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Resumen 

Este proyecto implementa un sistema automatizado de rastreo vehicular mediante técnicas de 

Deep Learning y visión por computadora. El sistema utiliza YOLOv8 para detectar vehículos, 

ByteTrack para seguimiento intra-cámara y Vision Transformer (ViT) para generar 

embeddings robustos que permiten la Reidentificación multicámara. Se procesaron 

secuencias de video de múltiples cámaras, aplicando técnicas de matching por similitud 

coseno y re-ranking para mejorar la precisión. Los resultados demostraron un 94.7% de 

precisión Rank-1 y 77.96% mAP, validando la efectividad del enfoque propuesto. El sistema 

ofrece una solución escalable para el monitoreo vehicular automatizado en entornos urbanos 

complejos. 

Palabras Clave: Rastreo vehicular, Visión artificial, Deep Learning, Reidentificación, 

Procesamiento multicámara.  
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Abstract 

This project implements an automated vehicle tracking system using Deep Learning 

and computer vision techniques. The system employs YOLOv8 for vehicle detection, 

ByteTrack for intra-camera tracking, and Vision Transformer (ViT) to generate robust 

embeddings enabling multi-camera ReIDentification. Multiple camera video sequences were 

processed, applying cosine similarity matching and re-ranking techniques to improve 

accuracy. Results demonstrated 94.7% Rank-1 accuracy and 77.96% mAP, validating the 

effectiveness of the proposed approach. The system provides a scalable solution for 

automated vehicle monitoring in complex urban environments. 

Keywords: Vehicle tracking, Computer vision, Deep Learning, ReIDentification, Multi-

camera processing. 
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1.1 Introducción 

 En Ecuador, la implementación de sistemas tecnológicos para el monitoreo y control 

de tráfico vehicular ha cobrado relevancia en el marco de una gestión urbana más segura y 

eficiente. El crecimiento exponencial de la tecnología y la inteligencia artificial ofrecen la 

posibilidad de mantener un registro detallado de los vehículos que transitan o ingresan áreas 

específicas que sean monitoreadas por cámaras. De esta manera se mejora la capacidad de las 

entidades públicas y privadas para gestionar el flujo vehicular, optimizando la vigilancia en 

zonas de alto tránsito o de acceso restringido. Pese a que la implementación de cámaras de 

seguridad en las ciudades latinoamericanas aún es limitada en comparación con otras 

regiones, lo cual resalta la necesidad de aprovechar al máximo las tecnologías actuales para 

alcanzar un control vehicular.  

 Para el desarrollo de este proyecto, se utilizarán imágenes obtenidas de un dataset 

público, con el fin de simular un entorno realista en el que operar. Dado que no se cuenta con 

una entidad que proporcione imágenes en tiempo real o de manera controlada, el uso de 

datasets abiertos permitirá entrenar y evaluar el sistema de manera efectiva. El objetivo 

central de este trabajo es implementar un modelo capaz de identificar vehículos basados en la 

ubicación y Reidentificación del objetivo mediante diversas cámaras. 

 Esta investigación tiene como objetivo no solo desarrollar un sistema técnico, sino 

también fortalecer las capacidades de las autoridades competentes y mejorar la seguridad 

pública en el país. Busca proporcionar una herramienta que permita rastrear vehículos tanto 

en entornos privados como públicos, garantizando el uso adecuado de tecnologías 

emergentes, asegurando una correcta utilización de las nuevas tecnologías emergentes 

implementando inteligencia artificial en los ámbitos cotidianos para mejorar la calidad de 

esta.  
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1.2 Descripción del problema 

En varios países de Latinoamérica la necesidad de mejorar el control y monitoreo 

vehicular plantea desafíos significativos para garantizar una gestión de tránsito más eficiente 

y segura en áreas urbanas y zonas privadas. En 2022 la empresa Telconet implementó 

cámaras de seguridad con el fin de contemplar diversas problemáticas locales como el robo 

de vehículos y la omisión de las señales de tránsito. Este proyecto ambicioso luego de 3 años 

aún enfrenta dificultades en su operatividad debido a sus falsos positivos en el 

reconocimiento y a la saturación del monitoreo de cámaras que ahora se encarga el ECU911 

de las instalaciones de Samborondón en revisar, controlar y gestionar las alertas recibidas en 

Samborondón y Guayaquil [1]. Estas limitaciones son la oportunidad perfecta para 

implementar soluciones avanzadas que permitan automatizar el proceso de identificación y 

rastreo vehicular. 

El objetivo del proyecto es diseñar un sistema inteligente de automatización capaz de 

rastrear vehículos utilizando múltiples cámaras, con la capacidad de identificar características 

específicas de los automóviles, tales como marca, modelo, color y de ser necesario, matrícula 

para un mayor control. Se requiere considerar: 

- Automatizar el rastreo vehicular. 

- Integrar múltiples cámaras de vigilancia. 

 

1.3 Justificación del problema 

La necesidad de contar con sistemas avanzados para el monitoreo vehicular en tiempo 

real es importante para la gestión del tránsito y la garantía de seguridad en zonas de acceso 

restringido y áreas urbanas de alta densidad vehicular. Un sistema de monitoreo automatizado 

no solo contribuiría a mejorar la eficiencia en la supervisión del tráfico, sino también a 

optimizar los procesos de control en sitios sensibles, como accesos a instalaciones privadas. 
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En [2] mediante un video se muestra que el monitoreo de las cámaras de vigilancia en 

el ECU911 se hace de forma manual lo cual incrementa sesgos humanos en cuanto a 

precisión y tiempo de respuesta. Un sistema automatizado reduciría considerablemente el 

tiempo de respuesta de autoridades aumentando la tasa de recuperación de autos robados. 

Este tipo de tecnología es especialmente relevante en el contexto latinoamericano, donde las 

redes de cámaras de vigilancia están en crecimiento, pero aún no se han optimizado en su 

utilización para aplicaciones de control vehicular automatizado. 

 

1.4 Objetivos 

1.4.1 Objetivo general 

Diseñar e implementar un sistema inteligente de rastreo vehicular automatizado mediante el 

uso de técnicas Deep Learning de Reidentificación a partir de imágenes de múltiples cámaras 

de vigilancia. 

1.4.2 Objetivos específicos 

1. Desarrollar un algoritmo capaz de detectar automáticamente vehículos en imágenes de 

cámaras de seguridad para su posterior seguimiento visual.  

2. Desarrollar un codificador de imágenes que extraiga las características principales de 

un vehículo para su Reidentificación.  

3. Crear un sistema que permita identificar y agrupar vehículos con características 

similares a partir de imágenes. 

1.5 Marco teórico 

La automatización del rastreo vehicular ha evolucionado junto con la tecnología y la 

inteligencia artificial. Dichas herramientas son determinantes en contextos como la seguridad, 

gestión del tráfico, logística y transporte, y en casos extremos, la asistencia para emergencias. 
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Por lo que, en esta sección se presentarán conceptos relevantes para entender la solución 

propuesta. 

1.5.1 Algoritmos de detección de objetos 

La detección de objetos es una tecnología relacionada con la visión artificial y el 

procesamiento de imágenes que trata de detectar casos de objetos semánticos de una cierta 

clase (como humanos, edificios, o vehículos) en videos e imágenes digitales [3].Tal es el caso 

del algoritmo YOLO (You Only Look Once) el cuál usa una sola red neuronal convolucional 

para identificar y clasificar objetos. A diferencia de otros algoritmos que necesitan más etapas 

de procesamiento y por ende mayor tiempo de ejecución, YOLO ofrece una detección de 

objetos bastante eficiente en un corto tiempo lo que eleva su uso hasta las aplicaciones en 

tiempo real [4]. 

