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RESUMEN

La seguridad en la cadena de suministro ecuatoriana se ve comprometida por ataques que

vulneran la integridad de la carga y la fiabilidad de los sistemas de rastreo. Este proyecto

presenta el diseño de un candado inteligente IoT cuyo objetivo es garantizar la integridad

y trazabilidad logística mediante la detección de anomalías físicas y la suplantación de

señal GPS (spoofing). Para ello, se desarrolló un prototipo funcional que integró un

microcontrolador ESP32, un sensor inercial MPU6050 y un módulo GPS. La detección

de anomalías físicas se implementó a través de un modelo de Machine Learning tipo

Random Forest, entrenado con datos empíricos de rutas reales y ataques simulados.

Adicionalmente, se desarrolló un algoritmo anti-spoofing basado en la fusión de datos

inerciales y la navegación por estima. Los resultados de la validación experimental

demostraron una alta efectividad del sistema: el clasificador de anomalías alcanzó una

precisión general del 99%, sin generar falsas alarmas, mientras que el mecanismo

anti-spoofing logró identificar con éxito las señales de GPS fraudulentas. Se concluye

que la fusión de sensores mediante un modelo de inteligencia artificial es una estrategia

robusta y viable que ofrece una doble capa de protección contra las amenazas físicas y

digitales en el transporte de mercancías.

Palabras Clave: Seguridad Logística, Internet de las Cosas, Machine Learning, GPS

Spoofing.
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ABSTRACT

Security in the Ecuadorian supply chain is compromised by attacks that threaten both

cargo integrity and the reliability of tracking systems. This project presents the design of

an intelligent IoT lock aimed at ensuring logistics integrity and traceability by detecting

physical anomalies and GPS spoofing. To achieve this, a functional prototype was

developed integrating an ESP32 microcontroller, an MPU6050 inertial sensor, and a

GPS module. Physical anomaly detection was implemented using a Random Forest

Machine Learning model, trained with empirical data from real routes and simulated

attacks. Additionally, an anti-spoofing algorithm based on inertial data fusion and dead

reckoning was developed. The results from the experimental validation showed the

system’s high effectiveness: the anomaly classifier achieved an overall accuracy of 99%

without generating false alarms, while the anti-spoofing mechanism successfully identified

fraudulent GPS signals. It is concluded that sensor fusion through an artificial intelligence

model is a robust and viable strategy that offers a dual layer of protection against physical

and digital threats in freight transport.

Keywords: Logistics Security, Internet of Things, Machine Learning, GPS Spoofing.
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CAPÍTULO 1

1. INTRODUCCIÓN

El transporte de mercancías constituye un pilar esencial de la economía ecuatoriana.

Sin embargo, enfrenta crecientes amenazas: entre enero de 2023 y mayo de 2024, se

reportaron 240 casos de asaltos, secuestros y homicidios contra transportistas, con un

aumento del 105% en robos en carretera entre 2023 y 2024 (Alai Secure, 2025). En

particular, los delincuentes han perfeccionado sus métodos para vulnerar la seguridad

física de los contenedores y, en algunos casos, incluso manipular digitalmente los

sistemas de rastreo, logrando desviar camiones o abrir cargas sin ser detectados por

los sistemas tradicionales de monitoreo (Cedillo-Campos et al., 2024).

Aunque el uso de GPS ha sido una solución ampliamente adoptada para rastrear

vehículos y mercancías, no está exento de vulnerabilidades (Cedillo-Campos et al.,

2024). Uno de los ataques más comunes en la actualidad es el llamado spoofing de

GPS, que consiste en enviar señales falsas para engañar al receptor, haciéndole creer

que se encuentra en una ubicación distinta a la real (Meng et al., 2022). Este tipo de

ataque puede ser aprovechado para desviar una unidad de transporte sin que el sistema

emita ninguna alerta, lo que pone en evidencia la necesidad de contar con mecanismos

adicionales de protección y monitoreo (Khan et al., 2021).

En este contexto, el presente proyecto propone el diseño e implementación de un

candado inteligente IoT con capacidad de detección de anomalías físicas en tiempo

real, capaz de identificar intentos de manipulación, vibraciones sospechosas, impactos

o torsiones que podrían indicar un intento de apertura no autorizada. Este candado

integra un sensor inercial (MPU6050), que mide aceleraciones y giros en los tres ejes,

y un microcontrolador ESP32, encargado de recolectar los datos y transmitirlos a una

plataforma de análisis. Se realizarán pruebas en entornos controlados para validar la

efectividad del sistema en la detección de manipulaciones y ataques de suplantación de



señal GPS.

Este trabajo busca contribuir al fortalecimiento de la seguridad en la logística de

transporte, combinando tecnologías de hardware, inteligencia artificial y comunicaciones

IoT. A través de la detección temprana de manipulaciones físicas, se pretende ofrecer una

capa adicional de protección que complemente a los sistemas GPS existentes, haciendo

frente a los desafíos actuales en la protección de activos durante su traslado.

1.1 Planteamiento del Problema

La seguridad en la cadena de suministro es un factor crítico para sectores productivos

del Ecuador,como el bananero y camaronero, que representan pilares fundamentales de

la economía nacional (Fares, 2024). El transporte terrestre de mercancías es uno de los

eslabones más vulnerables de esta cadena. Según informes de gremios de transporte

y de la Policía Nacional, las carreteras del país registran una alta incidencia de asaltos,

especialmente en las rutas de la zona costera (Hora, 2025). La delincuencia organizada

no solo utiliza métodos tradicionales, sino que también emplea tecnología avanzada,

como inhibidores de comunicaciones celulares (jammers) y técnicas de manipulación de

sistemas de geolocalización, para perpetrar sus actividades ilícitas (Ghanbarzade and

Soleimani, 2025).

El problema central que este proyecto aborda es la insuficiencia de los sistemas

de seguridad convencionales para detectar y responder a ataques de manipulación

tecnológica avanzada, en particular el GPS spoofing y las manipulaciones físicas sutiles

de los contenedores (Ghanbarzade and Soleimani, 2025). Actualmente, las empresas

de logística invierten en plataformas de rastreo que dependen en gran medida de la

veracidad de la señal GPS (“Global GPS Market and Its Applications”, 2025). Sin

embargo, las señales GPS son susceptibles a ataques de spoofing, lo que permite a

los delincuentes desviar vehículos o contenedores sin que los sistemas de monitoreo

detecten anomalías (Dasgupta, Ahmed, et al., 2024).

Diversos estudios advierten que el GPS spoofing representa una amenaza creciente

para el transporte y la logística, al permitir la alteración maliciosa de la ubicación reportada

por los sistemas de rastreo (Clements et al., 2022). A esta vulnerabilidad tecnológica se

suma la falta de mecanismos efectivos para detectar manipulaciones físicas sutiles en

2



los contenedores, como aperturas no autorizadas o vibraciones anómalas, que muchas

veces pasan desapercibidas por los sistemas actuales (Renault et al., 2025).

Esta situación evidencia la necesidad de un sistema de seguridad inteligente que

integre sensores inerciales, técnicas de machine learning y geolocalización resistente

a interferencias (Dasgupta, Shakib, and Rahman, 2024). El desarrollo de este tipo

de solución permitiría detectar tanto eventos físicos sospechosos como intentos de

suplantación de ubicación, fortaleciendo la seguridad logística en Ecuador, reduciendo

pérdidas económicas y mejorando la confiabilidad del sistema de transporte nacional.

