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I 
 

 

Resumen 
 

El proyecto aborda la necesidad de mejorar el control del rebaño en la granja de ESPOL 

frente a los altos costos y limitaciones de las cercas físicas. El objetivo principal es diseñar e 

implementar un sistema de cerca virtual que permita monitorear en tiempo real el 

desplazamiento de los animales mediante comunicación inalámbrica y generar alertas al 

detectar salidas de la zona segura. Se plantea la integración de tecnologías de bajo consumo, 

junto con modelos predictivos, optimizar la gestión del ganado y reducir pérdidas. 

El sistema se desarrolló utilizando nodos LoRa CubeCell instalados en collares, un gateway 

LoRaWAN conectado a ChirpStack y la plataforma Home Assistant para la visualización. 

Los datos de señal se almacenaron en una base SQL y se aplicaron algoritmos de aprendizaje 

automático, específicamente LSTM y Random Forest, para predecir la posición de los 

animales con mayor precisión. 

Las pruebas realizadas en la granja mostraron que los prototipos ligeros y portátiles no 

afectaron la movilidad del ganado y permitieron delimitar zonas de pastoreo virtuales, 

emitiendo notificaciones inmediatas al personal mediante la interfaz web y dispositivos 

móviles. 

En conclusión, el sistema constituye una alternativa eficiente, escalable y de bajo costo que 

mejora la seguridad del rebaño, optimiza recursos y representa un avance tecnológico 

aplicable al sector ganadero. 

 
Palabras Clave: Cerca virtual, Ganadería, Monitoreo en tiempo real, LoRa 
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Abstract 
 

 

The project addresses the need to improve herd control on the ESPOL farm in the face of 

high costs and limitations of physical fences. The main objective is to design and implement 

a virtual fence system that allows to monitor in real time the movement of animals through 

wireless communication and generate alerts when detecting exits from the safe zone. The 

integration of low-consumption technologies is proposed, along with predictive models, 

optimizing cattle management and reducing losses. 

 

The system was developed using LoRa CubeCell nodes installed in collars, a LoRaWAN 

gateway connected to ChirpStack and the Home Assistant platform for visualization. The 

signal data was stored in an SQL database and machine learning algorithms, specifically 

LSTM and Random Forest, were applied to predict the position of the animals more 

accurately. 

 

The tests carried out on the farm showed that the light and portable prototypes did not affect 

the mobility of the cattle and allowed the delimitation of virtual grazing areas, issuing 

immediate notifications to the staff through the web interface and mobile devices. 

 

In conclusion, the system constitutes an efficient, scalable, and low-cost alternative that 

improves the safety of the herd, optimizes resources, and represents a technological advance 

applicable to the livestock sector. 

 

  

Keywords:  Virtual Fence, Livestock, Real time Monitoring, LoRa. 
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1.1 Introducción  

 

A nivel mundial, la ganadería representa aproximadamente el 40 % del valor 

económico total de la producción agrícola y es fuente directa de sustento para más de 1.300 

millones de personas  (FAO, 2022). Sin embargo, este sector no está exento de dificultades: 

enfrenta retos ambientales vinculados con la sostenibilidad, demandas crecientes en cuanto 

al bienestar animal, limitaciones en la disponibilidad de mano de obra calificada y la presión 

constante de responder a una mayor necesidad de alimentos. (FAO, 2022) 

Uno de los principales problemas que enfrenta la ganadería moderna es la dificultad 

para monitorear eficientemente grandes extensiones de terreno y garantizar un control 

adecuado sobre el movimiento del ganado, lo cual puede generar pérdidas económicas 

considerables por fuga, robo o accidentes.  

La implementación de tecnologías como los sistemas de monitoreo remoto y las 

cercas virtuales ha cobrado fuerza en la última década como solución innovadora para estos 

desafíos. En países como Australia, se estima que más del 60 % de los productores ganaderos 

extensivos están considerando integrar soluciones de cercado virtual o geofencing en los 

próximos cinco años, debido a su potencial para reducir costos operativos y mejorar el 

manejo de los recursos naturales (CSIRO, 2024). 

En América Latina, la adopción de estas tecnologías es aún limitada, pero creciente. 

Según datos de (Sotomayor, Ramirez, & Martinez, 2021) solo alrededor del 8 % de los 

productores agropecuarios en la región utilizan tecnologías digitales avanzadas, aunque 

países como Brasil, Chile y Uruguay han impulsado políticas de transformación digital 

rural.   
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En el caso de Ecuador, el sector ganadero representa aproximadamente el 10 % del 

PIB agropecuario y emplea directa o indirectamente a más de 300.000 personas, en su 

mayoría en zonas rurales (Pino, Vinueza, Muñoz, & Saravia, 2022). 

Sin embargo, la modernización tecnológica del sector sigue rezagada: menos del 5% 

de las fincas ganaderas ecuatorianas cuentan con algún tipo de automatización o sistema de 

control remoto  (Pino, Vinueza, Muñoz, & Saravia, 2022). 

En este contexto, la Escuela Superior Politécnica del Litoral (ESPOL), a través de su 

Granja Experimental, se convierte en un espacio estratégico para validar e implementar 

soluciones tecnológicas adaptadas a las condiciones del trópico seco costero. Uno de los 

problemas persistentes en la granja es la dificultad para realizar un control eficiente y 

continuo del rebaño, especialmente durante jornadas nocturnas o en zonas de difícil acceso.   

El uso de cercas físicas presenta limitaciones relacionadas con el mantenimiento, el 

costo y el riesgo de que los animales las evadan o sufran heridas; ante esta problemática, el 

presente proyecto propone el desarrollo de un Sistema de Monitoreo con Cerca Virtual para 

el Control del Rebaño, utilizando tecnologías de comunicación inalámbrica de bajo consumo 

energético como LoRaWAN y una plataforma web para la visualización en tiempo real.  

Aunque se utilizará señal GPS únicamente como referencia puntual para validar el 

margen de error de ubicación reportada por los dispositivos LoRa, el sistema operará de 

forma autónoma con la información transmitida por estos últimos.  

Esto permitirá definir zonas de pastoreo virtuales, recibir alertas ante cruces no 

permitidos, y realizar un seguimiento del comportamiento del ganado, con el objetivo de 

reducir pérdidas, optimizar recursos humanos y mejorar el bienestar animal.  

La propuesta responde a tendencias globales de transformación digital en el agro, 

pero se contextualiza en las necesidades locales del entorno ecuatoriano, alineándose también 
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con los Objetivos de Desarrollo Sostenible (ODS), especialmente en los ámbitos de 

infraestructura sostenible (ODS 9), producción responsable (ODS 12) y conservación de 

ecosistemas terrestres (ODS 15).  

 

1.2 Descripción del Problema  

En la granja experimental de la Escuela Superior Politécnica del Litoral (ESPOL), 

la falta de un cercado físico completo ha generado dificultades en el control del rebaño 

de borregos. La ausencia de barreras eficaces ha permitido que los animales abandonen 

la zona asignada y se desplacen por otras áreas del campus, exponiéndose a situaciones 

de riesgo como accidentes o pérdidas, y generando posibles inconvenientes para la 

comunidad universitaria. 

Esta problemática no es exclusiva de ESPOL ya que se presenta con frecuencia 

en diversas fincas del país, donde los altos costos asociados a la construcción y 

mantenimiento de cercas físicas limitan su implementación. Como consecuencia, el 

manejo del ganado suele depender de la vigilancia continua por parte del personal, lo cual 

incrementa la carga operativa y no siempre garantiza resultados efectivos. 

Dado este contexto, se propone el desarrollo de un sistema de monitoreo con cerca 

virtual, que utilice tecnología inalámbrica para establecer límites digitales que permitan 

detectar la presencia del ganado fuera del área permitida y activar alertas oportunas. Esta 

solución prescinde del uso de GPS, lo que reduce su complejidad y costo, sin 

comprometer su funcionalidad. 
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El proyecto considera variables clave como el alcance y estabilidad de la 

comunicación inalámbrica, la eficiencia energética de los dispositivos, la facilidad de 

instalación en campo y la capacidad de respuesta en tiempo real.  

Además, al tratarse de un sistema susceptible de observación, medición y análisis, 

se facilita la validación de su desempeño y su posterior mejora. 

 

1.3 Justificación del Problema 

La ausencia de un cercado físico en la granja de ESPOL permite que los borregos 

salgan del área segura, lo que los expone a riesgos de accidentes o extravíos, y también afecta 

las actividades del campus. Además, esto exige una supervisión constante del personal, 

conllevando a una mayor carga operativa. Estas dificultades operacionales y de seguridad 

fortalecen la necesidad de una solución eficiente (Vendramini, 2024). 

Los cercos tradicionales tienen un costo elevado: por ejemplo, en ranchos de Nuevo 

México un kilómetro de cerca metálica puede costar hasta USD 9 300, sin contar su 

mantenimiento anual (Vitale, y otros, 2025). En contraste, las cercas virtuales se basan en 

collares GPS y estaciones base inalámbricas, eliminando la necesidad de infraestructura 

física, y pueden reducir los costos de cercado y mantenimiento hasta en un 76 %, 

especialmente en grandes extensiones (Vitale, y otros, 2025). 