Otro de los algoritmos funcionales para detección de objetos se llama SSD (Single 

Shot Detector) que permite identificar objetos más pequeños en una agrupación, pues, el 

tamaño de sus cajas delimitadoras de sección varía con relación al objetivo. SSD utiliza una 

serie de convoluciones para que la extracción de características sea precisa y rápida [5]. 

Un algoritmo con una funcionalidad especializada en la detección de objetos de 

manera más precisa, pero más lenta es Faster R-CNN, que consiste en que el algoritmo 

propone regiones para hipotetizar la ubicación de los objetos [6]. Una implementación que 

incluye un bajo costo a la hora de proponer regiones es utilizar RPN que es una red 

totalmente convolucional encargada de predecir simultáneamente los límites de los objetos y 

las puntuaciones de objetividad en cada posición.  

Por otro lado, RetinaNet toma un enfoque que se centra en la implementación de la 

pérdida focal, una técnica que mejora la detección de objetos pequeños y difíciles de 

identificar. Está diseñado para manejar datasets desbalanceados. 
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1.5.2 Algoritmos de seguimiento 

SORT (Simple Online and Realtime tracking) es un algoritmo de seguimiento 

diseñado para predecir el movimiento de un objeto en tiempo real. Para su funcionamiento, 

utiliza el filtro de kalman que le permite predecir el siguiente cuadro en que se moverá el 

objeto según su trayectoria. Además, implementa el algoritmo húngaro el cual es una 

abstracción de la asignación de costo mínimo que sirve para sintetizar la distancia mínima 

[7]. 

Su estructura se basa en el análisis de 4 etapas: 

Figura 1.1  

Secuencia de Algoritmo Sort 

 

 En cuanto a la etapa de seguimiento (tracking), SORT crea y destruye las cajas 

delimitadoras de sección a medida que cambia la posición del objeto. Cuando el objetivo 

seleccionado cambia su apariencia debido a situaciones externas, se da origen al ReID, lo que 

permite reconocer el objeto en otro momento y en otras circunstancias. 

 DeepSORT es una extensión del algoritmo SORT que incorpora un módulo de 

apariencia basado en redes neuronales [8], además utiliza un filtro de Kalman, que es un 

algoritmo recursivo que predice la posición y velocidad de un objeto utilizando un modelo de 

movimiento y luego ajusta esa predicción con cada nueva medición. Esto es empleado para 

  Detección   Estimación   Asignación   Seguimiento 
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suavizar trayectorias y mantener el tracking incluso cuando dos vehículos se cruzan o quedan 

parcialmente ocultos [9]. 

 ByteTrack es un algoritmo de seguimiento que aprovecha todas las detecciones, 

incluyendo aquellas de baja confianza, para mejorar la asociación de tracks entre frames. 

Utiliza un mecanismo de asociación simple pero efectivo basado en similitud de movimiento 

y apariencia, logrando alto rendimiento en escenarios con oclusiones y movimientos rápidos. 

 Esta estrategia de "no descartar detecciones" permite a ByteTrack mantener una alta 

tasa de recuperación de identidades (ID) y reducir significativamente los fragmentos en las 

trayectorias. Su simplicidad y efectividad lo han posicionado como un referente en 

seguimiento multi-objeto [10]. 

1.5.3 Reidentificación 

 Con el avance rápido en técnicas de aprendizaje profundo, muchos investigadores 

centran su atención en la Reidentificación de objetos también conocida como ReID, tiene 

como tarea reconocer y emparejar instancias del mismo objeto. Es decir, reubica un objeto 

cuando cambian las circunstancias de este. Tales son: posición, exposición a la luz y 

similitud. Estos factores son claves y determinantes a la hora de visualizar de forma 

automática un objeto [11]. 

 Reconocer los atributos es una información importante para la tarea de ReID ya que 

dos imágenes de un vehículo pueden compartir el mismo modelo y color, pero sin necesidad 

de hacer referencia al mismo. Para cumplir con esta asignación, se usa la extracción de 

características globales (forma, tamaño) y auxiliares (color, posición espacio temporal) que 

dan lugar a un vector de características usado para comparar con las bases de datos de 

vehículos. 
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Figura 1.2  

Ejemplo extracción de características 

 

Nota: Tomada de [11] 

 Los modelos y algoritmos de ReID nacen como una necesidad técnica y práctica para 

reconocer objetos en entornos complejos, y se construyen sobre avances en redes neuronales, 

visión por computadora y aprendizaje de métricas [12]. 

Modelos basados en redes convolucionales (CNN) 

Son modelos de aprendizaje profundo que procesan imágenes a través de filtros 

llamados convoluciones, capaces de detectar patrones como bordes, texturas y formas. Se 

usan para extraer características visuales (por ejemplo, color del vehículo, forma, matrícula, 

ropa de una persona) y convertir la imagen en un vector (embedding) que representa su 

identidad visual [13]. 

Tabla 1.1  

Modelos basados en redes convolucionales 

Modelo Descripción 

ResNet-50/101 Red de uso común. Usado como extractor de características. 
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PCB (Part-based 

Convolutional Baseline) 

Divide la imagen en partes (por ejemplo, cabeza, torso, 

ruedas) para aprender características más detalladas. 

MGN (Multiple 

Granularity Network) 

Extrae características en diferentes escalas (global y local). 

HA-CNN (Harmonious 

Attention CNN) 

Introduce atención para enfocar regiones discriminativas. 

OSNet Compacto y eficaz, con convoluciones selectivas para extraer 

patrones omniescalares. 

 

Modelos basados en Transformers 

Reemplazan o complementan a las CNNs para entender la imagen como un conjunto 

de regiones interconectadas, lo que ayuda a captar detalles importantes, aunque estén lejos 

entre sí (como placa y forma del vehículo) [14]. 

Tabla 1.2  

Modelos basados en Transformers 

Modelo Descripción 

TransReID Modelo Transformer con módulos de alineación de vista y atención 

para datos de vehículos/personas. 

ViT (Vision 

Transformer) 

Aplicado directamente a imágenes para aprender relaciones globales 

sin convoluciones. 

TLP-ReID Modelo Transformer con fusión de información local y global para 

mejorar el matching. 
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Algoritmos de aprendizaje de métricas 

 Estos algoritmos entrenan modelos para que aprendan una distancia adecuada entre 

objetos: los que son iguales deben estar cerca en el espacio de características, y los diferentes, 

lejos. Se aplican para que el sistema pueda comparar imágenes: si dos embeddings están 

cerca, se trata del mismo objeto (o persona/vehículo); si están lejos, no [15]. 

Tabla 1.3  

Algoritmos de aprendizaje de métricas 

Algoritmo Uso 

Triplet Loss Se entrena con tríos: ancla, positivo, negativo. 

Contrastive Loss Se entrena con pares de imágenes (similares/diferentes). 

Center Loss Reduce la variación intra-clase durante el entrenamiento. 

Circle Loss / 

ArcFace 

Técnicas avanzadas para mejorar la separación entre clases en el 

espacio de embedding. 

 

1.5.4 Estado del arte 

  En [16] el autor del proyecto realizó un reconocimiento de vehículos mediante una 

cámara al aplicar una etapa de preprocesamiento mediante OpenCV con el fin de segmentar 

en frames el video, luego delimitaron cada vehículo en los diferentes frames para poder 

entrenar su modelo de predicción basado en YOLO para el reconocimiento y el algoritmo 

DeepSort para dar el seguimiento de los vehículos. 
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Figura 1.3  

Secuencia de desarrollo para Reidentificación 

 

Nota: Tomada de [6] 

 En [17] se aprecia un video de tracking de carros y personas mediante una cámara que 

se encuentra dentro de un carro en movimiento. De manera consistente con el caso anterior, 

se emplearon las mismas tecnologías, utilizando OpenCV para el preprocesamiento del video, 

YOLO tanto para el entrenamiento del modelo detector como para la inferencia de 

detecciones, y DeepSORT para el seguimiento temporal de las cajas delimitadoras a lo largo 

de la secuencia. 

