandarizadas.")

# Guardar el escalador para uso futuro en produccion

dump(scaler, os.path.join(RUTA ARTEFACTOS, 'escalador estandar.joblib'))

# Remodelar datos para modelos recurrentes (formato 3D)

X train_reshaped = np.reshape(X_train_scaled, (X_train_scaled.shape[0], 1,
X train_scaled.shape[1]))

X test reshaped = np.reshape(X_test scaled, (X_test_scaled.shape[0], 1,
X test _scaled.shape[1]))

print("Datos remodelados a formato 3D para modelos recurrentes.\n")




# PARTE 4: DEFINICION, ENTRENAMIENTO Y EVALUACION DE MODELOS
#
print("--- PARTE 4: Entrenando y evaluando los modelos ---")

n_features = X train_scaled.shape[1]
n_timesteps = 1

early stopping = EarlyStopping(monitor='val loss', patience=5, restore_best weights=True)

# Diccionarios para almacenar resultados
histories = {}

predictions_prob = {}

# --- Modelo A: CNN-LSTM ---
print("\nEntrenando Modelo A: CNN-LSTM...")
model A = Sequential([

Conv1D(filters=64, kernel size=2, activation='relu’, padding="same",
input_shape=(n_timesteps, n_features)),

LSTM(64, activation="relu'),

Dropout(0.5),

Dense(1, activation='sigmoid')
D
model A.compile(optimizer="adam’, loss='binary_crossentropy', metrics=['accuracy’,
Precision(name="precision'), Recall(name='"recall')])
history A = model A.fit(X train_reshaped, y train, epochs=50, batch size=32,
validation_data=(X_ test reshaped, y_test), callbacks=[early stopping], verbose=1)
model A.save(os.path.join(RUTA_MODELOS, 'modelo. A CNN_LSTM.h5'"))
histories['CNN-LSTM'] = history A.history
predictions_prob['CNN-LSTM'] = model A.predict(X test reshaped)

# --- Modelo B: ANN ---

print("\nEntrenando Modelo B: ANN...")

model B = Sequential([|
Dense(128, activation="relu’, input_shape=(n_features,), kernel regularizer=12(0.001)),
Dropout(0.5), BatchNormalization(),

Dense(64, activation="relu', kernel regularizer=12(0.001)),



Dropout(0.5), BatchNormalization(),
Dense(1, activation='sigmoid')
D
model B.compile(optimizer='adam', loss="binary_crossentropy', metrics=['accuracy’,
Precision(name="precision'), Recall(name="recall')])
history B =  model B.fit(X train scaled, y train, epochs=50, batch size=64,
validation data=(X_ test scaled, y_test), callbacks=[early stopping], verbose=1)
model B.save(os.path.join(RUTA MODELOS, 'modelo B. ANN.h5'"))
histories['ANN'] = history B.history
predictions_prob['ANN'] = model B.predict(X test scaled)

# --- Modelo C: Bi-LSTM ---
print("\nEntrenando Modelo C: Bi-LSTM...")
model C = Sequential([

Bidirectional(LSTM(64, activation="relu', dropout=0.2), input shape=(n_timesteps,
n_features)),

Dense(1, activation='sigmoid')
D
model C.compile(optimizer='adam', loss="binary_crossentropy', metrics=['accuracy’,
Precision(name="precision'), Recall(name="recall")])
history C = model C.fit(X train reshaped, y train, epochs=50, batch size=64,
validation_data=(X_ test reshaped, y_test), callbacks=[early stopping], verbose=1)
model C.save(os.path.join(RUTA MODELOS, 'modelo C_BiLSTM.h5"))
histories['Bi-LSTM'] = history C.history
predictions_prob['Bi-LSTM'] = model C.predict(X test reshaped)

# --- Modelo D: Bi-GRU ---
print("\nEntrenando Modelo D: Bi-GRU...")
model D = Sequential([
Bidirectional(GRU(64, activation="relu’, dropout=0.2, return_sequences=True),
input_shape=(n_timesteps, n_features)),
Bidirectional(GRU(128, activation="relu', dropout=0.2)),
Dense(1, activation='sigmoid')

D



model D.compile(optimizer="adam’, loss='binary_crossentropy’, metrics=['accuracy’,
Precision(name="precision'), Recall(name="recall')])

history D = model D.fit(X train reshaped, y train, epochs=50, batch size=64,
validation data=(X test reshaped, y test), callbacks=[early stopping], verbose=1)

model D.save(os.path.join(RUTA_ MODELOS, 'modelo D BiGRU.hS5'))
histories['Bi-GRU'] = history D.history

predictions_prob['Bi-GRU'] = model D.predict(X test reshaped)

print("\nEntrenamiento de todos los modelos completado.\n")

#
#PARTE 5: COMPARACION DE RENDIMIENTO DE LOS MODELOS
#
print("--- PARTE 5: Comparando el rendimiento de los modelos ---")

# Generar tabla comparativa de métricas
predictions _class = {name: (prob > 0.5).astype(int) for name, prob in
predictions_prob.items()}
metrics data =[]
for name, y pred in predictions_class.items():
metrics _data.append({
'Modelo'": name,
'Accuracy': accuracy score(y_test, y pred),
'"Precision': precision_score(y_test, y pred),
'Recall': recall_score(y test, y pred),
'F1-Score': f1_score(y_test, y pred)
1)
df metrics = pd.DataFrame(metrics_data).set _index('Modelo')
print("\n--- Tabla Comparativa de Métricas (Umbral 0.5) ---")

print(df metrics)

# Visualizar métricas con un mapa de calor

plt.figure(figsize=(10, 6))



sns.heatmap(df metrics, annot=True, fmt=".4f", cmap="Y1GnBu", linewidths=.5)
plt.title("Heatmap Comparativo de Métricas de Rendimiento')
plt.savefig(os.path.join(RUTA_ RESULTADOS, 'comparacion_heatmap metricas.png'))
plt.show()