Diversos estudios recientes demuestran que las cercas virtuales contienen al ganado 

dentro de límites definidos en más del 90 % de los casos, con niveles de bienestar parecidos 

o mejores comparados con cercas tradicionales (Ruminants, 2025). Además, un análisis 

económico sobre sistemas VF en condiciones similares al sur de EE. UU. señala ahorros en 
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costos operativos de entre USD 40 y USD 120 por animal al año, principalmente al reducir 

labores de supervisión y el mantenimiento de cercas (Duval, y otros, 2025). 

Las cercas virtuales también permiten delimitar zonas de pastoreo desde dispositivos 

móviles o plataformas web, emitir alertas en tiempo real y reconfigurar las áreas según sea 

necesario (System, 2025). Esto no solo mejora la seguridad del rebaño, sino que reduce la 

carga operativa del personal, al automatizar la detección de salidas no autorizadas, y facilita 

el replanteo de áreas sin incurrir en costos adicionales de infraestructura. 

1.4 Objetivos   

A continuación, presentamos los objetivos a desarrollar del proyecto cerca virtual. 

1.4.1 Objetivo general   

Diseñar e implementar un sistema de cerca virtual para la granja de ESPOL que 

permita monitorear el desplazamiento de los borregos mediante tecnologías de 

comunicación inalámbrica (LoRa) y notificar, mediante alertas en tiempo real 

(Telegram o WhatsApp) o interfaz web cuando alguno de ellos salga del área segura 

definida. 

1.4.2 Objetivos específicos 

• Realizar un levantamiento de información para determinar el perímetro requerido de 

la cerca virtual. 

● Integrar dispositivos portátiles en los borregos que permitan detectar su proximidad 

o alejamiento de zonas seguras.   

● Desarrollar un sistema de notificación automatizada que envíe alertas al encargado 

cuando un animal salga del área permitida.  

  



7 
 

1.5 Marco teórico 

En diversas partes del mundo, el uso de tecnologías de cerca virtual y monitoreo de 

ganado ha sido implementado con éxito en la agricultura y ganadería. Estas soluciones 

utilizan tecnologías de comunicación como LoRaWAN y plataformas de automatización para 

mejorar el manejo del ganado, reducir costos operativos y aumentar la seguridad. 

Por ejemplo, en Australia, el sistema Agersens ha sido desarrollado para gestionar la 

ubicación de ganado mediante collares electrónicos que emiten señales a un sistema de cerca 

virtual. Este sistema permite la delimitación de zonas de pastoreo sin la necesidad de cercas 

físicas, lo que reduce considerablemente los costos de instalación y mantenimiento, al tiempo 

que mejora la eficiencia en el manejo del ganado. Este sistema se basa en tecnología de 

radiofrecuencia similar a LoRaWAN, lo que proporciona un alcance de señal adecuado para 

grandes extensiones de tierra (Gallagher, 2021). 

En Estados Unidos, el sistema Nofence ha ganado popularidad en la ganadería de 

precisión. Esta solución utiliza collares GPS y un sistema basado en LoRaWAN para 

gestionar el ganado en grandes ranchos (Nofence, 2025). El sistema permite monitorear la 

ubicación de los animales en tiempo real, con la posibilidad de generar alertas cuando un 

animal sale de la zona segura. Además, Nofence ha demostrado ser eficaz en condiciones 

climáticas extremas y en terrenos difíciles, lo que lo convierte en una opción viable para 

diversas regiones. 
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1.5.1 LoRa y LoRaWAN  

 

LoRa es una tecnología de transmisión inalámbrica de largo alcance y bajo consumo. 

LoRaWAN es el protocolo que permite gestionar la comunicación entre múltiples nodos 

(dispositivos) y un gateway central (Roman, 2025). 

Para este proyecto se utilizarán módulos LoRa en dispositivos portátiles sujetos a los 

animales. Estos módulos transmitirán datos a un gateway LoRaWAN ubicado en la granja, 

formando una red robusta que funciona sin conexión celular ni GPS.  

  

1.5.2 Received Signal Strength Indicator (RSSI) 

 

Es un indicador de la intensidad de la señal recibida por un receptor. Se utiliza como 

parámetro para estimar la distancia o calidad del enlace entre un nodo transmisor y el 

Gateway  (Hardesty, 2025). 

El valor de RSSI se utilizará para delimitar virtualmente la zona segura. Si un nodo 

transmite una señal con un RSSI inferior al umbral definido, el sistema interpretará que el 

animal ha salido del área permitida y generará una alerta.  

 

1.5.3 HELTEC HTM-01 

 

Es un sensor digital de temperatura y humedad que utiliza un único bus de datos para 

la comunicación. Basado en un sensor de humedad capacitivo y un termistor para medir la 

temperatura, este dispositivo es ampliamente utilizado en aplicaciones de monitoreo 

ambiental, como estaciones meteorológicas, sistemas de control de clima y proyectos de 

Internet de las Cosas (IoT)  (Technologies, 2025). 
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Cada animal llevará un dispositivo HTM-01 como nodo transmisor, que enviará datos 

periódicos al gateway. 

 

1.5.4 Arduino IDE       

  

Arduino IDE es un entorno de desarrollo de código abierto utilizado para programar 

microcontroladores. Permite configurar sensores, módulos de comunicación y rutinas de 

control mediante un lenguaje accesible  (Arduino, 2024). 

Se utilizará Arduino IDE para programar el comportamiento de los nodos HTM-01, 

definiendo la frecuencia de transmisión LoRa, la estructura de los datos enviados y la lectura 

de parámetros como el nivel de batería.  

1.5.5 ChirpStack 

  

Es una plataforma de código abierto para la gestión de redes LoRaWAN. Administra 

los dispositivos, recibe sus transmisiones, y permite configurar reglas para eventos y 

almacenamiento de datos (Chirpstack, 2023). 

Funcionará como la plataforma central receptora de los datos transmitidos por los 

nodos. A través de su interfaz, el personal podrá visualizar el estado de cada dispositivo, 

revisar los valores de RSSI y configurar notificaciones automáticas en caso de eventos 

críticos.  

 

1.5.6 Home Assistant 

 

Es una plataforma de automatización del hogar de código abierto que permite la 

integración y control de dispositivos inteligentes desde una interfaz centralizada. Su enfoque 
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principal es la privacidad y el control local, evitando la dependencia de servicios en la nube. 

La plataforma es compatible con una amplia variedad de dispositivos y protocolos, 

incluyendo LoRaWAN, Zigbee, Z-Wave, MQTT, entre otros. Además, ofrece la posibilidad 

de crear automatizaciones personalizadas y visualizar el estado de los dispositivos en tiempo 

real  (Assistant, Home Assistant: La plataforma de automatización del hogar de código 

abierto, 2025). 

Se usará Home Assistant como la plataforma central que gestionará los datos 

recibidos por los HTM01. A través de su interfaz de usuario, el personal de la granja podrá 

visualizar en tiempo real el estado de cada nodo, incluyendo la intensidad de la señal (RSSI), 

el nivel de batería de los dispositivos y otros parámetros críticos.  

Home Assistant también permitirá configurar reglas de automatización que generen 

alertas cuando un nodo se desplace fuera de la zona segura, lo que proporcionará una 

respuesta rápida y eficiente ante cualquier incidente. 

 

1.5.7 Python (Spyder IDE) 

 

Python es un lenguaje de programación ampliamente utilizado para análisis de datos, 

automatización y visualización. Spyder es un entorno de desarrollo (IDE) para Python, 

especialmente útil en tareas de ingeniería y análisis científico  (Kosourova, 2024). 

Se utilizará Python desde Spyder para procesar los datos recolectados desde 

ChirpStack, generar reportes, graficar los valores de RSSI, y analizar patrones de 

comportamiento del rebaño. Esta etapa permitirá validar el rendimiento del sistema, ajustar 

umbrales de alerta y obtener indicadores clave para la toma de decisiones.  
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1.5.8 Algoritmo de aprendizaje supervisado y red neuronal recurrente. 

 

Un algoritmo de aprendizaje supervisado es un método de inteligencia artificial que 

permite a un modelo aprender a partir de ejemplos ya conocidos. Funciona con un conjunto 

de datos de entrada (características) y sus correspondientes salidas esperadas (etiquetas), de 

manera que el sistema va ajustando sus parámetros para minimizar el error entre sus 

predicciones y los resultados reales. Una vez entrenado, el algoritmo puede predecir la salida 

de nuevos datos que no ha visto antes. 

Un ejemplo claro de algoritmo de aprendizaje supervisado es el Random Forest, el 

cual se basa en la construcción de múltiples árboles de decisión para realizar predicciones. 

En este enfoque, cada árbol se entrena con una muestra distinta de los datos y genera una 

predicción individual; luego, el modelo combina todas esas predicciones (mediante votación 

en clasificación o promedios en regresión) para obtener un resultado más robusto y preciso 

(Rodrigo, 2020). 

