ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingenieria en Electricidad y Computacion

BrickloT: Plataforma Interactiva para Monitoreo y Visualizacion de
Sensores |loT en Edificios Inteligentes con Ontologia Brick
PROYECTO INTEGRADOR
Previo a la obtencion del Titulo de:

Ingenieria en Telematica

Presentado por:
Kevin Adonis Vargas Benavides

Pier Alejandro Colina Arteaga

GUAYAQUIL - ECUADOR

Ano: 2025

DEDICATORIA

Kevin Adonis Vargas Benavides

Dedico este proyecto a mi padre, mi
guia y apoyo incondicional desde el
primer dia. Sé que desde el cielo se
enorgullece de este logro, fruto de
sus ensefanzas sobre el camino de la

rectitud y el honor de llevar su apellido.

Pier Alejandro Colina Arteaga

Dedico este trabajo a mis padres, por
su apoyo constante e incondicional y
por motivarme a alcanzar mis objetivos
académicos. Su esfuerzo y apoyo han
sido de gran importancia para lograr

esta meta.

AGRADECIMIENTOS

Kevin Adonis Vargas Benavides

Agradezco a Dios por este logro. A
mi padre, por su apoyo incondicional
y por nunca dudar de mi, siendo
mi mayor inspiracion. También a mi
madre, hermano, profesores y amigos,
quienes me acompafaron en este
camino. Finalmente, a la ESPOL por
su invaluable apoyo en mi formacién y

proyectos.

Pier Alejandro Colina Arteaga

Agradezco sinceramente a mis
profesores del Laboratorio loT vy
Sistemas Telematicos por su guia,
paciencia, dedicacion y la confianza
depositada en mi durante el desarrollo
de este proyecto, asi como a la
universidad por brindarme los recursos
y el apoyo necesario para llevarlo a
cabo. El compromiso con la excelencia
ha sido fundamental para mi aprendizaje

y crecimiento profesional.

DECLARACION EXPRESA

”"Los derechos de titularidad y explotaciéon, nos corresponde conforme al reglamento
de propiedad intelectual de la institucion; Pier Colina y Kevin Vargas y damos nuestro
consentimiento para que la ESPOL realice la comunicacién publica de la obra por
cualquier medio con el fin de promover la consulta, difusion y uso publico de la produccion

intelectual”

i rmado el ectr 6ni canente por
KEVI N ADONI S
VARGAS BENAVI DES

Pier Alejandro Colina Arteaga Kevin Adonis Vargas Benavides
ESTUDIANTE ESTUDIANTE

EVALUADORES

% Maria Isabel Mera
S Collantes

Maria Isabel Mera Collantes Christopher Javier Vaccaro Cedillo
PROFESORA DE LA MATERIA PROFESOR TUTOR

INDICE GENERAL

ABSTRAC

ABREVIATURAS

INDICE DE FIGURAS

INDICE DE CODIGOS

f.

INTRODUCCION

.1. Descripcion de la problematica
f.2. Justificacion
(.3. Objetivos
(.4, MarcoOTEOMNCA . . . « v o v v o e e e e e e e e e
1.4.1. Ontologid
1.4.2. Modelado Semantico y Tecnologias RDF/OWL|
1.4.3. ProjectHaystack
M.4.4. BrickSchema
(.5. Estadodel Artel
M.5.1. ProjectHaystack
1.5.2. BrickSchemd

[1.5.3. Tecnologias SemanticasenloT|.

[1.5.4. Trabajos Relacionados

METODOLOGIA Y DISENO DEL SISTEMA

R.1. Materiales

P.1.1. Componentesde Hardware

P.1.2. Componentesde Software,

11
11
12
13
14

R.2. Metodologia

P.3. Disefio de la Arquitectura del Sistema

2.3.1.

Actualizacion de Firmware

R.3.2.

Recoleccion, Transformacion y Almacenamiento de Datos

R.3.3.

Modelado Semanticocon Brick

2.3.3.1. Adaptacion de Brick al Campus ESPOLl
2.3.3.2. Disedodel GrafoRDF.

2.3.3.3. Integracidon de Sensores loT|

R.3.4.

Desarrollo del Sistema de Gestion

2.34.1. BackendconDjanga
.34.2. ReactyReactFlow

P.4. Esquema de Disefio Propuestd

B.

PRUEBAS Y RESULTADOS

B.1. PRUEBAS e

B.1.1.

Pruebas de la transmisiondedatos

B.1.2.

Pruebas del modelado semantico

4. CONCLUSIONES, RECOMENDACIONES Y LINEAS FUTURAS

U1, Conclusiones o

h.2. Recomendaciones o

M.3. Lineas FUtUras

BIBLIOGRAFIA

34
35
35
36

38
38
39
40

4

RESUMEN

La presente investigacion propone un esquema fundamentado en la ontologia Brick
con el propédsito de establecer una representacion estandarizada y unificada de la
infraestructura del campus de la Escuela Superior Politécnica del Litoral (ESPOL). El
objetivo principal consiste en enriquecer la descripcidon semantica de la arquitectura del
campus, estableciendo relaciones precisas entre los datos generados por los sensores
y sus correspondientes ubicaciones fisicas. En este estudio, el esquema propuesto se
delimité al Edificio 11C de la Facultad de Ingenieria en Electricidad y Computacion,
incorporando laboratorios, areas exteriores, zonas, equipos y sensores, y evaluando
su expresividad en comparacion con un modelo equivalente basado en Haystack,
actualmente implementado, a fin de optimizar la interoperabilidad y la organizacién de la
informacion. Adicionalmente, a partir del diccionario estandarizado de Brick, se integraron
dispositivos y sensores loT al esquema con el fin de desarrollar un sistema automatizado
capaz de asignar de manera semantica los puntos de datos a sus respectivas ubicaciones
fisicas dentro del edificio.

Para el desarrollo del esquema se emplearon tecnologias como Python con la
biblioteca RDFLib para modelar la infraestructura en RDF y Brick, y Django, React
y ReactFlow para la integracion, gestién, monitorizacion y visualizacién interactiva de
los datos. El sistema resultante permitié representar de manera semantica la relacion
entre sensores y ubicaciones, mejorando la interoperabilidad y reduciendo la variabilidad
semantica.

Palabras Clave: Brick, Haystack, RDF, loT, Monitorizacién, Django, React,

React-Flow

ABSTRACT

This research proposes a schema based on the Brick ontology with the aim of
establishing a standardized and unified representation of the infrastructure at the Escuela
Superior Politécnica del Litoral (ESPOL) campus. The main objective is to enhance the
semantic description of the campus architecture by establishing precise relationships
between the data generated by sensors and their corresponding physical locations. In this
study, the proposed schema was limited to Building 11C of the Faculty of Electrical and
Computer Engineering, incorporating laboratories, outdoor areas, zones, equipment, and
sensors, and evaluating its expressiveness in comparison with an equivalent model based
on Haystack, currently implemented, in order to optimize interoperability and information
organization. Additionally, using Brick’s standardized dictionary, loT devices and sensors
were integrated into the schema to develop an automated system capable of semantically
mapping data points to their respective physical locations within the building.

For the development of the schema, technologies such as Python with the RDFLib
library were used to model the infrastructure in RDF and Brick, while Django, React,
and ReactFlow were used for data integration, management, monitoring, and interactive
visualization. The resulting system enabled a semantic representation of the relationship
between sensors and locations, improving interoperability and reducing semantic
variability.

Keywords: Brick, Haystack, RDF, loT, Monitoring, Django, React, React-Flow

ESPOL
FIEC
RDF
OWL
SHACL
W3C
SPARQL
loT
JSON
MQTT
GPS
DHT
HVAC

ABREVIATURAS

Escuela Superior Politécnica del Litoral
Facultad de Ingenieria en Electricidad y Computacion
Resource Description Framework

Web Ontology Language

Shapes Constraint Language

World Wide Web Consortium

SPARQL Protocol and RDF Query Language
Internet Of Things

JavaScript Object Notation

Message Queuing Telemetry Transport
Global Positioning System

Humidity and Temperature Sensor

Heating, Ventilation and Air Conditioning

INDICE DE FIGURAS

R.1.

Equipo de Estacion Meteorologica frente al Laboratorio loT y Sistemasg

elematicos.) e

R.2.

Variables de configuracion en el Firmware para dispositivos loT basados

en ESP32/ESP8266.)

R.3.

Flujo de transformacion y almacenamiento de datos en Node-RED

p.4.

Resultados de la consulta getAllSensors, mostrando informacion

completa de todos los sensores del esquemal

R5.

Entidades y Edificios representados como nodos en la aplicacion utilizandg

....................................

R.6.

Diagrama de la arquitectura del sistema, mostrando el flujo desde sensoreg

loT (DHT, Shellys, Accuenergy, Dispositivos basado en ESP32/ESP8266)

a middleware Node-RED, almacenamiento en Fuseki y MongoDB, backend

Django y frontend ReactFlow)

B.1.

Construccion del paquete de datos en equipos ESP32/ESP8266 usando

las variables necesarias para su identificaciéon en el esquema.

B.2.

Ejemplo de una funcion en nodos de NodeRed para verificar y manipular|

los datos que provienen de los sensores)

vi

INDICE DE CODIGOS

R.1.

Definicidon de prpiedades personalizadas para la vinculacion de sensores .

R.2.

Definicion de Propiedades SHACL para la validacion de propiedades en el

R.3.

Entidades de sensores y equipos definidas dentro del esquema RDH

semantico ESPOL|

R4.

Definicion de un view en el framework de Django para la obtencion de todos

los sensores vy sus propiedades dentro del esquema RDF de ESPOL|

B.1.

Contruccion de Query SPARQL para obtener todos los sensores de un

equipo y su propiedad espol:db id

vii

26

vii

CAPITULO 1

1. INTRODUCCION

En la actualidad, la gestion eficiente de la infraestructura en edificios inteligentes,
como los de la Escuela Superior Politécnica del Litoral (ESPOL), requiere una integracion
efectiva de diversas tecnologias, principalmente Internet de las Cosas (IoT). Los sensores
distribuidos en diferentes areas del campus generan grandes cantidades de datos, que
deben ser gestionados e interpretados de manera coherente para optimizar el uso de los
recursos, el monitoreo ambiental y el control energético. Sin embargo, la integracion de
estos datos en un sistema unico enfrenta desafios debido a la falta de estandarizacion en
las ontologias utilizadas.

Esta investigacion propone como solucién la ontologia Brick, que se basa en un
modelo formal RDF/OWL, para representar de manera unificada y estandarizada la
infraestructura del campus de ESPOL. El propdsito principal es mejorar la descripcion
semantica de los datos generados por los sensores |oT y resolver las limitaciones
observadas en Haystack, que actualmente se utiliza para describir los activos de los
edificios. Se busca adaptar Brick a los espacios especificos del edificio 11C de la Facultad
de Ingenieria en Electricidad y Computacion. Se asume que el uso de Brick reducira
significativamente la ambigledad en las descripciones de la infraestructura académica y
permitira una verificacion precisa de la informacion.

El desarrollo del proyecto se estructura en diversas fases, iniciando con la adaptacién
de la ontologia Brick a la infraestructura existente, seguida de la integracion de los
dispositivos loT disponibles, con el propdsito de garantizar que cada sensor esté
correctamente asociado a su ubicacion fisica correspondiente. Los resultados obtenidos
permitiran la construccion de un modelo semantico estructurado que optimice la gestion
en tiempo real de las infraestructuras del campus y abrir paso para la implementacion de

tecnologias como los gemelos digitales.