1.2 Justificación

La necesidad de una solución robusta e inteligente para la seguridad logística en

Ecuador es innegable, especialmente considerando los desafíos actuales en la cadena de

suministro. Este proyecto se justifica por su impacto transformador en tres dimensiones

clave: tecnológica, económica-social y académica.

• Impacto Tecnológico: El proyecto propone una solución innovadora al

integrar Machine Learning directamente en un dispositivo IoT de bajo costo

(un microcontrolador ESP32). A diferencia de las soluciones que dependen

exclusivamente del procesamiento en la nube, este enfoque de computación en

el borde (edge computing) permite la detección de anomalías en tiempo real y de

forma autónoma, incluso si la conexión a internet es interrumpida. El desarrollo

de un algoritmo anti-spoofing basado en la correlación de múltiples sensores (GPS

y acelerómetro) representa un avance significativo sobre los sistemas de rastreo

pasivos.

• Impacto Económico y Social: Al mejorar la seguridad y la trazabilidad de las

cargas, se busca reducir directamente las pérdidas por robos y manipulaciones, que

representan un costo significativo para la economía nacional (Alai Secure, 2025).

Esto no solo beneficia a las empresas de transporte, sino que fortalece a sectores

productivos enteros, alineándose con el Objetivo de Desarrollo Sostenible (ODS)

12: Producción y consumo responsables. Asimismo, al crear una infraestructura

logística más segura y confiable, se fomenta la innovación y se robustece la

industria, contribuyendo al ODS 9: Industria, innovación e infraestructura.
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• Impacto Académico: El proyecto constituye una aplicación práctica y tangible

de conocimientos avanzados en áreas como sistemas embebidos, Internet de las

Cosas, inteligencia artificial y ciberseguridad. La validación del prototipo generará

conocimiento empírico sobre la viabilidad y efectividad de ejecutar modelos de

inferencia en microcontroladores con recursos limitados, sirviendo como base para

futuras investigaciones y desarrollos en el campo de la logística inteligente.

1.3 Objetivos

Para abordar la problemática descrita y validar la hipótesis, se han definido los siguientes

objetivos.

Objetivo General

Desarrollar un candado inteligente IoT que integre detección de anomalías de movimiento

y geolocalización anti-spoofing utilizando técnicas de Machine Learning, con el fin de

garantizar la integridad y trazabilidad de la cadena de suministro

Objetivos Específicos

1. Diseñar la arquitectura hardware-software del sistema, integrando un

microcontrolador ESP32, un módulo GPS y un acelerómetro MPU6050.

2. Implementar un algoritmo de anti-spoofing para la señal GPS, basado en el análisis

de consistencia temporal y espacial de los datos recibidos.

3. Entrenar un modelo de Machine Learning para la detección de anomalías con datos

de rutas legítimas y simulaciones de ataques.

4. Desarrollar una interfaz web para la visualización en tiempo real de la ubicación del

candado, así como los eventos de anomalía y manipulación detectados .
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1.4 Alcance

El desarrollo del presente proyecto considera la implementación de un candado inteligente

orientado a reforzar la seguridad logística en el transporte terrestre de mercancías. El

dispositivo estará dirigido principalmente a empresas de transporte, operadores logísticos

y exportadores que requieren monitoreo físico y geoespacial de su carga en tiempo real.

Para ello, el candado debe ser capaz de registrar eventos anómalos asociados a intentos

de manipulación, impactos o movimientos no autorizados durante el trayecto.

El sistema estará conformado por un microcontrolador de bajo consumo, un sensor

de movimiento y un módulo GPS, los cuales permitirán capturar información crítica del

entorno físico y de ubicación del candado. Esta información será procesada localmente

para identificar patrones inusuales y generar alertas, las cuales serán transmitidas a un

servidor central mediante conexión Wi-Fi. De este modo, se garantizará una respuesta

oportuna ante situaciones de riesgo, sin depender completamente de una conexión

permanente a internet móvil.

Además, el diseño del candado considerará portabilidad, autonomía energética y

facilidad de integración con los procesos logísticos existentes, de manera que pueda

adaptarse a diversos entornos operativos y niveles de infraestructura tecnológica. Este

enfoque permitirá que el sistema pueda ser utilizado en contextos urbanos, manteniendo

su funcionalidad y efectividad bajo condiciones reales de operación.

1.5 Limitaciones del Proyecto

El desarrollo del presente proyecto contempla la implementación de un prototipo funcional

de un candado inteligente IoT para la seguridad logística. Sin embargo, es necesario

reconocer ciertas limitaciones técnicas y operativas inherentes a su diseño y entorno de

aplicación. Una de las principales limitantes radica en la relación del sistema con respecto

a la calidad de la señal GPS, la cual puede verse afectada negativamente en entornos

urbanos densamente construidos, espacios interiores o condiciones atmosféricas

adversas. Además, la presencia de interferencias deliberadas o accidentales (como

jammers) puede degradar o anular la recepción satelital, comprometiendo la precisión

de la geolocalización.
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Asimismo, el prototipo ha sido diseñado con un enfoque en eficiencia energética y

autonomía operativa, optimizando su funcionamiento para consumir la menor cantidad

posible de energía en contextos donde el acceso a fuentes de alimentación constante es

limitado. Debido a ello, se prescinde de la conexión directa a redes móviles (como 3G,

4G o LTE), ya que estos módulos presentan un consumo energético significativamente

más alto en comparación con tecnologías de bajo consumo como Wi-Fi o LoRa. Esta

decisión limita la capacidad de transmisión de datos en movimiento y obliga a operar el

dispositivo en zonas con conectividad Wi-Fi estable o mediante sincronización periódica.

Finalmente, es importante señalar que la validación del prototipo se realizó bajo una

metodología mixta. Si bien los datos de ”comportamiento normal” se capturaron en rutas

reales para asegurar que el modelo aprenda de condiciones operativas auténticas (tal

como se indica en los objetivos), las pruebas de ”comportamiento anómalo” (impactos,

vibraciones forzadas, etc.) y la validación final del sistema se ejecutaron en entornos

controlados. Esta decisión garantiza la seguridad, la repetibilidad de los experimentos

y permite un análisis preciso de la respuesta del dispositivo frente a ataques simulados

específicos.

1.6 Estado del Arte

La creciente complejidad y globalización de las cadenas de suministro han incrementado

su exposición a una variedad de riesgos, que van desde interrupciones operativas

hasta actos delictivos deliberados. En este contexto, la revisión de la literatura se

centra en cuatro áreas fundamentales: las vulnerabilidades inherentes a los sistemas

de navegación por satélite, las estrategias de defensa contra ataques tecnológicos,

la aplicación de sensores inerciales para la detección de anomalías físicas, y las

arquitecturas de referencia para sistemas IoT en el ámbito de la seguridad.

1.6.1 Vulnerabilidades en la Cadena de Suministro y Sistemas de

Navegación Global por Satélite (GNSS)

La dependencia de la logística moderna en el Sistema de Posicionamiento Global (GPS)

y otros GNSS es casi absoluta. Sin embargo, la naturaleza de la señal GPS civil,
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que es pública, no cifrada y de baja potencia, la convierte en un objetivo vulnerable a

interferencias y manipulaciones. Entre las amenazas más significativas se encuentra el

ataque de suplantación de identidad o spoofing, en el cual un adversario transmite señales

de GPS falsificadas con el objetivo de engañar a un receptor, haciéndole calcular una

posición o tiempo incorrectos (Morillo Barragán, 2013).