# Superponer curvas ROC de todos los modelos

plt.figure(figsize=(12, 8))

for name, y_prob in predictions prob.items():
fpr, tpr, =roc_curve(y_test, y prob)
roc_auc = auc(fpr, tpr)

plt.plot(fpr, tpr, Iw=2, label=f'{name} (AUC = {roc_auc:.4f})")

plt.plot([0, 1], [0, 1], color="navy', Iw=2, linestyle='"--")

plt.xlabel('Tasa de Falsos Positivos (FPR)")

plt.ylabel('Tasa de Verdaderos Positivos (TPR)")

plt.title('Curvas ROC Comparativas')

plt.legend(loc="lower right')

plt.grid(True)

plt.savefig(os.path.join(RUTA RESULTADOS, 'comparacion_curvas_roc.png'))
plt.show()

print("Comparacion de modelos completada.\n")

#
# PARTE 6: EVALUACION FINAL DEL MEJOR MODELO Y PROTOTIPO
#
print("--- PARTE 6: Evaluacion final del mejor modelo (CNN-LSTM) y prototipo ---")

# Cargar el modelo seleccionado (Modelo A: CNN-LSTM)
modelo_final = load _model(os.path.join(RUTA _MODELOS, 'modelo A CNN_LSTM.h5"))
print("Modelo final cargado.")

# Obtener probabilidades y aplicar umbral calibrado
y_probabilidades_final = predictions_prob['CNN-LSTM']



UMBRAL FINAL =0.2
y_predicciones_final = (y_probabilidades_final >= UMBRAL_ FINAL).astype(int)
print(f"Predicciones realizadas con umbral calibrado de {UMBRAL_ FINAL}.")

# Mostrar reporte de clasificacion final
print("\n--- Reporte de Clasificacion del Modelo Final (Umbral Calibrado) ---")

print(classification_report(y_test, y _predicciones_final, target names=['Benigno', 'Ataque']))

# Generar visualizacion final (Matriz de Confusion y Curvas)

fig, axes = plt.subplots(1, 3, figsize=(24, 7))

fig.suptitle(fEvaluacion Exhaustiva del Modelo Final (CNN-LSTM con Umbral
{UMBRAL FINAL})', fontsize=16)

# Grafico 1: Matriz de Confusion

cm = confusion matrix(y_test, y_predicciones_final)

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=axes[0], cbar=False,
xticklabels=['Pred. Benigno', 'Pred. Ataque'],
yticklabels=['Real Benigno', 'Real Ataque'])

axes[0].set_title('Matriz de Confusion')

# Grafico 2: Curva ROC

fpr, tpr, =roc_curve(y_test, y probabilidades final)

roc_auc = auc(fpr, tpr)

axes[1].plot(fpr, tpr, color="darkorange', Iw=2, label=f'Curva ROC (AUC = {roc_auc:.4f})')
axes[1].plot([0, 1], [0, 1], color="navy', linestyle='--")

axes[1].set_title('Curva ROC")
[

axes[1].legend(loc="lower right")

# Grafico 3: Curva Precision-Recall

precision, recall, = precision_recall curve(y test, y probabilidades final)

pr_auc = auc(recall, precision)

axes[2].plot(recall, precision, color="blue’, Iw=2, label=f'Curva P-R (AUC = {pr_auc:.4f})")
axes[2].set_title('Curva Precision-Recall’)

axes[2].legend(loc="best")



plt.tight layout(rect=[0, 0.03, 1, 0.95])
plt.savefig(os.path.join(RUTA_ RESULTADOS,
'evaluacion_final modelo_seleccionado.png'))

plt.show()

# --- Simulacion del prototipo funcional ---

print("\n--- Simulacién del Prototipo IDS ---")

def clasificar_trafico(datos nuevos 2d):
"""Funcién que toma datos 2D, los escala, los remodela a 3D y predice."""
if datos_nuevos 2d.ndim == 1:

datos nuevos 2d = datos nuevos 2d.reshape(1, -1)

# El escalador ya esté ajustado, solo transformamos
datos_escalados = scaler.transform(datos_nuevos_2d)
datos reshaped @ =  np.reshape(datos_escalados, (datos_escalados.shape[0], 1,

datos_escalados.shape[1]))

probabilidad = modelo_final.predict(datos_reshaped, verbose=0)

if probabilidad[0][0] >= UMBRAL FINAL:
return  f'jjj ALERTA DE ATAQUE DETECTADO !!! (Confianza:
{probabilidad[0][0]:.2%})"
else:

return f"Trafico Benigno (Confianza de ataque: {prob.squeeze():.2%})"

# Tomar una muestra de ataque y una benigna de los datos originales (antes de escalar)
trafico_benigno nuevo = X _test.iloc[np.where(y_test == 0)[0][0]]
trafico_ataque nuevo = X _test.iloc[np.where(y_test == 1)[0][0]]

print(f" Analizando Flujo 1 (Benigno):
{clasificar_trafico(trafico_benigno nuevo.to numpy())}")

print(f'Analizando Flujo 2 (Ataque): {clasificar trafico(trafico ataque nuevo.to numpy())}")



print("\n ")
print("SCRIPT FINALIZADO.")
print(" n)

Script 2: detector_ids_motor.py (Motor de Deteccion del IDS)

Esta es la logica central y reutilizable del IDS, encapsulada en una clase (IDSEngine). Este
motor esta disefiado para ser controlado por una aplicacion externa, como una interfaz grafica.
Maneja la captura de paquetes, la deteccion de amenazas de red y web, la geolocalizacion de

IPs y la comunicacion de alertas de forma asincrona.

import numpy as np

import tensorflow as tf

from joblib import load

from scapy.all import sniff, IP, TCP, UDP, DNS, DNSQR
import time

import threading

from datetime import datetime

import warnings

import requests

try:
import geoip2.database
except ImportError:

geoip2 = None

warnings.filterwarnings('ignore")

tf.get logger().setLevel'ERROR")

class IDSEngine(threading. Thread):

nmnn

Clase que encapsula el motor de deteccion de intrusiones para operar en segundo plano.

nmnn



def _ init (self, interfaz, umbral, log queue, blocklist, geoip path, modelo path,
scaler path, local ip=None):
nmn
Inicializa el motor con todos los parametros de configuracion necesarios,

incluyendo la interfaz, el modelo, el escalador y la cola para comunicacion.