1.1. Descripcion de la problematica

En la actualidad, el Laboratorio de loT y Sistemas Telematicos de la Escuela Superior
Politécnica del Litoral (ESPOL) utiliza una aplicacién propia basada en la ontologia
Project Haystack para describir tanto la estructura fisica como digital de los edificios
e instalaciones del campus. Esta herramienta permite modelar espacios, dispositivos y
sistemas de control mediante un sistema de etiquetas (tags), facilitando en cierta medida,
la organizacion, visualizacién y gestion de los datos generados por la infraestructura.
El enfoque orientado a etiquetas ha resultado util para representar puntos de datos de

edificios, contribuyendo a una gestion mas eficiente de los recursos tecnologicos.

Sin embargo, Haystack presenta limitaciones significativas que afectan su
escalabilidad, interoperabilidad y precision semantica. Una de sus principales debilidades
es la ausencia de un sistema formal y normado para la definicion de etiquetas. Haystack
presenta un alto indice de personalizacion de etiquetas y esta falta de estandarizacion
conduce a ambiguedades semanticas, inconsistencias en el modelado y errores de
interpretacion cuando diferentes equipos o desarrolladores aplican esquemas similares
sin una base en comun. En entornos de gran escala, esto puede derivar en problemas de

interoperabilidad entre sistemas y reducir la confiabilidad del modelo de datos.

Adicionalmente, Haystack carece de una estructura ontolégica formal basada en
tecnologias semanticas como RDF (Resource Description Framework) u OWL (Web
Ontology Language), lo que limita su capacidad para integrarse con otras ontologias del
dominio o con sistemas externos que utilicen estos estandares. Esta carencia también
dificulta la validacion del esquema y de los datos que se generan a partir de él, lo que
representa una desventaja importante en contextos donde se requiere trazabilidad y

analisis de la informacion generada.

Ante estas limitaciones, la ontologia Brick emerge como una alternativa mas
sélida y estandarizada para la representacion semantica de edificios inteligentes y
su infraestructura asociada. Brick esta fundamentada en los principios del modelado
semantico formal y utiliza los estandares RDF y OWL, ampliamente adoptados por la
comunidad. A diferencia de Haystack, Brick ofrece un vocabulario estructurado, extensible
y verificable, que define de forma explicita las clases, propiedades y relaciones entre

entidades como edificios, zonas, laboratorios, sistemas, equipos, sensores, puntos de

2

medicidn y otras entidades relevantes en entornos estructurales.

Gracias a esto, Brick permite la interoperabilidad con otras ontologias y bases de
conocimiento, asi como la ejecucion de consultas avanzadas mediante lenguajes como
SPARQL. Ademas, facilita la validacion del esquema y la semantica del modelo, la
automatizacion de tareas, y la trazabilidad de los dispositivos en relacion con su ubicacion

fisica y su funcién dentro del sistema general.

1.2. Justificacion

La justificacién de este proyecto radica en las deficiencias observadas al emplear
Haystack, ya que la falta de normas formales en el etiquetado genera variabilidad
semantica, ambiguedad en la interpretacion de los datos y problemas de integracion o
validacion de esquemas con sistemas externos. Estas deficiencias afectan notablemente
la gestion automatizada de los recursos energéticos y el monitoreo de las condiciones
ambientales de los laboratorios y sus alrededores, ya que no se pueden implementar
consultas integradoras que utilicen informacion proveniente de multiples dispositivos. En
contraste, Brick proporciona un diccionario estandar y verificable que valida las relaciones
entre edificios, laboratorios, zonas, sensores y actuadores, mejorando la semantica y la
trazabilidad de la informacion.

Ademas, la estandarizacion proporcionada por Brick facilita la escalabilidad de la
solucion: al utilizar un esquema RDF/OWL, es posible agregar nuevos nodos (como
sensores adicionales o médulos de automatizacién) sin ambiguedades, lo que permite
que el grafo semantico se expanda sin necesidad de remodelar las ontologias existentes.
Este enfoque es particularmente relevante para la transformacién del campus de la
ESPOL en un entorno inteligente y sostenible, en linea con los Objetivos de Desarrollo
Sostenible 9 (Industria, Innovacion e Infraestructura), 11 (Ciudades y Comunidades
Sostenibles) y 13 (Accién por el Clima).

En el contexto del campus de la ESPOL, la adopcion de Brick representa una
oportunidad para evolucionar hacia un modelo de gestion de infraestructura mas
coherente, interoperable y alineado con las tendencias actuales en modelado semantico
de entornos inteligentes. La capacidad de implementar gemelos digitales, realizar
consultas SPARQL uniformes y tomar decisiones basadas en datos integrados refuerza
la justificacion para la migracion de Haystack a Brick, facilitando la representacion y el

monitoreo en tiempo real de la infraestructura.

1.3. Objetivos

Objetivo General:

Desarrollar un modelo de representacion basado en la ontologia Brick y tecnologias loT
que permita describir de manera estructurada los aspectos fisicos, logicos y virtuales
del campus de ESPOL, para facilitar su monitoreo, gestion y escalabilidad para futuras

tecnologias.

Objetivos Especificos:

= Disefar un modelo semantico utilizando la ontologia Brick, aplicado a espacios
representativos del campus de ESPOL, con especial énfasis en el Edificio 11C y

sus laboratorios.

= Integrar los dispositivos y sensores loT actualmente desplegados en los laboratorios
al modelo propuesto, estableciendo relaciones claras entre los datos generados y

su ubicacion fisica.

= |dentificar las limitaciones del modelo actual basado en Haystack, considerando
criterios como interoperabilidad, escalabilidad, flexibilidad semantica y eficiencia en

la gestion de datos.

= Validar el modelo desarrollado en un entorno controlado, especificamente en el
Laboratorio de loT y Sistemas Telematicos, utilizando sensores reales (temperatura,

energia, entre otros) para asegurar su aplicabilidad practica.

» Evaluar el potencial del modelo Brick como base para un gemelo digital del campus,
analizando su utilidad en tareas de monitoreo, simulacion y gestion inteligente de la

infraestructura universitaria.

Hipétesis

Se plantea como hipdtesis que la adopcion de la ontologia Brick, basada en
tecnologias semanticas como RDF y OWL, permitira reducir de manera significativa la
ambigUedad presente en los conceptos empleados para etiquetar y describir espacios
fisicos, dispositivos y sistemas dentro del campus de la ESPOL. Esta caracteristica
superara las limitaciones de la ontologia Haystack, actualmente utilizada en el Laboratorio
de loT y Sistemas Telematicos, la cual presenta dificultades en términos de consistencia
semantica y capacidad de razonamiento automatico.

La reduccion de ambiguedad facilitara la interoperabilidad de los datos generados por
sistemas y equipos heterogéneos, al proporcionar un esquema unificado, extensible y
verificable. Esto promovera la integracién efectiva de informacion de sensores y mejorara
la calidad y verificabilidad de las descripciones mediante la validacion formal de modelos,
que permitira detectar inconsistencias o redundancias.

Se espera que la adopcion de Brick posibilitara una escalabilidad natural para
incorporar nuevas tecnologias y dispositivos sin perder coherencia, y habilitara procesos
automatizados avanzados y el control eficiente de recursos a través de razonamiento
automatico y consultas complejas.

En conjunto, estos beneficios contribuiran a una gestion mas precisa e integrada de
la infraestructura académica y tecnoldgica del campus, que permitira una descripcion
coherente, verificable y reutilizable, para mejorar la interoperabilidad de los sistemas y la

calidad del analisis de datos en el entorno universitario.

1.4. Marco Teodrico

1.4.1. Ontologia

En la rama de la informattica, las ontologias son representaciones formales de
conocimiento que permiten estructurar informacion en un dominio especifico mediante
clases, propiedades y relaciones entre conceptos. En el contexto de edificios inteligentes
y sistemas ciberfisicos, las ontologias permiten una semantica compartida entre
dispositivos, aplicaciones y usuarios, facilitando la interoperabilidad, integracion de datos
heterogéneos y automatizacién de procesos de gestion.

Dos de las ontologias mas relevantes en esta investigacién son Brick Schema vy
Project Haystack. Brick es una ontologia basada en OWL (Web Ontology Language)
disefiada especificamente para describir la semantica de los sistemas de gestion de
edificios. Define equipos, sensores, espacios, relaciones funcionales y espaciales entre
estos elementos. Su disefio permite consultas complejas y consistentes a través de grafos
RDF, lo que resulta util para construir aplicaciones de monitoreo, analisis energético y
gemelos digitales.

Project Haystack, por otro lado, utiliza un modelo mas ligero basado en etiquetas (tags)
para describir dispositivos y puntos de datos. Aunque es mas simple de implementar, su
falta de semantica formal limita su capacidad de razonamiento y consultas avanzadas.

Sin embargo, es ampliamente adoptado en la industria.

1.4.2. Modelado Semantico y Tecnologias RDF/OWL

El modelado semantico es un enfoque para representar datos de manera estructurada
y comprensible tanto para humanos como para maquinas, permitiendo que la informacién
se relacione con significado dentro de un contexto especifico. Este tipo de modelado
es fundamental para la interoperabilidad entre sistemas heterogéneos, especialmente
en aplicaciones del 10T, donde la diversidad de dispositivos y datos puede dificultar su
integracién y analisis.

Entre las tecnologias clave del modelado semantico se encuentran RDF (Resource
Description Framework) y OWL (Web Ontology Language). RDF proporciona un

marco estandar para describir recursos en la web mediante tripletas del tipo

7

sujeto-predicado-objeto, lo que permite establecer relaciones entre entidades. OWL, por
su parte, extiende RDF y permite definir clases, propiedades, relaciones jerarquicas,
restricciones y axiomas légicos, proporcionando mayor expresividad para representar
conocimiento.

Estas tecnologias permiten la construccién de ontologias: esquemas formales que
describen un dominio especifico (por ejemplo, la infraestructura de un edificio o campus),
lo cual facilita la inferencia automatica, validacion de datos y busqueda semantica.
En contextos de loT, el uso de RDF y OWL ayuda a mapear sensores, dispositivos,
ubicaciones fisicas y tipos de datos, haciendo posible la automatizacién de tareas como
la identificacién de sensores mal conectados o el analisis de patrones de consumo
energético.

El valor del modelado semantico radica en su capacidad para estandarizar y enlazar
datos provenientes de diversas fuentes, permitiendo su uso en sistemas complejos,
visualizaciones dinamicas y procesos automatizados. Ademas, al estar basado en
estandares del W3C, garantiza compatibilidad a largo plazo y la posibilidad de integracion
con otras plataformas semanticas, como SPARQL para consultas o SHACL para
validacién de grafos.

En este proyecto, el uso de RDF y OWL permite representar de manera unificada los
sensores loT, sus ubicaciones fisicas y los datos que generan, sirviendo como base para

la visualizacion, monitoreo y gestion inteligente del entorno construido.