En [18] para el ReID de vehículos utilizan fastReID con el fin de codificar las 

características del objetivo y extraer un vector de 4096 características que se usan para volver 

a identificar el vehículo. En caso de haber similitudes en el vector de características, utilizan 

la distancia euclidiana entre sus vectores para saber sí es el mismo o no. 

En [19] se emplea una cámara fija en entorno urbano para la detección, seguimiento y 

ReID de vehículos con varias etapas integradas. Primero, se aplica un detector (modelo 

YOLO) al flujo de video para localizar vehículos en cada fotograma. Tras esto, se utiliza un 

tracker múltiple, combinando un algoritmo de tracking (StrongSORT) para asignar 

identificadores únicos a cada vehículo y seguir su trayectoria a lo largo del video. 

Adicionalmente, se integran técnicas de reconocimiento automático de matrículas (ALPR) 

con OCR, que permite validar y mejorar la ReID correlacionando tracks con la lectura de 

placas. Finalmente, se compara la similitud de apariencias (mediante vectores de 
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características del vehículo o de la matrícula) y se corrigen posibles errores de tracking, lo 

que aumenta la precisión del sistema en escenarios reales de movilidad. 

 En [20] ByteTrack se presenta como un algoritmo de seguimiento multi-objeto 

(MOT) que se utiliza para asociar detecciones entre frames en un video, manteniendo la 

identidad de los objetos a lo largo del tiempo. Su principal innovación radica en cómo maneja 

las detecciones de baja confianza, que normalmente se descartan en otros métodos como 

SORT o DeepSORT.  

ByteTrack evita descartar de entrada las detecciones con puntaje bajo y las 

reconsidera usando la historia del propio seguimiento: trabaja con dos umbrales y dos 

pasadas por cuadro (primero asocia con detecciones “altas” y después intenta recuperar los 

tracks que quedaron sueltos usando detecciones “bajas” si encajan en tiempo y espacio según 

Kalman. Con ello transforma observaciones débiles (oclusión, mala iluminación, imagen 

borrosa) en señales útiles y filtra fondo gracias a la coherencia del trayecto, logrando mejoras 

en IDF1 en MOT17/MOT20 sin perder tiempo real [21]. 

 La novedad se complementa con avances recientes: OC-SORT mejora la dinámica 

ante oclusiones prolongados, Bot-SORT integra apariencia y compensación de cámara y 

StrongSORT moderniza DeepSORT; en conjunto ByteTrack ayuda a recuperar identidad y 

reducir fragmentaciones antes de la etapa de ReID o de la función multicámaras. 

 En el contexto de la ReID vehicular, Vision Transformer se ha utilizado para 

generar embeddings altamente discriminativos. Por ejemplo, en [22] se propone una variante 

de ViT entrenada con pérdida por triplet que permite modelar relaciones espaciales y 

semánticas entre diferentes partes del vehículo. 

 Para la evaluación del rendimiento del sistema de ReID, se utilizan las métricas 

estándar de la literatura: Mean Average Precision (mAP) y Rank-k accuracy [20][22]. La 

métrica mAP evalúa la precisión promedio a través de todos los niveles de recuperación, 
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proporcionando una medida integral de la efectividad del ranking. Por otro lado, la métrica 

Rank-k, particularmente Rank-1, indica el porcentaje de consultas en las que el vehículo 

correcto aparece en la primera posición del ranking resultante, lo cual es crítico para 

aplicaciones en tiempo real.
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2 Capítulo 2 
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2.1 Metodología  

Para abordar el problema del rastreo vehicular, se plantearon varias alternativas de 

solución. El objetivo principal era desarrollar un sistema automatizado que tuviese la 

capacidad de identificar y rastrear vehículos que cumplan con características específicas de 

manera eficiente. Las soluciones propuestas se dividieron en 3 enfoques principales: 

1. Sistema basado en inteligencia artificial (IA) y aprendizaje profundo: Esta 

alternativa consistió en la utilización de modelos de aprendizaje automático y 

redes neuronales convolucionales (CNN, por sus siglas en inglés) entrenadas 

para reconocer vehículos en imágenes provenientes de múltiples cámaras. En 

este sistema, la IA sería capaz de identificar automáticamente el color, el 

modelo del vehículo, y en caso necesario, la matrícula, correlacionando esta 

información con un repositorio centralizado para identificar vehículos. 

 

2. Sistema avanzado de ReID vehicular: Esta alternativa propone un enfoque 

más sofisticado basado en técnicas de aprendizaje profundo que combinan 

información visual y contextual para mejorar la ReID de vehículos. En primer 

lugar, se detectan los vehículos presentes en las cámaras mediante un modelo 

de visión por computadora. Luego, a través de un sistema de reconocimiento 

avanzado, se extraen características únicas de cada vehículo, como su forma 

general, color y otros patrones visuales. Toda esta información se analiza de 

forma conjunta para determinar si un mismo vehículo ha sido visto en 

diferentes lugares. Finalmente, se utiliza un sistema de seguimiento que 

combina esta información para rastrear al vehículo a lo largo de distintas 

cámaras en el tiempo. 
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3. Sistema basado en Deep Learning para Detección, Seguimiento y 

Reidentificación Robustos: Esta alternativa propone una arquitectura modular 

y de última generación. En la etapa de detección, se utilizaría un modelo de 

Deep Learning de una sola pasada (como YOLO en su versión más reciente) 

para localizar vehículos con alta precisión y velocidad. Para el seguimiento 

intra-cámara, se emplearía un algoritmo de asociación de detecciones que 

aprovecha tanto las detecciones de alta como de baja confianza para mantener 

la identidad de los vehículos incluso bajo oclusiones temporales, reduciendo 

significativamente los cambios de ID. La Reidentificación (ReID) 

multicámara se abordaría mediante un modelo basado en arquitecturas 

Transformer, que captura dependencias globales y contextos de largo alcance 

en las imágenes. Este modelo se entrenaría con una función de pérdida híbrida 

que combina pérdida de entropía cruzada para clasificación de identidades y 

pérdida por tripletes con minería de ejemplos difíciles para garantizar que 

los embeddings de un mismo vehículo estén más cercanos en el espacio de 

características que los de vehículos diferentes. 

 

Después de evaluar las ventajas y limitaciones de cada enfoque, se seleccionó 

la alternativa 3. Esta solución ofrece una alta precisión en el reconocimiento de patrones y es 

capaz de aprender y adaptarse a nuevos datos, lo que la convierte en la opción más adecuada 

para el rastreo de vehículos en entornos urbanos complejos. 



 

17 
 

2.2 Requerimientos 

2.2.1 Requerimientos Funcionales 

Tabla 2.1  

Requerimientos Funcionales 

Código Requerimiento 

Funcional 

Descripción 

RF1 Detección de 

vehículos 

El sistema debe detectar vehículos en tiempo real o desde 

videos grabados mediante un modelo de visión por 

computadora, como YOLO. 

RF2 Extracción de 

características 

visuales 

El sistema debe extraer características distintivas de los 

vehículos, como forma, tamaño y detalles particulares de 

la carrocería. 

RF3 Generación de 

vectores de 

características 

El sistema debe generar un descriptor o vector 

representativo de cada vehículo detectado. 

RF4 Comparación entre 

cámaras 

El sistema debe comparar las características de los 

vehículos detectados en diferentes cámaras para 

determinar coincidencias. 

RF5 Identificación 

consistente del 

vehículo 

El sistema debe mantener una identidad única y coherente 

para cada vehículo detectado, incluso cuando reaparezca 

en diferentes momentos o cámaras, utilizando algoritmos 

de seguimiento como ByteTrack. 