nmn

super(). init_ ()

self.interfaz = interfaz
self.umbral = umbral
self.log_queue = log_queue
self.blocklist = blocklist
self.geoip path = geoip path
self.modelo_path = modelo path
self.scaler path = scaler path

self.local ip = local ip

self.geoip reader = None

self.modelo = None

self.escalador = None

self.seguir capturando = True

self.flujos_activos = {}

self.last api call time =0

self. FLUJO TIMEOUT = 30

self.IDLE THRESHOLD =1_000_000

self.nombres_features = [
'Destination Port', 'Flow Duration', 'Total Fwd Packets', 'Total Backward Packets',
'"Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length

Max',

'Fwd Packet Length Min', 'Fwd Packet Length Mean', 'Fwd Packet Length Std',
'Bwd Packet Length Max', 'Bwd Packet Length Min', 'Bwd Packet Length Mean',
'Bwd Packet Length Std', 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean',
'Flow IAT Std', 'Flow IAT Max', 'Flow IAT Min', 'Fwd IAT Total', 'Fwd IAT Mean',
'Fwd IAT Std', 'Fwd IAT Max', 'Fwd IAT Min', 'Bwd IAT Total', 'Bwd IAT Mean',
'Bwd IAT Std', 'Bwd IAT Max', 'Bwd IAT Min', 'Fwd PSH Flags', 'Bwd PSH Flags',



'Fwd URG Flags', 'Bwd URG Flags', 'Fwd Header Length', 'Bwd Header Length',
'Fwd Packets/s', 'Bwd Packets/s', 'Min Packet Length', '"Max Packet Length',
'Packet Length Mean', 'Packet Length Std', 'Packet Length Variance',

'FIN Flag Count', 'SYN Flag Count', 'RST Flag Count', 'PSH Flag Count',
'ACK Flag Count', "URG Flag Count', 'CWE Flag Count', 'ECE Flag Count',
'Down/Up Ratio', 'Average Packet Size', 'Avg Fwd Segment Size',

'Avg Bwd Segment Size', 'Fwd Header Length.1', 'Fwd Avg Bytes/Bulk',
'Fwd Avg Packets/Bulk', 'Fwd Avg Bulk Rate', 'Bwd Avg Bytes/Bulk',
'Bwd Avg Packets/Bulk’, 'Bwd Avg Bulk Rate', 'Subflow Fwd Packets',
'Subflow Fwd Bytes', 'Subflow Bwd Packets', 'Subflow Bwd Bytes',

'Init Win_bytes forward', 'Init Win_bytes backward', 'act data pkt fwd',
'min_seg size forward', 'Active Mean', 'Active Std', 'Active Max',

'Active Min', 'Idle Mean', 'Idle Std', 'Idle Max', 'Idle Min'

def cargar activos(self):

nmnn

"""Carga el modelo de IA, el escalador y la base de datos de geolocalizacion.
try:
self.log_queue.put("INFO: Cargando activos del IDS...")
self.modelo = tf.keras.models.load model(self.modelo path)
self.escalador = load(self.scaler path)
self.log_queue.put("INFO: ;Modelo y escalador cargados!")
except Exception as e:
self.log_queue.put(f"ERROR: No se pudieron cargar modelo/escalador: {e}")

return False

if geoip2 is None:
self.log_queue.put("ADVERTENCIA: Libreria 'geoip2' no instalada.")

return True

try:
self.geoip reader = geoip2.database.Reader(self.geoip path)
self.log_queue.put("INFO: Base de datos de Geolocalizacion cargada.")

except FileNotFoundError:



self.log_queue.put(f"ADVERTENCIA: No se encontro '{self.geoip path}'.")

return True

def verificar dominio(self, dominio, ip local):
"""Consulta la API de VirusTotal para verificar si un dominio es malicioso."""
if dominio.endswith((".local', '.localdomain')) or "' not in dominio:

return

ahora = time.time()
if ahora - self.last api call time < 15:
return

self.last_api call time = ahora

api_key = "126f1995f571¢4577509da7d35038464fbcb0d39378bdf109¢e7accc040e238af™
ifapi_key =="AQUI VA TU CLAVE DE API DE VIRUSTOTAL":
self.log queue.put("ADVERTENCIA: La clave de API de VirusTotal no ha sido
configurada.")

return

url = f"https://www.virustotal.com/api/v3/domains/{dominio}"

headers = {"x-apikey": api_key}

try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
stats = response.json().get('data’, {}).get(‘attributes', {}).get('last analysis_stats', {})
malicious_votes = stats.get('malicious', 0)
if malicious_votes > 0:
razon = "' {malicious_votes} motor(es) lo marcaron como malicioso."
mensaje = {'tipo": 'WEB_ALERT', 'dominio": dominio, 'razon'": razon, 'ip_local':
ip_local}
self.log_queue.put(mensaje)
except requests.RequestException as e:

self.log_queue.put(f"INFO: No se pudo contactar con la API de VirusTotal: {e}")



def geolocate ip(self, ip):
"""Obtiene la geolocalizacion (ciudad, pais) de una direccion IP publica."""
if not self.geoip reader or not ip or ip.startswith(('192.168.", '10.", '172.16.")):
return "N/A (IP Privada)"
try:
response = self.geoip reader.city(ip)
city = response.city.name or "
country = response.country.name or "
return "' {city}, {country}".strip(", ")
except geoip2.errors.AddressNotFoundError:

return "N/A (No Encontrada)"

# --- LOGICA PRINCIPAL DE CAPTURA Y PROCESAMIENTO ---

def run(self):
Meétodo principal del hilo. Carga los activos y entra en un bucle de
captura de paquetes y revision de timeouts hasta que se le indique parar.
if not self.cargar activos():
self.log_queue.put("ERROR: El motor no puede iniciar.")
return
self.log queue.put(f"INFO: Iniciando escucha en '{self.interfaz}'...")
while self.seguir_capturando:
try:
sniff(iface=self.interfaz, prn=self.procesar paquete, store=0, timeout=5)
self.revisar _timeouts()
except Exception as e:
self.log_queue.put(f"ERROR en sniff: {e}")
time.sleep(2)
self.limpieza_final()

self.log _queue.put("INFO: El motor de captura se ha detenido.")



