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CAPÍTULO 1 

1. INTRODUCCIÓN 

1.1 Descripción del problema 

En la ciudad de Guayaquil, a la altura del kilómetro 30.5 de la vía Perimetral, dentro 

del Centro de Desarrollo Tecnológico Sustentable (CDTS) de la Escuela Superior 

Politécnica del Litoral (ESPOL), se encuentra un secador híbrido diseñado para el 

tratamiento de biomasa. Este equipo integra energía solar y resistencias eléctricas, 

con el propósito de mantener las condiciones térmicas necesarias para el secado. 

El sistema cuenta con una cámara de secado cubierta con una lámina de 

policarbonato transparente y un flujo de aire precalentado mediante un colector 

solar, complementado por resistencias que permiten dar estabilidad al proceso. 

Actualmente, el secador presenta limitaciones operativas significativas. El registro 

de datos se realiza de forma manual y se transfiere posteriormente a hojas de 

cálculo en Excel, lo que genera pérdida de tiempo y aumenta la probabilidad de 

errores. Adicionalmente, el controlador de temperatura encargado de regular las 

resistencias se encuentra averiado, lo que dificulta su activación y ocasiona 

discontinuidades en el proceso. Estas deficiencias afectan la eficiencia del sistema, 

comprometen la calidad de los datos obtenidos y han provocado que el equipo se 

encuentre fuera de servicio. 

La ausencia de un sistema automatizado de supervisión y control limita el uso 

experimental del secador, impidiendo validaciones técnicas y científicas. En 

consecuencia, se desaprovecha el potencial del equipo para apoyar proyectos de 

investigación orientados a la eficiencia energética y a la sostenibilidad de procesos 

agrícolas. 

1.2 Justificación del problema 

La automatización del secador híbrido surge como una respuesta a las limitaciones 

que presenta su operación manual. El registro no automatizado de variables 

ambientales, así como la activación directa de los actuadores, incrementa el riesgo 

de errores humanos y la exposición a condiciones eléctricas inseguras. 
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La implementación de un sistema automatizado permite garantizar la continuidad 

operativa y la obtención de datos confiables en tiempo real, mejorando la eficiencia 

energética y la calidad de los resultados experimentales. Al integrar tecnologías de 

control y monitoreo, se reduce la dependencia de la intervención humana, se 

optimiza el uso de la energía solar y se respalda el proceso con resistencias 

eléctricas únicamente cuando es necesario. 

El secador híbrido, además, constituye una alternativa sostenible para el 

procesamiento de biomasa y productos agrícolas, al aprovechar fuentes renovables 

y minimizar la huella ambiental. La incorporación de un sistema automatizado 

fortalece su viabilidad como herramienta de investigación aplicada, permitiendo 

validar parámetros técnicos y científicos con mayor precisión. 

Finalmente, este proyecto tiene un impacto formativo relevante, pues al 

desarrollarse en un entorno académico, contribuye al fortalecimiento de 

competencias en áreas como la automatización, el control de procesos, las energías 

renovables y el análisis de datos. De esta manera, no solo se optimiza un equipo 

de laboratorio, sino que también se fomenta la generación de conocimiento y el 

desarrollo de soluciones tecnológicas aplicables al sector agroindustrial. 

1.3 Objetivos 

1.3.1 Objetivo General 

Desarrollar un sistema automatizado de supervisión y control para un secador 

híbrido, que permita registrar en tiempo real las variables de humedad y 

temperatura, gestionar el funcionamiento de la resistencia eléctrica de manera 

eficiente y disponer de un registro confiable de datos para su análisis posterior. 

1.3.2 Objetivos Específicos 

 Automatizar la captura de datos de humedad y temperatura mediante sensores 

conectados a un sistema de adquisición, con comunicación bidireccional hacia 

el controlador lógico programable, para visualizar la información en tiempo real 

en una interfaz web. 
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 Implementar una interfaz gráfica accesible dentro de la red local que permita 

al usuario supervisar el sistema y gestionar el encendido y apagado de las 

resistencias de manera segura y práctica. 