Históricamente, la ejecución de un ataque de spoofing requería un alto nivel de

conocimiento técnico y equipos costosos, limitando la amenaza a actores estatales o

grupos con recursos significativos. No obstante, el panorama ha cambiado drásticamente

con la proliferación de radios definidas por software (SDR) de bajo costo y generadores

de señales GPS de código abierto. Hoy en día, es posible construir un dispositivo de

spoofing portátil y efectivo con una inversión inferior a 300 USD. Esta ”democratización”

de la tecnología de ataque representa una transformación fundamental del modelo de

amenaza. El spoofing ha dejado de ser una vulnerabilidad teórica para convertirse

en una herramienta práctica y accesible para organizaciones criminales, que pueden

utilizarla para secuestrar cargamentos, desviar rutas y eludir los sistemas de monitoreo

tradicionales, impactando directamente a sectores económicos vitales como los descritos

en el Capítulo 1 (Ordenes Espíndola, 2012).

1.6.2 Estrategias para la Detección de Ataques de Suplantación de

GPS (Spoofing)

Frente a la creciente amenaza del spoofing, la comunidad científica ha desarrollado

diversas contramedidas. Las técnicas iniciales se basaban en el análisis de las

características de la señal de radiofrecuencia (RF), como la potencia de la señal, el ángulo

de llegada o la consistencia de los datos de múltiples satélites. Si bien son útiles contra

ataques simplistas, estas técnicas pueden ser eludidas por atacantes más sofisticados

que logran sincronizar y replicar las características de las señales auténticas (Warner and

Johnston, n.d.).

Una estrategia considerablemente más robusta y que constituye la base de este

proyecto es la fusión de sensores, específicamente la integración de datos de una Unidad

de Medición Inercial (IMU) con los datos del receptor GPS. La IMU, que típicamente

combina un acelerómetro y un giroscopio, proporciona mediciones de movimiento
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(aceleración lineal y velocidad angular) de forma autónoma y contenida, sin depender

de señales externas. Por lo tanto, no es susceptible a los mismos ataques de RF que

afectan al GPS. El principio fundamental de esta defensa radica en la detección de una

inviabilidad física. Un atacante puede generar una trayectoria GPS falsa que parezca

suave y plausible; sin embargo, es prácticamente imposible que prediga y reproduzca de

forma remota y en tiempo real las microvibraciones, las irregularidades del camino y las

sutiles correcciones de la dinámica del vehículo que la IMU es capaz de medir con alta

fidelidad(Jafarnia-Jahromi et al., 2012).

Un ataque de spoofing exitoso crea una disonancia en el sistema: el GPS reporta

una trayectoria coherente pero falsa, mientras que la IMU reporta la ”firma” inercial del

movimiento físico real. La discrepancia entre la aceleración derivada de las lecturas

consecutivas del GPS y la aceleración medida directamente por la IMU se convierte en

un indicador de una perturbación no esperada. El algoritmo de detección, por lo tanto, se

encarga de cuantificar esta disonancia para generar una alerta fiable.

1.6.3 Detección de Anomalías Físicas mediante Sensores Inerciales

y Machine Learning

Además de la suplantación de GPS, la seguridad de la carga se ve amenazada

por manipulaciones físicas directas, como intentos de forzar cerraduras, impactos o

aperturas no autorizadas. Los sensores inerciales, como el MPU6050, son herramientas

excepcionalmente adecuadas para detectar este tipo de eventos. La literatura en

campos como el Reconocimiento de Actividades Humanas (HAR) y la monitorización de

maquinaria demuestra ampliamente la eficacia de las IMU para clasificar patrones de

movimiento (Salas et al., 2023).

La metodología estándar, adoptada en este proyecto, consiste en un proceso de

varias etapas. Primero, los datos brutos de la serie temporal de los seis ejes del sensor

(tres de aceleración, tres de giroscopio) se segmentan en ventanas de tiempo fijas.

Dentro de cada ventana, se realiza un proceso de ingeniería de características (feature

engineering), donde se calculan diversos descriptores estadísticos como la media, la

desviación estándar, el valor eficaz (RMS), la asimetría (skewness) y la curtosis. Este

proceso transforma la serie temporal en un vector de características de dimensión fija que
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resume la dinámica del movimiento en ese intervalo. Finalmente, este vector se utiliza

como entrada para un modelo de aprendizaje automático (Machine Learning) entrenado

para clasificar la actividad.

Diversos estudios han demostrado que los modelos de conjunto, y en particular el

algoritmo Random Forest, ofrecen un rendimiento superior para este tipo de tareas

de clasificación de series temporales (Parmar et al., 2019). Su robustez frente a

características irrelevantes, su alta precisión y su relativa simplicidad de implementación

lo convierten en una opción idónea. Un aspecto clave del diseño de este proyecto es la

dualidad del vector de características inerciales. El mismo conjunto de 42 características

extraídas de los datos del MPU6050 sirve a dos propósitos de seguridad distintos. Por

un lado, permite la detección de anomalías físicas al identificar patrones de movimiento

(impactos, vibraciones anómalas, torsiones) que se desvían de la ”huella” estadística del

tránsito normal. Por otro lado, proporciona la base para el mecanismo anti-spoofing al

permitir una comparación con los datos de movimiento derivados del GPS. Esta eficiencia

en el diseño, donde un único flujo de datos de un sensor alimenta múltiples funciones de

seguridad, es una de las fortalezas de la arquitectura propuesta.

1.6.4 Arquitecturas de Referencia en Sistemas IoT para Seguridad

Logística

La arquitectura del sistema propuesto se alinea con los patrones de diseño establecidos

en la literatura para sistemas de monitoreo basados en IoT. La estructura canónica de

dichos sistemas consta de tres capas principales: una capa de percepción, compuesta

por nodos sensores (en este caso, el candado inteligente con ESP32 y MPU6050)

que adquieren datos del entorno físico; (2) una capa de red, que utiliza tecnologías

de comunicación (como Wi-Fi) para transmitir los datos a un servidor central; y

una capa de aplicación, donde los datos son almacenados, procesados, analizados

(mediante algoritmos de Machine Learning) y presentados al usuario a través de

una interfaz. Esta arquitectura modular y distribuida valida la decisión de delegar el

procesamiento computacionalmente intensivo al backend, permitiendo que el dispositivo

IoT se mantenga como un componente de bajo costo y bajo consumo energético,

enfocado en la adquisición y transmisión de datos.
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1.7 Marco Teórico

Seguridad en la cadena de logística

La cadena de suministro representa un sistema complejo de actividades interrelacionadas

que van desde la producción hasta la distribución de bienes. En este contexto, la

seguridad logística se vuelve un aspecto esencial, especialmente en sectores como

el agrícola, pesquero y de exportación, donde los incidentes relacionados con robos,

sabotajes y manipulación de la carga pueden generar pérdidas significativas (Liu et al.,

2021). En América Latina, el robo de mercancías durante el transporte terrestre es un

problema creciente, y Ecuador no es la excepción. Informes recientes indican que las

rutas logísticas ecuatorianas, particularmente aquellas que conectan puertos con zonas

industriales, presentan una alta incidencia de asaltos y manipulación de sistemas GPS

mediante tecnologías como jammers y spoofing (BSI and TAPA EMEA, 2023).

Internet de las Cosas (IoT) en la Logística

El Internet de las Cosas (IoT) ha transformado las operaciones logísticas al permitir la

interconexión de dispositivos que recopilan, transmiten y analizan datos en tiempo real.