1.4.3. Project Haystack

Project Haystack es una iniciativa de cddigo abierto disefiada para estandarizar la
semantica de los datos generados por dispositivos y sistemas en edificios inteligentes. Su
principal objetivo es proporcionar un modelo de etiquetas (tags) y taxonomias que facilite
la interpretacion y reutilizacion de datos provenientes de sensores y sistemas de gestion
de edificios. Al emplear un enfoque basado en metadatos y etiquetas estructuradas,
Haystack permite a las aplicaciones entender el contexto y la funcionalidad de los datos
sin necesidad de complejos procesos de integracion manual.

En el contexto del campus ESPOL, Haystack ha sido adoptado como solucién
semantica para describir parte de la infraestructura |oT desplegada, especialmente

en laboratorios y zonas académicas. No obstante, se han identificado limitaciones

8

importantes. Por ejemplo, la ausencia de una ontologia formal dificulta la interoperabilidad
con otras fuentes de datos externas o sistemas de analisis semantico mas avanzados.
Asimismo, la falta de una estructura jerarquica rigurosa puede dificultar el escalamiento
del modelo conforme se incrementa la complejidad de los dispositivos y las relaciones
entre ellos.

En comparacion con Brick Schema, Haystack resulta mas facil de implementar
inicialmente, pero su modelo puede volverse ambigo en escenarios que requieren
una representacion precisa y extensible del edificio como un sistema complejo. Esta
comparacion es esencial para evaluar la transicion hacia ontologias mas robustas como
Brick, especialmente si se busca implementar gemelos digitales que demandan modelos

de datos ricos y formalmente estructurados.

1.4.4. BrickSchema

BrickSchema es una ontologia abierta disefiada para describir la infraestructura de
edificios inteligentes, modelando espacios fisicos, equipos, sistemas de control y puntos
de datos de sensores en un formato semantico unificado. Desarrollado sobre tecnologias
como RDF y OWL, Brick permite representar con precision las relaciones entre diferentes
componentes de un edificio, facilitando asi la interoperabilidad, la automatizacién y el
analisis de sistemas complejos.

Uno de los principales beneficios de Brick es su vocabulario estandarizado. Este
incluye clases como Room, HVAC, VAV, Temperature Sensor, entre muchas otras, y
relaciones como hasPoint, feeds, hasPart, que describen como se interconectan los
componentes del sistema fisico. De esta manera, es posible, por ejemplo, describir
gue una sala especifica contiene un sistema HVAC que a su vez posee un sensor de
temperatura cuyo valor puede ser consultado.

En el contexto de loT, Brick se convierte en una herramienta esencial para mapear
sensores fisicos con su representacion semantica, lo que facilita la integracion con
motores de inferencia y herramientas de visualizaciéon. Por ejemplo, mediante una
consulta SPARQL, es posible recuperar todos los sensores de temperatura de un edificio
junto con las habitaciones a las que pertenecen, sin necesidad de conocer la estructura
fisica exacta de cada instalacion.

Brick también fomenta la reutilizacion de modelos y la escalabilidad de soluciones.

9

Una vez construido un modelo semantico de un edificio o campus, este puede ampliarse
o modificarse facilmente para incluir nuevos dispositivos o espacios, manteniendo la
coherencia del sistema.

En este proyecto, Brick se utiliza como base para representar el esquema de
infraestructura del campus universitario, integrando sensores loT en su estructura
semantica. Esto permite no solo el monitoreo en tiempo real, sino también consultas

avanzadas y automatizacién de tareas de mantenimiento y supervision energética.

10

1.5. Estado del Arte

Los edificios inteligentes contemporaneos se configuran como ecosistemas digitales
de alta complejidad, donde la interoperabilidad armédnica de tecnologias diversas resulta
imperativa para maximizar el rendimiento, la eficiencia energética y la experiencia del
usuario. No obstante, la praxis revela una fragmentaciéon persistente, con sistemas
operando en aislamiento y manipulando datos propietarios, lo que impone barreras
insalvables a la integracién. En este contexto, las ontologias se erigen como la
herramienta paradigmatica para erradicar esta disgregacion, fungiendo como un lenguaje
semantico universal que impone la cohesidn entre sistemas heterogéneos. Sin embargo,
la proliferacién de estandares ontoldgicos ha forjado un paisaje semantico fracturado, que,
si bien genera oportunidades para la innovacion, impone desafios criticos en términos de

estandarizacion y adopcion industrial.

1.5.1. Project Haystack

Project Haystack se presenta como una propuesta practica para la gestion de datos
en edificios inteligentes, con un fuerte enfoque en sistemas de calefaccion, ventilacion
y aire acondicionado. Su disefio esta orientado a la simplicidad y a una implementacién
rapida, dejando de lado abstracciones complejas, lo que lo ha convertido en un estandar
ampliamente aceptado en la industria. Basado en un modelo de etiquetas (tags), Haystack
permite definir entidades como sensores, actuadores o puntos de control mediante
metadatos flexibles, lo que facilita implementaciones adaptables a distintos entornos.

Sin embargo, esta flexibilidad trae consigo limitaciones importantes. La estructura de
etiquetado libre de Haystack, aunque practica, puede generar ambigiedades semanticas
debido a la falta de definiciones formales. Por ejemplo, el término temp sensor
puede interpretarse de manera diferente segun el implementador, lo que afecta la
interoperabilidad entre sistemas. Esta situacién es comparable a un dialecto de un
lenguaje hablado, funciona bien en contextos reducidos, pero tiende a generar confusion
cuando se amplia la escala.

La arquitectura basada en entidades y etiquetas se asemeja a la organizacién de una
biblioteca: cada elemento tiene su lugar, pero su uso depende de conocer el sistema

de clasificacion interno. Esta facilidad ha hecho que Haystack sea la opcion favorita

11

para integradores, quienes priorizan la practicidad frente a soluciones mas complejas. No
obstante, su popularidad ha creado cierta resistencia al cambio, ya que las inversiones
en herramientas y sistemas propios dificultan la transicion hacia modelos semanticos
mas completos. La falta de una semantica formal, aunque suficiente para aplicaciones
especificas, limita su capacidad para soportar razonamientos automaticos avanzados o

integraciones a gran escala, algo parecido a una ciudad construida sin planos detallados.

1.5.2. BrickSchema

Por otro lado, BrickSchema propone un enfoque innovador que prioriza la claridad
semantica y una estructura bien definida. Basado en estandares del W3C como RDF y
OWL, Brick ofrece una forma organizada y formal de representar metadatos en edificios,
lo que permite realizar inferencias automaticas y analisis avanzados. A diferencia del
crecimiento mas flexible de Haystack, Brick se construye sobre principios soélidos, similar
a comparar un sistema GPS con un mapa basico; mucho mas preciso, aunque menos
intuitivo para quienes no son expertos.

El uso de RDF y OWL le permite a Brick modelar relaciones complejas entre equipos,
espacios y sistemas con un nivel de detalle que supera ampliamente a Haystack. Por
ejemplo, Brick puede inferir automaticamente la relacion entre un sensor de temperatura
y el sistema HVAC correspondiente, facilitando aplicaciones como el mantenimiento
predictivo o la optimizacion energética. Sin embargo, esta potencia tiene un costo, su
implementacion requiere conocimientos avanzados en tecnologias semanticas, lo que
crea una barrera significativa para su adopcion masiva en la industria.

Brick, aunque ofrece una solucién técnicamente superior, su aplicacion practica
sigue siendo limitada. Mientras Haystack puede ser implementado por integradores
con conocimientos basicos de bases de datos, Brick exige experiencia en ontologias y
razonamiento semantico, habilidades poco comunes en la automatizacion de edificios.
Ademas, resolver errores en un sistema basado en Brick es mucho mas complicado que
en Haystack, ya que implica revisar procesos de inferencia semantica y no solo etiquetas
mal asignadas. En resumen Brick tiene un potencial enorme, pero para aprovecharlo se
necesita un cambio profundo en cultura y capacitacion técnica.

En conclusion, Haystack y Brick representan dos caminos diferentes para resolver los

retos de interoperabilidad en edificios inteligentes. Haystack ha logrado un gran alcance

12

gracias a su simplicidad, mientras Brick ofrece una vision mas completa y poderosa,
aunque con barreras importantes para su implementacién. Esta convivencia refleja la

tension constante entre soluciones practicas y la innovacion tecnologica.

1.5.3. Tecnologias Semanticas en loT

Las tecnologias semanticas han emergido como un elemento fundamental para dotar
a los sistemas loT de interoperabilidad, representaciéon del conocimiento y capacidades
avanzadas de automatizacidon en entornos inteligentes. Entre los pilares de estas
tecnologias se encuentran RDF y OWL, los cuales proporcionan mecanismos robustos
para estructurar, enlazar y razonar sobre datos distribuidos.

RDF permite modelar la informacién en forma de tripletas (sujeto-predicado-objeto),
lo que facilita la integracién y consulta de datos heterogéneos provenientes de multiples
fuentes. Por su parte, OWL ofrece un marco formal para la construccion de ontologias con
alta expresividad, estableciendo axiomas y restricciones que habilitan inferencias l6gicas
sobre los datos, incrementando asi el nivel de inteligencia de las aplicaciones IoT.

Un componente clave en este ecosistema es SPARQL, el lenguaje estandar para
la consulta de datos RDF. Su implementacién en infraestructuras inteligentes permite
ejecutar consultas complejas en tiempo real sobre repositorios distribuidos, o que habilita
procesos como la gestion automatizada de dispositivos, el control dinamico de recursos
y la toma de decisiones basada en reglas y ontologias.

Otro concepto relevante es el de gemelos digitales, que constituyen representaciones
virtuales de edificios, sistemas o infraestructuras completas. Estos gemelos digitales, al
incorporar ontologias semanticas, permiten modelar no solo los componentes fisicos,
sino también sus relaciones, comportamientos y contextos operativos. Gracias a ello,
se posibilitan simulaciones precisas, analisis predictivos y estrategias de mantenimiento
proactivo, optimizando la eficiencia y reduciendo costos.

Asimismo, la interoperabilidad constituye un desafio central en loT debido
a la diversidad de protocolos, fabricantes y plataformas. Las ontologias actuan
como un puente semantico que permite la integracion efectiva entre sistemas
heterogéneos, asegurando la reutilizacion de datos y promoviendo la comunicacion
fluida entre dispositivos. Esto favorece la construccidn de ecosistemas colaborativos y

escalables, condicidn indispensable para la evolucién hacia infraestructuras inteligentes

13

verdaderamente autbnomas.

En conclusion, la adopcion de tecnologias semanticas en loT, aunque aun en proceso
de consolidacion, se perfila como un pilar indispensable para el desarrollo de entornos
inteligentes que no solo recolecten datos, sino que los comprendan y utilicen para generar

conocimiento, anticipar comportamientos y mejorar la toma de decisiones.

1.5.4. Trabajos Relacionados

Diversos estudios y proyectos han explorado la aplicacion de soluciones ontologicas
y tecnologias semanticas en el contexto de la automatizacién y monitoreo de edificios
inteligentes y campus universitarios. Entre ellos, destaca el uso de la ontologia Brick
en entornos académicos, donde se ha demostrado su capacidad para proporcionar
una gestion centralizada de la informacion, monitoreo en tiempo real e integracion
con sistemas complementarios como HVAC, iluminacién y control de acceso. Estos
experimentos confirman que Brick facilita la modelacion detallada de entidades y
relaciones en un edificio, mejorando la interoperabilidad y reduciendo la dependencia
de soluciones propietarias.