 Diseñar un tablero de control que aloje los componentes eléctricos y 

electrónicos del sistema, garantizando la correcta organización, seguridad y 

facilidad de mantenimiento. 

 Desarrollar un sistema de supervisión y control que permita el monitoreo en 

tiempo real de las variables ambientales y del estado del secador híbrido, 

incorporando además la generación de archivos en formato CSV para el 

registro histórico y análisis de datos. 

1.4 Marco Teórico 

El secado de productos agrícolas constituye una etapa crítica en la cadena de 

postcosecha, ya que influye directamente en la calidad, vida útil y valor comercial 

del producto final. En regiones rurales o con infraestructura limitada, los métodos 

tradicionales de secado suelen presentar desventajas significativas, entre ellas 

tiempos prolongados, dependencia de las condiciones climáticas y riesgo de 

contaminación por agentes externos como insectos, hongos o polvo. En este 

contexto, los sistemas híbridos de secado solar-eléctrico se presentan como una 

alternativa eficiente y sostenible, al combinar fuentes de energía renovable con el 

respaldo de resistencias eléctricas que aseguran la continuidad del proceso. 

La utilización de energía solar en procesos de secado ha sido ampliamente 

investigada debido a su carácter renovable, bajo costo operativo y sostenibilidad 

ambiental. Sin embargo, su intermitencia por factores climáticos adversos ha 

impulsado el desarrollo de configuraciones híbridas que integran apoyos eléctricos 

o mecánicos, como resistencias y blowers, garantizando así estabilidad térmica y 

reducción en los tiempos de secado (Paes et al., 2022). 

En los últimos años, la automatización ha desempeñado un rol fundamental en la 

optimización de sistemas de secado. Diversos autores han desarrollado soluciones 

que integran sensores, controladores lógicos programables (PLC), 

microcontroladores y plataformas de visualización para supervisar variables críticas 

como temperatura, humedad relativa, velocidad del aire y masa del producto. Por 
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ejemplo, Dharmender et al. (2024) propusieron un secador solar automatizado con 

asistencia de desecantes, incorporando control de temperatura mediante sensores 

y arquitectura basada en microcontroladores, lo que permitió mejorar la eficiencia 

energética y la calidad de las semillas tratadas. 

De igual manera, Paes et al. (2022) desarrollaron un sistema de adquisición 

automática de datos en un secador híbrido, empleando sensores, comunicación 

inalámbrica y aplicaciones móviles para facilitar el monitoreo remoto. Sus resultados 

evidenciaron mayor precisión en la medición y validación frente a métodos 

convencionales, lo que resalta la relevancia de incorporar tecnologías de bajo costo 

y accesibles para el sector agrícola. 

En el ámbito industrial, los PLC constituyen la solución más robusta y confiable para 

la automatización de procesos. Rosa et al. (2020) implementaron un sistema 

embebido para la supervisión de deshumidificadores industriales, integrando 

sensores, interfaces gráficas y comunicación mediante protocolos estándar, como 

Modbus RTU, lo que evidenció la importancia de la interoperabilidad en entornos 

distribuidos. Asimismo, investigaciones recientes exploran la incorporación de 

algoritmos evolutivos y técnicas de autooptimización en entornos PLC, generando 

código de control adaptativo y reduciendo los tiempos de desarrollo (Löppenberg & 

Schwung, 2023). 

El uso de plataformas de visualización es otro pilar en la automatización de 

procesos de secado. Herramientas como el Logo Web Editor permiten crear 

interfaces gráficas accesibles desde una red local, facilitando tanto la supervisión 

en tiempo real como el control directo de los actuadores del sistema. Si bien estos 

entornos no alcanzan la complejidad de un sistema SCADA industrial, su 

implementación constituye una arquitectura de supervisión simplificada que 

satisface las necesidades de registro, visualización y control a escala de laboratorio. 