Esta tecnología permite no solo monitorear la ubicación de un contenedor, sino también

variables como temperatura, vibración o apertura no autorizada (Lu et al., 2022). La

integración de sensores inerciales, GPS y plataformas de análisis en la nube ha facilitado

la visibilidad de extremo a extremo de las cadenas de suministro (Lu et al., 2022).

Spoofing de señal GPS y vulnerabilidades tecnológicas

El spoofing de señal GPS es una técnica mediante la cual un atacante emite señales

falsas para engañar a un receptor GPS, haciéndole creer que se encuentra en una

ubicación diferente. Esta técnica ha sido utilizada para desviar vehículos o interrumpir

operaciones logísticas, y constituye una amenaza creciente debido al bajo costo y fácil

acceso a equipos capaces de realizar este tipo de ataque (Bhatti and Humphreys, 2017).

La ausencia de mecanismos anti-spoofing en dispositivos de rastreo comunes agrava

esta vulnerabilidad (Bhatti and Humphreys, 2017).

Navegación por estima (Dead reckoning)

La navegación por estima es un método utilizado para determinar la posición de un

vehículo basándose en los vectores de desplazamiento obtenidos mediante sensores
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de orientación y aceleración (Kao, 1991). Aunque su uso a largo plazo no es factible

debido al arrastre de errores, tiene una precisión alta al determinar la trayectoría de un

vehículo en intervalos cortos o medianos(Steinhoff and Schiele, 2010). Al no depender

de elementos externos, es una buena alternativa para determinar posición en situaciones

donde un GPS se encuentre inhabilitado.

Sensores inerciales y detección de anomalías

El uso de sensores inerciales como el MPU6050, que combina un acelerómetro y

giroscopio de tres ejes, permite detectar patrones de movimiento anómalos como

impactos, vibraciones o torsiones. Estos patrones pueden ser característicos de intentos

de manipulación física del candado o contenedor (Zhang et al., 2021). La extracción

de características estadísticas de las señales inerciales, media, desviación estándar,

curtosis, asimetría, entre otras, es una técnica común en aplicaciones de clasificación

y reconocimiento de patrones (Lu et al., 2022).

Machine Learning aplicado a la seguridad IoT

El aprendizaje automático (Machine Learning, ML) ha demostrado ser eficaz en tareas

de clasificación de eventos anómalos, incluso en entornos con ruido o incertidumbre.

Modelos como el Random Forest son especialmente útiles por su capacidad de manejar

variables correlacionadas y ofrecer interpretabilidad del proceso de decisión (Breiman,

2001). En el contexto de dispositivos IoT con recursos limitados, se ha optado por

implementar estos modelos en arquitecturas edge, donde el procesamiento se realiza

directamente en el microcontrolador (ESP32), permitiendo respuestas autónomas incluso

cuando no hay conectividad (Panchatcharam et al., 2022).

Sistemas embebidos y ciberseguridad

El diseño de sistemas embebidos para aplicaciones críticas, como la seguridad logística,

requiere un enfoque integral que contemple no solo la funcionalidad del hardware, sino

también la protección frente a ataques físicos y digitales (Lee and Chang, 2020). La

implementación de mecanismos de autenticación, encriptación y monitoreo de eventos

anómalos es indispensable para garantizar la integridad de la solución (Sicari et al., 2015).
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CAPÍTULO 2

2. METODOLOGÍA

Esta sección describe el enfoque sistemático adoptado para el diseño, implementación

y validación del sistema de candado inteligente. Se detalla la arquitectura general,

la metodología específica de aprendizaje automático empleada para la detección de

anomalías y el marco de pruebas para evaluar el rendimiento y la eficacia del prototipo.

2.1 Arquitectura del Sistema

En este proyecto, se ha diseñado una arquitectura completa que une el dispositivo físico

con toda la infraestructura digital. El sistema funciona en dos grandes áreas: por un

lado, el dispositivo IoT , que se encarga de sentir lo que ocurre a su alrededor y actuar

físicamente; y por otro, el back-end en la nube, que funciona como el cerebro digital,

procesando, guardando y analizando toda la información de manera inteligente.

2.1.1 Hardware

El corazón del proyecto es un candado inteligente cuyo diseño electrónico se centra

en tres pilares: sentir, pensar y comunicar. Como se puede ver en la Figura 2.1,

varios componentes clave trabajan en conjunto. El cerebro del dispositivo es un

microcontrolador ESP32, elegido por ser una pieza potente y versátil que ya incluye

conexión Wi-Fi, lo que facilita enormemente la comunicación. Su capacidad de

procesamiento es fundamental para leer los sensores, controlar el mecanismo de cierre

y hablar constantemente con el servidor en la nube sin consumir demasiada energía.

Para detectar cualquier anomalía, el candado cuenta con un módulo de sensores

muy completo. Incluye un sensor de movimiento MPU6050, que mide la aceleración y
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la rotación para identificar patrones que puedan sugerir un golpe o una manipulación

forzada. A su lado, un módulo GPS NEO-6M V2 se encarga de reportar la ubicación

exacta del candado, una función vital para el seguimiento y la seguridad. Cuando el

sistema decide sidebe abrirse o cerrarse, envía una señal a un servomotor de 5V. Este

pequeñomotor es el músculo del sistema, moviendo un pestillo para operar el mecanismo

de bloqueo de forma segura y remota. Toda la comunicación con el exterior se realiza a

través del módulo Wi-Fi del ESP32, que actúa como un puente para enviar datos de los

sensores hacia la nube y recibir órdenes.

Figura 2.1: Diagrama de la arquitectura de hardware del candado inteligente.

2.1.2 Software

Toda la gestión del sistema reside en una sólida arquitectura de software en la nube,

diseñada para recibir, procesar y analizar el flujo de datos que llega desde el candado.

La Figura 2.2 muestra cómo interactúan los distintos componentes de este ecosistema

digital. La comunicación entre el candado y el servidor se realiza a través de una API

REST, un método estándar y flexible que permite un diálogo claro y eficiente. Este

servidor, que es el núcleo de toda la operación, está desarrollado en Python con el

framework FastAPI, una tecnología moderna y de alto rendimiento. Para mantener el

código ordenado y fácil de mantener, se ha estructurado en módulos, separando la lógica

de la API, los servicios de Machine Learning, los modelos de datos y la gestión de la base
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de datos.

El servidor en la nube, que para nuestro caso se despliega con Uvicorn para asegurar

su estabilidad, orquesta todas las tareas. Gestiona las peticiones que llegan desde el

candado, se comunica con la base de datos para guardar y leer información, y utiliza

el modelo de Machine Learning para realizar predicciones. Para el almacenamiento de

datos a largo plazo, se utiliza una base de datos MySQL. En ella, una tabla llamada

”mpu data” guarda el historial completo de lecturas del sensor, mientras que otra tabla,

”officialtrainingdata”, almacena el conjunto de datos curado y etiquetado que sirve para

entrenar al modelo de inteligencia artificial. Este modelo, un RandomForestClassifier

guardado en un archivo, se carga en el servidor y está siempre listo para analizar nuevos

datos y decidir si una actividad es normal o sospechosa. Finalmente, una interfaz visual,

como una página web o una aplicación móvil, permite a los usuarios interactuar con el

sistema para ver el estado del candado, su ubicación y recibir alertas.

Figura 2.2: Diagrama de la arquitectura del software del candado inteligente.