Brick ofrece una expresividad semantica superior y soporta capacidades de inferencia
que permiten automatizar procesos complejos, como la deteccidn de inconsistencias
o la optimizacién de recursos. Sin embargo, esta sofisticacion implica una curva
de aprendizaje pronunciada y la necesidad de contar con personal especializado
en ontologias y tecnologias semanticas. Por el contrario, Haystack, basado en
un sistema flexible de etiquetas, resulta mas sencillo de implementar, lo que ha
favorecido su adopcién masiva en la industria, aunque con limitaciones significativas en
interoperabilidad y razonamiento automatico.

Adicionalmente, se han desarrollado arquitecturas orientadas a la integracion
loT-Ontologias que proponen marcos hibridos combinando enfoques pragmaticos vy
formales. Estos modelos buscan equilibrar la facilidad de implementacion con la
expresividad semantica necesaria para soportar aplicaciones avanzadas como gemelos
digitales, analisis predictivo y control autbnomo de infraestructuras. Algunos trabajos
incluso plantean la extensidn de vocabularios y la adopcion de estandares abiertos como
RDF y OWL para garantizar escalabilidad y compatibilidad entre plataformas.

En sintesis, la literatura revisada coincide en sefialar el enorme potencial

14

transformador de las ontologias para la evolucion de sistemas de automatizacion y
gestion de edificios inteligentes. No obstante, también advierte sobre desafios criticos
como la capacitacion de personal, la integracion con sistemas heredados y la necesidad
de herramientas que simplifiquen la implementacién sin sacrificar interoperabilidad ni

capacidades de inferencia.

15

CAPITULO 2

2. METODOLOGIA Y DISENO DEL SISTEMA

2.1. Materiales

En el desarrollo de este proyecto se emplearon componentes de hardware y software
cuidadosamente seleccionados para garantizar una integracion éptima entre la ontologia
Brick y las tecnologias loT en el contexto del campus de la ESPOL. Estos recursos
facilitan la captura y el procesamiento de datos en tiempo real y aseguran la escalabilidad,
la interoperabilidad y la robustez del sistema propuesto. Esta infraestructura sirve
como base para demostrar las ventajas que ofrece el modelo semantico Brick frente a
enfoques tradicionales, al proporcionar un marco estandarizado que mejora la gestion de
dispositivos, la trazabilidad de la informacién y la capacidad de realizar inferencias para

optimizar la operacion de los edificios inteligentes.

2.1.1. Componentes de Hardware

Los componentes de hardware del sistema se basa en una red de sensores y
dispositivos loT distribuidos en el Edificio 11C de la Facultad de Ingenieria en Electricidad
y Computacion, que abarca el Laboratorio loT y Sistemas Telematicos, el Laboratorio
de Sistemas en la Nube y el Laboratorio de Redes de Datos. Esto permite adquisicion
continua de datos en tiempo real sobre variables ambientales, energéticas y de operacion.

En cuanto a la medicion de parametros ambientales, se utilizan sensores disefiados
para registrar condiciones que afectan la calidad y estabilidad del entorno interno
y externo de los laboratorios. Entre estos destacan los sensores de temperatura,
implementados principalmente mediante médulos DHT. Integran la funcion de medicion

de humedad relativa, asegurando el control de la climatizaciéon para la proteccion de

equipos y experimentos.

Para el analisis energético, cuenta con dispositivos especializados, como los
medidores trifasicos Shelly EM3, que permiten registrar los valores de voltaje, corriente
y potencia en cada una de las tres fases (A, B y C). Estos equipos ofrecen informacion
en tiempo real, lo que posibilita la identificacion de patrones de consumo, deteccién de

desequilibrios en la carga y la generacion de alertas ante variaciones.

Figura 2.1: Equipo de Estacion Meteoroloégica frente al Laboratorio loT y Sistemas
Telematicos.

Estos dispositivos, como la estacion meteorolégica mostrada en la Figura 2.1 soportan
conectividad mediante Wi-Fi, LoRa o Ethernet, garantizando un canal de comunicacién
estable y seguro. La transmision de datos se realiza empleando protocolos ligeros como
MQTT, que optimizan el consumo de ancho de banda y energia. En conjunto, esta
infraestructura de hardware permite la captura confiable de datos, y constituye la base

para la integracion con la capa semantica y el sistema de almacenamiento.

17

2.1.2. Componentes de Software

El software implementado en este proyecto estd disefiado para garantizar la
interoperabilidad entre la ontologia Brick, la infraestructura loT y las aplicaciones
orientadas a la gestion inteligente de edificios dentro del campus de ESPOL. Para ello, se
seleccionaron herramientas y tecnologias que permiten un flujo completo de adquisicion,
almacenamiento, procesamiento y visualizacion de datos en tiempo real, manteniendo
los estandares de escalabilidad y compatibilidad semantica.

En la capa l6gica del servidor, el proyecto se fundamenta en Python 3.x como lenguaje
principal, dada su adopcién de librerias para la manipulacion de grafos RDF, entornos de
analisis de datos y desarrollo backend. Sobre esta base se integra Django, un framework
robusto y modular que facilita la creacion de APls RESTful para la comunicacion entre el
sistema loT y los servicios semanticos. Django permite estructurar de forma clara la légica
del sistema, garantizando seguridad y capacidad de integracidn con librerias externas.

Para la gestién semantica de datos, se utilizan herramientas orientadas a RDF
(Resource Description Framework). La libreria RDFLib es la base de toda la légica de
backend, donde se emplea para crear, manipular y serializar grafos RDF, elemento
esencial para modelar la informacion siguiendo los estandares de la ontologia Brick. A su
vez, SPARQLWrapper proporciona una interfaz eficiente para la ejecucion de consultas
SPARQL, lo que permite recuperar y relacionar datos semanticos de forma flexible y
optimizada.

En cuanto al almacenamiento y consulta de grafos RDF, se implementa Apache
Jena/Fuseki, una solucién ampliamente utilizada en aplicaciones para la persistencia
de datos estructurados RDF. Este triplestore no solo soporta consultas SPARQL, sino
que también garantiza integridad semantica y escalabilidad en la gestion de grandes
volumenes de datos.

Para los datos dinamicos provenientes de sensores |oT, se incorpora MongoDB como
base de datos no relacional, debido a su capacidad para manejar documentos JSON y
procesar lecturas en tiempo real con baja latencia. Esta separacion entre el repositorio
semantico y el repositorio operativo de los datos permite optimizar las consultas histéricas
de datos, y se complementan manteniendo la semantica dentro del esquema para las
relaciones entre los equipos y su identificacion dentro del repositorio de datos.

En la capa de presentacién, se emplea React.js, una libreria moderna de JavaScript

18

orientada a la creacion de interfaces reactivas y modulares. Sobre esta base se integra
ReactFlow, una herramienta especializada en la visualizacién interactiva de grafos,
que permite representar de la manera mas adecuada la estructura de la ontologia
Brick y las relaciones entre dispositivos, sensores y espacios fisicos del campus. Esta
combinacion mejora la experiencia del usuario al proporcionar interacciones dinamicas y
una visualizacidon mas intuitiva del sistema.

Esta arquitectura software soporta la implementacion de Brick en un escenario real y
sus ventajas frente a enfoques tradicionales, al combinar principios de la web semantica
con tecnologias modernas de |oT y desarrollo web. Esta integracion asegura un sistema

flexible, escalable y alineado con los estandares de edificos inteligentes.

19

2.2. Metodologia

La metodologia adoptada en este proyecto se fundamenta en un enfoque orientado
a la adaptacion y aplicacion de la ontologia Brick en el contexto especifico del campus
ESPOL, con el objetivo de garantizar una representacion semantica precisa y consistente
de los dispositivos y equipos. Este enfoque se orienta a la integracién de datos
provenientes de dispositivos loT propios de los espacios del campus, asegurando su
correspondencia con las clases y relaciones definidas en el esquema ontolégico. Para
alcanzar este propoésito, se han definido fases claramente estructuradas que incluyen
el disefo conceptual del modelo, la implementacion técnica mediante herramientas
compatibles con Brick y la evaluacién del desempefio y la interoperabilidad lograda en
escenarios reales del campus.

Ademas, la metodologia contempla la identificacion de los distintos subsistemas
presentes en el entorno, como laboratorios, aulas, oficinas y equipos de medicion
ambiental, estableciendo un mapa detallado de dispositivos y sus caracteristicas. Una
vez definida esta estructura conceptual, se procede a la normalizacién de los datos y a
la verificacidon de la compatibilidad con los estandares definidos por Brick, lo cual permite
reducir ambiguedades y asegurar la consistencia en la representacion.

La implementacién técnica incluye el empleo de plataformas de gestion de datos
que permiten tanto la carga como la consulta de informacién semantica, aprovechando
la flexibilidad de las propiedades de las clases del diccionario de Brick para enlazar
datos. Finalmente, la fase de evaluacion implica la validacién de la interoperabilidad del
sistema frente a escenarios de uso reales, verificando la eficiencia del modelo en tareas
como la monitorizacion de condiciones ambientales, la administracion de recursos y la
optimizacién de procesos internos.

De esta manera, la metodologia busca comprobar la conformidad del esquema
implementado y evidenciar los beneficios practicos de la aplicacidon de Brick en la gestidon
inteligente de la ESPOL, destacando la mejora en la calidad del analisis de datos y la

posibilidad de escalar la solucién hacia otros entornos con requerimientos similares.

20

2.3. Diseno de la Arquitectura del Sistema

La arquitectura propuesta se encuentra organizada en un modelo de multiples capa
que prioriza la modularidad, y asegura la escalabilidad y robustez en todo el sistema. En
la capa de adquisicion, los sensores |oT desplegados en el Edificio 11C realizan la captura
de datos crudos relacionados con variables ambientales, energéticas y de operacion. La
capa de middleware, desempeifia un papel fundamental al encargarse de la normalizacion
y transformacién de los paquetes de datos, asegurando su consistencia y preparacién
para el almacenamiento.

La capa de almacenamiento se compone de dos repositorios que son
complementarios: una base de datos documental en MongoDB, que permite el
almacenamiento eficiente de lecturas de sensores y equipos en formato JSON para
consultas rapidas y flexibles; y por otro, un grafo RDF gestionado mediante Apache Jena
Fuseki, que mantiene la estructura semantica de las entidades conforme al modelo Brick
Schema, garantizando la interoperabilidad y la vinculacién semantica entre dispositivos,
ubicaciones y atributos.

La capa de procesamiento semantico aplica mecanismos de inferencia basados
en RDF/OWL, lo que habilita la generacion de conocimiento derivado a partir de las
relaciones en el grafo, mejorando la capacidad de analisis y trazabilidad. Finalmente,
la capa de aplicaciéon y visualizacion proporciona interfaces interactivas de flujo para
usuarios y administradores, permitiendo el monitoreo en tiempo real, la consulta de
historicos y la validacion de inferencias, todo ello a través de nodos dinamicos y consultas
SPARQL.

Esta arquitectura de multiples capas optimiza la organizacion funcional del sistema
y ofrece ventajas sobre otras soluciones en términos de escalabilidad, mantenimiento y
eficiencia, asegurando la capacidad de integrar nuevos dispositivos, servicios y reglas

semanticas sin comprometer la estabilidad del sistema.