def stop(self):
"""Sefial para detener el bucle de captura de forma segura."""
self.log_queue.put("INFO: Sefial de detencion recibida...")

self.seguir capturando = False

def limpieza final(self):
"""Procesa los flujos que quedaron activos al momento de detener el motor."""
self.log_queue.put("INFO: Limpiando flujos restantes...")
for id_flujo in list(self.flujos_activos.keys()):

self.calcular y clasificar(id_flujo, "Cierre del programa")

def crear id flujo(self, paquete):
"""Crea un identificador unico para un flujo de red."""
if IP in paquete and (TCP in paquete or UDP in paquete):
proto = "TCP" if TCP in paquete else "UDP"
ip_o, ip_d = sorted((paquete[IP].src, paquete[IP].dst))
if ip_o == paquete[IP].src:
p_o, p_d = paquete.sport, paquete.dport
else:
p_o, p_d = paquete.dport, paquete.sport
return f'{ip o}:{p o}-{ip_d}:{p _d}-{proto}"

return None

def calcular y clasificar(self, id flujo, razon_cierre):
Extrae las caracteristicas de un flujo terminado, determina la IP del
potencial atacante y envia los datos al clasificador.
hora_actual = datetime.now()
flujo = self.flujos_activos.pop(id_flujo, None)
if not flujo or len(flujo['paquetes']) < 2:

return

features = {name: 0.0 for name in self.nombres_features}



lista_paquetes = flujo['paquetes']

ip_atacante = "Desconocida"
ip_victima = "Desconocida"
try:
partes_id = 1id_flujo.split('-)
ipl_str, pl_str = partes_id[0].split(":")
ip2_str, p2_str = partes_id[1].split(":")
pl, p2 =int(pl_str), int(p2_str)

if self.local ip and self.local ip in [ipl_str, ip2_str]:
ip_victima = self.local ip
ip_atacante = ip2_str if ipl_str ==ip_victima else ipl_str
else:

ip_atacante = flujo['ip_cliente']

features['Destination Port'] = p1 if ipl str ==1ip victima else p2
except Exception:

pass

paquetes fwd = [p for p in lista_paquetes if p['direccion'] == 'fwd']
paquetes bwd = [p for p in lista_paquetes if p['direccion'] == 'bwd']
duracion_s = flujo['ultimo_timestamp'] - flujo['timestamp _inicio']
features['Flow Duration'] = duracion s * 1 _000 000
features['Total Fwd Packets'] = len(paquetes fwd)

features['Total Backward Packets'] = len(paquetes bwd)

longitudes = [p['longitud'] for p in lista_paquetes]
longitudes fwd = [p['longitud'] for p in paquetes_fwd]
longitudes bwd = [p['longitud'] for p in paquetes _bwd]

features['Total Length of Fwd Packets'] = float(sum(longitudes fwd))
features['Total Length of Bwd Packets'] = float(sum(longitudes bwd))
if longitudes_fwd:



features['Fwd Packet Length Max'] = float(np.max(longitudes fwd))

features['Fwd Packet Length Min'] = float(np.min(longitudes _fwd))

features['Fwd Packet Length Mean'] = float(np.mean(longitudes_fwd))

features['Fwd  Packet Length Std'] = float(np.std(longitudes fwd)) if
len(longitudes fwd) > 1 else 0.0

if longitudes_bwd:

features['Bwd Packet Length Max'] = float(np.max(longitudes bwd))

features['Bwd Packet Length Min'] = float(np.min(longitudes bwd))

features['Bwd Packet Length Mean'] = float(np.mean(longitudes bwd))

features['Bwd  Packet Length Std'] = float(np.std(longitudes bwd)) if
len(longitudes bwd) > 1 else 0.0

if duracion_s > le-6:
features['Flow Bytes/s'] = sum(longitudes) / duracion_s

features['Flow Packets/s'] = len(lista_paquetes) / duracion_s

timestamps = sorted([p['timestamp'] for p in lista_paquetes])
iats = np.diff(timestamps) * 1 _000 000
if len(iats) > O:
features['Flow IAT Mean'] = float(np.mean(iats))
features['Flow IAT Std'] = float(np.std(iats)) if len(iats) > 1 else 0.0
features['Flow IAT Max'] = float(np.max(iats))
features['Flow IAT Min'] = float(np.min(iats))

features array = np.array([features.get(name, 0.0) for name in self.nombres_features))

self.clasificar flujo(features array, ip atacante, hora actual)

def clasificar_flujo(self, features, ip_atacante, timestamp):
Usa el modelo para predecir la probabilidad de ataque y, si supera el umbral,
envia una alerta formateada a la cola de mensajes.
if features.ndim == 1: features = features.reshape(1, -1)

features_scaled = self.escalador.transform(features)



features reshaped = np.reshape(features scaled, (features scaled.shape[0], 1,
features_scaled.shape[1]))
probabilidad = self.modelo.predict(features_reshaped, verbose=0)[0][0]
if probabilidad >= self.umbral:
geo_info = self. geolocate ip(ip_atacante)
mensaje = {"tipo": "ALERTA", "ip": ip_atacante, "confianza": f" {probabilidad:.2%}",
"geo": geo info, "timestamp": timestamp}

self.log_queue.put(mensaje)

def procesar_paquete(self, paquete):
Funcion 'callback' para cada paquete. Intercepta consultas DNS para
verificar dominios y agrupa el resto de paquetes en flujos.
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if IP not in paquete: return

if paquete.haslayer(DNS) and paquete.haslayer(DNSQR) and UDP in paquete and
paquete[UDP].dport == 53:
try:
dominio = paquete[ DNSQR].qname.decode().rstrip('.")
ip_solicitante = paquete[IP].src
verificador thread = threading. Thread(target=self.verificar dominio,
args=(dominio, ip_solicitante), daemon=True)
verificador thread.start()
except Exception:

pass

if paquete[IP].src in self.blocklist or paquete[IP].dst in self.blocklist: return

id_flujo = self.crear_id_flujo(paquete)

if not id_flujo: return

timestamp_actual = float(paquete.time)



ifid_flujo not in self.flujos_activos:
self.flujos_activos[id_flujo] = {
'paquetes': [], 'timestamp _inicio'": timestamp_actual,