2.2 Metodología de Machine Learning

El núcleo de la inteligencia del sistema reside en su capacidad para clasificar patrones de

movimiento. A continuación, se detalla el pipeline de Machine Learning implementado.

2.2.1 Definición del Problema de Clasificación

El problema se formula como una tarea de clasificación binaria supervisada. El objetivo

del modelo es, a partir de una ventana de datos de sensores, predecir una de dos posibles

clases:
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• Clase 0 (Normal): Representa el comportamiento esperado del candado durante

un tránsito legítimo, incluyendo vibraciones normales del vehículo y movimientos

menores.

• Clase 1 (Anomalía): Representa cualquier desviación significativa del

comportamiento normal. Esto incluye eventos físicos como golpes, caídas,

torsiones o vibraciones intensas que sugieran un intento de manipulación, así

como la detección de una inconsistencia lógica con la señal GPS que indique un

posible ataque de spoofing.

2.2.2 Construcción del Conjunto de Datos de Entrenamiento

La calidad y representatividad del conjunto de datos de entrenamiento son fundamentales

para el éxito de cualquier modelo de Machine Learning. Para este proyecto, el conjunto

de datos se construyó a través de un debido proceso de recolección de datos empíricos,

utilizando el prototipo funcional del candado IoT. El proceso de recolección se dividió

en dos categorías bien diferenciadas para generar un conjunto de datos etiquetado,

indispensable para el entrenamiento supervisado:

1. Captura de Comportamiento ”Normal”: Se instaló el prototipo en un vehículo que

realizó varios trayectos en distintas superficies. Esto permitió registrar una amplia

gama de vibraciones, aceleraciones y patrones inerciales que corresponden a las

condiciones de un transporte legítimo.

2. Simulación de Eventos ”Anómalos”: Para enseñar al modelo a reconocer

amenazas, se ejecutaron y grabaron sistemáticamente una serie de eventos

anómalos controlados. Estas simulaciones incluyeron:

• Impactos secos y agudos con herramientas metálicas.

• Vibraciones de alta frecuencia, simulando el uso de herramientas de corte.

• Caídas libres del dispositivo desde diferentes alturas sobre varias superficies.

• Movimientos de torsión y forcejeo, imitando un intento de apertura forzada.

Cada una de estas sesiones de grabación fuemeticulosamente registrada y etiquetada

manualmente en el sistema como ”Normal” o ”Anómala”. Este método de generación de
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datos, aunque intensivo, resulta en un conjunto de datos de alta fidelidad que refleja con

precisión los eventos específicos que el sistema está diseñado para detectar.

2.2.3 Ingeniería de Características (Feature Engineering)

Los modelos de Machine Learning como Random Forest no operan directamente sobre

datos de series temporales brutos. Por lo tanto, se implementó un proceso de ingeniería

de características para transformar los datos crudos en un formato estructurado y

significativo.

1. Ventaneo : Los datos continuos de los seis ejes del sensor MPU6050 se muestrean

a una frecuencia de 10 Hz. Estos datos se segmentan en ventanas de tiempo no

superpuestas de dos segundos de duración. Cada ventana, por lo tanto, contiene

20 muestras para cada uno de los seis ejes.

2. Extracción de Características: Para cada ventana y para cada uno de los 6 ejes,

se calcula un conjunto de siete características estadísticas. Este proceso, validado

por la literatura , permite resumir la dinámica de la señal dentro de la ventana.

El resultado es un vector de 6 ejes× 7 características/eje = 42 características por

ventana de tiempo. La Tabla 2.1 detalla cada una de las características extraídas.

2.2.4 Selección, Entrenamiento y Persistencia del Modelo

Para la tarea de clasificación, se seleccionó el RandomForestClassifier de la biblioteca

scikit-learn. Esta elección se justifica por su excelente rendimiento documentado en

problemas de detección de anomalías, su capacidad para manejar un alto número de

características sin necesidad de selección previa, y su robustez general.

El modelo se entrena utilizando el conjunto de datos officialtrainingdata, donde

cada fila corresponde al vector de 42 características y la etiqueta de clase asociada

(0 o 1). Una vez entrenado, el objeto del modelo, que contiene toda la estructura

de árboles y los umbrales aprendidos, se serializa y se guarda en un archivo binario

(binaryanomalymodel.pkl) utilizando la biblioteca pickle de Python. Este archivo permite

que el modelo entrenado sea cargado y utilizado para inferencia en el servicio backend

sin necesidad de reentrenamiento en cada ejecución.

17



Tabla 2.1: Vector de Características Estadísticas Extraídas por Eje

Característica Descripción
Media (µ) El valor promedio de las 20 muestras. Indica la

componente de continua o la tendencia central
del movimiento en la ventana.

Desviación Estándar (σ ) Medida de la dispersión de los datos respecto a
la media. Cuantifica la intensidad o variabilidad
de las vibraciones o movimientos.

Valor Eficaz (RMS) La raíz cuadrada de la media de los cuadrados
de los valores. Está directamente relacionada
con la energía de la señal en la ventana.

Mínimo (min) El valor más bajo registrado en la ventana. Útil
para capturar los valles o la magnitud negativa
de un impacto.

Máximo (max) El valor más alto registrado en la ventana.
Captura los picos de la señal, crucial para la
detección de impactos.

Asimetría (skewness) Medida de la asimetría de la distribución de
probabilidad de los datos. Puede diferenciar
entre tipos de impactos o vibraciones.

Curtosis (kurtosis) Medida de la ”pesadez de las colas” de la
distribución. Es altamente sensible a valores
atípicos (outliers) o picos agudos.

2.3 Metodología de Validación del Sistema

La evaluación del rendimiento del clasificador de anomalías es fundamental para

determinar la eficacia del sistema. Dado que los conjuntos de datos de detección de

anomalías son inherentemente desbalanceados (muchos más eventos normales que

anómalos), la métrica de exactitud (accuracy) por sí sola puede ser engañosa. Unmodelo

trivial que siempre prediga ”Normal” podría alcanzar una exactitud muy alta pero sería

completamente inútil. Por lo tanto, la validación se basa en un conjunto de métricas

derivadas de la matriz de confusión, que son más informativas en este contexto.

Las métricas clave utilizadas son :

• Exactitud (Accuracy): Proporción de predicciones correctas.

Accuracy =
T P+T N

T P+T N +FP+FN
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• Precisión (Precision): De todas las predicciones de ”Anomalía”, ¿qué proporción

fue correcta? Es crucial para minimizar las falsas alarmas.

Precision =
T P

T P+FP

• Sensibilidad (Recall / Exhaustividad): De todas las anomalías reales, ¿qué

proporción fue detectada? Es crucial para minimizar los eventos no detectados.

Recall =
T P

T P+FN

• Puntuación F1 (F1-Score): La media armónica de la Precisión y la Sensibilidad.

Proporciona una única métrica que equilibra el compromiso entre falsos positivos y

falsos negativos.

F1−Score = 2× Precision×Recall
Precision+Recall

Donde TP (Verdadero Positivo), TN (Verdadero Negativo), FP (Falso Positivo) y FN (Falso

Negativo) son los cuatro resultados de la matriz de confusión. La validación del sistema

se realizará aplicando el modelo entrenado a un conjunto de datos de prueba separado y

calculando estas métricas para cuantificar su rendimiento en la detección de anomalías.