2.3.1. Actualizacion de Firmware

Uno de los aspectos esenciales durante la implementacion del esquema semantico fue
la capacidad de mantener la informacion actualizada frente a cambios en la infraestructura

fisica o en el estado de los dispositivos. Para esto, se realizé la prueba de actualizacién

21

de firmware en dispositivos loT desplegados en los laboratorios del edificio 11C.

El objetivo principal de esta actualizacion fue habilitar la comunicacion mediante el
protocolo MQTT hacia un broker centralizado alojado en los servidores del laboratorio,
garantizando un canal de transmision confiable para la recoleccién de datos. Otro
aspecto clave que se buscaba con esta actualizacion fue que, tras la actualizacion del
firmware, el dispositivo mantuviera su identificacion y asociaciéon correcta dentro del
modelo semantico, evitando la pérdida de consistencia semantica en la representacion
de las entidades. Asimismo, se buscé garantizar que las instancias de dispositivos en el
grafo RDF continuaran vinculadas a sus respectivas ubicaciones y sensores, asegurando
asi su trazabilidad.

airClimate.ino

#define DHTPIN 4

#define DHTTYPE DHT22

#define WAKEUP_TIME_SEC 180

#define WIFI_SSID "ENTER-SSID"

#define WIFI_PASSWD "ENTER-PASSWD"

#define HAYIOT_SENSOR_ID "HAYIOT-UNIQUE-ID"
#define MQTT_TOPIC "@LAB/sensores/@CLIENT-ID"

#define MQTT_CLIENT_ID “"@CLIENT-ID"

DHT dht(DHTPIN, DHTTYPE);

Figura 2.2: Variables de configuracion en el Firmware para dispositivos loT basados en
ESP32/ESP8266.

En la figura 2.2 se observa un fragmento del firmware para los dispositivo IoT,
especificamente en los sensores de calidad de aire y sensores de temperatura, donde
se definen variables especificas para la configuracién de cada dispositivo. Se definen
identificadores cruciales para la integracion semantica y la comunicacion mediante MQTT,
como MQTT_TOPIC, que establece la ruta del tema en el broker para publicar los datos,
y el MQTT_CLIENT_ID, que identifica al cliente unico en el sistema de mensajeria.
Estas definiciones permiten personalizar la configuracion del dispositivo asegurando su
conexidn y trazabilidad en la arquitectura semantica y de mensajeria. Durante el proceso

se monitorearon los siguientes indicadores:

= Continuidad en la transmisién de datos: Comprobar que el flujo de datos desde

22

el dispositivo hacia la base de datos.

= Integridad del modelo: Asegurar que la actualizacién no generara duplicidad ni

inconsistencias en las relaciones definidas en la ontologia Brick.

2.3.2. Recoleccién, Transformacién y Almacenamiento de Datos

Para garantizar la integridad y estandarizacion de la informacion proveniente de
los dispositivos 10T, se automatizé el proceso de adquisicion y tratamiento de datos
mediante el uso de Node-RED, que permite transformar los paquetes recibidos desde
los dispositivos en un formato estandarizado y verificable antes de su almacenamiento.
Este flujo asegura la consistencia de los datos y facilita su vinculacion con las entidades

definidas en el esquema Brick.

/LabloT/sensores/# MongoDBLabloT
@ connected

s31/inv_01/+/SENSOR MongoDBSonoffPayload
@ connected

shellyem3-349454756742_phaseA switch

shellyem3-349454756742_phaseB Jjoin 24 shellyem3-349454756742_MongoDB _ debug 6

@ connected @ 5=1930733, err=0, rt=3ms

shellyem3-349454756742_phaseC

® connected _
777685, =0, rt=2ms

shellyem3-485519DC84EC_phaseA
@ connected

shellyem3-485519DC84EC_phaseB join 24 shellyem3-485519DC84EC_MongoDB
@ connected

shellyem3-485519DC84EC_phaseC
@ connected

shellyem3-C45BBE5FD50D_phaseA
@ connected

shellyem3-C45BBE5FD50D_phaseB join 24 shellyem3-C45BBE5FD50D_MongoDB
@ connected

shellyem3-C45BBE5FD50D_phaseC debug 8
@ connected

LabRDD/sensores/# MongoDBLabloT
@ connected

debug 10 |

debugs‘

Figura 2.3: Flujo de transformacion y almacenamiento de datos en Node-RED.

El flujo de trabajo implementado se muestra en la Figura 2.3 y se compone de las

siguientes etapas:

1. Suscripcion a téopicos MQTT: Los nodos iniciales del flujo estan dedicados a

escuchar los topicos publicados por los dispositivos. Estos tdpicos siguen una

23

jerarquia definida en su firmware que permite organizar los datos por laboratorio,
dispositivo y tipo de medicidon. Por ejemplo, se reciben datos de sensores DHT
(temperatura y humedad) y de analizadores de energia trifasicos (Shelly EM3 o

Accuenergy), los cuales publican valores asociados a las fases A, By C.

. Agrupacion de datos: En el caso de algunos dispositivos loT, como los medidores
trifasicos, se utilizan nodos join para combinar en un solo objeto JSON las
mediciones de las tres fases, dado que publican sus mediciones en diferentes
topicos. Esto garantiza que los datos relacionados se procesen de manera conjunta,

reduciendo inconsistencias en la base de datos y facilitando el analisis de los datos.

. Transformacion y normalizacion: Una vez agrupados, los mensajes pasan por
nodos de tipo function, donde se ejecutan scripts que estandarizan los nombres de
las variables, afiladen metadatos relevantes, como el identificador unico del sensor,
timestamp, ubicacion semantica, y validan que los valores cumplan con las unidades
y rangos esperados. Este paso es critico para garantizar la interoperabilidad con el
modelo basado en Brick, dado que estos campos incluyen referencias a las URIs
correspondientes en el grafo RDF, garantizando la asociacién directa entre con

dispositivo fisico.

. Almacenamiento en base de datos: Finalmente, los datos transformados se
insertan en MongoDB mediante nodos de NodeRed denominados insertOne,
especificos para el driver de MongoDB. Cada inserciéon se confirma en el flujo,
mostrando el estado (éxito, error, tiempo de respuesta) en nodos de debug, lo cual
facilita el monitoreo en tiempo real y la deteccion temprana de fallas. Los datos
procesados fueron almacenados en una base de datos MongoDB desplegada en
los servidores del laboratorio. La eleccién de MongoDB responde a su flexibilidad
para trabajar con estructuras de datos no relacionales y a la posibilidad de emplear
pipelines de agregacion para consultas avanzadas, lo cual resulta especialmente

util para la consulta de datos loT.

24

2.3.3. Modelado Semantico con Brick

El modelado ontoldgico es la base para garantizar la interoperabilidad, escalabilidad
y automatizacion en entornos inteligentes de este proyecto. Brick, como una ontologia de
cédigo abierto, ofrece un vocabulario estandarizado para describir edificios, laboratorios,
zonas, sistemas, equipos, sensores, etc. permitiendo una representacion uniforme vy
semanticamente rica de la infraestructura del campus. El modelado ontolégico no solo
consistio en instanciar entidades y relaciones, sino también en extender la ontologiia
Brick para cubrir requerimientos especificos del proyecto, como la integracidén con bases
de datos externas de MongoDB vy la validacién semantica mediante SHACL (Shapes
Constraint Language). Esta subseccion describe el proceso de adaptacion, disefio del

grafo RDF e integracion de dispositivos |oT en el contexto del campus ESPOL.

2.3.3.1. Adaptacioén de Brick al Campus ESPOL

La adaptacion de Brick comenzo con la identificacion de las entidades principales del
dominio académico: edificios, pisos, laboratorios, zonas, espacios exteriores, equipos de
medicidn y sensores. En este caso de estudio, se selecciono el Edificio 11C de la Facultad
de Ingenieria en Electricidad y Computaciéon como escenario inicial, dado que concentra
multiples espacios con gran densidad de sensores.

Utilizando el extenso vocabulario semantico de Brick, se empled la jerarquia
estandar: brick:Building, brick:Floor, brick:Room, para modelar la estructura fisica,
extendiendo el vocabulario mediante la creacion de clases personalizadas bajo el
namespace espol:. Por ejemplo, se definid la clase espol:LaboratorioRedes COmMO
instancia de brick:Laboratory, permitiendo representar laboratorios con equipamiento
especializado.

Ademas, el vocabulario de Brick ofrece propiedades uUnicas para cada una de sus
clases, para representar sus relaciones y sus ubicaciones fisicas. Se establecieron
relaciones semanticas como:

brick:isPart0f para asociar laboratorios y zonas exteriores con el edificio.

brick:hasPoint para vincular sensores con espacios fisicos.

brick:isLocationOf para representar la ubicacion jerarquica.

Esta adaptacion resolvid limitaciones comunes en sistemas como Project Haystack,

25

donde términos similares pueden usarse sin un significado formal. Por ejemplo, la
distincion clara entre brick:Temperature_Sensor Yy brick:Humidity_Sensor en Brick

evita inconsistencias semanticas que ocurren en sistemas basados solo en etiquetas.

2.3.3.2. Diseiio del Grafo RDF

El grafo RDF se contruy6 siguiendo el modelo Brick, complementado con un
namespace personalizado espol: para instancias y propiedades especificas del caso de
uso. Uno de los desafios clave fue mantener la interoperabilidad semantica mientras se
vincula con metadatos para la descripcion de equipos en MongoDB, donde se registran
lecturas de sensores.

Para esto, se definieron propiedades personalizadas como espol:db_id Yy
espol:point_type, las cuales permiten enlazar cada instancia RDF con el identificador
unico del equipo en MongoDB y su tipo funcional, respectivamente. Estas propiedades

se declararon en el grafo RDF de la siguiente manera:

Caddigo 2.1: Definicion de prpiedades personalizadas para la vinculacion de sensores

Declarar la propiedad personalizada db_id para vinculacién con MongoDB
.add ((ESPOL["db_id"], A, RDF.Property))
.add ((ESPOL["db_id"], RDFS.label, Literal("db_id")))

.add ((ESPOL["db_id"], RDFS.comment, Literal ("MongoDB ,sensor ID

H 03 03 09

or,linking sensor_ metadata.")))

Declarar la propiedad personalizada point_type para el tipo de punto de
medicidn

.add ((ESPOL ["point_type"], A, RDF.Property))

.add ((ESPOL ["point_type"], RDFS.label, Literal("point_type")))

.add ((ESPOL["point_type"], RDFS.comment, Literal("MongoDB sensor point, type

H 03 03 09

or,linking sensor_ metadata.")))

Estas propiedades permiten la trazabilidad entre el grafo semantico y la base de datos
MongoDB, y también fueron validadas mediante SHACL para garantizar la consistencia
del modelo y las propiedades. Para ello, se definieron PropertyShapes que establecen

restricciones sobre el tipo de dato y hacia a que tipo de entidades apuntan:

26

Cddigo 2.2: Definicién de Propiedades SHACL para la validacién de propiedades en el

esquema

Validacidén SHACL para db_id

.add ((ESPOL["db_idShape"]l, A, SH.PropertyShape))

.add ((ESPOL ["db_idShape"], SH.maxCount, Literal(l, datatype=XSD.integer)))
.add ((ESPOL["db_idShape"], SH.path, ESPOL["db_id"]1))

08 03 03 Ou

.add ((ESPOL["db_idShape"], SH.datatype, XSD.string))

Afiadir la regla al esquema brick:Point

g.add ((BRICK.Point, SH.property, ESPOL["db_idShape"]))

Este mecanismo asegura que cada punto del grafo, instancia de brick:Point, tenga
exactamente un espol:db_id valido y unico, evitando inconsistencias y errores de

integridad.