'ip_cliente': paquete[IP].src, "‘protocolo'’: "TCP" if TCP in paquete else "UDP"

flujo = self.flujos_activos[id flujo]

flujo['ultimo_timestamp'] = timestamp _actual

direccion = 'fwd' if paquete[IP].src == flujo['ip_cliente'] else 'bwd'

flags str = str(paquete[ TCP].flags) if TCP in paquete else "

info_paquete = {'timestamp': timestamp_actual, 'longitud': len(paquete), 'flags': flags_str,
'direccion': direccion}

flujo['paquetes'].append(info_paquete)

if flujo['protocolo'] == "TCP" and ('F' in flags_str or 'R’ in flags_str):
ifid_flujo in self.flujos_activos:

self.calcular y clasificar(id flujo, "Flag FIN/RST")

def revisar _timeouts(self):
"""Finaliza y procesa los flujos inactivos."""
timestamp_actual = time.time()
flujos _a eliminar = [id for id, flujo in self.flujos_activos.items() if timestamp actual -
flyjo['ultimo_timestamp'] > self. FLUJO TIMEOUT]
for id_flujo in flujos_a eliminar:
if id_flujo in self.flujos_activos:

self.calcular y clasificar(id flujo, f'"Timeout ({self FLUJO_TIMEOUT}s)")

Script 3: gui_ids.py (Interfaz Grafica de Usuario con Tkinter)
Este script crea una interfaz grafica de usuario (GUI) utilizando la libreria Tkinter. Permite al

usuario controlar el motor del IDS (IDSEngine), visualizar alertas de red y web en tiempo real,



gestionar listas blancas, ver un historial de alertas y realizar acciones como bloquear IPs o

buscar informacion adicional.

import tkinter as tk

from tkinter import scrolledtext, messagebox, ttk, filedialog
import threading

import queue

import psutil

import os

import subprocess

import sqlite3

from datetime import datetime

import re

from ipaddress import ip_interface

try:

import whois
except ImportError: whois = None
try:

import geoip2.database

except ImportError: geoip2 = None

from detector ids_motor import IDSEngine

class App:
def init_ (self, root):
Constructor de la aplicacion. Inicializa la ventana principal, las variables de estado,
la base de datos, las listas blanca/negra y llama a la creacion de widgets.
self.root = root
self.root.title("IDS Prototipo Militar - Centro de Comando v4")
self.root.geometry("1200x800")

self.ids_thread, self.db_conn = None, None



self.log_queue = queue.Queue()

self.threat widgets, self.threat counts = {}, {}

self.web threat widgets = {}

self.whitelist file, self.blocklist file = "lista blanca.txt", "lista_negra.txt"
self.whitelist = self. load list from_file(self.whitelist file)
self.blocklist = self. load list from_file(self.blocklist file)
self.machine ip = None

self.local network ips = set()

self.web_threat frame = None

self. setup database()

self.create widgets()

self.process log queue()

def setup database(self):

nan

"""Conecta o crea la base de datos SQLite para almacenar el historial de alertas.
try:
self.db_conn = sqlite3.connect('historial alertas.db', check same thread=False)
cursor = self.db_conn.cursor()
cursor.execute('CREATE TABLE IF NOT EXISTS alertas (id INTEGER PRIMARY
KEY AUTOINCREMENT, timestamp TEXT, ip atacante TEXT, confianza TEXT,
geolocalizacion TEXT)')
self.db_conn.commit()
self.log_queue.put("INFO: Base de datos de alertas lista.")
except Exception as e: self.log_queue.put(f'ERROR: No se pudo configurar la base de
datos: {e}")

# --- FUNCIONES AUXILIARES DE MANEJO DE ARCHIVOS ---
def load list from_file(self, filename):

"""Carga una lista (blanca o negra) desde un archivo de texto."""
if not os.path.exists(filename):

with open(filename, 'w') as f: pass

return set()
try:

with open(filename, 't') as f: return set(line.strip() for line in f if line.strip())



except Exception as e:
self.log_queue.put(f'ERROR: No se pudo leer {filename}: {e}")

return set()

def add ip to file(self, ip, filename):

nmn

""" Afiade una direccion IP a un archivo de texto.
try:
with open(filename, 'a') as f: f.write(ip + "\n')
os.chmod(filename, 00666)
except Exception as e: self.log_queue.put(f"ERROR: No se pudo escribir en {filename}:

e

# --- CREACION Y CONFIGURACION DE LA INTERFAZ GRAFICA ---
def create_widgets(self):
"""Define y organiza todos los elementos visuales de la aplicacion (botones, paneles,
etc.)."""
top_frame = ttk.Frame(self.root, padding="10 5 10 5")
top_frame.pack(fill=tk.X)
main_paned window = ttk.PanedWindow(self.root, orient=tk. HORIZONTAL)
main_paned window.pack(fill=tk. BOTH, expand=True, padx=10, pady=10)

ttk.Label(top_frame, text="Interfaz:").pack(side=tk. LEFT, padx=(0, 5))

try: self.interfaces = [iface for iface in psutil.net_if addrs().keys() if iface !="l0']

except: self.interfaces = []

self.iface var = tk.StringVar(value=self.interfaces[0] if self.interfaces else "")

self.iface_menu = ttk.Combobox(top frame, textvariable=self.iface var,
values=self.interfaces, state="readonly", width=15)

self.iface_menu.pack(side=tk. LEFT, padx=5)

self.start_button = ttk.Button(top_frame, text="Iniciar Captura", command=self.start ids)

self.start_button.pack(side=tk. LEFT, padx=10)

self.stop_button = ttk.Button(top_frame, text="Detener Captura",
command=self.stop ids, state=tk. DISABLED)