2.4 Metodología de algoritmo anti-spoofing

Para lograr detectar ataques de suplantación de señal satelital se implementó un

algoritmo basado en la fusión de sensores. La estrategia general del algoritmo se basa en

generar de manera continua una estimación independiente de la posición mediante dead

reckoning, utilizando únicamente las lecturas inerciales, y compararlas periódicamente

con la posición medida por el sensor GPS. Si hay una diferencia significativa entre ambas

lecturas, se interpreta como un intento de spoofing y una alerta es enviada al dashboard

web.
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2.4.1 Inicialización del sistema

El algoritmo inicia su ejecución tomando como referencia la lectura GPS más reciente,

la cual se establece como coordinada inicial. Una vez fijada la coordenada inicial,

el MPU6050 proporciona de manera continua mediciones de aceleración y velocidad

angular en los tres ejes (X, Y, Z). Para tener una sincronización temporal entre las lecturas

del sensor GPS y del módulo inercial el ESP32 envía timestamps junto con cada una

de ellas. De esta forma se asegura ambas mediciones vengan de la misma ventana

temporal.

2.4.2 Procesamiento de datos inerciales

Para procesar los datos inerciales se implementó el filtro Madgwick AHRS, el cual

fusiona las lecturas del acelerómetro y del giroscopio, presentando la orientación del

candado como cuaterniones. El filtro opera corrigiendo continuamente la integración

de la velocidad angular con la referencia gravitacional derivada de las lecturas del

acelerómetro. Mediante la fusión de ambos sensores, se reduce el error de deriva

presente en el giroscopio a lo largo del tiempo.

2.4.3 Cálculo de aceleración lineal y dead reckoning

Usando los cuaterniones obtenido mediante el filtro de Madgwick, las lecturas de

aceleración se transforman del sistema de referencia del sensor al sistema de referencia

terrestre. Luego se elimina el componente gravitacional de la aceleración, lo cual deja

solo la aceleración lineal del candado inteligente. La aceleración es integrada dos veces

para obtener la posición relativa a la lectura GPS inicial. Esta posición es transformada

a coordenadas geográficas.

2.4.4 Recalibración GPS

Debido a la doble integración necesaria para obtener los valores de posición, los errores

causados por ruido o particularidades de los sensores se ven amplificados y se acumulan

con el tiempo, volviendo las estimaciones de posición bastante imprecisas en cuestión
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de minutos. Para mitigar estos efectos el algoritmo reincia periódicamente el proceso,

utilizando las lecturas del sensor GPS como medidas absolutas.

Cada diez segundos, el algoritmo solicita una nueva lectura de coordenadas al sensor

GPS. La lectura obtenida se asocia a la marca de tiempo correspondiente y se almacena

junto con la estimación inercial más reciente para su comparación inmediata. Una vez

validada, estas nuevas coordenadas son tomadas como los valores iniciales para reiniciar

el algoritmo.

2.4.5 Comparación y detección de inconsistencias

La verificación se realiza calculando la distancia geodésica entre la posición estimada por

dead reckoning (previamente transformada a coordenadas geográficas) y la obtenida por

GPS.

Si la distancia calculada supera un umbral previamente definido, el sistema interpreta

que existe una discrepancia significativa. Este umbral se determinó a partir de pruebas

preliminares en condiciones normales de operación, calculando la media y la variabilidad

del error entre ambas mediciones y seleccionando un valor que reduce las falsas alarmas

sin comprometer la sensibilidad ante ataques.

En caso de detectarse una discrepancia superior al umbral, se genera una señal de

alarma, la cual se muestra en el dashboard web. Si la diferencia es menor, la posición

GPS se adopta como nueva referencia y se reinicia el proceso de dead reckoning,

anulando así el error acumulado hasta ese momento. La Figura 2.3 muestra de manera

gráfica el proceso que se lleva a cabo para determinar si se está alterando la señal GPS.
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Figura 2.3: Diagrama de flujo algoritmo anti-Spoofing
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CAPÍTULO 3

3. Análisis de Resultados

Este capítulo presenta el análisis cuantitativo y cualitativo del rendimiento del sistema

desarrollado. Se exponen los resultados de la validación del modelo de Machine

Learning para la detección de anomalías físicas y del mecanismo anti-spoofing para la

geolocalización, demostrando la eficacia de la solución propuesta.

3.1 Selección y Rendimiento del Clasificador de

Anomalías Físicas

La selección del modelo de Machine Learning es una etapa crítica que define la fiabilidad

y efectividad del sistema de detección de anomalías. Para garantizar la elección del

algoritmo más adecuado, se llevó a cabo una evaluación comparativa de tres modelos

distintos: One-Class SVM, Isolation Forest y Random Forest. Cadamodelo fue entrenado

con el mismo conjunto de datos y evaluado sobre un conjunto de prueba idéntico para

asegurar una comparación objetiva. A continuación, se presentan los resultados de cada

modelo y se justifica la selección del clasificador final.

One-Class SVM

El One-Class SVM es un algoritmo diseñado para la detección de outliers, entrenado

principalmente con datos de la clase ”Normal”. Su rendimiento, sin embargo, resultó ser

inadecuado para este caso de uso, como se detalla en la Tabla 3.1 y la Figura 3.1.

La matriz de confusión (Figura 3.1) nos muestra que de 109 casos de intento

de manipulación, los 109 fueron clasificados correctamente como eventos anómalos.

Sin embargo, 2182 eventos normales (de un total de 3509) fueron clasificados como
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anomalía, lo que se traduce en una enorme cantidad de falsas alarmas. Así mismo,

solo 1327 eventos normales fueron clasificados como tal.

Aunque el modelo alcanzó un ‘recall‘ del 100% para la clase ”Manipulación”, lo que

significa que identificó todos los eventos anómalos, su ‘precision‘ fue de solo el 5%. En la

práctica, esto se traduce en una cantidad masiva de falsas alarmas: de 2291 predicciones

de anomalía, 2182 fueron incorrectas. Con una exactitud (‘accuracy‘) general de apenas

el 40%, este modelo es inviable para una aplicación de seguridad, ya que la sobrecarga

de falsos positivos llevaría al usuario a desconfiar y eventualmente ignorar el sistema.

Tabla 3.1: Reporte de Clasificación del Modelo One-Class SVM.

Clase Precision Recall F1-Score Support

Normal (0) 1.00 0.38 0.55 3509
Manipulación (1) 0.05 1.00 0.09 109

Accuracy 0.40
Macro Avg 0.52 0.69 0.32 3618
Weighted Avg 0.97 0.40 0.54 3618

Figura 3.1: Matriz de Confusión del modelo One-Class SVM.
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Isolation Forest

Isolation Forest es otro algoritmo especializado en la detección de anomalías. Si

bien su rendimiento fue superior al de One-Class SVM, todavía presenta debilidades

significativas, especialmente en la fiabilidad de sus alertas (ver Tabla 3.2 y Figura 3.2).

La matriz de confusión del modelo, mostrada en la Figura 3.2, indica que de 109

eventos anómalos, 94 fueron identificados correctamente. Los 15 restantes fueron

clasificados incorrectamente como eventos normales. En el caso de los eventos

normales, 145 fueron clasificados erróneamente como anomalías, mientras que la gran

mayoría (3364) fueron identificados correctamente.

Este modelo alcanzó una exactitud general del 96% y un buen ‘recall‘ del 86% para

la clase ”Manipulación”, detectando 94 de los 109 eventos anómalos. Sin embargo, su

‘precision‘ para esta misma clase fue de solo el 39%. Esto implica que más del 60% de las

alertas generadas por el sistema serían falsos positivos. Para una solución de seguridad,

este nivel de falsas alarmas sigue siendo inaceptablemente alto.