 

Para este proyecto se utilizará un modelo hibrido utilizando un algoritmo de 

aprendizaje supervisado como lo es Random Forest y la red neuronal LSTM, ya que este 

último posee gran capacidad para recordar y regular información de secuencias largas, 

permitiendo efectividad en tareas que requieren mantener escenarios prolongados, es decir 

mientras más datos históricos de RSSI se obtenga, mejor será la predicción de la posición. 
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2 Metodología 
Este proyecto tiene como objetivo seguir la ubicación de los animales mediante 

módulos LoRa CubeCell que envían datos de señal y coordenadas a un Gateway LoRa. Estos 

datos se guardan en una base SQL y se usan para entrenar un modelo LSTM que predice la 

posición de los animales en tiempo real mejorando así el control y monitoreo del ganado. 

2.1 Diseño conceptual y Metodología de Diseño 

El diseño conceptual del sistema se basa en la implementación de una cerca virtual 

para monitorear el ganado mediante la tecnología LoRaWAN. En lugar de utilizar sistemas 

de localización como GPS, que resultan costosos y limitados en entornos rurales, el sistema 

utiliza la señal RSSI (Received Signal Strength Indicator) para determinar la proximidad de 

los animales a los límites de la zona segura.  

El diseño comienza con un levantamiento de requerimientos como los presentados en 

la Tabla 2.1, donde se identificaron necesidades clave como la eficiencia energética, la 

escalabilidad y la capacidad de operar en condiciones de terreno rural como se visualiza en 

la Figura 2.1. A partir de estos requerimientos, se eligió LoRa como la tecnología de 

comunicación, dada su capacidad de largo alcance y bajo consumo de energía. 

Tabla 2.1 Lista de Requerimientos 

Requerimiento Descripción Justificación 

Eficiencia Energética 

El sistema debe funcionar 

con bajo consumo de 

energía para prolongar la 

vida útil de los dispositivos 

Da paso a un 

funcionamiento autónomo y 

duradero en zonas rurales 

sin necesidad constante de 

fuentes de energía 
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Escalabilidad 

El sistema debe poder 

adaptarse para agregar más 

nodos o dispositivos sin que 

se pierda su eficiencia. 

Facilita el crecimiento del 

sistema a medida que 

aumente la cantidad de 

animales o el área de 

cobertura. 

Alcance de Comunicación 

Usar tecnología con alto 

alcance como LoRa que 

cubre grandes distancias sin 

alto costo. 

LoRa permite la 

transmisión de datos en 

zonas rurales. 

Bajo Consumo de Energía 

Los dispositivos deben 

operar con baterías de larga 

duración. 

Minimiza la necesidad de 

un mantenimiento frecuente 

y asegura la viabilidad en 

zonas con limitación a la 

electricidad. 
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Figura 2.1 Zona donde se realizarán las pruebas 

La metodología de diseño sigue un enfoque iterativo. Primero se realiza una prueba 

inicial en una granja experimental con un área de 2 hectáreas, donde se instalan los nodos 

LoRa en los collares de los animales y las estaciones receptoras (gateways) en puntos 

estratégicos. A medida que se recogen datos del funcionamiento del sistema, se ajustan los 

parámetros y se optimizan los algoritmos de predicción. Además, se integra el sistema con 

Home Assistant, una plataforma de monitoreo en tiempo real, lo que permite a los 

administradores recibir alertas y visualizar la ubicación de los animales de manera remota 

Este enfoque asegura que el sistema sea flexible y adaptable a diferentes condiciones de la 

granja. 

El diseño también incorpora un modelo de aprendizaje automático basado en LSTM 

(Long Short-Term Memory), el cual se utiliza para predecir la proximidad futura de los 

animales. Este modelo es entrenado con datos históricos de las mediciones RSSI, junto con 

otros parámetros que se ajusten al modelo. 
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La predicción de la posición futura del ganado ayuda a mejorar la precisión del 

sistema, reduciendo el número de alertas falsas y permitiendo un monitoreo más efectivo. 

2.2 Recursos Utilizados 

Para el desarrollo de este sistema, se utilizaron distintos recursos de hardware y 

software, cuyas especificaciones técnicas se detallan en la Tabla 2.2. Esta tabla resume las 

principales características de los dispositivos empleados, incluyendo los módulos LoRa, el 

GPS, la Raspberry Pi utilizada como gateway, así como el software necesario para la gestión 

y visualización de los datos. En cuanto al hardware, se emplearon módulos LoRa HTM01, 

que fueron instalados en los collares de los animales para transmitir señales de RSSI a través 

de la red LoRaWAN. 

Las estaciones receptoras, ubicadas en puntos estratégicos de la granja, recibieron 

estas señales y las transmitieron a un servidor central ubicado en una Raspberry Pi, donde se 

gestionó la comunicación mediante ChirpStack, un servidor LoRaWAN de código abierto. 

Estas estaciones receptoras permitieron extender la cobertura del sistema, asegurando que 

todo el perímetro de la granja estuviera cubierto. 

El sistema de monitoreo fue integrado con Home Assistant, que proporcionó una 

plataforma de visualización en tiempo real de las posiciones de los animales. A través de esta 

interfaz, los administradores de la granja pueden recibir alertas si algún animal se acerca a la 

zona límite, permitiendo un control remoto del sistema y facilitando la gestión de la seguridad 

del ganado. 
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Tabla 2.2 Especificaciones técnicas de los dispositivos utilizados 

Dispositivo Modelo Especificaciones técnicas clave 

Módulo principal 

LoRa 

CubeCell HTCC-AB02 

- MCU: STM32L0 

- LoRa: SX1262 

- Frecuencia: 868/915 MHz 

- GPS integrado 

- Batería LiPo 

Módulo GPS NEO-6M 

- Precisión: < 2.5 m 

- Voltaje: 3–5 V 

- Interfaz: UART 

- Frecuencia: 1 Hz 

Gateway 

LoRaWAN 

Raspberry Pi 4 

- CPU: Quad-core ARM Cortex-

A72 

- RAM: 2–8 GB 

- Puerto SPI para LoRaHat 

- Sistema operativo: Raspberry Pi 

OS 

Software de red 

LoRa 

ChirpStack 

- Código abierto 

- Soporte para múltiples 

dispositivos 

- Compatible con MQTT y HTTP 

Dashboard de 

usuario 

Home Assistant 

- Plataforma domótica de código 

abierto 
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- Interfaz personalizable 

- Soporte para MQTT 

 

En cuanto al componente algorítmico de Machine Learning, se implementó un 

modelo LSTM (Long Short-Term Memory) para predecir la proximidad futura de los 

animales a la zona segura. Este tipo de red neuronal es especialmente eficaz para el 

tratamiento de datos secuenciales, como los provenientes de sensores de movimiento y 

señales inalámbricas, debido a su capacidad para retener información a largo plazo en series 

temporales (Sherstinsky, 2020). 

El modelo fue entrenado en una Raspberry Pi 4B, utilizando datos históricos 

recolectados durante pruebas de campo, los cuales incluían valores de RSSI transmitidos por 

los nodos LoRa, así como variables ambientales como temperatura y humedad. Estudios 

recientes han demostrado que es posible realizar el entrenamiento y despliegue de modelos 

LSTM en dispositivos de bajo consumo como la Raspberry Pi para tareas de predicción 

basadas en RSSI. Estudios recientes han demostrado que es posible realizar el entrenamiento 

y despliegue de modelos LSTM en dispositivos de bajo consumo como la Raspberry Pi para 

tareas de predicción basadas en datos secuenciales. Por ejemplo, el sistema tinyRadar empleó 

una LSTM en una Raspberry Pi 4 para clasificación de actividades humanas en tiempo real, 

alcanzando una precisión del 93 % con baja latencia (Yadav, Anand, D, Nikitha, & Thakur, 

2023). 

2.3 Diseño del Sistema 

El diseño del sistema se centra en la integración de varios componentes clave para 

crear una red de monitoreo eficiente y precisa como se observa en la Figura 2.2. En primer 
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lugar, los nodos LoRa instalados en los collares de los animales funcionan como dispositivos 

emisores de señales, que envían periódicamente datos de RSSI a los Gateway receptores, 

ubicados en puntos estratégicos dentro del área de delimitación de la granja.      

 Estos receptores están ubicados en puntos estratégicos dentro del área de 

delimitación de la granja como: zonas de alimentación, bebederos o rutas de desplazamiento 

frecuente del ganado, con el fin de asegurar una cobertura óptima y detección precisa del 

movimiento. 

Estas estaciones LoRaWAN (Gateways), administradas mediante el software 

ChirpStack, captan las señales y las envían a un servidor local donde se procesan para 

determinar si el animal se encuentra dentro o fuera de la zona segura. El sistema se configura 

de manera que, si el RSSI cae por debajo de un umbral predefinido, se genera una alerta para 

notificar al administrador de la granja. 