self.stop button.pack(side=tk. LEFT)



self.export_button = ttk.Button(top_frame, text="Exportar Registro",
command=self.export_log)

self.export_button.pack(side=tk. RIGHT, padx=5)

self.whitelist button = ttk.Button(top frame, text="Gestionar Lista Blanca",
command=self.show_whitelist window)

self.whitelist_button.pack(side=tk. RIGHT, padx=5)

self.history button = ttk.Button(top frame, text="Ver Historial de Alertas",
command=self.show history window)

self.history button.pack(side=tk.RIGHT, padx=5)

log frame = ttk.Frame(main paned window, padding=5)

ttk.Label(log frame, text="Registro de Actividad", font=("Helvetica", 12,
'bold'")).pack(anchor=tk.W)

self.log text = scrolledtext.ScrolledText(log_frame, wrap=tk. WORD,
state=tk. DISABLED, font=("Consolas", 9))

self.log text.pack(fill=tk. BOTH, expand=True, pady=5)

self.log text.tag config(‘alerta’, foreground="red', font=("Helvetica', 9, 'bold"))

self.log_text.tag config(‘info’', foreground="blue")

self.log text.tag config(‘exito', foreground='green')

main_paned window.add(log_frame, weight=3)

right pane = ttk.PanedWindow(main_paned window, orient=tk. VERTICAL)

net threat container = ttk.Frame(right pane, padding=5)

ttk.Label(net threat container, text="Panel de Amenazas de Red", font=("Helvetica", 12,
'bold")).pack(anchor=tk.W)

canvas_net = tk.Canvas(net threat container, borderwidth=0, highlightthickness=0)

scrollbar_net = ttk.Scrollbar(net_threat container, orient="vertical",
command=canvas_net.yview)

self.threat frame = ttk.Frame(canvas_net)

self.threat frame.bind("<Configure>", lambda e:
canvas_net.configure(scrollregion=canvas_net.bbox("all")))

canvas_net.create window((0, 0), window=self.threat frame, anchor="nw"

canvas_net.configure(yscrollcommand=scrollbar net.set)



canvas_net.pack(side=tk.LEFT, fill=tk. BOTH, expand=True)
scrollbar_net.pack(side=tk.RIGHT, fill=tk.Y)
right pane.add(net threat container, weight=1)

web_threat container = ttk.Frame(right pane, padding=>5)

ttk.Label(web_threat container, text="Panel de Amenazas Web", font=("Helvetica", 12,
'bold")).pack(anchor=tk.W)

canvas_web = tk.Canvas(web_threat container, borderwidth=0, highlightthickness=0)

scrollbar web = ttk.Scrollbar(web_threat container, orient="vertical",
command=canvas_web.yview)

self.web_threat frame = ttk.Frame(canvas web)

self.web threat frame.bind("<Configure>", lambda e:
canvas_web.configure(scrollregion=canvas_web.bbox("all")))

canvas_web.create window((0, 0), window=self.web_threat frame, anchor="nw")

canvas_web.configure(yscrollcommand=scrollbar web.set)

canvas_web.pack(side=tk.LEFT, fill=tk. BOTH, expand=True)

scrollbar_web.pack(side=tk. RIGHT, fill=tk.Y)

right pane.add(web_threat container, weight=1)

main_paned window.add(right pane, weight=1)

self.status_var = tk.StringVar(value="Estado: Detenido")

self.statusbar = ttk.Label(self.root, textvariable=self.status var, relief=tk. SUNKEN,
anchor=tk.W, padding=2)

self.statusbar.pack(side=tk. BOTTOM, fill=tk.X)

# --- VENTANAS ADICIONALES Y GESTION DE WIDGETS ---

def update web_threat(self, ip_local, dominio, razon):
"""Crea o actualiza un widget en el panel de amenazas web."""
if dominio in self.web_threat widgets:
widget dict = self.web threat widgets[dominio]
widget dict['count'] +=1

label text = (f"IP Local: {ip_local}\nSitio Peligroso: {dominio}\n"



f'"Razon: {razon} | Alertas: {widget dict['count']}")
widget dict['label'].config(text=label text)
else:
web_threat widget = ttk.Frame(self.web threat frame, padding=5, relief=tk. RIDGE,
borderwidth=1)
web_threat widget.pack(fill=tk.X, pady=2, padx=2)
style = ttk.Style()
style.configure('WebAlert. TFrame', background="light salmon'")
web_threat widget.config(style="WebAlert. TFrame')
count = 1
label text = (f"IP Local: {ip_local}\nSitio Peligroso: {dominio}\n"
f"Razon: {razon} | Alertas: {count}")
info_label = ttk.Label(web threat widget, text=label text, font=("Helvetica", 10),
background="light salmon'")
info_label.pack(side=tk.LEFT, expand=True, fill=tk.X, anchor=tk.W)
self.web threat widgets[dominio] = {'frame': web threat widget, 'label": info label,

'count': count}

def show whitelist window(self):

"""Muestra una nueva ventana para afadir o quitar IPs de la lista blanca."""
wl window = tk.Toplevel(self.root)
wl_window.title("Gestionar Lista Blanca")
wl_window.geometry("400x350")

wl_window.transient(self.root)

wl window.grab_set()

frame = ttk.Frame(wl window, padding="10")

frame.pack(fill="both", expand=True)

list_frame = ttk.Frame(frame)

list_frame.pack(fill="both", expand=True, pady=5)

listbox = tk.Listbox(list_frame, selectmode=tk.SINGLE)
listbox.pack(side=tk.LEFT, fill="both", expand=True)

scrollbar = ttk.Scrollbar(list frame, orient="vertical", command=listbox.yview)

scrollbar.pack(side=tk.RIGHT, fill="y")



listbox.config(yscrollcommand=scrollbar.set)

for ip in sorted(list(self.whitelist)): listbox.insert(tk. END, ip)

entry frame = ttk.Frame(frame)

entry frame.pack(fill="x", pady=>5)

ttk.Label(entry frame, text="IP a afadir:").pack(side=tk. LEFT)
ip_entry = ttk.Entry(entry frame)

ip_entry.pack(side=tk.LEFT, fill="x", expand=True, padx=5)

def add _ip():
ip = ip_entry.get().strip()
if ip and ip not in self.whitelist:
self.whitelist.add(ip)
listbox.insert(tk. END, ip)
ip_entry.delete(0, tk. END)
self.log queue.put(f"INFO: {ip} afiadida a la lista blanca.")
add_button = ttk.Button(entry frame, text="Afadir", command=add ip)
add button.pack(side=tk.LEFT)

def remove ip():
selected = listbox.curselection()
if selected:
selected ip = listbox.get(selected[0])
if messagebox.askyesno("Confirmar", f"';Quitar {selected ip} de la lista blanca?",
parent=wl_window):
self.whitelist.remove(selected ip)
listbox.delete(selected[0])

self.log_queue.put(f"'INFO: {selected ip} quitada de la lista blanca.")