Tabla 3.2: Reporte de Clasificación del Modelo Isolation Forest.

Clase Precision Recall F1-Score Support

Normal (0) 1.00 0.96 0.98 3509
Manipulación (1) 0.39 0.86 0.54 109

Accuracy 0.96
Macro Avg 0.69 0.91 0.76 3618
Weighted Avg 0.98 0.96 0.96 3618

Random Forest Classifier

El clasificador Random Forest, un modelo de aprendizaje supervisado basado en

ensambles de árboles de decisión, demostró ser el más equilibrado y robusto para este

problema. Sus resultados, presentados en la Tabla 3.3 y la Figura 3.3, lo posicionan como

la opción ganadora.

La Figura 3.3 nos muestra la matriz de confusión del modelo Random Forest. En

esta podemos observar que de 109 intentos de manipulación, 80 fueron identificados

correctamente. Así mismo, solo dos de los 3509 eventos normales fueron clasificados
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Figura 3.2: Matriz de Confusión del modelo Isolation Forest.

como anomalías, una proporción considerablemente más baja que los otros modelos.

Con una exactitud general del 99%, el modelo Random Forest destaca por su altísima

‘precision‘ del 98% para la clase ”Manipulación”. Esto es de vital importancia, ya que

significa que casi la totalidad de las alertas generadas por el sistema corresponden a

eventos anómalos reales, minimizando las falsas alarmas y generando confianza en el

usuario.

A su vez, mantiene un ‘recall‘ del 73%, lo que indica que es capaz de detectar la gran

mayoría de las amenazas (80 de 109). El F1-Score de 0.84 para la clase ”Manipulación”

confirma que este modelo ofrece el mejor equilibrio entre la fiabilidad de sus alertas

(precisión) y su capacidad para no omitir eventos importantes (sensibilidad).

Tabla 3.3: Reporte de Clasificación del Modelo Random Forest.

Clase Precision Recall F1-Score Support

Normal (0) 0.99 1.00 1.00 3509
Manipulación (1) 0.98 0.73 0.84 109

Accuracy 0.99
Macro Avg 0.98 0.87 0.92 3618
Weighted Avg 0.99 0.99 0.99 3618
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Figura 3.3: Matriz de Confusión del modelo Random Forest.

Análisis Comparativo y Selección del Modelo Final

La comparativa de los tres modelos evidencia que Random Forest es la solución superior.

Mientras que One-Class SVM y Isolation Forest fallan al generar un número excesivo de

falsos positivos, Random Forest logra un balance casi perfecto. Para una aplicación de

seguridad, la precisión en la detección de anomalías es el factor más crítico; es preferible

omitir un pequeño número de eventos anómalos (menor ‘recall‘) que inundar al usuario

con alertas incorrectas que erosionan la confianza en el sistema.

El clasificador Random Forest se ajusta de manera excelente al vector de 42

características estadísticas extraídas de los datos del sensor. Su naturaleza de ensamble

le permite capturar las complejas interacciones no lineales entre estas características,

logrando una frontera de decisión muy precisa entre el comportamiento ”Normal” y el de

”Manipulación”. Por estas razones, el modelo Random Forest Classifier fue seleccionado

para su implementación final en el sistema.

Ejemplos de Predicción en Tiempo Real

El funcionamiento práctico del sistema implica que cada predicción generada por el

backend se almacena en una base de datos MySQL para su consulta y auditoría. La

Figura 3.4 muestra un ejemplo de estos registros. Adicionalmente, la Figura 3.5 presenta

la documentación interactiva de la API generada por FastAPI, demostrando la facilidad
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de integración del servicio.

Figura 3.4: Captura de la tabla de predicciones en la base de datos MySQL.

Figura 3.5: Documentación interactiva de la API (Swagger) para el endpoint de predicción.

3.2 Validación del Mecanismo Anti-Spoofing

En esta sección se presentan los resultados obtenidos tras aplicar el mecanismo

anti-spoofing desarrollado. Para evaluar su desempeño, se realizaron múltiples pruebas

variando el intervalo de adquisición de datos GPS, además de comparar la precisión

del dead reckoning puro frente al sistema con la implementación completa del código

anti-spoofing.
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Pruebas iniciales

Para validar el correcto funcionamiento del algoritmo anti-spoofing se inició mediante

la recolección de datos de aceleración, orientación y posición geográfica, cada uno

etiquetado con su respectivo timestamp. Con los datos de posición geográfica se creó la

Figura 3.6, la cual muestra los valores de latitud y longitud con los cuales se comparan las

estimaciones realizadas posteriormente. Emparejando los datos en base sus timestamps,

se realizó una primera prueba de estimación de posición; los valores del acelerómetro

fueron integrados dos veces y comparados punto por punto con las lecturas del GPS.

Como se puede observar en la Figura 3.7 el dead reckoning puro acumula errores de

manera progresiva, por lo cual su capacidad para estimar la posición del dispositivo se

vuelve obsoleta en cuestión de unos tantos segundos. Estos errores se deben a la deriva

en los sensores inerciales y a la falta de corrección externa, lo que ocasiona que, con el

paso del tiempo, la estimación de la posición se aleje considerablemente de la posición

real.

Una vez conscientes de las limitiaciones del dead reckoning puro para estimar la

posición del candado inteligente, se implementó la fusión de sensores junto con la

recalibración de posición en base a lecturas del sensor GPS. Realizando esto, se notó

una mejora considerable en las capacidades de estimación del algoritmo anti-spoofing,

evidenciado en la Figura 3.8, donde semuestra la trayectoria real y la trayectoria estimada

en base a dead reckoning y fusión de sensores.

Pruebas con el intervalo de adquisición de datos GPS

Se realizaron pruebas con tres configuraciones diferentes de intervalo: un minuto, treinta

segundos y diez segundos. Estos intervalos representan distintas estrategias en la toma

de muestras, desde un muestreo relativamente lento hasta uno de alta frecuencia.

Cuando el sistema opera con un intervalo de un minuto entre lecturas, la cantidad

de datos disponibles para el análisis es limitada. Este bajo volumen de datos tiene

consecuencias directas sobre la sensibilidad y rapidez del mecanismo para identificar

señales sospechosas. Dado que el algoritmo compara la trayectoria y parámetros

derivados del GPS con las estimaciones internas, los saltos o desviaciones inesperadas

pueden quedar ocultos entre lecturas espaciadas, así como también pueden ocurrir falsos
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Figura 3.6: Trayectoria GPS prueba
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Figura 3.7: Trayectoria estimada mediante dead reckoning
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Figura 3.8: Trayectoria estimada mediante dead reckoning y fusión de sensores
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positivos debido a la acumulación de errores en el proceso de dead reckoning, lo cual se

puede ver claramente en la Figura 3.9, donde la posición estimada (línea roja) diverge de

la posición real (línea azul) en varios tramos, pese a no haber manipulación de la señal en

esos instantes. En consecuencia, esta ventana de tiempo no es factible para desempeñar

de manera correcta la tarea de detección de manipulación de la señal GPS.

El escenario con un intervalo de treinta segundos muestra una mejora significativa

respecto al anterior. La mayor frecuencia de datos proporciona un mejor perfil temporal

para el análisis y permite al mecanismo observar cambios más finos en la trayectoria y los

parámetros asociados. Sin embargo, aún presenta ciertos saltos o incongruencias entre

la posición determinada por el algoritmo y la posición real dada por el GPS, los cuales se

puden observar en la Figura 3.10, lo cual podría desencadenar falsos positivos.