RF6 Seguimiento 

multicámara 

El sistema debe realizar el seguimiento de un mismo 

vehículo entre diferentes cámaras, manteniendo su 

identidad. 
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RF7 Visualización de 

resultados 

El sistema debe proporcionar una visualización de los 

resultados obtenidos, incluyendo los Ids de seguimiento 

asignados a cada vehículo. 

RF8 Procesamiento de 

múltiples videos 

El sistema debe permitir la carga y procesamiento de 

múltiples videos, ya sea en serie o simultáneamente. 

 

2.2.2 Requerimientos no funcionales 

Tabla 2.2  

Requerimientos no Funcionales 

Código Requerimiento No 

Funcional 

Descripción 

RNF1 Tiempo de 

procesamiento 

aceptable 

El sistema debe procesar los videos en un tiempo 

proporcional a la longitud de los videos y a los recursos 

computacionales. 

RNF2 Precisión El sistema debe mantener una exactitud ≥ 90% en la tarea 

de identificación vehicular, evaluada sin intervención del 

módulo de seguimiento, minimizando falsos positivos y 

negativos. 

RNF3 Escalabilidad El sistema debe ser capaz de funcionar eficientemente al 

trabajar con múltiples cámaras y grandes volúmenes de 

datos. 

RNF4 Modularidad El sistema debe estar diseñado de forma modular para 

facilitar la sustitución o mejora de componentes 

individuales. 
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RNF6 Facilidad de uso La interfaz del sistema debe ser intuitiva para usuarios 

con o sin experiencia técnica. 

RNF8 Documentación El sistema debe incluir documentación clara que permita 

su instalación, configuración, ejecución y mantenimiento. 

 

2.3 Alcance de la solución 

1. Detección de vehículos en video: El sistema utilizará el detector de objetos YOLOv8 

para localizar vehículos en fotogramas de video de manera eficiente y con alta 

precisión, generando cuadros delimitadores para cada instancia detectada. 

2. Seguimiento de vehículos en múltiples cámaras con ByteTrack: Mediante el 

algoritmo ByteTrack, el sistema mantendrá una identidad temporal única para cada 

vehículo dentro de un mismo flujo de video. Este algoritmo asociará detecciones entre 

fotogramas aprovechando tanto detecciones de alta como de baja confianza, 

mejorando el seguimiento en condiciones de oclusión parcial y reduciendo 

significativamente los cambios de identificación. 

3. Extracción de características para ReID con Vision Transformer (ViT): Cada 

vehículo detectado será procesado por un modelo basado en la arquitectura Vision 

Transformer (ViT) para generar un vector de características (embedding) de alta 

dimensionalidad. Este enfoque captura aspectos distintivos del vehículo de manera 

robusta, siendo independiente de la perspectiva, iluminación y oclusiones menores. 

4. Reidentificación (ReID) multicámara mediante aprendizaje métrico: Los 

embeddings generados por el modelo ViT se utilizarán para comparar vehículos 

avistados en diferentes cámaras. La similitud se calculará utilizando métricas de 

distancia (distancia coseno) y técnicas de post-procesamiento como re-ranking para 

mejorar la precisión en el emparejamiento y reducir falsos positivos. 



 

20 
 

5. Procesamiento de múltiples videos: La arquitectura permitirá la carga y el 

procesamiento simultáneo o secuencial de videos provenientes de múltiples cámaras, 

facilitando el análisis de escenarios de vigilancia distribuida. 

6. Visualización de resultados: El sistema incluirá una interfaz que superpondrá los 

identificadores únicos y las trayectorias de los vehículos sobre el video. Además, 

proporcionará funcionalidades para consultar el historial de apariciones de un 

vehículo específico a través de las diferentes cámaras disponibles. 

 

2.4 Limitaciones de la solución 

1. Condiciones de iluminación: La precisión del sistema puede verse afectada en 

condiciones de baja iluminación o luz artificial inadecuada, especialmente durante la 

noche, lo que impacta tanto en la detección con YOLOv8 como en la extracción de 

características con Vision Transformer. 

2. Oclusiones parciales o totales: Si un vehículo es bloqueado por otros objetos o no es 

visible completamente, puede dificultar su correcta detección y seguimiento. Aunque 

ByteTrack está diseñado para manejar oclusiones temporales, las oclusiones 

prolongadas pueden llevar a la pérdida del seguimiento. 

3. Ángulos de cámara limitados: El rendimiento del sistema depende de la ubicación y 

el campo visual de las cámaras; ángulos muy inclinados o alejados pueden reducir la 

precisión en la detección y en la generación de embeddings para la ReID. 

4. Calidad del video: Videos con baja resolución, compresión excesiva o alta tasa de 

distorsión pueden afectar negativamente la detección con YOLOv8 y la extracción de 

características con el modelo ViT, reduciendo la confiabilidad del ReID multicámara. 

5. Diferencias en la apariencia del vehículo: Cambios en las condiciones del vehículo, 

como suciedad, daños, accesorios añadidos, o diferentes condiciones climáticas 
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(lluvia, nieve), pueden afectar la consistencia de los embeddings generados por el 

modelo de ReID, llevando a falsos negativos. 

6. Dependencia del modelo de seguimiento: El sistema depende del rendimiento del 

algoritmo de seguimiento ByteTrack, el cual puede generar errores de asociación en 

secuencias con alta densidad vehicular, trayectorias cruzadas o movimientos bruscos, 

resultando en cambios de Ids. 

7. Variabilidad entre cámaras: Diferencias significativas en la calibración de color, 

resolución o perspectiva entre las múltiples cámaras pueden introducir desafíos 

adicionales para el módulo de ReID, que debe ser robusto a estas variaciones de 

dominio. 

8. Capacidad computacional: El procesamiento en tiempo real de múltiples flujos de 

video con modelos Deep Learning (YOLOv8, ViT) requiere recursos hardware 

significativos (GPUs), lo que podría limitar el despliegue en entornos con recursos 

restringidos. 

 

2.5 Riesgos y beneficios de la solución 

Los riesgos se representan en la siguiente tabla: 

Tabla 2.3  

Riesgos de la solución 

ID Riesgo Impacto Probabilidad Mitigación 

01 Falsos 

positivos/negativos 

en la detección. 

Alto Media Ajustar 

umbrales de 

confianza. 



 

22 
 

Validar 

continuamente 

los datos. 

02 Variabilidad de 

iluminación 

Medio Media Preprocesado 

adaptativo. 

03 Sobrecarga 

computacional 

Alto Media Despliegue en 

GPU dedicada. 

 

Los beneficios que el proyecto plantea son: 

Tabla 2.4  

Beneficios de la solución 

ID Beneficio Descripción 

01 Automatización de la 

vigilancia vehicular 

El sistema detecta y rastrea 

vehículos reduciendo la 

carga operativa. 

02 ReID multicámara Posibilidad de seguir una 

misma unidad vehicular en 

distintas cámaras, 

facilitando análisis de rutas. 

03 Escalabilidad y modularidad Arquitectura basada en 

módulos independientes que 

permite actualizar o 

reemplazar componentes sin 

tener que rehacer todo el 

sistema. 
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2.6 Usuarios de la solución 

Los usuarios que podrían verse relacionados directamente con el proyecto son: 

1. Operador de vigilancia: Inicia la plataforma, carga los videos y observa en pantalla los 

vehículos detectados. 

2. Administrador del sistema y desarrollador: se encargarán de mantener el entorno, 

actualizar el modelo y dar soporte como nuevas funciones al proyecto. 

2.7 Prototipado 

En el prototipado del interfaz desarrollado en Figma, el flujo inicia con la carga de 

videos. Al invocar la acción “cargar videos”, se abre un selector de archivos que 

permite escoger un video etiquetándolo con el día al que pertenece. 