 

Figura 2.2 Sistema de monitoreo propuesto 

El sistema también integra Home Assistant como plataforma de monitoreo, que recibe 

las alertas a través del protocolo de mensajería MQTT y presenta los datos en un dashboard 
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interactivo. Los administradores pueden visualizar la posición de cada animal, recibir alertas 

de proximidad y configurar los parámetros de la zona segura, todo desde una interfaz 

centralizada. Esta plataforma también ofrece la opción de configuración remota y ajustes en 

tiempo real, lo que permite optimizar el sistema a medida que se recopilan más datos. 

En términos de la predicción y análisis de la posición del ganado, el sistema utiliza 

un modelo de red neuronal LSTM (Long Short-Term Memory), diseñado para procesar 

secuencias de datos temporales como los valores de RSSI (Indicador de Intensidad de Señal 

Recibida) y parámetros ambientales relacionados. 

Este tipo de red es particularmente eficaz cuando se requiere capturar patrones a lo 

largo del tiempo, como el movimiento repetitivo de los animales o sus cambios de 

comportamiento ante ciertas condiciones del entorno. El modelo predice la proximidad futura 

del ganado y ajusta las alertas en función de la evolución de las señales captadas. Su eficacia 

depende de una correcta correlación entre los datos históricos y las condiciones actuales; por 

ejemplo, funciona bien cuando el entorno tiene patrones relativamente estables o repetitivos. 

Sin embargo, podría fallar si existen interferencias en la señal RSSI, si los datos de 

entrada tienen demasiado ruido, o si ocurren cambios abruptos en el ambiente que no se 

hayan representado durante el entrenamiento. Estudios recientes han demostrado que este 

enfoque puede aplicarse de forma eficiente en dispositivos de bajo consumo como Raspberry 

Pi, logrando una predicción fiable de proximidad mediante análisis secuencial de RSSI 

(Yadav, Anand, D, Nikitha, & Thakur, 2023). 
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Este diseño no solo mejora la precisión del sistema, sino que también permite que el 

sistema se adapte de manera dinámica al comportamiento de los animales y las fluctuaciones 

en las condiciones de propagación de la señal. 

2.4 Desarrollo del Sistema 

El sistema desarrollado tiene como objetivo principal monitorear en tiempo real la 

posición de los chivos en la granja de ESPOL, utilizando tecnología LoRa para la transmisión 

de datos. Se diseñó una arquitectura compuesta por nodos, un gateway LoRa, una red central 

basada en ChirpStack y un sistema de visualización integrado en Home Assistant. 

Adicionalmente, se incorporó un modelo predictivo basado en redes neuronales 

LSTM para estimar la posición de los animales a partir de parámetros como el RSSI como 

se observa en la Figura 2.3. 
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Figura 2.3 Etapas del sistema de posicionamiento 

El flujograma presentado describe el recorrido completo de los datos desde su origen 

en los dispositivos colocados en los animales hasta su visualización e interpretación por el 

usuario. El proceso comienza con los nodos LoRa, específicamente módulos Cube Cell 

AB02, que están equipados con capacidades de transmisión y recepción (Rx – Tx). Estos 

dispositivos envían información utilizando la frecuencia US 915 MHz, y los datos 

transmitidos incluyen tanto la intensidad de la señal (RSSI) como tramas estructuradas que 

contienen parámetros de medición, como temperatura, humedad y datos GPS. Estos últimos 

se utilizan principalmente como referencia para validar el rendimiento del sistema y detectar 

posibles errores en la predicción. 
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La señal enviada desde los nodos es captada por un gateway, el cual actúa como 

receptor central del sistema LoRa. Su función es recibir la información transmitida por los 

nodos y redirigirla a través de red IP a los sistemas encargados de su procesamiento. En este 

punto, interviene la plataforma ChirpStack, una herramienta de gestión de redes LoRaWAN 

que se encarga de decodificar las tramas recibidas. Esta decodificación genera dos tipos de 

datos: uno estructurado para aplicaciones (App Data) y otro en texto plano (Txt), ambos 

fundamentales para alimentar los sistemas de análisis y visualización. 

Una vez que los datos han sido tratados, son enviados a través del protocolo MQTT. 

Este protocolo ligero y eficiente permite transmitir la información codificada en formato 

JSON, específicamente en paquetes del tipo “event/up”, lo cual facilita su suscripción por 

distintos servicios y plataformas en tiempo real. 

Uno de los componentes que consume esta información es el modelo LSTM (Long 

Short-Term Memory), un tipo de red neuronal recurrente entrenada previamente con datos 

históricos de RSSI y condiciones ambientales. Este modelo analiza la secuencia temporal de 

señales para detectar patrones en el comportamiento del ganado, y en función de ellos, puede 

predecir su proximidad futura a zonas definidas como seguras o restringidas. La capacidad 

del modelo para adaptarse a cambios graduales en el entorno hace posible ajustar las alertas 

de forma dinámica 

Finalmente, el resultado del análisis se integra con la plataforma Home Assistant, que 

permite al usuario monitorear en tiempo real la posición y comportamiento del animal. Desde 

allí, también se pueden configurar acciones automáticas, emitir alertas visuales o sonoras y 

generar informes. Todo este flujo convierte al sistema en una herramienta no solo de 
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monitoreo, sino también de predicción y gestión inteligente de los animales dentro del área 

determinada. 

2.4.1 Implementación de Nodos Lora      

Se utilizaron dispositivos CubeCell AB02 con capacidad de transmisión y recepción 

(Rx-Tx), los cuales fueron montados en collares que portan los chivos. Estos dispositivos 

incluyen un módulo GPS integrado y son capaces de enviar periódicamente datos de 

posicionamiento y parámetros de red como el RSSI, utilizando la banda ISM US915 MHz. 

2.4.2 Captura y Envio de Parámetros de Medición 

 

Cada nodo LoRa instalado en los collares de los chivos recopila y transmite de forma 

periódica datos esenciales como las coordenadas GPS y el nivel de señal RSSI, empaquetados 

en tramas que también incluyen identificadores para rastrear posibles errores.  

Estos datos se envían mediante la banda de 915 MHz, aprovechando las ventajas del 

protocolo LoRa para lograr una comunicación de largo alcance y bajo consumo energético, 

adecuada para entornos rurales. Esta información es recibida por el gateway, dando paso al 

siguiente nivel de procesamiento dentro del sistema. 

2.4.3 Gateway y Red LoRaWan 

 

El gateway actúa como puente entre los nodos LoRa y la red central, capturando las 

tramas enviadas por los collares a través de la frecuencia 915 MHz. Una vez recibidas, estas 

tramas son reenviadas al servidor de red ChirpStack, el cual gestiona la arquitectura 

LoRaWAN, autentica a los dispositivos y organiza los paquetes entrantes según la aplicación 

correspondiente.  
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Esta etapa garantiza la continuidad del flujo de información y la correcta 

administración de los dispositivos registrados en la red. 

 

2.4.4 Decodificación de Tramas 

 

Una vez que ChirpStack ha recibido y organizado las tramas, se ejecuta un proceso 

de decodificación mediante un script personalizado (habitualmente en JavaScript) que 

traduce los datos en bruto a información legible como latitud, longitud y valores de RSSI. 

Esta decodificación convierte los bytes en variables estructuradas que luego se 

empaquetan en formato JSON. Este paso es clave para transformar los datos técnicos en 

información útil para su visualización o análisis posterior. 

2.4.5 Comunicación con MQTT 

 

Una vez decodificados los datos por ChirpStack, estos se publican automáticamente 

en un broker MQTT bajo el tema event/up, utilizando el formato JSON. MQTT, un protocolo 

de mensajería ligero y eficiente para dispositivos IoT, permite distribuir la información de 

forma flexible a múltiples suscriptores en tiempo real.  

Gracias a esta arquitectura, aplicaciones como Home Assistant y módulos de análisis 

predictivo pueden acceder a los datos sin interferir en el flujo de comunicación del sistema. 

 

 



26 
 

2.4.6 Incorporación del Modelo Predictivo LSTM 

 

Con el objetivo de predecir la ubicación de los chivos en función de la intensidad de 

señal, se integró un modelo de red neuronal tipo LSTM (Long Short-Term Memory) 

entrenado exclusivamente con datos históricos de RSSI. Este modelo permite que el sistema 

aprenda a estimar la posición de los animales sin depender de las coordenadas GPS, lo cual 

es especialmente útil en zonas con cobertura limitada o interferencias.  

El modelo se implementa en la misma Raspberry Pi que aloja Home Assistant y se 

conecta al flujo de datos mediante MQTT, generando predicciones que complementan la 

información real capturada por los nodos. 

2.4.7 Visualización en Home Assistant 

Home Assistant, una plataforma de automatización de código abierto (Team, 2024) 

se configura como suscriptor del canal MQTT para recibir los datos emitidos por los nodos. 

Gracias a la integración de sensores MQTT, puede procesar mensajes (estado o atributos 

JSON) incluyendo valores como RSSI, ubicación y otros datos ambientales (Assistant, Home 

Assistant - MQTT Sensor, 2024) (Assistant, Home Assistant - Device Tracker, 2024).  