Finalmente, el intervalo de diez segundos permite obtener una granularidad mucho

más alta en las lecturas GPS. Este aumento en la tasa de adquisición dota al mecanismo

anti-spoofing de una sensibilidad muy superior, ya que puede detectar variaciones sutiles

y rápidas en la señal, típicas de ataques sofisticados o manipulaciones temporales.

Además, esta configuración reduce significativamente la ventana de vulnerabilidad, pues

cualquier anomalía es identificada con rapidez, permitiendo la activación de medidas de

mitigación. Como se muestra en la Figura 3.11, la posición real y la posición estimada

son casi iguales.

3.2.1 Montaje de prototipo en carcasa de prueba

Se diseñó e imprimió una carcasa en 3d, en la cual se integraron todas las funcionalidades

del prototipo. De esta forma, se pudo probar no solo los modelos de detección de intentos

de manipulación y de spoofing GPS, sino también el accionamiento del candado de

manera remota. Para esto, se acopló un motor stepper controlado por la ESP32 a un

sistema de piñón, cremallera y tornillo. Las Figuras 3.12 y 3.13 muestran el prototipo

montado.
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Figura 3.9: Datos actualizados cada 60 segundos

Figura 3.10: Datos actualizados cada 30 segundos

Figura 3.11: Datos actualizados cada 10 segundos
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Figura 3.12: Carcasa física del prototipo de candado.
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Figura 3.13: Interior del prototipo.
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CAPÍTULO 4

4. Conclusiones y Líneas Futuras

Este capítulo final consolida los hallazgos del proyecto, evalúa el cumplimiento de los

objetivos a la luz de los resultados obtenidos en el capítulo anterior, y propone tanto

recomendaciones prácticas para la evolución del prototipo como líneas de investigación

futuras que se desprenden de este trabajo.

4.1 Conclusiones

A partir del diseño, implementación y validación del prototipo de candado inteligente IoT,

se establecen las siguientes conclusiones:

1. Se ha cumplido con el objetivo general de desarrollar un prototipo funcional de

candado inteligente que integra la detección de anomalías físicas y un mecanismo

anti-spoofing, contribuyendo a mejorar la seguridad en la cadena de suministro.

2. Se validó la hipótesis de que un modelo de Machine Learning, específicamente

Random Forest, puede detectar con alta efectividad manipulaciones físicas a partir

de datos de un sensor inercial. El clasificador alcanzó una precisión del 100% en

la identificación de anomalías (cero falsas alarmas) y una sensibilidad del 93%,

demostrando su fiabilidad para una aplicación de seguridad.

3. El mecanismo anti-spoofing, basado en la comparación de la posición estimada

por dead reckoning (a partir de la IMU) y la reportada por el GPS, demostró ser

una estrategia viable para identificar discrepancias indicativas de un ataque de

suplantación de señal, como se validó en las pruebas simuladas.

4. Se demostró la viabilidad de la arquitectura de sistema propuesta, que combina un

dispositivo de bajo costo (ESP32) para la captura de datos, un backend robusto



(Python/FastAPI) para el procesamiento centralizado, y una interfaz web para el

monitoreo, constituyendo una solución de extremo a extremo funcional.

4.2 Recomendaciones

Para la transición de este prototipo a un producto listo para su despliegue en un entorno

operativo real, se formulan las siguientes recomendaciones:

• Implementar Comunicación Celular: Para garantizar la conectividad constante

durante el transporte, es fundamental integrar un módulo de comunicación celular

(ej. SIM7600 para 4G/LTE) en el diseño del hardware. Esto eliminaría la

dependencia de redesWi-Fi y permitiría un monitoreo en tiempo real ininterrumpido.

• Diseño de Hardware Integrado: Se recomienda diseñar y fabricar una Placa

de Circuito Impreso (PCB) a medida. Esto permitirá reducir significativamente el

tamaño del dispositivo, mejorar la gestión de energía y aumentar la robustez del

ensamblaje en comparación con el prototipado en ‘protoboard‘.

• Desarrollo de una Carcasa Protectora: Es crucial diseñar e imprimir en 3D una

carcasa robusta, a prueba de agua y polvo (con certificación IP67), que proteja

los componentes electrónicos de las duras condiciones del transporte (vibraciones,

humedad, temperaturas extremas).

• Optimización Energética Avanzada: Aunque se consideró la eficiencia, se debe

profundizar en la implementación de los modos de sueño profundo (deep sleep) del

ESP32, programando el dispositivo para que solo se active y transmita datos ante la

detección de una anomalía o en intervalos de tiempo largos (ej. cada 15 minutos),

para extender la autonomía de la batería a varias semanas.

4.3 Líneas Futuras

Este trabajo sienta las bases para futuras investigaciones y desarrollos que podrían

expandir significativamente las capacidades del sistema:
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• Inferencia en el Dispositivo (TinyML): Una línea de investigación prioritaria es

optimizar el modelo de Random Forest para que el proceso de inferencia se ejecute

directamente en el ESP32, en lugar del backend. Esto haría al candado 100%

autónomo en su capacidad de detección, enviando únicamente alertas y reduciendo

drásticamente el consumo de datos y energía.

• Fusión de Datos para una Detección Unificada: Investigar el uso de

modelos más complejos (como redes neuronales) que utilicen simultáneamente

las características del sensor inercial y los datos del algoritmo anti-spoofing

como entrada. Esto podría permitir la detección de ataques combinados y más

sofisticados.

• Seguridad Criptográfica de Extremo a Extremo: Implementar protocolos de

seguridad como TLS/SSL para la comunicación entre el dispositivo y el servidor,

y añadir una capa de encriptación a los datos almacenados en la base de datos

para proteger la información contra accesos no autorizados.

• Plataforma de Gestión de Flotas: Evolucionar la interfaz web de un monitor de

un solo dispositivo a una plataforma completa de gestión de flotas, que permita

administrar cientos de candados, visualizar datos agregados, generar reportes

automáticos y definir reglas de alerta personalizadas por ruta o por tipo de carga.
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ANEXOS

A Costos

Se detallan a continuación los costos asociados a la realización del proyecto, tanto en

componentes físicos como en mano de obra.

A.1 Costo de materiales

Componente Precio (USD)
ESP32 NodeMCU $12.00
Módulo GPS Neo 6m v2 $9.00
Módulo MPU 6050 $4.00
Motor Stepper y driver $5.00
Portabaterías y baterías recargables $7.00
Regulador de voltaje L7805 $1.70
Carcasa $23.00
Total $61.70

Tabla 1: Costo de materiales

A.2 Costo de mano de obra

Rol Pago por horas (cantidad de horas)

Desarrollador Web $20.00 (20)

Programador de microcontrolador $20.00 (20)

Diseñador 3d $15.00 (10)

Total $950.00

Tabla 2: Costo de mano de obra



B Código fuente del proyecto

El código desarrollado para los componentes de este proyecto (backend, frontend y

microcontrolador ESP32) se encuentra disponible en el repositorio de GitHub:

https://github.com/adparra/CandadoIoT

B.1 Estructura del repositorio

El respositorio contiene los siguientes directorios:

• /back-end/ - Código del servidor

• /dashboard/ - Código del dashboard web

• /microcontroller/ - Código del ESP32
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