En este tipo de soluciones, la generación de archivos en formato CSV cumple la 

función de registro histórico, permitiendo analizar los datos en hojas de cálculo o 

bases de datos sin necesidad de servidores dedicados. 

Finalmente, la integración de sensores de bajo costo, sistemas embebidos y 

controladores programables en sistemas híbridos de secado agrícola representa un 
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enfoque viable, económico y escalable hacia la digitalización de procesos rurales. 

El proyecto actual se enmarca en esta línea, proponiendo la implementación de un 

sistema automatizado que combina adquisición de datos, supervisión mediante 

interfaz web y control de resistencias eléctricas, con potencial de evolución hacia 

arquitecturas más avanzadas de monitoreo remoto y análisis predictivo. 
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CAPÍTULO 2 

El presente capitulo contiene la descripción de todo el proceso seguido para la 

realización del presente proyecto, así como los diferentes diagramas que explican las 

conexiones y forma de funcionamiento de este mismo. 

2. Metodología 

2.1 Análisis de la estructura de secador 

El secador híbrido utilizado en este proyecto se encuentra instalado en el Centro de 

Desarrollo Tecnológico Sustentable (CDTS) y fue previamente diseñado y 

construido como parte de iniciativas anteriores. Su configuración incluye una 

cámara de secado cubierta por policarbonato transparente, un colector solar 

encargado de precalentar el aire y resistencias eléctricas para complementar el 

aporte térmico cuando las condiciones solares son insuficientes. 

Durante la etapa inicial del proyecto se evaluó la posibilidad de alimentar la 

resistencia eléctrica con la planta fotovoltaica existente en el sitio. Sin embargo, tras 

la inspección técnica se determinó que dicha planta no contaba con la capacidad 

suficiente para cubrir la demanda energética del sistema. En consecuencia, se 

decidió conectar las resistencias a la red eléctrica, garantizando su operación 

confiable y continua. 

Con el fin de automatizar su funcionamiento y mejorar la precisión del registro de 

datos, se identificaron los siguientes subsistemas de trabajo: 

 Subsistema de alimentación: El aire de secado se precalentó en el colector solar 

y posteriormente atravesó las resistencias eléctricas, alimentadas desde la red 

pública, que permitieron mantener la temperatura de operación establecida. 

 Subsistema de control: Se empleó un controlador lógico programable (PLC) en 

conjunto con una unidad de procesamiento auxiliar para recibir la información de 

los sensores de humedad y temperatura. Con base en estos datos, se ejecutó la 

lógica de encendido y apagado de la resistencia de acuerdo con el valor de 

consigna establecido. 
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 Subsistema de red y monitoreo: La comunicación entre dispositivos se 

estableció mediante el protocolo Modbus TCP/IP, permitiendo la transmisión 

bidireccional de datos entre el PLC, la unidad de procesamiento y el router del 

CDTS. Gracias a esta infraestructura se desplegó una interfaz gráfica en Logo 

Web Editor, desde la cual fue posible supervisar en tiempo real el estado del 

sistema y registrar las variables en archivos de tipo CSV para su posterior análisis. 

La integración de estos subsistemas permitió disponer de un equipo operativo y 

automatizado, reduciendo la intervención manual y garantizando un monitoreo 

confiable de las variables críticas del proceso de secado. 

2.2 Diagrama de bloques  

Con el fin de representar la organización funcional del secador híbrido y su sistema 

de automatización, se elaboró un diagrama de bloques que muestra la interacción 

entre los diferentes subsistemas y dispositivos empleados. Dicho diagrama se 

presenta en el Gráfico 2.1 

 

Gráfico 2.1 Diagrama de bloques del proyecto. 