 Una vez cargados los videos, el usuario puede dirigirse al módulo de “Buscar”, donde 

un control deslizante de días facilita la recolección de un día específico. Al confirmar la 

búsqueda, la pantalla central despliega únicamente el video o los fragmentos que caen dentro 

del criterio establecido, agilizando la tarea de hallar el momento preciso de interés. 

 El lienzo principal muestra el video con recuadros en torno a los vehículos detectados 

junto a un identificador único asignado a cada vehículo. Los operadores podrán observar si la 

detección es fidedigna. 

 La opción de “Seleccionar un vehículo” despliega una pantalla donde se pueden 

visualizar todos los vehículos detectados en el video. Adicional a esto, en la parte inferior se 

pueden utilizar filtros de color y modelo vehicular. 

 Cuando seleccionan una miniatura, se visualiza el recorrido que hizo el vehículo, así 

como sus características y cuenta con un botón “Detalles” para ver a más profundidad el 

recorrido y tiempo de recorrido del vehículo detectado. 
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2.8 Diseño de la solución 

El sistema se organiza en cuatro capas principales: 

Capa de Ingreso de Datos: 

 Aquí se gestionan la carga y el preprocesamiento de los videos de las distintas 

cámaras. 

Capa de Procesamiento de Visión: 

 Esta capa constituye la etapa inicial de análisis visual. Recibe los flujos de video raw 

de las múltiples cámaras y ejecuta las siguientes operaciones: 

● Preprocesamiento: Cada fotograma es normalizado mediante ajuste de dimensiones 

(resizing a 640x640 píxeles), corrección de contraste y balance de blancos para 

optimizar la entrada al modelo de detección. 

● Detección de Vehículos: Se emplea el modelo YOLOv8 preentrenado en el 

dataset COCO (Common Objects in Context). Específicamente, se filtran las 

detecciones para considerar solamente las clases relacionadas con vehículos: 

▪ Coche (car) 

▪ Motocicleta (motorcycle) 

▪ Autobús (bus) 

▪ Camión (truck) 

▪ Furgoneta (van) 

Este enfoque permite una detección rápida y precisa de los vehículos de interés, 

ignorando otras clases presentes en COCO como personas o animales. El modelo genera 

bounding boxes con sus respectivos porcentajes de confianza para cada vehículo detectado. 

● Preparación de ROIs: Las regiones de interés (ROIs) correspondientes a cada 

bounding box son recortadas y preparadas para ser procesadas por las capas 

subsiguientes. 
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● Extracción de características: El extractor de características no extrae valores 

numéricos simples como “alto: 1.5m”, “largo: 4.2m” o “color: azul RGB(0,0,255)”. 

En su lugar, funciona de una manera abstracta: 

1. Procesamiento con Red Neuronal (ViT): La imagen del vehículo se 

introduce en el modelo Vision Transformer. 

2. Extracción de Patrones Abstractos: A medida que la imagen pasa por las 

capas de la red neuronal, el modelo analiza y combina patrones de bajo nivel 

(bordes, texturas, colores) para formar conceptos de nivel superior (formas de 

faros, estilos de parrillas, contornos de ventanas, adhesivos, abolladuras, etc.). 

3. Creación del “Embedding” o “Huella Digital”: El resultado final es un 

vector numérico de alta dimensionalidad (512 números). Este vector es una 

representación densa y comprimida de toda la apariencia visual del vehículo. 

 

Tabla 2.5  

Representación de embeddings 

ID 

Vehículo 

Embedding (Vector de 512 números) 

#152 [0.12, -0.45, 0.88, 1.24, -0.93, …, 0.027] (Este vector único es la 

representación numérica de todas sus características combinadas) 

#153 [-0.87, 0.21, 1.45, -0.62, 0.11, …, -0.451] 

 

Capa de Tracking y ReID: 

 Esta capa constituye el núcleo del sistema y opera en dos fases principales: 
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1. Seguimiento en cámara (Tracking): Utilizando el algoritmo ByteTrack, esta fase 

mantiene la identidad consistente de cada vehículo dentro de un mismo flujo de video. 

ByteTrack aprovecha todas las detecciones (alta y baja confianza) y utiliza un filtro de 

Kalman para predecir la posición futura de los tracks existentes. Mediante el 

algoritmo húngaro, asocia las detecciones actuales con los tracks basándose 

principalmente en la similitud por intersección sobre unión (IoU), asignando un ID 

único persistente mientras el vehículo permanezca en la escena. Esto permite manejar 

oclusiones temporales y reapariciones. 

2. Reidentificación Multicámara (ReID): Para cada vehículo detectado y trackeado, se 

extrae un embedding profundo utilizando un modelo basado en Vision Transformer 

(ViT). Este convierte la región de interés (ROI) del vehículo en un vector de 

características de alta dimensionalidad que encapsula su apariencia visual de manera 

robusta e independiente al punto de vista. Estos embeddings se almacenan en una base 

de datos temporal indexada por tiempo, cámara e ID de track. Un módulo de matching 

compara los nuevos embeddings contra los existentes utilizando distancia coseno y 

técnicas de re-ranking para establecer correspondencias entre las diferentes vistas de 

un mismo vehículo en cámaras distintas, construyendo así una trayectoria global. 

 

Método de comparación: La distancia coseno se utiliza para comparar los vectores 

de características generados por el modelo de ReID debido a sus propiedades 

matemáticas ideales para medir similitud en espacios de alta dimensionalidad. A 

diferencia de la distancia euclidiana, que mide la distancia absoluta entre dos puntos, 

la distancia coseno calcula el coseno del ángulo entre dos vectores, lo que la 

hace invariante a la magnitud de estos [23]. 

Esto es particularmente ventajoso en ReID vehicular porque: 
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1. Enfoca en la dirección, no en la magnitud: La “apariencia” única de un vehículo 

está codificada en la dirección del vector en el espacio de características. Dos 

imágenes del mismo vehículo, incluso con diferentes niveles de brillo o contraste (que 

afectarían la magnitud del vector), tendrán direcciones muy similares. 

2. Robusta a variaciones de iluminación: Cambios en la iluminación que alteran 

globalmente los valores de píxeles (aumentando o disminuyendo la magnitud 

del embedding) no afectan el ángulo entre vectores, por lo que la similitud calculada 

permanece estable. 

3. Eficacia en alta dimensionalidad: Funciona excepcionalmente bien en espacios con 

cientos o miles de dimensiones, como los embeddings generados por modelos 

Transformer o CNN, donde la “maldición de la dimensionalidad” puede hacer que 

otras métricas sean menos efectivas. 
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Figura 2.1  

Proceso de extracción de características o embedding 



 

29 
 

Descripción Detallada de las Etapas: 

1. Input Image (Imagen de Entrada): 

• La imagen del vehículo se redimensiona a una resolución fija (ej. 224x224 

píxeles). 

• Representada como un tensor de dimensiones: [3, 224, 224] (canales, altura, 

anchura). 

2. Patch Partition (División en Parches) [24]: 

• La imagen se divide en parches pequeños de tamaño fijo (ej. 16x16 píxeles). 

• Para una imagen 224x224, se obtienen 196 parches (224/16 = 14 → 14x14 = 

196 parches). 

• Cada parche se aplana en un vector 1D de longitud 16*16*3 = 768. 

3. Linear Projection (Proyección Lineal) [24]: 

• Cada vector de parche (768-dim) se proyecta a una dimensión constante D (ej. 

D=768) usando una capa lineal entrenable (nn.Linear). 

• Esto transforma cada parche en un “token” o vector de características de 

dimensión D. 