defsave and close():
try:
with open(self.whitelist file, 'w') as f:
for ip in sorted(list(self.whitelist)): f.write(ip + "\n')
self.log_queue.put(f"EXITO: Lista blanca guardada en '{self.whitelist_file}".")



wl window.destroy()
except Exception as e:
messagebox.showerror("Error al Guardar", f"No se pudo escribir en el archivo: {e}",

parent=wl_window)

button frame = ttk.Frame(frame)

button frame.pack(fill="x", pady=10)

remove button = ttk.Button(button _frame, text="Quitar Seleccionada",
command=remove_ip)

remove_button.pack(side=tk. LEFT, expand=True)

save_ button = ttk. Button(button_frame, text="Guardar y Cerrar",
command=save and close)

save button.pack(side=tk.RIGHT, expand=True)

def show history window(self):
"""Muestra una ventana con el historial de alertas consultando la base de datos."""
history window = tk.Toplevel(self.root)
history window.title("Historial de Alertas")
history window.geometry("800x500")

frame = ttk.Frame(history window, padding="10")
frame.pack(fill="both", expand=True)

cols = ('ID', 'Timestamp', 'IP Atacante', 'Confianza', 'Geolocalizacion')
tree = ttk. Treeview(frame, columns=cols, show="headings')
for col in cols: tree.heading(col, text=col)

tree.pack(fill="both", expand=True)

def populate tree():
for i in tree.get children(): tree.delete(i)
try:
cursor = self.db_conn.cursor()
cursor.execute("SELECT * FROM alertas ORDER BY timestamp DESC")

for row in cursor.fetchall(): tree.insert("", "end", values=row)



except Exception as e:
messagebox.showerror("Error", f'No se pudo leer el historial: {e}",

parent=history window)

refresh button = ttk.Button(frame, text="Refrescar", command=populate tree)
refresh button.pack(pady=10)
populate_tree()

# --- FUNCIONES DE LOGICA Y CONTROL DEL IDS ---

def get interface details(self, iface):
"""Obtiene la IP de la maquina y las IPs de la red local para evitar falsos positivos."""
self.machine ip = None
self.local network ips = set()
self.log_queue.put(f"INFO: Obteniendo detalles de la interfaz '{iface}'...")
try:
result = subprocess.run(["ip", "address", "show", "dev", iface], capture output=True,
text=True, check=True)
inet_line = re.search(r"inet ([\d\.]+/\d+)", result.stdout)

if not inet_line: return

interface = ip_interface(inet line.group(1))

self.machine ip = str(interface.ip)

net = interface.network

self.local network ips.add(self.machine ip)

self.local network ips.add(str(net.network address))

self.local network ips.add(str(net.broadcast address))

self.log_queue.put(f"INFO: IP de la maquina: {self.machine ip}")
except Exception as e:

self.log_queue.put(f'ERROR al obtener detalles de la interfaz: {e}")

def update threat(self, ip, confianza, geo):
"""Crea o actualiza un widget en el panel de amenazas de red."""

if ip in self.whitelist or ip in self.local network ips: return



if ip not in self.threat widgets:
self.threat widgets[ip] = {'count': 0}
ip_frame = ttk.Frame(self.threat frame, padding=>5, relief=tk. RIDGE, borderwidth=1)
ip_frame.pack(fill=tk.X, pady=2, padx=2)

label text = f"IP: {ip} ({geo})\nConfianza: {confianza} | Alertas: 1"
info_label = ttk.Label(ip _frame, text=label text, font=("Helvetica", 10))
info_label.pack(side=tk.LEFT, expand=True, fill=tk.X, anchor=tk.W)

safe_button = ttk.Button(ip frame, text="No Malicioso", command=lambda i=ip:
self.mark as safe(i))

safe_button.pack(side=tk.RIGHT, padx=2)

block button = ttk.Button(ip_frame, text="Bloquear", command=lambda i=ip:
self.block _ip(1))

block button.pack(side=tk.RIGHT, padx=2)

info_button = ttk.Button(ip_frame, text="Madas Info", command=lambda i=ip:
self.get_ip_info(i))

info_button.pack(side=tk. RIGHT, padx=2)

self.threat widgets[ip].update({'frame": ip frame, 'label: info label, 'buttons":
[block button, info button, safe button]})

self.threat widgets[ip]['count'] += 1

label text = f'IP:  {ip}  ({geo})\nConfianza: {confianza} | Alertas:
{self.threat widgets[ip]['count']}"

self.threat widgets[ip]['label'].config(text=label text)

# --- ACCIONES DEL USUARIO ---

def mark as safe(self, ip):
"""Afiade una IP a la lista blanca y deshabilita sus botones en la GUIL."""
self.whitelist.add(ip)
self. add ip to file(ip, self.whitelist_file)



self.log_queue.put(f"INFO: IP {ip} marcada como no maliciosa.")
if ip in self.threat widgets:
style = ttk.Style()
style.configure(f'Safe. {ip}.TFrame', background='pale green')
self.threat widgets[ip]['frame'].config(style=f'Safe.{ip}.TFrame")
for button in self.threat widgets[ip]['buttons']: button.config(state=tk. DISABLED)

def block ip(self, ip):
"""Usa 'iptables' para bloquear una IP en el firewall del sistema.
self.blocklist.add(ip)
self. add ip to_file(ip, self.blocklist file)
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try:
subprocess.run(['sudo’, 'iptables’, -A', INPUT", '-s', ip, '-j', 'DROP'], check=True)
self.log_queue.put(f'EXITO: IP {ip} bloqueada en el firewall.")
messagebox.showinfo("Firewall", f'La IP {ip} ha sido bloqueada.")