2.3.3.3. Integracion de Sensores loT

La integracion de sensores loT se mejor6 mediante la incorporacion de las
propiedades espol:db_id y espol:point_type, que enlazan cada sensor fisico con su
representacion RDF y sus datos operativos en MongoDB. Esto permite que una consulta
SPARQL identifique la ubicacion semantica del sensor y recupere su identificador para
extraer datos historicos en tiempo real.

Ejemplo de instancia RDF para un sensor de temperatura:

Codigo 2.3: Entidades de sensores y equipos definidas dentro del esquema RDF
semantico ESPOL

espol:airQualityl a brick:Equipment ;
brick:hasLocation espol:ZonaEntrada ;
brick:hasPoint espol:airQualityl_co2,
espol:airQualityl_humidity,
espol:airQualityl_temp ;
espol:db_id "11C-LabIoT:airQ1"

espol:airQualityl_temp a brick:Temperature_Sensor ;
brick:hasUnit unit:DEG_C ;
brick:isPoint0f espol:airQualityl ;

espol:point_type "temp"

27

Gracias a esta estructura, es posible ejecutar consultas que combinan SPARQL, para la

capa semantica, con filtros sobre MongoDB, habilitando escenarios como:

m Consultar todos los sensores de un laboratorio y obtener sus ultimas lecturas desde
MongoDB.

= Verificar si los sensores cumplen con reglas semanticas antes de integrarse al

sistema.

= |nferir automaticamente el tipo de sensor y su ubicacion en base a propiedades del

esquema RDF.

= Mediante SHACL, asegurar que cualquier sensor que no tenga las propiedades

espol:db_id O espol:point_type sea identificado como inconsistente.

28

2.3.4. Desarrollo del Sistema de Gestion

2.3.41. Backend con Django

Django es un framework web de alto nivel basado en Python que permite el
desarrollo rapido y seguro de aplicaciones web. En este proyecto, Django se utiliza
como backend, estructurado bajo una arquitectura APl RESTful, para gestionar la base
de datos semantica y manejar las consultas provenientes del frontend. Esta eleccion
permite la separacién entre la capa de presentacion y la l6gica del sistema, asegurando
modularidad, escalabilidad y flexibilidad para futuras integraciones.

Dado que este proyecto trabaja con grafos RDF, se integra ademas con bibliotecas
como rdflib y SPARQLWrapper para gestionar tripletas RDF y consultas SPARQL. En la
arquitectura del sistema, Django actua como puente entre el modelo semantico, la base
de datos y la interfaz gréafica, procesando las consultas, transformando los resultados
y exponiéndolos mediante una API RESTful. Esta estrategia permite un balance entre
consultas semanticas complejas y rendimiento en escenarios de alta concurrencia.
Ademas, se asegura la integridad de los datos y la posibilidad de extender el sistema
con nuevos endpoints sin comprometer la estabilidad de los vistas existentes.

Para mejorar la eficiencia, se implementan mecanismos de cacheo en las respuestas
mas solicitadas y se gestionan conexiones concurrentes mediante el uso del servidor
WSGI que ofrece Django, que permite escalar el servicio de acuerdo con la demanda.

En conjunto, Django cumple el rol de motor de consultas y el de garante de rendimiento
y mantenibilidad, siendo fundamental dentro de la arquitectura propuesta para la gestién
de datos semanticos. Por ejemplo, se implementd la consulta getAl1Sensors haciendo

uso de una consulta SPARQL de la siguiente manera:

29

Cddigo 2.4: Definicion de un view en el framework de Django para la obtencién de todos

los sensores y sus propiedades dentro del esquema RDF de ESPOL

Get all sensors from ESPOL's RDF schema.
def getAllSensors(request):
Only GET Method is allowed
if request.method == 'GET':
try:
store = SPARQLStore (fuseki_endpoint, returnFormat="json", auth=fuseki_auth)
g = Graph(store=store)
query = """
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX espol: <https://www.espol.edu.ec/ESPOL#>
SELECT 7sensor 7equipment 7unit 7db_id
WHERE A
7?sensor brick:isPoint0f 7equipment
OPTIONAL { ?sensor brick:hasUnit 7unit. }
FILTER (STRSTARTS (STR(?sensor), STR(espol:)))
7equipment a brick:Equipment ;
espol:db_id 7db_id
X

nnn

La figura 2.4 nos muestra como una vista fue disefiada para obtener informacion
completa de todos los sensores, incluyendo identificadores unicos, unidades de medida
y metadatos asociados.

Para el almacenamiento de la informacion, se integraron Apache Jena Fuseki y
MongoDB, formando una arquitectura que combina las capacidades semanticas de
Fuseki con la flexibilidad y escalabilidad de MongoDB. Mientras Fuseki se encarga de
gestionar el estructurado en RDF, MongoDB almacena datos no estructurados y lecturas
en tiempo real, lo que garantiza un sistema robusto tanto para consultas complejas como
para el manejo de grandes volumenes de datos.

Esta arquitectura nos proporciona interoperabilidad con sistemas loT y edificios
inteligentes, y supera las limitaciones de escalabilidad y extensibilidad presentes en
enfoques mas rigidos, al ofrecer un modelo flexible y escalable que facilita la integracion

con sistemas de analisis y control avanzado.

30

"sensor'": "Accuenergy_potencia_reactiva_A",
"equipment": "Accuenergy",

"unit": "VAR",

"db": -LabIoT",

"db_id": "Accuenergy"

"sensor'": "Accuenergy_potencia_reactiva_B",
"equipment": "Accuenergy",

"unit": "VAR",

"db": "11C-LabIoT",

"db_id": "Accuenergy"

helly_Iz_voltaje_C",
"Shelly_Iz",

'shellyem3-485519DC84EC"

"sensor": "Shelly_Iz_corriente_A",

"sensor": "Shelly_Iz_corriente_B",
"equipment": "Shelly_Iz",

"unit": "A",

"db": "11C-LabIoT",

"db_id": "shellyem3-485519DC84EC"

Figura 2.4: Resultados de la consulta getAllSensors, mostrando informacién completa
de todos los sensores del esquema.

2.3.4.2. Reacty ReactFlow

React es una biblioteca de JavaScript para la construccion de interfaces de usuario
interactivas y dinamicas. Su enfoque basado en componentes permite modularidad,
facilitando el desarrollo, mantenimiento y reutilizacion de cédigo en la aplicacion web, y
en el caso de este proyecto, React se utiliza para crear una interfaz visual que represente
el modelo semantico de la infraestructura del campus. Ademas, gracias a su virtual DOM,
React optimiza el renderizado y asegura una respuesta rapida a las interacciones del

usuario, incluso cuando se trabaja con volumenes grandes de datos.

ReactFlow es una extension especifica para la creacién de diagramas de flujo
interactivos dentro de aplicaciones React. Esta herramienta permite representar nodos
y relaciones mediante elementos visuales que se pueden arrastrar, conectar y editar.
En este proyecto, ReactFlow se emplea para visualizar el grafo semantico generado a
partir del modelo Brick, permitiendo a los usuarios explorar graficamente las relaciones
entre sensores, dispositivos y espacios fisicos de forma mas intuitiva y alineada con la
naturaleza de los grafos RDF. Esta representacion visual no solo facilita la comprension
del sistema, sino que también actua como un puente entre expertos técnicos y usuarios

finales con menos experiencia en modelado semantico.

31

La combinacién de React y ReactFlow proporciona una experiencia de usuario fluida.
Los usuarios pueden ver en tiempo real como cambian los estados de sensores o
coémo se relacionan entre si los componentes de la infraestructura. Ademas, se pueden
implementar funcionalidades interactivas como filtros, busquedas o vistas detalladas al
hacer clic en un nodo especifico del grafo, como se puede observar en la Figura 2.5. Estas
funcionalidades aumentan el nivel de control y personalizacion de la interfaz, permitiendo

gue cada usuario adapte la visualizacion a sus necesidades especificas.

®_ Buscar Sensor

Buscar
* Modo Claro
M categorias

@} Panel Admin

Escuela Superior
Politécnica del
Litoral (ESPOL) Facultad de
Ingenieria
en Electricidad y
Computacidon (FIEC)

Figura 2.5: Entidades y Edificios representados como nodos en la aplicacion utilizando
ReactFlow.

La aplicacion React consume una API servida por Django, que devuelve los
datos estructurados del modelo semantico en formato JSON. Estos datos son luego
transformados en nodos y aristas para ser renderizados por ReactFlow, ofreciendo asi
una visién clara y actualizada del sistema fisico y su representacion logica. A futuro, esta
integracion podria ampliarse con caracteristicas como la edicion directa del grafo desde

la interfaz o la generacion automatica de reportes a partir de la interaccion con los nodos.

32

24. Esquema de Diseno Propuesto

Frontend WebServer
....................

T M
. i) o
\ I ; | -
Ny i L L n . — | 1[]
R T A J o S e e
i

Ly Client

Middleware

Figura 2.6: Diagrama de la arquitectura del sistema, mostrando el flujo desde sensores
loT (DHT, Shellys, Accuenergy, Dispositivos basado en ESP32/ESP8266) a middleware
Node-RED, almacenamiento en Fuseki y MongoDB, backend Django y frontend
ReactFlow.

La arquitectura propuesta integra componentes clave con flujos de datos, utilizando
tecnologias como Django y React Flow. Como se ilustra en la Figura 2.6, el sistema
comienza con sensores |oT, tales como DHT para temperatura y humedad, Shellys y
Accuenergy para consumo eléctrico, etc. que capturan datos ambientales en el Edificio
11C. Estos datos se canalizan a través de un middleware basado en Node-RED, que
actua como orquestador para el procesamiento inicial y la transformacion, asegurando
una integracion fluida con estandares semanticos.

Posteriormente, los datos se almacenan en una capa dual: Apache Fuseki para
el grafo RDF/OWL basado en Brick, que habilita inferencias semanticas avanzadas,
y MongoDB para lecturas en tiempo real de alta demanda. El backend en Django
expone APIls RESTful que consultan estos repositorios, mediante SPARQL para metadata
semantica y queries directas a Mongo para valores actuales, mientras el frontend,
implementado en React con ReactFlow, visualiza el grafo interactivo, permitiendo al
usuario explorar relaciones y monitorear datos en vivo. Esta arquitectura no solo
demuestra la interoperabilidad superior de Brick, al reducir ambigledades semanticas
mediante relaciones formales como brick:isPointOf, sino que también evidencia, a través
de flujos optimizados, mejoras en eficiencia y escalabilidad, con tiempos de respuesta

inferiores en pruebas controladas.

33

CAPITULO 3

3. PRUEBAS Y RESULTADOS

En este capitulo se describen las pruebas realizadas para validar la correcta
implementacion del esquema semantico basado en la ontologia Brick en la infraestructura
del campus, especificamente en el Laboratorio de loT y Sistemas Telematicos,
Laboratorio de Redes Avanzadas y Laboratorio de Sistemas en la Nube. El objetivo
principal fue comprobar que el esquema definido representara con precision la
infraestructura fisica, los dispositivos desplegados y sus relaciones, asi como también
verificar la accesibilidad de la informacion de las entidades y los datos generados por sus
sensores mediante consultas SPARQL.