4. Position Embedding (Embedding Posicional) [24]: 

• Se añaden embeddings posicionales aprensibles a cada token. Estos le indican 

al modelo la posición original de cada parche en la imagen. 

• Es crucial porque el Transformer, por sí mismo, no tiene noción de orden 

espacial. 

5. [CLS] Token (Token Especial) [25]: 

• Se antepone un token especial [CLS] (class token) a la secuencia de tokens de 

parches. 
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• Este token actuará como un acumulador de información global de toda la 

imagen. Su estado final en la última capa se utilizará como 

el embedding global de la imagen. 

6. Transformer Encoder (Codificador Transformer) [26] 

• La secuencia de tokens ( [CLS] + tokens_de_parches ) se alimenta a una pila 

de L capas Transformer (ej. L=12). 

• Cada capa consta de: 

▪ Multi-Head Self-Attention (MHSA): Permite que cada token 

(incluido [CLS]) interactúe y atienda a todos los demás tokens de la 

secuencia. Esto es lo que captura las relaciones contextuales globales 

(ej. Que la forma del capó y la marca del vehículo están relacionadas). 

▪ Feed-Forward Network (FFN): Una red neuronal fully-connected 

para cada token que aplica transformaciones no lineales. 

7. Output (Salida): 

• Tras pasar por las L capas, se toma la representación final del token [CLS] (un 

vector de dimensión D=768) como la representación codificada de toda la 

imagen. 

8. L2 Normalization (Normalización L2) [27]: 

• Este vector [CLS] se normaliza para que tenga norma unitaria (se proyecta 

sobre una esfera de radio 1). 

• Esto es fundamental porque la similitud coseno entre dos vectores 

normalizados es equivalente a su producto punto. 

• embedding_normalizado = embedding / ||embedding||₂ 
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9. Final Embedding (Embedding Final): 

• El resultado es un vector de características denso y de dimensionalidad fija (ej. 

512, 768, o 1024 dimensiones) que representa la “firma” única del vehículo. 

• Este embedding es: 

▪ Discriminativo: Diferentes vehículos tendrán embeddings muy 

separados en el espacio vectorial. 

▪ Robusto: El mismo vehículo bajo diferentes condiciones (luz, ángulo, 

oclusión parcial) tendrá embeddings muy cercanos. 

 

Capa de Presentación: 

 Esta capa consolida toda la información generada y proporciona una interfaz visual 

para el usuario. Incluye: 

● Un visualizador de video que reproduce los flujos con overlays superpuestos que 

muestran los bounding boxes, los Ids de track asignados por ByteTrack y los Ids 

globales asignados por el sistema de ReID. 

● Un catálogo de vehículos interactivo que permite buscar vehículos y visualizar sus 

trayectorias completas a través del área monitorizada. 

● El uso de la librería Leaflet de JavaScript que permite visualizar datos 

georeferenciados así como crear un mapa interactivo. 

 

Esta arquitectura de cuatro capas asegura un flujo de procesamiento modular y escalable, 

donde cada componente puede ser mejorado o reemplazado independientemente (por 

ejemplo, actualizando el detector a una versión más nueva de YOLO o el extractor de 

características a un Transformer más avanzado). 



 

32 
 

2.9 Experimento del modelo 

2.9.1 Entrenamiento 

El entrenamiento se realizó sobre el dataset VeRi-776 (Ids vehiculares repartidos 

entre train y test), utilizando un loader específico que en train, lee la carpeta ‘image_train’, y 

en test concatena ‘image_query’ + ‘image_test’. Las etiquetas se derivan del ID de vehículo 

en el nombre de archivo. La composición de mini-lotes emplea un muestreador PK, es decir, 

una estrategia que, en cada mini-lote selecciona P identidades distintas y para cada identidad 

seleccionada, se toman K instancias de esa identidad. En este caso, con P = 8 entidades y K = 

4 instancias por identidad, de modo que cada lote (de 32 imágenes) contenga suficientes 

pares positivos y negativos para el aprendizaje estable [28]. 

Sobre esta base de datos y loader, se efectuó un ajuste fino supervisado de un Visión 

Transformer (ViT-Base/16, 224x224) al que se añadió un BNNeck (BatchNorm1d sobre el 

embedding) y una cabeza lineal de clasificación con tantas salidas como identidades del split 

de entrenamiento. Durante el forward de entrenamiento el modelo produce: 

- Un embedding discriminativo 

- Puntajes de clase 

Ambos alimentan una pérdida compuesta formada por Cross-Entropy con label 

smoothing (para maximizar la separabilidad entre identidades) y Circle Loss (para optimizar, 

dentro del lote PK, la cohesión de positivos y la separación de negativos). 

Se dejó apagada la Triplet Loss porque la combinación Cross-Entropy + Circle Loss 

ya daba una señal estable. Se entrenó con AdamW usando 10 épocas de calentamiento y 

luego un descenso tipo coseno hasta la época 60. En entrenamiento se aplicó aumentos 

estándar: redimensionar a 224x224, volteo horizontal, padding + recorte aleatorio, ligero 

cambio de color, normalización ImageNet y borrado aleatorio. En test solo redimensionar y 

normalizar. Cada 5 épocas se validaron con el protocolo de VeRi-776 (query vs gallery, 
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excluyendo “mismo ID y misma cámara”), reportando Rank-1/Rank-5 y mAP, almacenando 

el mejor modelo según mAP [28]. 

Se eligió ViT-Base/16 con BNNeck y un muestreo PK(8x4) porque así el modelo ve 

en cada lote suficientes ejemplos de la misma y de distintas identidades, lo que facilita 

aprender un embedding realmente discriminativo; se combinó Cross-Entropy (con label 

smoothing) para separar clases y Circle Loss para empujar positivos difíciles juntos y 

negativos lejos; se dejó Triplet apagada para evitar su inestabilidad y el “mining” sensible al 

ruido. Se utilizó AdamW con calentamiento y coseno porque estabiliza el ajuste fino de Vit y 

mejora la generalización; las aumentaciones (flip, crop, random erasing) simulan cambios de 

cámara, iluminación y oclusiones, reduciendo el overfitting. Se valida cada 5 épocas con el 

protocolo cross-camera de VeRi-776 y se almacena el mejor MAP porque refleja mejor la 

calidad del ranking completo que solo el Top-1 [29] 

2.9.2 Captura de videos para testing 

Se utilizaron varias cámaras de seguridad ubicadas en puntos estratégicos de la 

Escuela Superior Politécnica del Litoral situada en Guayaquil, Ecuador. Estas cámaras 

proporcionaron tomas reales de vehículos para su posterior análisis. 

2.9.3 Testing 

Se realizaron pruebas sobre las imágenes del dataset VeRi-776, para medir la 

precisión del modelo entrenado y después se realizaron pruebas con videos reales, 

para ver la eficacia del algoritmo en detección, tracking, extracción de embeddings y 

emparejamiento. Los videos con los que se hicieron las pruebas están enfocados en el 

campus de la Escuela Superior Politécnica del Litoral. 

2.10 Arquitectura 

Esta arquitectura modular facilita la escalabilidad (sustitución de modelos o 

aceleradores de hardware), la mantenibilidad (cada componente encapsula una 
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responsabilidad clara) y el cumplimiento de requisitos de rendimiento y privacidad 

(filtros de anonimización, niveles de logs y permisos). A continuación, se detallan, para 

cada una de las cinco vistas del modelo “4 + 1” de Kruchten, los diagramas que ilustran 

la estructura lógica, los casos de uso, las interacciones, el flujo de procesos y el 

despliegue físico de la solución. 

2.9.1 Modelo 4+1 

2.10.1 Diagrama de clases 

Figura 2.2  

Diagrama de clases 

 

 Ingestión y análisis: Un servicio recibe y encola los videos, un detector localiza cada 

coche en los fotogramas, un extractor genera su “huella digital” (embedding) y un tracker 

agrupa esas huellas para darle a cada vehículo un ID y una trayectoria. 