Una vez integrados, los valores de ubicación, RSSI y predicción de posicionamiento, 

son visualizados a través de dashboards personalizados, que permiten al usuario monitorear 

la posición de cada chivo en tiempo real y mostrar alertas si salen del área limitada. Esta 

visualización facilita la toma de decisiones rápidas y el seguimiento del rebaño de manera 

intuitiva. Además, con la última actualización de Home Assistant se tienen mejoras en la 

creación de dashboards, añadiendo diseños intuitivos y mayor flexibilidad en la organización 

de la información añadida. 
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3 Resultados y Análisis 
En este capítulo se mostrarán los primeros resultados obtenidos a partir de pruebas realizadas 

con los módulos Lora Cube Cell que fueron colocados en puntos fijos dentro del área 

definida. Las coordenadas registradas permitieron construir una base de datos SQL que sirve 

como punto de partida para el análisis de los datos recogidos.  

3.1 Desarrollo del Sistema 

Para el entendimiento del sistema se presenta un diagrama de bloques con el orden de los 

pasos aplicados para el desarrollo del proyecto (Figura 3.1) en el cual se identifican 5 etapas. 

 

Figura 3.1 Diagrama de Bloques del proyecto 

En la primera etapa se recolectan datos del CubeCell ubicados en 10 puntos dentro 

del área definida (Figura 3.3) para la cerca virtual. Su función es capturar dos tipos de 

información: potencia de señal recibida (RSSI) y las coordenadas. Estos datos permiten saber 

a qué distancia se encuentra un nodo del Gateway y su posición geográfica tal como se 

aprecia en la Figura 3.2 la cual es una captura del área con la posición de los nodos referente 

al Gateway en la aplicación de Google Earth. 
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Figura 3.2 Área geográfica con la posición del Gateway y los nodos 

 

 

Figura 3.3 Vista del terreno donde estan ubicados los nodos estáticos 

En la etapa 2 se tiene el envio de datos recolectado por el CubeCell en donde se aplica 

la tecnología LoRaWAN (Long-Range) que permite la transmisión de datos a largas 

distancias sin consumir mucha energía. Este proceso se da en dos canales: uplink a 125kHz 
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de ancho de banda y downlink a 500kHz a una frecuencia de 915MHz. La transmisión se da 

cada 30 segundos por cada nodo, luego el módulo entra en sleep (duración de 1 min 

aproximadamente) y vuelve a tomar datos. 

 

Figura 3.4 Conexiones de Alimentación 

Se visualiza en la Figura 3.4 el esquema de conexión entre el módulo CubeCell y el 

Módulo GPS NEO-6M junto con la batería (fuente de voltaje) y antena LoRa. Los nodos 

LoRa empleados son HTCC AB02 los cuales para las mediciones estuvieron conectados a la 

batería y a la antena omnidireccional de 915MHz conectada al puerto UF. L en el CubeCell. 

Para la etapa 3 se tiene la información enviada por el CubeCell, GPS y batería que es 

recibida por el Gateway que es un HTM-01. Este Gateway se encuentra conectado a 

ChirpStack el cual es el encargado de interpretar y decodificar los paquetes de datos 

recibidos. 
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Una vez decodificados los datos se almacenan en una base de datos SQL que permite 

mantener un registro organizado para consultas y analisis posteriores.  

Para mejor entendimiento se presenta una tabla (Tabla 3.1) con las coordenadas 

(latitud, longitud y cantidad de satélites en el punto) recogidas y su hora respectiva de cada 

lectura. 

Tabla 3.1 Datos de lectura del GPS en el Área definida 

Lectura Hora Coordenadas 

Primera 10:47am 

Lat: -2.145489 

Lon: -79.960556 

Sat: 5 

Segunda 10:49am 

Lat: -2.139788 

Lon: -79.960689 

Sat: 8 

Tercera 10:51am 

Lat: -2.139962 

Lon: -79.9604857 

Sat: 7 

Cuarta 10:53am 

Lat: -2.139948 

Lon: -79.962584 

Sat: 9 

Quinta 10:55am 

Lat: -2.140045 

Lon: -79.96 

Sat:7 

Sexta 10:57am 
Lat: -2.140027 

Lon: -79.96026 

Sat: 7 

Séptima 10:58am 

Lat: -2.140077 

Lon: -79.960323 

Sat: 9 

Octava 11:00am Lat: -2.140054 

Lon: -79.96448 
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Sat: 11 

Novena 11:02am 

Lat: -2.140201 

Lon: -79.960410 

Sat: 8 

Decima 11:04am 

Lat: -2.140150 

Lon: -79.960356 

Sat: 8 

 

Estas lecturas se almacenan en la base de datos que tiene por defecto Home Assistant, 

aquí llegan todos los datos recogidos por los nodos que están integrados en la interfaz. Los 

datos que son recolectados por los nodos (puntos ubicados dentro del área) se almacenan en 

una base de datos SQLite que viene integrada en Home Assistant (Figura 3.5). 

 

Figura 3.5 Base de Datos SQL 

En la cuarta etapa se tiene el procesamiento de datos que consiste en organizar una 

estructura de tipo DataFrame con el objetivo de usar una red neuronal, en específico el 
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modelo LSTM (Long Short-Term Memory) para entrenar este modelo y que aprenda 

patrones, comportamientos y movimientos de los animales. 

Durante la realización de esta etapa de entrenamiento del modelo de ML (Machine 

Learning) se aplican ajustes de parámetros para mejorar la precisión del modelo y de esta 

manera asegurar que las predicciones resulten en lo más exactas posibles.  

Para la última etapa se presentan los resultados del modelo traducidos a información 

legible para el usuario final. Se generan y se visualizan las coordenadas en tiempo real del 

animal junto con el rssi de su posición en el dashboard de Home Assistant.  

De igual manera se podrá ver su ubicación en un mapa geográfico y el sistema genera 

alertas si el animal cruza el área permitida, facilitando así el monitoreo remoto y una toma 

de decisiones rápida por parte del personal encargado. Esta etapa convierte los datos 

complejos en resultados claros y visuales para tomar acciones precisas. 

3.2 Entrenamiento del Modelo con Machine Learning 

 

Para lograr un sistema con localización con resultados confiables era necesario contar 

con un modelo que interprete la relacion entre el RSSI (intensidad de la señal) y la posición 

real de los animales, ya que la señal se ve afectada por muchos factores como el movimiento, 

las condiciones ambientales y la línea de vista en relacion al Gateway. 

Se opto por el uso de técnicas de Machine Learning (ML) de aprendizaje no 

supervisado el cual se basa en encontrar patrones ocultos a través de la organización de datos 

similares con el objetivo de entrenar modelos a partir de datos reales recogidos en el área de 

trabajo, aprender patrones de comportamiento de la señal y predecir coordenadas con mayor 
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precisión. Esta implementación ofrece mejorar de manera progresiva la precisión del sistema 

según más datos vaya recibiendo, convirtiéndola así en una base sostenible para un cercado 

virtual eficiente. 

3.2.1 Entrenamiento con Distancia 

 

Figura 3.6 Entrenamiento del modelo con ANN 

 

Figura 3.7 Entrenamiento del modelo con LSTM 

Para ambos entrenamientos se usaron dos capas: una de 40 neuronas y la segunda de 

20 neuronas que permitió capturar las relaciones temporales presentes en los datos. El 
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entrenamiento que incorpora a la distancia como variable arrojo un mejor rendimiento tanto 

para el modelo ANN como para el LSTM. Las entradas para este entrenamiento fueron: 

distancia, RSSI, latitud y longitud (Gateway) y de salida: latitud y longitud referente a los 

nodos estáticos. 

El modelo ANN presentado en la Figura 3.6 alcanzo un coeficiente 𝑅2 = 0.945 con 

un error promedio de 3.79𝑚𝑒𝑡𝑟𝑜𝑠 en la predicción de coordenadas. Por otra parte, el modelo 

LSTM (Figura 3.7) presenta un mejor desempeño con 𝑅2 = 0.953 con un error promedio 

de 3.02𝑚𝑒𝑡𝑟𝑜𝑠 en la predicción de coordenadas. 

 

Figura 3.8 Curvas de Entrenamiento 

En la Figura 3.8 se pueden observar las curvas de entrenamiento y validación de dos 

modelos, en la parte superior ANN y de la parte inferior LSTM, usados para predecir la 

posición de los 10 nodos estáticos que fueron usados para el entrenamiento. Los gráficos 

muestran cómo evolucionan dos métricas clave: la pérdida (Loss) y el Error Absoluto Medio 

(MAE) a lo largo de 100 épocas de entrenamiento. 
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La curva de pérdida del modelo ANN baja rápidamente en las primeras épocas, lo 

cual es una buena señal. Después de unas 30 épocas, se estabiliza, y aunque la pérdida de 

entrenamiento sigue mejorando, la de validación se mantiene constante. Esto sugiere que el 

modelo podría estar comenzando a sobre ajustarse un poco, ya que no mejora tanto con los 

datos de validación. 