except Exception as e:
messagebox.showerror("Error de Firewall", f'"No se pudo bloquear la IP {ip}.\n"

f"Asegurate de ejecutar con 'sudo'. Error: {e}")

def get ip info(self, ip):

"""Obtiene y muestra informacion '"Whois' para una direccion [P."""

if whois is None: return

try:
domain_info = whois.whois(ip)
info = "\n" join([f" {k.replace(' ', '").title()}: {v}" for k, v in domain_info.items() if v])
messagebox.showinfo(f"Informacion de {ip}", info if info else "No se encontrd

informacion.")
except Exception as e:

messagebox.showerror("Error de Whois", f'No se pudo obtener informacién: {e}")

def process log queue(self):

nman

Bucle que se ejecuta periodicamente para procesar mensajes del motor del IDS

(alertas, info, errores) y mostrarlos en la GUI.
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try:
while True:
msg = self.log_queue.get nowait()
autoscroll = self.log_text.yview()[1] == 1.0

tag = 'normal’

if isinstance(msg, dict) and msg.get("tipo") == "ALERTA":
msg_str = f"'!!! ALERTA DE RED: {msg['ip']} (Confianza: {msg['confianza'l})
e
tag = 'alerta’
self.update threat(msg['ip'], msg['confianza'], msg.get('geo', 'N/A"))
self. log alert to db(msg)
elif isinstance(msg, dict) and msg.get("tipo") == "WEB_ALERT":
if msg['dominio'] not in self.web _threat widgets:
messagebox.showwarning("Alerta de Navegacion", f'Detectado intento de
conexion a sitio malicioso:\n\n"
f'Dominio: {msg['dominio']}\nCausa: {msg['razon']}")
self.update web_threat(msg.get('ip_local', 'N/A'"), msg['dominio'], msg['razon'])
msg_str=f"!!! ALERTA WEB: {msg['dominio']} ({msg['razon']}) !!!"
tag = 'alerta’
else:
msg_str = str(msg)
if msg.startswith("INFO:"): tag = 'info’
elif msg.startswith("EXITO:"): tag = 'exito'

self.log_text.config(state=tk. NORMAL)
self.log_text.insert(tk. END, msg_str + "\n', tag)
self.log_text.config(state=tk. DISABLED)
if autoscroll: self.log_text.see(tk. END)

except queue.Empty: pass

finally: self.root.after(100, self.process log queue)

def export_log(self):



"""Permite al usuario guardar el contenido del registro de actividad en un archivo."""
content = self.log_text.get("1.0", tk. END)
filename = filedialog.asksaveasfilename(defaultextension=".1og", filetypes=(("Log files",
"* log"),("All files", "*.%")))
if filename:
with open(filename, 'w', encoding="utf-8') as f: f.write(content)

messagebox.showinfo("Exportar", f'Registro guardado en {filename}")

def log alert to db(self, data):
"""Inserta los detalles de una nueva alerta en la base de datos SQLite."""
if not self.db_conn: return
try:
self.db_conn.cursor().execute("INSERT INTO alertas (timestamp, ip atacante,
confianza, geolocalizacion) VALUES (?, 2, ?, 7)",
(data['timestamp'].strftime('%Y-%m-%d %H:%M:%S"), data['ip'],
data['confianza'], data['geo']))
self.db_conn.commit()

except Exception as e: self.log_queue.put(f"ERROR de DB: {e}")

# --- CONTROL DEL CICLO DE VIDA DEL IDS ---

def start ids(self):
nmnn
Inicia el motor del IDS en un hilo separado con la configuracion seleccionada
en la interfaz gréfica.
nmn
selected iface = self.iface var.get()

if not selected iface: return

self.whitelist = self. load list from_file(self.whitelist file)

self. get interface details(selected iface)

modelo path, scaler path = 'modelo A optimizado earlystopping.hS',

'escalador_estandar.joblib'



if not os.path.exists(modelo_path) or not os.path.exists(scaler path):
messagebox.showerror("Error", f'Asegurate de que '{modelo_path}'y '{scaler path}'
estén presentes.")

return

self.start_button.config(state=tk. DISABLED)
self.stop button.config(state=tk. NORMAL)

self.status_var.set(f"Estado: Iniciando motor en {selected iface}...")

self.ids_thread = IDSEngine(
interfaz=selected iface, umbral=0.2, log_queue=self.log_queue,
blocklist=self.blocklist, geoip path='GeoLite2-City.mmdb',
modelo_path=modelo path, scaler path=scaler path, local ip=self.machine_ip

)
self.ids_thread.start()

def stop_ids(self):
"""Detiene el hilo del motor del IDS."""
if self.ids_thread and self.ids_thread.is_alive(): self.ids_thread.stop()
self.stop button.config(state=tk. DISABLED)
self.start _button.config(state=tk. NORMAL)

self.status_var.set("Estado: Detenido")

def on_closing(self):
Se ejecuta al cerrar la ventana. Detiene el IDS y cierra la conexion

a la base de datos de forma segura.

nmnn

"non,

if messagebox.askokcancel("Salir", ";Seguro que quieres salir?"):
if self.ids_thread and self.ids_thread.is_alive(): self.ids_thread.stop()
if self.db_conn: self.db_conn.close()
self.root.destroy()

n

if name ==" main_ "



nmn

"""Punto de entrada para lanzar la aplicacion grafica.

root = tk.Tk()

app = App(root)
root.protocol("WM_DELETE WINDOW", app.on_closing)

root.mainloop()



		2025-09-09T09:44:57-0500


		2025-09-09T10:00:12-0500


		2025-09-09T14:37:09-0500


		2025-09-10T19:43:16-0500