Almacenamiento: Los embeddings van a una base de vectores para búsquedas rápidas, y las 

fichas de aparición (ID, cámara, hora y posición) se guardan en una base de metadatos. 

Búsqueda: La API recibe peticiones de búsqueda por ID, consulta primero la base de vectores 

para encontrar coincidencias y luego recupera las fichas en la base de metadatos para 

devolver al usuario todas las apariciones del vehículo sin tener que reprocesar el video. 
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2.10.1.1  Diagrama casos de uso 

Figura 2.3  

Diagrama casos de uso 

 

 El operador de vigilancia inicia la plataforma, carga uno o varios videos, y luego 

solicita la Reidentificación de vehículos en todas las cámaras o la consulta por un ID de 

vehículo concreto, recibiendo a cambio todas sus apariciones y trayectorias. El administrador 

también puede acceder a la plataforma para mantener el entorno, actualizar modelos y 

parámetros, y desplegar nuevas funciones.  
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2.10.1.2 Diagrama secuencia 

Figura 2.4  

Diagrama de secuencia para seleccionar videos 

 

 El operador elige varios archivos de video y pulsa “Subir” en la pantalla. El sistema 

recibe esos videos y los pone en una lista de espera. Uno a uno, cada video es procesado: 

primero se extraen las imágenes, luego se buscan los coches en cada fotograma y, finalmente, 

se guardan todos los datos (qué coche, en qué cámara y a qué hora). Mientras esto sucede, la 

interfaz muestra una barra que avanza hasta completar el proceso y avisa al Operador de que 

ya puede hacer búsquedas. 
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Figura 2.5  

Diagrama de secuencia para seleccionar vehículo con ID 

 

 El operador introduce en la pantalla el número de identificación de un coche que ya se 

había detectado anteriormente y pulsa “Buscar”. El sistema compara rápidamente las 

características de ese coche con todas las guardadas y recupera las veces que apareció en cada 

cámara. Después muestra en la pantalla una lista clara de todas las apariciones: cámara, hora 

y posición exacta en el fotograma. 

Figura 2.6  

Diagrama de secuencia para seleccionar vehículo en una lista 
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 Aquí el Usuario selecciona un elemento de la lista de resultados (un ID único de 

vehículo). La UI ejecuta GET /details/{recordId} al DetailsController, que llama a 

DetailsService.getDetails(recordId). Este servicio consulta el 

VehicleRepository.fetchById(recordId) para extraer toda la información: timeline de 

posiciones, miniaturas de fotogramas, tiempos y atributos. Esa información detallada 

(detailedInfo) retorna en cascada al controlador, que responde a la UI con HTTP 200 

{detailedInfo}, y la interfaz muestra la línea de tiempo, las imágenes y los metadatos 

asociados. 
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2.10.1.3  Diagrama flujo de procesos 

Figura 2.7  

Diagrama de flujo de procesos 

 

Este diagrama reúne los tres escenarios en un solo recorrido: 
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Subida: el operador carga los videos y el sistema los procesa automáticamente. 

Búsqueda: una vez listo, el operador introduce un ID y ve al instante todas las apariciones del 

coche.



 

 

 

 

 

 

 

3 Capítulo 3 
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3.1 Resultados y análisis 

Para evaluar el funcionamiento del sistema se realizaron dos pruebas: 

• Testing con dataset de entrenamiento (Veri-776). 

• Testing con videos reales. 

3.1.1 Testing con dataset de entrenamiento 

El dataset consta de 11579 imágenes que proporcionan los datos de ID del vehículo 

(vehicleID), ID de la cámara a la que pertenece la toma (cameraID) y un ID para el 

tipo de vehículo (typeID). Para efectos de análisis de sólo vehículos se eliminaron 

todos los que correspondían a typeID = 9 ya que son buses. Luego de este filtro 

quedaron 9749 imágenes para analizar. 

 Se probaron 3 vehicleID aleatorios (5, 101, 177) para realizar el proceso de 

identificación, extracción de características y tracking. Cada vehículo tiene varias tomas 

dentro de una misma cámara. Las cuáles representan “frames” de un vídeo. 

Tabla 3.1  

Imágenes en las que aparece un vehículo específico 

vehicleID 

# de identificaciones 

manuales 

# de identificaciones 

del sistema 

5 58 58 

101 42 42 

177 42 42 

 

 Luego de obtener todas las imágenes de un vehículo se obtuvieron los embeddings 

respectivos de cada imagen, los mismos permitieron comparar la similitud con otros 

embeddings generados. 
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Tabla 3.2  

Embeddings generados por vehículo 

vehicleID # de embeddings por ID 

5 58 

101 42 

177 42 

 

 Los embeddings obtenidos fueron graficados en un espacio vectorial en el cual se 

pudo observar asociaciones según su similitud de enfoque, posición y detalles visuales. 

Figura 3.1  

Espacio vectorial de embeddings del vehículo con ID 5 
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 Un caso particular se da en el vehículo con ID 5 en el que se puede observar que las 

tomas borrosas o con un enfoque diferente se encuentran totalmente a la izquierda (cámara 4 

y 7 respectivamente) en el espacio vectorial (compárese con figura 3.1.2). Otro caso se da en 

las tomas de la cámara 8 y 9 donde existen obstrucciones parciales del vehículo y al 

graficarlos se encuentran cercano el uno del otro. 

Tabla 3.3  

ReID en diferentes cámaras 

vehicleID 

# cámaras únicas 

en las que se 

identifica 

manualmente 

# cámaras únicas 

en las que se 

identifica por el 

sistema 

5 11 11 

101 7 7 

177 7 7 

 

 El sistema logra reidentificar el vehículo con ID 5 en todas las cámaras (y con 

diferente ángulo) en las que se tenía etiquetado el dataset de Veri-776. 
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Figura 3.2  

Reidentificación del vehículo con ID 5 

 

 Para finalizar el testing del dataset Veri-776, se realizó el tracking de toda la ruta del 

vehículo  

Figura 3.3  

Tracking del vehículo con ID 5 

 

Figura 3.4  

Seguimiento del vehículo con ID 5 en mapa 

 

Nota: Las líneas trazadas se usaron para dar conectividad a las cámaras más no como referencia de ruta 

literal. 
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3.1.2 Testing con videos reales 

Durante esta fase de testing se probó seguir o trackear 1 vehículo específico en 7 

cámaras diferentes, que pertenecen a diferentes bloques de la universidad ESPOL. 

Arrojando como resultado: 

- Las instancias en que los vehículos fueron detectados por primera vez. 

- El recorrido que realizaron los vehículos en el campus de ESPOL. 

- Los vectores asociados a las características de cada vehículo. 

Ejemplo: Auto 1 

Figura 3.5  

Lista de vehículos encontrados en un video 
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Figura 3.6  

Aparición del vehículo 1 en diferentes cámaras 

 

Nota: En la parte izquierda de la imagen aparece el recorrido del vehículo y la posición de las cámaras por las 

que fue detectado. 

 

Figura 3.7  

Seguimiento del vehículo 1 

 

 Nuestro sistema de inteligencia artificial, diseñado para seguir e identificar vehículos 

a lo largo de un video, ha demostrado un rendimiento alto y prometedor. Este éxito es 

consecuencia directa de las decisiones tomadas en el entrenamiento del modelo y en el diseño 
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de la arquitectura, que combinó un detector de objetos (YOLOv8) con un extractor de 

características de última generación (ViT). 