En cuanto al MAE, se ve una tendencia similar. El error de entrenamiento es siempre 

más bajo que el de validación, lo que refuerza la idea de que el modelo ANN podría estar 

ajustándose demasiado a los datos de entrenamiento y no generalizando lo suficientemente 

bien. 

Para el modelo LSTM, la pérdida disminuye de forma más pronunciada, y lo 

interesante es que las curvas de entrenamiento y validación siguen una trayectoria casi 

idéntica. Esto indica que el modelo LSTM tiene un buen rendimiento en general y parece 

estar adaptándose mejor a los datos, sin los indicios de sobreajuste que se ven en el modelo 

ANN. 

El MAE del modelo LSTM también muestra una caída estable, con una pequeña 

diferencia entre los datos de entrenamiento y validación. Esto sugiere que el modelo LSTM 

está generalizando de manera eficiente y no está sobre ajustándose.  
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Figura 3.9 Predicción de Coordenadas Reales ANN 

 

Figura 3.10 Predicciones de Coordenadas Reales LSTM 

 

Se puede visualizar con claridad en la Figura 3.9 y Figura 3.10 el comportamiento 

de ambos modelos: ANN y LSTM frente a una ruta real usada como referencia para el 

entrenamiento. En ambas imágenes se visualiza que la trayectoria mantiene un recorrido 

próximo a las coordenadas reales con mínimas variaciones a lo largo de la ruta. 

Para hacer una comparación se tiene que el modelo LSTM presenta una trayectoria 

más estable y menos dispersa en los puntos de predicción lo que evidencia la capacidad de 
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manejar secuencias temporales y “aprender” de patrones previos de variación de RSSI junto 

con la variable distancia. 

El modelo ANN, aunque también es preciso, muestra pequeñas desviaciones que se 

traducen en menos estabilidad frente a la variación de la señal. Esta diferencia remarca ya 

que un sistema de localización basado en LSTM se adapta mejor a las variaciones producidas 

por el movimiento de los animales y las condiciones externas que se encuentran en constante 

cambio, son aspectos que se reflejan en los datos con los que el modelo siguió una ruta real. 

3.2.2 Entrenamiento sin Distancia 

 

Figura 3.11 Entrenamiento del Modelo con ANN 
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Figura 3.12 Entrenamiento del Modelo con LSTM 

Para este entrenamiento en específico se eliminó la variable distancia y se entrenó 

únicamente con el valor de RSSI y en comparación al entrenamiento previo, el rendimiento 

se redujo significativamente. Las entradas para este entrenamiento fueron: RSSI, latitud y 

longitud (Gateway) y de salida: latitud y longitud referente a los nodos estáticos. 

Se tiene en la Figura 3.11 que el modelo ANN obtuvo un coeficiente de 𝑅2 = 0.537 

y un error promedio de 21.84𝑚𝑒𝑡𝑟𝑜𝑠; por otro lado, en el modelo LSTM presentado en la 

Figura 3.12 alcanzo un coeficiente de 𝑅2 = 0.579 con un error promedio de 21.09𝑚𝑒𝑡𝑟𝑜𝑠. 

Ambas graficas muestran trayectorias dispersas e inestables con relacion a la ruta real. 

Esto confirma que el RSSI por sí solo no brinda información suficiente para estimar la 

ubicación con precisión ya que los obstáculos del camino, condiciones ambientales y 

reflexiones de señal representan una afectación. 

Aunque el modelo LSTM siga mostrando un rendimiento ligeramente mejor respecto 

al modelo ANN para este entrenamiento, la ausencia de la variable distancia provoca que 

ambos modelos pierdan precisión considerablemente, resultado que se aprecia en las gráficas 
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al comparar su dispersión con respecto a las predicciones del entrenamiento realizado con 

distancia. 

El rendimiento de LSTM frente al ANN es debido a la capacidad de manejar datos 

secuenciales a diferencia de las redes ANN que tratan cada entrada como independiente, el 

LSTM integra información temporal de lecturas previas lo que permite reconocer patrones y 

tendencias en la señal conforme cambia el recorrido de los animales, obstáculos y variaciones 

del entorno. Esto se traduce en una mejor estabilidad en las predicciones y una trayectoria 

más limpia y ajustada a la ruta real. 

 

Figura 3.13 Desempeño de los modelos 

La Figura 3.13 se observa el desempeño de dos modelos de redes neuronales en la 

tarea de predicción de posición de los 10 nodos estáticos que se usaron como entrenamiento. 

Se emplearon métricas de pérdida (Loss) y error absoluto medio (MAE), tanto para los 

conjuntos de entrenamiento como para validación, a lo largo de 100 épocas de entrenamiento. 

El modelo ANN muestra una pérdida que comienza con un valor de aproximadamente 

0.88 en la primera época (eje Y, parte superior izquierda). A lo largo de las primeras épocas, 
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la pérdida disminuye rápidamente, alcanzando un valor cercano a 0.5 al final del 

entrenamiento (época 100). Sin embargo, se observa una pequeña desviación en la curva de 

validación que permanece en torno a 0.55, lo que indica una ligera diferencia en el 

rendimiento entre entrenamiento y validación. 

El MAE para el modelo ANN empieza en aproximadamente 0.75 al inicio del 

entrenamiento. Después, muestra una disminución significativa hasta llegar a valores 

cercanos a 0.55 al final de las 100 épocas, tanto en el conjunto de entrenamiento como en el 

de validación. Sin embargo, la curva de validación muestra oscilaciones pequeñas, lo que 

sugiere una mayor variabilidad en las predicciones de validación. 

En el caso del modelo LSTM, la pérdida de entrenamiento también comienza en un 

valor cercano a 0.88 y desciende hasta 0.5 (parte inferior izquierda), similar al 

comportamiento del modelo ANN. Sin embargo, las curvas de entrenamiento y validación 

son más consistentes, manteniendo una diferencia menor entre sí, con la validación 

estabilizándose alrededor de 0.55 y el entrenamiento acercándose a 0.5. 

En el modelo LSTM, el MAE comienza en torno a 0.75 y desciende de manera 

similar, alcanzando un valor cercano a 0.55 tanto en el conjunto de entrenamiento como en 

el de validación (parte inferior derecha). La diferencia entre ambos conjuntos es mínima, lo 

que sugiere que el modelo generaliza mejor a lo largo del entrenamiento. 

Por lo que se concluye que cuando se utiliza el parámetro distancia, el rendimiento 

de los modelos ANN y LSTM mejora notablemente. Los modelos entrenados con esta 

variable consiguen adaptarse mejor a los datos, reduciendo los errores y logrando una mejor 

capacidad para generalizar. Sin embargo, al eliminar este parámetro, especialmente en el 
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ANN, los modelos tienden a sobre ajustarse más y su rendimiento general disminuye. Esto 

muestra claramente la importancia de incluir características clave, como la distancia, para 

hacer las predicciones más precisas reduciendo el error promedio en metros de las 

coordenadas reales respecto a las predichas. 

A continuación, se presenta una comparación del entrenamiento con distancia con 

más o menos datos (lecturas) recolectados para seguir mejorando el modelo de predicción. 

3.2.3 Entrenamiento con Distancia usando menos datos 

 

Figura 3.14 Entrenamiento modelo ANN 
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Figura 3.15 Entrenamiento modelo LSTM 

Se tiene un dataset de 2860 datos de 10 nodos estáticos recopilados durante varios 

días donde cada nodo enviaba datos cada 2 minutos. 

El modelo ANN alcanzo un coeficiente de 𝑅2 = 0.957 con un error promedio de 

predicción de 3.39𝑚𝑒𝑡𝑟𝑜𝑠. La Figura 3.14 muestra que la trayectoria predicha sigue la 

tendencia de la ruta real, pero con oscilaciones y posiciones que se desvían significativamente 

de la posición real; demostrando que a pesar de que el modelo trabaja bien con los datos de 

RSSI, distancia y coordenadas, su arquitectura no logra predecir con la misma precisión las 

variaciones que afectan la señal. 

El modelo LSTM alcanzo un coeficiente de 𝑅2 = 0.976 con un error promedio de 

2.69𝑚𝑒𝑡𝑟𝑜𝑠. La Figura 3.15 muestra de igual manera la trayectoria predicha cercana a la 

ruta real, aunque también con mínimas desviaciones evidentes en ciertos tramos. Con una 

cantidad reducida de datos el modelo logro captar patrones temporales con mejor estabilidad 

que el ANN lo que reafirma la precisión del modelo. 
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Se aprecia en la misma grafica una menor dispersión en comparación al modelo 

anterior ya que la capacidad de LSTM para manejar datos secuenciales da paso a reconocer 

patrones en evolución de la señal RSSI y la distancia, resultando en predicciones más 

precisas. 

 

3.2.4 Entrenamiento con Distancia usando más datos 

 

Figura 3.16 Entrenamiento modelo ANN 

 

Figura 3.17 Entrenamiento modelo LSTM 
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Para esta parte del entrenamiento se tiene un aumento significativo de datos, un 

dataset de 5000 registros recolectados de la misma forma que el entrenamiento anterior. Al 

aumentar los datos el modelo ANN mostrado en la Figura 3.16 mejoro su desempeño 

alcanzando un 𝑅2 = 0.966 y un error promedio de 3.27 𝑚𝑒𝑡𝑟𝑜𝑠. La grafica muestra una leve 

reducción en su dispersión de puntos, aunque siguen presentes las desviaciones en zonas 

donde la señal presenta cambios repentinos.  