Las pruebas se centraron en aspectos clave como la integracion y mantenimiento
de equipos loT, la correcta transmisiéon de datos, la exactitud del modelado semantico,
la asociacion entre dispositivos y ubicaciones, y el desempefo de las consultas sobre
el esquema semantico creado. Los resultados obtenidos constituyen evidencia del

funcionamiento y la utilidad del modelo implementado en un entorno real.

3.1. PRUEBAS

3.1.1. Pruebas de la transmision de datos

Para reforzar la integraciéon semantica, en los paquetes de datos enviados por los
sensores se incorporaron campos de metadata con propiedades personalizadas que
permiten identificar cada dispositivo y sus dentro del modelo Brick. Estos campos incluyen
referencias a las URIs correspondientes en el grafo RDF, garantizando la trazabilidad y

la asociacién directa entre el dispositivo fisico, l6gico y su representacion semantica.

buffer[512];
cx = snprintf(buffer, sizeof(buffer),
TR 2
"{\"val
"{\"val\":%. :\"humidity\"}"
"1, \"sensedAt\":\"\"}",

sensor_id, isnan(temperature) ? 0.0 : temperature, isnan(humidity) ? 0.0 : humidity);

if (ex < @ || cx >= (int)sizeof(buffer)) {
Serial.printn("Error formatting JSON.");
return;

}

Figura 3.1: Construccion del paquete de datos en equipos ESP32/ESP8266 usando las
variables necesarias para su identificacion en el esquema.

La prueba consistié en verificar que, tras la adquisicion y normalizacion de los
datos mediante Node-RED, las lecturas provenientes de los sensores incluyeran las
propiedades db_id y point_type, definidas en el namespace espol:, las cuales permiten
establecer la correspondencia con la base de datos MongoDB vy el tipo de punto dentro
del esquema Brick. Ademas, se comprobd la integridad de los paquetes transmitidos
mediante el protocolo MQTT, garantizando que los mensajes llegaran al broker sin

pérdida ni corrupcion.

1 let sensor_id = msg.topic.split("/")I[3];

2 let sensedAt = new Date();

3 let mongo_payload = {

4 metadata: {sensorld : sensor_id},

5 timestamp: sensedAt

6 b

7 if (sensor_id === "Accuenergy") {

8 let datalist = msg.payload.device.readings;

] const paramTypeMap = {

10 V1: "voltageA", V2: "voltageB", V3: "voltageC",

11 I1: “currentA", I2: "currentB", I3: "currentC",

12 P1: "powerA", P2: "powerB", P3: "powerC",

13 Q1: "reactivepowerA", Q2: "reactivepowerB", Q3: "reactivepowerC",
14 S1: "apparentpowerA", S2: "apparentpowerB", S3: "apparentpowercC",
15 PF1: "pfA", PF2: "pfB", PF3: "pfC"

16 };

Figura 3.2: Ejemplo de una funcién en nodos de NodeRed para verificar y manipular los
datos que provienen de los sensores.

35

El flujo de transformacion se ejecutd para asegurar que cada mensaje bruto capturado
desde el dispositivo fuera enriquecido con la metadata correspondiente, lo que permite
mantener la interoperabilidad entre |la capa fisica de sensores, la capa de almacenamiento

y el modelo RDF.

3.1.2. Pruebas del modelado semantico

Se evalud la consistencia del grafo RDF construido y que esta almacenado en la
base de datos Apache Jena/Fuseki, validando que las entidades definidas en la ontologia
Brick reflejaran correctamente la jerarquia espacial de edificios, pisos, laboratorios y
los dispositivos asociados, como sensores y equipos. Para ello, se realizaron consultas
SPARQL orientadas a comprobar la integridad de las propiedades personalizadas
espol:db_idy espol:point_type para asegurar la interoperabilidad con la base de datos

de lecturas MongoDB.

Cddigo 3.1: Contruccion de Query SPARQL para obtener todos los sensores de un equipo

y su propiedad espol:db_id

PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX espol: <https://www.espol.edu.ec/ESPOL#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT 7equipment ?7unit 7db_id 7type
WHERE {{

espol:{sensor_id} brick:isPoint0Of ?7equipment

OPTIONAL {{ espol:{semnsor_id} brick:hasUnit 7unit. }}

espol:{sensor_id} espol:point_type ?type

7equipment a brick:Equipment ;

espol:db_id 7?db_id

13}

Recuperar todos los equipos presentes en un laboratorio especifico, validando
la asociacion correcta con su ubicacidn brick:isLocatedIn Y listar las unidades de
medida asociadas a cada punto con brick:hasUnit y verificar que coincidieran con la
configuracién fisica del sensor. Estas pruebas confirmaron que el modelo semantico
no solo representaba fielmente la infraestructura fisica, sino que también permitia la

inferencia de relaciones y el filtrado avanzado de datos mediante consultas SPARQL.

36

37

CAPITULO 4

4. CONCLUSIONES, RECOMENDACIONES Y LINEAS
FUTURAS

El presente proyecto BrickloT ha demostrado su viabilidad y ventajas de implementar
un esquema semantico basado en la ontologia Brick para la gestion de datos en entornos
de edificios inteligentes. La arquitectura modular que hemos disefiado ofrece beneficios
en términos de escalabilidad, consistencia semantica, trazabilidad e integracion en tiempo

real, fundamentales para sistemas de monitoreo avanzados como este.

4.1. Conclusiones

El analisis y la implementacion realizada a largo de este proyecto permiten nos han

permitido concluir que:

s Escalabilidad: La incorporacion de nuevos dispositivos o tipos de sensores puede
realizarse mediante la adicion dinamica de nodos o entidades mediante la interfa
grafica que hemos desarrollado sobre el esquema de clases de Brick, sin necesidad
de modificar la estructura entera del esquema ni tener que desarrollarlo desde cero.

Esto garantiza que la infraestructura pueda crecer de manera ordenada y eficiente.

= Consistencia semantica: Cada dato insertado en la base de datos mantiene
su asociacion con la entidad correspondiente en el grafo RDF de la ESPOL,
asegurando coherencia con el modelo Brick y facilitando la interoperabilidad, incluso

entre distintos sistemas dentro del campus.

= Trazabilidad: Gracias al uso de identificadores unicos y metadatos normalizados y

agregados a las entidades como propiedades personalizadas, es posible rastrear el

4.2.

origen y el contexto de cada medicién, lo que simplifica las auditorias, el analisis
histérico por sensor o por area y procesos de verificacion de datos mendiante
SHACL.

Integraciéon en tiempo real: La combinacién de MQTT y Node-RED garantiza
que la latencia entre la generacion de los datos y su almacenamiento sea minima,
permitiendo aplicaciones de monitoreo y control en tiempo real, asi como la reaccion

inmediata ante eventos criticos y alertas inteligentes que se puedan implementar.

Flexibilidad y adaptabilidad: El sistema permite integrar una amplia variedad de
tipos de sensores y actuadores que se usan comunmente en proyecto de la carrera
de Telematica, asi como adaptarse a cambios en la topologia de la red o en los

requerimientos de analisis, sin comprometer la integridad del modelo semantico.

Recomendaciones

Capacitacion del personal técnico o de los estudiantes en tecnologias semanticas y
ontologias, asegurando un manejo adecuado del esquema RDF de la ESPOL, OWL

y la integracion con el modelo Brick.

Establecer un procedimientos de normalizacion de datos y etiquetado mucho mas
uniforme que el actual, para mantener consistencia en ambientes con multiples

laboratorios.

Implementar estrategias de respaldo y recuperacion de datos en tiempo real, para

asi garantizar la continuidad del sistema ante fallos o interrupciones.

Documentar las configuraciones, flujos de datos y procesos de integracion para

facilitar el mantenimiento y la escalabilidad futura del sistema.

39

4.3. Lineas Futuras

Para continuar avanzando en la investigacién y optimizacion de sistemas basados en

Brick y tecnologias semanticas en loT, hemos planteado los siguientes puntos:

s Extension del modelo para incluir nuevos dominios y tipos de dispositivos, tales
como energias renovables, sistemas de seguridad o automatizacion de espacios

publicos del campus.

= Implementacién de propiedades personalizadas dentro del esquema RDF
semantico de ESPOL para la interoperabilidad adicional de comunicacién con

sistemas internos y plataformas del campus de manera mas fluida y segura.

= Evaluacién de la eficiencia energética y la optimizacion de los recursos mediante
simulaciones 3D y gemelos digitales utilizando los mismos datos semanticos del
grafo, aprovechando la trazabilidad y consistencia de los datos y sus propiedades

para guardar valores de importancia en aplicaciones de visualizacion 3D.

m |ntegracion de algoritmos de inteligencia artificial y aprendizaje automatico sobre
los datos semanticamente estructurados, para mejorar predicciones, deteccion de

anomalias y mantenimiento de los edificios, aulas y laboratorios del campus.

40

(1]

(2]

(3]

(4]

[3]

6]

[7]

(8]

9]
[10]

BIBLIOGRAFIA

R. Agarwal, D. G. Fernandez, T. Elsaleh et al., «Unified loT ontology to enable interoperability and
federation of testbeds», en 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA,
USA: IEEE, dic. de 2016. doi: 10.1109/wf-iot .2016.7845470. direccion: http://ieeexplore.
ieee.org/document/7845470/ (visitado 20-07-2025).

S. H. y Andy Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, mar. de 2013.
direccion: https://www.w3.org/TR/sparqllii-query/,.

S. H. y Andy Seaborne, SPARQL 1.1 Query Results JSON Format, W3C Recommendation, mar. de

2013. direccion: https://www.w3.org/TR/sparqlli-results-json/.

B. Balaji, A. Bhattacharya, G. Fierro et al., «Brick: Towards a Unified Metadata Schema For Buildings»,
en Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built
Environments, Palo Alto CA USA: ACM, nov. de 2016, pags. 41-50. doi: 10.1145/2993422.2993577.
direccion: https://dl.acm.org/doi/10.1145/2993422.2993577 (visitado 20-07-2025).

B. Balaji, A. Bhattacharya, G. Fierro et al., «Brick : Metadata schema for portable smart building
applications», en, Applied Energy, vol. 226, pags. 1273-1292, sep. de 2018, Publisher: Elsevier BV,
issn: 0306-2619. doi: 10 . 1016/ j . apenergy . 2018 . 02 . 091. direccion: https : //linkinghub .
elsevier.com/retrieve/pii/S0306261918302162 (visitado 20-07-2025).

A. Bhattacharya, J. Ploennigs y D. Culler, «Short Paper: Analyzing Metadata Schemas for Buildings:
The Good, the Bad, and the Ugly», en Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments, Seoul South Korea: ACM, nov. de 2015,
pags. 33-34. doi: 10 .1145/2821650 . 2821669. direccion: https://dl.acm.org/doi/10.1145/
2821650.2821669 (visitado 20-07-2025).

A. P.y Birte Glimm, SPARQL 1.1 Federated Query, W3C Recommendation, mar. de 2013. direccion:
https://www.w3.org/TR/sparqlil-federated-query/.