 Los resultados numéricos, que son el estándar en la industria para medir la precisión 

de estos sistemas, confirman su eficacia: 

● Una precisión del 94.70% (Rank-1): El Rank-1 nos dice con qué frecuencia acierta 

en su primera opción. Un 94.7% significa que, en 95 de cada 100 casos, el sistema 

identifica correctamente el vehículo al primer intento. Esto es un indicador bueno de 

que el modelo ha “aprendido” a crear una “huella digital” única y muy precisa para 

cada automóvil. 

● Una Precisión Promedio (mAP) del 77.96%: El mAP es una métrica más compleja 

y exhaustiva. No solo premia el acierto perfecto, sino que evalúa la calidad general de 

todas las posibles coincidencias que propone el modelo. Un mAP del 78% indica que, 

además de ser muy certero en su primera opción, el sistema es consistentemente 

bueno en rankear las coincidencias correctas cerca de la parte superior de la lista. Esto 

sugiere que sus predicciones son robustas y fiables sobre una amplia variedad de 

escenarios. 

Tabla 3.4  

Resultados de evaluación 

Resultados de Evaluación 

Rank-1 Accuracy 94.70% 

mAP (mean Avg. Precision) 77.96% 

 

 

 

 

Ejemplo de comparación de vehículos 
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Para muestra de los resultados, se tomaron imágenes genéricas de internet para 

mostrar de forma resumida cómo funciona el proyecto con la extracción de 

características y comparación de estas. 

Figura 3.8  

Comparación de vehículos iguales y muestra de embeddings 

 

 

Figura 3.9  

Comparación de vehículos diferentes y muestra de embeddings 

 



 

50 

3.1.3 Análisis del Comportamiento en Video 

Coincidiendo con lo que indican estas métricas, durante las pruebas observamos que 

el sistema logra Reidentificar con éxito a los mismos vehículos de forma 

consistente en la mayoría de los videos. Esto es especialmente claro en tomas donde 

los coches están a una distancia óptima de la cámara, permitiendo al modelo capturar 

suficientes detalles (como la forma de la carrocería, logos, o golpes) para crear una 

firma única de cada uno. 

Para observar a más detalle las similitudes y diferencias entre los diferentes tipos de 

vehículos detectados, se realizó una proyección 2D del espacio de latencia de los 

embeddings, de manera que gráficamente se pueden relacionar los vehículos. 

Figura 3.10  

Proyección 2D del espacio latente de los embeddings, centrada en el vehículo ID = 1 
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 La figura muestra cada vehículo como un punto obtenido al proyectar su embedding a 

dos dimensiones con UMAP, para ver cómo se agrupan por similitud porque tiende a 

preservar vecindarios del espacio original, de ahí que los puntos similares aparezcan 

cercanos. Los colores de C0 a C11 corresponden a agrupamientos no supervisados con k-

means sobre los embeddings L2-normalizados, usados aquí solo para dar contexto visual a la 

distribución. El punto amarillo marca el vehículo consultado y las líneas grises enlazan sus 

cinco vecinos más parecidos medidos en el espacio original mediante similitud coseno (el 

porcentaje mostrado es la similitud; es una medida de parecido, no una probabilidad). Para 

fijar un número de grupos razonable, se evaluó un rango de K y se eligió el que maximizó el 

silhouette score calculado con distancia coseno en los embeddings originales, que compara 

qué tan cercano queda cada punto a su grupo frente a grupos vecinos y valores más altos 

implican una separación más clara. 

 Sin embargo, como es natural en cualquier sistema de visión por computadora, 

enfrentamos desafíos. En algunos videos específicos donde los vehículos se encuentran muy 

lejos de la cámara, el rendimiento puede disminuir. La razón es comprensible: a mayor 

distancia, los vehículos se ven más pequeños y con menos detalles discernibles, lo que 

dificulta que el modelo encuentre características suficientes para distinguirlos con total 

certeza. 

Para pruebas en general, se ha determinado un rango óptimo: 

● Rango Óptimo: El sistema opera con la máxima confiabilidad (Rank-1 > 85%) 

cuando los vehículos tienen un tamaño superior a 10,000 píxeles² (equivalente a un 

bounding box de aproximadamente 100x100 píxeles). En las tomas obtenidas de las 

cámaras de ESPOL, se traduce en una distancia menor a 10 metros. En este rango, el 

extractor de características (ViT) puede discernir detalles finos como logos, daños en 

la carrocería y características específicas de la parrilla. 



 

52 

 

 

 

 

 

 

 

 

 

 

 

 

4 Capítulo 4 
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4.1 Conclusiones y recomendaciones 

Tras el desarrollo e implementación de la propuesta, que incluyó la integración de 

YOLOv8 para la detección, ByteTrack para el seguimiento y un modelo ViT para la 

extracción de características, junto con diversas mejoras técnicas, se obtuvieron los siguientes 

resultados clave que permiten considerar los siguientes puntos. 

4.1.1 Conclusiones 

1. Respecto al Objetivo General: Se logró cumplir con el objetivo propuesto. El 

sistema desarrollado integra detección automática de vehículos, seguimiento multi-

cámara y reidentificación a través de embeddings discriminativos. Los resultados 

experimentales confirman su eficacia: se alcanzó un 94,70% en Rank-1 y un 77,96% 

en mAP, lo cual demuestra que la solución es capaz de identificar de manera 

consistente a los mismos vehículos en distintos escenarios y cámaras. 

2. Respecto al Objetivo Específico 1: Se cumplió el desarrollo de un algoritmo de 

detección automática de vehículos mediante YOLOv8. Las pruebas realizadas tanto 

en el dataset VeRi-776 como en videos reales del campus ESPOL mostraron que el 

detector identifica correctamente los vehículos en las secuencias evaluadas. 

3. Respecto al Objetivo Específico 2: El sistema implementó un codificador de 

imágenes basado en Vision Transformer (ViT) para la extracción de características 

discriminativas de cada vehículo. La generación de embeddings permitió representar a 

los vehículos en un espacio latente donde se observó agrupamiento por similitud 

(Figura 3.2.6), validando mediante el cálculo de silhoutte score. Esto demuestra que 

los embeddings no solo diferencian entre vehículos distintos, sino que también 

agrupan de forma consistente múltiples vistas de un mismo vehículo. 

4. Respecto al Objetivo Especifico 3: Los experimentos de reidentificación mostraron 

resultados satisfactorios, por ejemplo, el vehículo con ID 5 fue correctamente 
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reidentificado en las 11 cámaras en las que aparecía, coincidiendo con el dataset de 

prueba. Esto valida la capacidad del sistema para vincular apariciones dispersas de un 

mismo vehículo, incluso con cambios de ángulos o condiciones parciales de 

visibilidad. 

4.1.2 Recomendaciones y trabajos futuros 

A partir de los resultados y limitaciones identificadas, se proponen las siguientes líneas de 

trabajo futuro: 

● Mejora del desempeño en escenarios de larga distancia: La principal debilidad 

encontrada radica en la reidentificación de vehículos muy pequeños o lejanos. Una 

recomendación clave es investigar e incorporar técnicas de super-resolución o 

modelos específicamente entrenados para reconocer objetos a baja resolución para 

mitigar este problema. 

● Incremento de la diversidad del dataset: El modelo podría beneficiarse de ser 

entrenado y evaluado en conjuntos de datos más diversos que incluyan condiciones 

climáticas adversas (lluvia, nieve, niebla), horas nocturnas y una variedad más amplia 

de tipos de vehículos y ángulos de cámara. Esto mejoraría su generalización y 

robustez en entornos del mundo real. 

● Implementación de un sistema de ReID multicámara en tiempo real: El siguiente 

paso natural es desarrollar una arquitectura centralizada que pueda agregar y consultar 

la galería de vectores provenientes de múltiples flujos de video de diferentes cámaras 

de forma simultánea y en tiempo real, creando un verdadero sistema de rastreo 

mediante cámara. 
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