Esto demuestra que, aunque el incremento de datos ayuda a que el modelo mejore, 

sus limitaciones permanecen presentes. 

Para el siguiente caso el modelo LSTM presento una mejora significativa al trabajar 

con más datos, alcanzando un coeficiente de 𝑅2 = 0.996 y su error promedio se redujo a 

0.77 𝑚𝑒𝑡𝑟𝑜𝑠. En la Figura 3.17 se visualiza que la trayectoria predicha se superpone con la 

ruta real, sin desviaciones perceptibles. Esto refleja la capacidad que tiene el modelo para 

aprovechar el incremento de datos y así ajustar con mayor precisión los patrones de 

propagación de señal, logrando un incremento visiblemente optimo. 

Se evidencia que, aunque ambos modelos mejoran con más datos, el LSTM se 

beneficia significativamente y su error promedio pasa de 2.69 𝑚𝑒𝑡𝑟𝑜𝑠 a 0.77 𝑚𝑒𝑡𝑟𝑜𝑠 

mientras que el modelo ANN reduce el error de 3.39 𝑚𝑒𝑡𝑟𝑜𝑠 a 3.27 𝑚𝑒𝑡𝑟𝑜𝑠. 

Esta diferencia reafirma que el modelo LSTM no solo tiene mejor arquitectura para 

este tipo de situaciones, sino que también responde de manera eficiente al incremento del 

volumen de datos, logrando que el sistema de localización sea más confiable y preciso para 

la realización del proyecto. 
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En conclusión, se decidió a usar el modelo LSTM debido a su capacidad de manejar 

un mayor volumen de datos lo que aporto a una mejora significativa en la predicción junto 

con el uso de la distancia. Posteriormente se entrenará el modelo con otro algoritmo llamado 

Random Forest lo que permitirá optimizar aún más su rendimiento y precisión en la 

predicción, resultando así en un mejor enfoque para el desarrollo del proyecto. 

3.2.5 Random Forest 

Como se demostró en modelos anteriores que el entrenamiento con la variable 

distancia y la cantidad de datos empleada (mientras más datos se emplean más preciso es el 

modelo) es significativa para la predicción de coordenadas; se usó un modelo adicional para 

poder estimar la distancia de cada nodo móvil (nodos colocados en los chivos) a través del 

RSSI de subida y RSSI de bajada para poder reducir el error de predicción. Esto es importante 

ya que la distancia no es parámetro conocido con los nodos móviles, por ende, la predicción 

de esta nos permite incluir la variable distancia en el modelo LSTM. 

Se utiliza para la estimación de distancia el Modelo de Random Forest ya que la 

relación entre el RSSI de subida y bajada y la distancia real no siempre sigue una ecuación 

simple, porque la señal está afectada por ruido, obstáculos como vegetación y variaciones 

del entorno como irregularidad del terreno. El modelo permite aprender patrones complejos 

y no lineales a partir de datos reales, mejorando la precisión en la estimación de la distancia 

en comparación con un cálculo puramente teórico. 
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Figura 3.18 Importancia de variables de entrenamiento 

Para el entrenamiento se recopilaron 4 datos RSSI de subida, RSSI de bajada, SNR 

de subida y SNR de bajada como se muestra en la Figura 3.18. También se muestra la 

importancia de cada variable en el proceso de entrenamiento, esto con el fin de que en futuras 

muestras poder optimizar el uso de parámetros y proceso de entrenamiento.  

El modelo se procesó con 12 mil datos recopilados durante 3 días aproximadamente 

de los 10 nodos estáticos, de los cuales un 80% se utilizó para entrenamiento, donde el 

algoritmo aprende la relación entre las señales y la distancia y 20% prueba donde se valida 

que tan bien generaliza el modelo. 

 



48 
 

 

Figura 3.19 Curva de entrenamiento 

En la Figura 3.19 se observa muestra una curva de aprendizaje de un modelo Random 

Forest, donde en el eje horizontal representa el tamaño del conjunto de entrenamiento y en el 

eje vertical el desempeño medido con la métrica 𝑅2. La línea azul corresponde al rendimiento 

en entrenamiento, que rápidamente alcanza valores cercanos a 1, indicando un muy buen 

ajuste a los datos de entrenamiento. La línea naranja refleja la validación cruzada, que inicia 

con valores bajos cuando hay pocos datos, pero mejora de manera progresiva conforme 

aumenta la cantidad de muestras utilizadas, hasta estabilizarse en un rendimiento cercano al 

del entrenamiento.  

Esto evidencia que el modelo necesita un número suficiente de ejemplos para 

generalizar adecuadamente, y que al disponer de más datos la brecha entre entrenamiento y 

validación se reduce, mostrando un buen equilibrio entre ajuste y capacidad predictiva. 

3.2.6 Modelo LSTM con Random Forest 

Finalmente se utiliza la combinación de dos modelos de aprendizaje para la 

estimación como primer punto la distancia, para posteriormente predecir posición a través de 

las coordenadas en grados decimales. Este modelo hibrido utiliza 2 capas, la primera con 40 
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neuronas y la segunda con 20 neuronas de memoria y entrenado con 12 mil datos recopilados 

de los 10 nodos estáticos. 

 

Figura 3.20 Entrenamiento y evaluación del modelo LSTM 

 

La Figura 3.20 presenta los resultados del entrenamiento y evaluación del modelo 

LSTM con Random Forest en dos gráficos. En el panel izquierdo se observa la comparación 

entre las coordenadas reales y las predichas por el modelo: los puntos azules representan los 

valores reales de la ruta de un chivo con el nodo móvil y los naranjas las predicciones. Se 

aprecia que las predicciones siguen en general la trayectoria de los datos reales con un error 

promedio de 8.72 𝑚𝑒𝑡𝑟𝑜𝑠, lo que indica que el modelo capta la tendencia de forma favorable 

considerando que el error promedio del GPS tradicional es de 5 a 10 metros. En el panel 

derecho se muestra la evolución de la función de pérdida (loss) durante 100 épocas; la curva 

azul corresponde al conjunto de entrenamiento y la naranja al de validación. La pérdida en 

entrenamiento disminuye de manera constante hasta estabilizarse en valores de entre 0.2 a 

0.3 de perdida. 
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3.3 Resultados Obtenidos 
Luego de realizar todas las pruebas necesarias, modificaciones pertinentes y 

prototipos de baja para ubicarlos en los chivos se tiene los resultados alcanzados durante la 

implementación del sistema de cercado virtual. Estos resultados abarcan tanto la parte de 

visualización de las alertas a través de Home Assistant como el desarrollo físico del prototipo 

y su aplicación en el entorno real (la granja de ESPOL) al colocarlo en el chivo. 

3.3.1 Prototipo Final 

 

Figura 3.21 Prototipo 1 con GPS como validador 

 

Figura 3.22 Prototipo 2 con GPS como validador 

Se puede apreciar en la Figura 3.21 y Figura 3.22 los prototipos finales diseñados 

con el módulo GPS, el módulo CubeCell y la batería en su interior; se evidencia variación de 

tamaño ya que el módulo GPS del prototipo 1 es un poco más grande que el prototipo 1. 
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También se puede visualizar que las dimensiones de cada prototipo no resultan demasiado 

grandes lo cual corresponde a la meta de mantener un peso (aproximadamente 120 gramos) 

y tamaños adecuados para que puedan ser ubicados en el lomo de cada chivo sin generar 

daños ni incomodidad. 

Las medidas y el hecho de que la caja sea una impresión 3D hace que resulte ligero y 

seguro para que el sistema de monitoreo sea funcional en campo sin afectar el bienestar ni la 

rutina de los animales garantizando también el monitoreo de su ubicación.  

 

Figura 3.23 Prototipo final sin GPS 

 

Por otro lado, en la Figura 3.23 se observa el prototipo final usado para monitoreo 

sin modulo GPS. Aquí la caja (impresión 3D) únicamente contiene como sistema el módulo 

CubeCell con su respectiva antena y la batería lo que permite a diferencia de los prototipos 

anteriores, reducir notablemente sus dimensiones y obtener un diseño más pequeño, portátil 

y ligero pensado para ajustarse con mayor facilidad al lomo del chivo y garantizar de igual 

manera el monitoreo sin afectar su movilidad ni comodidad. 
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3.3.2 Prototipo Posicionado 

 

Figura 3.24 Prototipo ubicado en el Chivo 

En la Figura 3.24 se puede apreciar el prototipo colocado sobre el lomo del chivo 

para su respectivo monitoreo. Este modelo mantiene su diseño compacto y posicionado ya 

en el lomo del chivo se observa que no le causa incomodidad ni afecta su movilidad para 

seguir con su rutina; de igual manera la pechera no se encuentra demasiado ajustada con el 

mismo propósito de no afectar sus actividades. 