B. G. y Chimezie Ogbuiji, SPARQL 1.1 Entailment Regimes, W3C Recommendation, mar. de 2013.

direccion: https://www.w3.org/TR/sparqllil-entailment/.
B. Consortium, Brick Ontology Documentation, 2025. direccion: https://docs.brickschema.org/.

B. Consortium, Brick Schema GitHub Repository, 2025. direcciéon: https : / / github . com /
BrickSchema/Brick.

41

https://doi.org/10.1109/wf-iot.2016.7845470
http://ieeexplore.ieee.org/document/7845470/
http://ieeexplore.ieee.org/document/7845470/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-results-json/
https://doi.org/10.1145/2993422.2993577
https://dl.acm.org/doi/10.1145/2993422.2993577
https://doi.org/10.1016/j.apenergy.2018.02.091
https://linkinghub.elsevier.com/retrieve/pii/S0306261918302162
https://linkinghub.elsevier.com/retrieve/pii/S0306261918302162
https://doi.org/10.1145/2821650.2821669
https://dl.acm.org/doi/10.1145/2821650.2821669
https://dl.acm.org/doi/10.1145/2821650.2821669
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-entailment/
https://docs.brickschema.org/
https://github.com/BrickSchema/Brick
https://github.com/BrickSchema/Brick

(1]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

J. B. y Dave Beckett, SPARQL 1.1 Query Results XML Format (Second Edition), W3C

Recommendation, mar. de 2013. direccion: https://www.w3.org/TR/sparqlli-results-xml/.

G. Fierroy D. E. Culler, «Design and Analysis of a Query Processor for Brick», en, ACM Transactions
on Sensor Networks, vol. 14, n.° 3-4, pags. 1-25, nov. de 2018, Publisher: Association for Computing
Machinery (ACM), issn: 1550-4859, 1550-4867. doi: 10.1145/3199666. direccion: https://dl.acm.
org/doi/10.1145/3199666 (visitado 20-07-2025).

P. Haystack, Project Haystack Documentation, 2025. direccion: https://project-haystack.org/

doc/.

G. T. W. y. K. G. C. Lee Feigenbaum y E. Torres, SPARQL 1.1 Protocol, W3C Recommendation,
mar. de 2013. direccion: https://wuw.w3.org/TR/sparqlli-protocol/.

J. Li, N. Li, R. Yan, K. Farruh, A. Li y K. Li, «Research on Brick Schema Representation for
Building Operation with Variable Refrigerant Flow Systems», Journal of Building Engineering, vol. 56,
pag. 104 792, sep. de 2022, arXiv:2108.07037 [cs], issn: 2352-7102. doi: 10.1016/j. jobe . 2022.
104792. direccidn: http://arxiv.org/abs/2108.07037 (visitado 20-07-2025).

N. Luo, G. Fierro, Y. Liu, B. Dong y T. Hong, «Extending the Brick schema to represent metadata of
occupants», en, Automation in Construction, vol. 139, pag. 104 307, jul. de 2022, issn: 09265805.
doi: 10.1016/j.autcon.2022.104307. direccion: https://linkinghub.elsevier.com/retrieve/
pii/S0926580522001807 (visitado 28-05-2025).

C. Ogbuiji, SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs, W3C Recommendation,

mar. de 2013. direccion: https://www.w3.org/TR/sparqllil-http-rdf-update/.

E. D. Okonta, F. Rahimian, V. Vukovic y S. Rodriguez, «Semantic interoperability on loT: Aligning IFC
and Smart Application Reference (SAREF) sensor data models», en, Automation in Construction,
vol. 177, pag. 106328, sep. de 2025, Publisher: Elsevier BV, issn: 0926-5805. doi: 10 . 1016 /
j . autcon . 2025 . 106328. direccion: https : / / linkinghub . elsevier . com/ retrieve / pii /
S0926580525003681 (visitado 20-07-2025).

A. P.y. A. P. Paul Gearon, SPARQL 1.1 Update, W3C Recommendation, mar. de 2013. direccion:
https://www.w3.org/TR/sparqlll-update/.

M. Pritoni, D. Paine, G. Fierro et al., «Metadata Schemas and Ontologies for Building Energy
Applications: A Critical Review and Use Case Analysis», en, Energies, vol. 14, n.° 7, pag. 2024,
abr. de 2021, Publisher: MDPI AG, issn: 1996-1073. doi: 10.3390/en14072024. direccién: https:
//www.mdpi.com/1996-1073/14/7/2024 (visitado 20-07-2025).

M. Pritoni, D. Paine, G. Fierro et al., «Metadata Schemas and Ontologies for Building Energy
Applications: A Critical Review and Use Case Analysis», en, Energies, vol. 14, n.° 7, pag. 2024,
abr. de 2021, Publisher: MDPI AG, issn: 1996-1073. doi: 10 .3390/en14072024. direccidon: https:
//www.mdpi.com/1996-1073/14/7/2024 (visitado 20-07-2025).

42

https://www.w3.org/TR/sparql11-results-xml/
https://doi.org/10.1145/3199666
https://dl.acm.org/doi/10.1145/3199666
https://dl.acm.org/doi/10.1145/3199666
https://project-haystack.org/doc/
https://project-haystack.org/doc/
https://www.w3.org/TR/sparql11-protocol/
https://doi.org/10.1016/j.jobe.2022.104792
https://doi.org/10.1016/j.jobe.2022.104792
http://arxiv.org/abs/2108.07037
https://doi.org/10.1016/j.autcon.2022.104307
https://linkinghub.elsevier.com/retrieve/pii/S0926580522001807
https://linkinghub.elsevier.com/retrieve/pii/S0926580522001807
https://www.w3.org/TR/sparql11-http-rdf-update/
https://doi.org/10.1016/j.autcon.2025.106328
https://doi.org/10.1016/j.autcon.2025.106328
https://linkinghub.elsevier.com/retrieve/pii/S0926580525003681
https://linkinghub.elsevier.com/retrieve/pii/S0926580525003681
https://www.w3.org/TR/sparql11-update/
https://doi.org/10.3390/en14072024
https://www.mdpi.com/1996-1073/14/7/2024
https://www.mdpi.com/1996-1073/14/7/2024
https://doi.org/10.3390/en14072024
https://www.mdpi.com/1996-1073/14/7/2024
https://www.mdpi.com/1996-1073/14/7/2024

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Z.Qiang, S. Hands, K. Taylor et al., «A systematic comparison and evaluation of building ontologies for
deploying data-driven analytics in smart buildings», en, Energy and Buildings, vol. 292, pag. 113 054,
ago. de 2023, Publisher: Elsevier BV, issn: 0378-7788. doi: 10. 1016/ j . enbuild . 2023 . 113054.
direccion: https : //linkinghub . elsevier . com/retrieve / pii/ S0378778823002840 (visitado
20-07-2025).

C. Quinn y J. J. McArthur, «Comparison of Brick and Project Haystack to Support Smart
Building Applications», Advanced Engineering Informatics, vol. 47, pag. 101233, ene. de 2021,
arXiv:2205.05521 [cs], issn: 1474-0346. doi: 10.1016/j . aei . 2020 . 101233. direccion: http://
arxiv.org/abs/2205.05521 (visitado 20-07-2025).

C. Quinn y J. McArthur, «A case study comparing the completeness and expressiveness of two
industry recognized ontologies», en, Advanced Engineering Informatics, vol. 47, pag. 101233,
ene. de 2021, Publisher: Elsevier BV, issn: 1474-0346. doi: 10.1016/j.aei.2020.101233. direccidn:
https://linkinghub.elsevier.com/retrieve/pii/S1474034620302020 (visitado 20-07-2025).

A. Seaborne, SPARQL 1.1 Query Results CSV and TSV Formats, W3C Recommendation, mar. de

2013. direccion: https://www.w3.org/TR/sparqlll-results-csv-tsv/.

«Semantic Web Technologies for Internet of Things Semantic Interoperability», en, en Lecture Notes
in Networks and Systems, ISSN: 2367-3370, 2367-3389, Cham: Springer International Publishing,
2022, pags. 133-143, isbn: 978-3-030-91737-1 978-3-030-91738-8. doi: 10 . 1007 /978 - 3 - 030 -
91738-8_13. direccion: https://link.springer.com/10.1007/978-3-030-91738-8_13 (visitado
20-07-2025).

F. Vittori, C. F. Tan, A. L. Pisello, A. Chong y C. Miller, BIM-to-BRICK: Using graph modeling for
IoT/BMS and spatial semantic data interoperability within digital data models of buildings, Version
Number: 1, 2023. doi: 10.48550/ARXIV. 2307 .13197. direccion: https://arxiv.org/abs/2307.
13197 (visitado 20-07-2025).

G. T. Williams, SPARQL 1.1 Service Description, W3C Recommendation, mar. de 2013. direccioén:

https://www.w3.org/TR/sparqlll-service-description/.

43

https://doi.org/10.1016/j.enbuild.2023.113054
https://linkinghub.elsevier.com/retrieve/pii/S0378778823002840
https://doi.org/10.1016/j.aei.2020.101233
http://arxiv.org/abs/2205.05521
http://arxiv.org/abs/2205.05521
https://doi.org/10.1016/j.aei.2020.101233
https://linkinghub.elsevier.com/retrieve/pii/S1474034620302020
https://www.w3.org/TR/sparql11-results-csv-tsv/
https://doi.org/10.1007/978-3-030-91738-8_13
https://doi.org/10.1007/978-3-030-91738-8_13
https://link.springer.com/10.1007/978-3-030-91738-8_13
https://doi.org/10.48550/ARXIV.2307.13197
https://arxiv.org/abs/2307.13197
https://arxiv.org/abs/2307.13197
https://www.w3.org/TR/sparql11-service-description/

	RESUMEN
	ABSTRACT
	ABREVIATURAS
	ÍNDICE DE FIGURAS
	ÍNDICE DE CÓDIGOS
	INTRODUCCIÓN
	Descripción de la problemática
	Justificación
	Objetivos
	Marco Teórico
	Ontología
	Modelado Semántico y Tecnologías RDF/OWL
	Project Haystack
	BrickSchema

	Estado del Arte
	Project Haystack
	BrickSchema
	Tecnologías Semánticas en IoT
	Trabajos Relacionados

	METODOLOGÍA Y DISEÑO DEL SISTEMA
	Materiales
	Componentes de Hardware
	Componentes de Software

	Metodología
	Diseño de la Arquitectura del Sistema
	Actualización de Firmware
	Recolección, Transformación y Almacenamiento de Datos
	Modelado Semántico con Brick
	Adaptación de Brick al Campus ESPOL
	Diseño del Grafo RDF
	Integración de Sensores IoT

	Desarrollo del Sistema de Gestión
	Backend con Django
	React y ReactFlow

	Esquema de Diseño Propuesto

	PRUEBAS Y RESULTADOS
	PRUEBAS
	Pruebas de la transmisión de datos
	Pruebas del modelado semántico

	CONCLUSIONES, RECOMENDACIONES Y LÍNEAS FUTURAS
	Conclusiones
	Recomendaciones
	Líneas Futuras

	BIBLIOGRAFÍA

		2025-09-08T13:07:42-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2025-09-08T14:23:21-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2025-10-31T20:47:49-0500

		2025-10-31T21:09:25-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

	