Se eligió que el prototipo se encuentre en el lomo ya que la antena del LoRa debe 

permanecer orientada hacia arriba lo que garantiza una mejor propagación y recepción de la 

señal. Esta posición no solo favorece la eficiencia en la transmisión de datos hacia el 

Gateway, sino que también permite mantener una distancia uniforme respecto al suelo, 

reduciendo interferencias y perdidas de línea de vista. Además de que también evita que la 
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antena del CubeCell este en contacto directo con el cuerpo del chivo lo cual podría generar 

un efecto espejo y afectar la calidad de transmisión de datos. 

 

3.3.3 Alertas en Home Assistant 

En esta sección se muestra la interfaz de visualización dentro de Home Assistant que 

tendrá el usuario final para monitorear y tener el control del rebaño. 

 

Figura 3.25 Mapa de monitoreo en tiempo real en Home Assistant 
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Figura 3.26 Área definida como Cerca Virtual 

En la Figura 3.25 se puede observar la interfaz de Home Assistant donde se 

monitorea la ruta y posición de los chivos dentro del mapa donde se delimita la cerca virtual 

con un círculo naranja tomando como referencia el mapa de Google Earth de la Figura 3.26. 

 

 

Figura 3.27 Posición y ruta del primer dispositivo móvil. 
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Para fines prácticos se utilizaron dos dispositivos en chivos adultos para las pruebas, 

donde se puede visualizar en la Figura 3.27 dos puntos del primer dispositivo, encerrados 

con un círculo verde. El punto “C” corresponde a las coordenadas emitidas por el modelo 

GPS como validación y el punto “P” corresponde a las coordenadas predichas por el modelo 

LSTM.  

 

 

 

Figura 3.28 Posición y ruta del segundo dispositivo móvil 

De igual forma para el dispositivo 2, como se observa en la Figura 3.28, existen dos 

puntos encerrados con el circulo azul. El punto “C” que corresponde a las coordenadas del 

GPS como validador y el punto “P” que corresponde a la coordenada predicha por el modelo 

LSTM que se encuentra relativamente en el mismo punto del GPS. 
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3.4 Validación de alertas en Home Assistant 

Una vez validado el modelo de predicción de posición en un entorno real se optó por 

cuestiones prácticas simular posiciones aleatorias del chivo dentro de la Granja para validar 

el funcionamiento de las alertas en Home Assistant. 

3.4.1  Posición del chivo dentro de la cerca virtual 

 

 

Figura 3.29  Chivo dentro de la cerca virtual, visualización en mapa 
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Figura 3.30 Notificación de alerta de la posición del chivo 

  

Figura 3.31 Baliza en estado off 
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3.4.2 Posición del chivo fuera de la cerca virtual 

 

Figura 3.32 Chivo fuera de la cerca virtual, visualización en mapa 

 

 

Figura 3.33 Notificación de alerta de la posición del chivo fuera de la cerca virtual 
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Figura 3.34 Baliza en estado on 

La interfaz de Home Assistant cuenta con dos sistemas de alertas, el primero basado 

en el tracking de la posición del chivo como se puede observar en la Figura 3.29, donde el 

circulo etiquetado como 21R indica en tiempo real la ubicación del chivo dentro de la Granja 

Experimental Espol. El segundo sistema se basa en mensajes de alertas indicando si el chivo 

se encuentra dentro o fuera de la cerca virtual. Finalmente se agregó una alerta física visual 

como se observa en la Figura 3.34, usando una baliza que se enciende si el chivo se encuentra 

fuera de la cerca y si apaga cuando este regresa o se mantiene dentro de la cerca. Estos 

sistemas de alertas se activan o desactivan cada vez que el dispositivo lora ubicado en el 

chivo envía el RSSI y el modelo de LSTM predice la posición basada en esa lectura de RSSI.  



60 
 

3.4.3 Visualización de la interfaz de Home Assistant desde dispositivo móvil 

En esta sección se presenta la visualización de la interfaz de Home Assistant desde 

un dispositivo móvil. Además, se incluyen capturas de pantalla que muestran cómo se 

interactúa con la interfaz en tiempo real. 

 

Figura 3.35 Interfaz principal de Cerca Virtual 



61 
 

 

Figura 3.36 Visualización de la posición del chivo dentro de la cerca virtual 
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Figura 3.37 Posición del chivo fuera de la Cerca Virtual 
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Figura 3.38 Mensajes de alerta 

Para constancia del funcionamiento del servidor de Home Assistant, se probaron los 

accesos y visualización de la interfaz con un dispositivo móvil como se puede observar en 

las Figura 3.35, Figura 3.36, Figura 3.37 y Figura 3.38 , en las cuales se muestra la interfaz 

inicial y la visualización del sistemas de alertas explicadas previamente. 

Para concluir, la integración de alertas en Home Assistant permite una experiencia de 

monitoreo eficiente tanto desde la interfaz web como desde dispositivos móviles, lo que 

facilita la gestión y supervisión en tiempo real. Al configurarse las alertas, los usuarios 

reciben notificaciones visuales directamente en su pantalla, ya sea en el navegador web o en 
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sus teléfonos inteligentes, asegurando que las acciones necesarias puedan tomarse de 

inmediato. Además, cuando se activa una alerta, una baliza se enciende automáticamente, 

proporcionando una señal visual clara de que el chivo salió de la zona segura, lo que refuerza 

la respuesta rápida y mejora la seguridad del entorno monitoreado 

 

 



 

 

 

 

 

 

 

Capítulo 4 
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4 Conclusiones y Recomendaciones 
 

Una vez finalizadas todas las pruebas, así como los ajustes y modificaciones del 

presente proyecto podemos establecer las siguientes conclusiones sobre la implementación y 

el uso de las tecnologías aplicadas en ambientes agrícolas. Así mismo, los resultados del 

producto final permiten evaluar su desempeño en condiciones reales, identificando mejoras 

potenciales que podrán aplicarse en futuras implementaciones y proyectos afines.  

4.1 Conclusiones 

• El proyecto culminó con el diseño e implementación de un sistema de cerca virtual 

para la granja de ESPOL, capaz de monitorear en tiempo real el desplazamiento de 

los chivos mediante tecnología LoRa. El sistema también genera alertas inmediatas a 

través de la interfaz web de Home Assistant al detectar la salida de un animal fuera 

del área segura, cumpliendo con el propósito planteado y aportando una herramienta 

práctica para la gestión y seguridad del ganado. 

• Se realizaron modificaciones en el algoritmo de localización basado en aprendizaje 

automático, empleando una base de datos con una mayor cantidad de registros para 

fortalecer el entrenamiento del modelo. También al entrenar el modelo de Machine 

Learning con más datos permite disminuir el error en las predicciones. 

• El sistema de cerca virtual desarrollado para la granja de ESPOL ha demostrado ser 

una solución efectiva para el monitoreo y la seguridad del ganado. Al integrar 

tecnología LoRa y sistema de alertas automatizadas el cual consta de 3 fases capaces 

de proporcionar un control eficiente y garantizar una respuesta inmediata. Esta 

innovación no solo mejora la gestión del ganado, sino que también proporciona una 
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herramienta práctica y accesible para los encargados de la granja, facilitando el 

control y cuidado del animal en todo momento. 

• La implementación del sistema de cercado virtual basado en tecnología LoRa 

demostró ser una solución eficaz para la localización y monitoreo del ganado, 

logrando una comunicación estable y de largo alcance sin depender de redes celulares 

convencionales. 

• La incorporación del modelo LSTM para la predicción de posiciones, junto con una 

arquitectura de bajo consumo y basada en software de código abierto, aportó un valor 

significativo al sistema, permitiendo anticipar desplazamientos y facilitar acciones 

preventivas. Esta combinación demostró ser escalable, adaptable a distintos entornos 

y con potencial para futuras implementaciones en otros escenarios productivos. 

4.2 Recomendaciones 

 

• Para desarrollar y entrenar algoritmos de aprendizaje automático es importante contar 

con un equipo de cómputo con suficientes recursos, se propone disponer de minimo 

16GB de RAM, 960 GB de disco y 3.00 GHZ de velocidad para procesamiento de 

información.  Estos procesos implican la ejecución de códigos complejos durante 

largos periodos, cuyo tiempo puede variar según la cantidad de datos empleados y el 

número de iteraciones necesarias para afinar los resultados. Un hardware adecuado 

no solo facilita la ejecución, sino que también aporta estabilidad y eficiencia durante 

el entrenamiento del modelo. 

• Se recomienda incrementar la distancia de separación entre los nodos respecto a la 

configuración actual, de manera que la variación del RSSI registrada por cada uno 
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sea más clara y distinguible. Un patrón de señal más definido facilita que el modelo 

de predicción identifique mejor las lecturas, reduciendo el solapamiento entre nodos 

y aumentando la precisión en la estimación de posiciones. Este ajuste ayudaría a 

minimizar errores derivados de la proximidad excesiva y optimizaría el rendimiento 

general del sistema. 
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