El sistema se estructuró en tres bloques principales: 

Bloque de alimentación: El aire de secado fue precalentado mediante un colector 

solar y posteriormente pasó a través de resistencias eléctricas de 2 kW, alimentadas 

desde la red eléctrica pública. Este esquema permitió garantizar la estabilidad de la 

temperatura requerida, complementando el aporte solar en momentos de baja 

radiación. 
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Bloque de control: Se utilizó un controlador lógico programable (PLC) Siemens 

LOGO! 8.2, en conjunto con una Raspberry Pi 3 Modelo B, que actuó como unidad 

de procesamiento auxiliar. Los sensores de humedad y temperatura DHT22 se 

conectaron a la Raspberry Pi, la cual transmitió los datos al PLC mediante el 

protocolo Modbus TCP/IP. El PLC ejecutó la lógica de control, determinando el 

encendido y apagado de las resistencias en función del valor de consigna 

establecido. 

Bloque de red y monitoreo: Para la comunicación entre los dispositivos se utilizó 

un switch Ethernet, que interconectó el PLC, la Raspberry Pi y el router del CDTS. 

Gracias a esta infraestructura, se desplegó una interfaz gráfica desarrollada en 

Logo Web Editor, desde la cual fue posible supervisar en tiempo real el estado del 

sistema y registrar automáticamente los datos obtenidos en archivos de formato 

CSV, accesibles para su análisis en hojas de cálculo. 

La integración de estos bloques permitió implementar una solución práctica y 

confiable para la supervisión y control del secador híbrido, reduciendo la 

intervención manual y garantizando un acceso confiable a la información del 

proceso. 

2.3 Diagrama topológico de Red 

Con el fin de garantizar la comunicación entre el PLC y el servidor Raspberry, se 

implementó una topología de red en estrella, representada en el Gráfico 2.2 

En esta configuración, el switch Ethernet actuó como nodo central de conexión. A 

través de él se interconectaron el PLC Siemens LOGO! 8.2, la Raspberry y el router 

del CDTS, lo que permitió establecer un canal de comunicación estable mediante 

el protocolo Modbus TCP/IP. 

La Raspberry Pi recibió la información de los sensores DHT22 y la transmitió al 

PLC, mientras que este último ejecutó la lógica de control y envió los datos hacia la 

red. Gracias a la integración con el router, la interfaz desarrollada en Logo Web 

Editor estuvo disponible dentro de la red local, posibilitando el acceso al dashboard 

para la visualización en tiempo real del estado del sistema. 
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El empleo de esta topología permitió centralizar la gestión de las comunicaciones y 

reducir la complejidad de las conexiones entre los dispositivos, asegurando un flujo 

de información confiable para la supervisión y control del secador híbrido. 

 

 

Gráfico 2.2 Topología de Red. 

2.4 Entradas y salidas 

Tabla 2.1Lista de entradas y salidas del sistema. 

TABLA DE ENTRADAS Y SALIDAS 

Señal Tipo Descripción 

TH1 Entrada Sensor DHT22 ubicado en la cámara de secado 

(posición bandeja inferior) para medir humedad y 

temperatura. 
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TH2 Entrada Sensores DHT22 ubicados en posiciones 

estratégicas dentro de la cámara del secador 

para medir las variables de temperatura y de 

humedad. 

TH3 Entrada Sensor DHT22 ubicado en la cámara de secado 

(posición punto muerto) para medir humedad y 

temperatura. 

TH4 Entrada Sensor DHT22 ubicado en la cámara de secado 

(posición bandeja intermedia inferior) para medir 

humedad y temperatura. 

TH5 Entrada Sensor DHT22 ubicado en la cámara de secado 

(posición bandeja intermedia superior) para 

medir humedad y temperatura. 

TH6 Entrada Sensor DHT22 ubicado en la cámara de secado 

(posición bandeja superior) para medir humedad 

y temperatura. 

PARO DE 

EMERGENCIA 

Entrada Pulsador de paro de emergencia para detener el 

sistema en condiciones críticas. 

START_RES Entrada Pulsador de arranque de la resistencia. 

STOP_RES Entrada Pulsador de apagado de la resistencia. 

START_BLOWER Entrada Pulsador de arranque del blower. 

STOP_BLOWER Entrada Pulsador de apagado del blower. 

START_AUTO Entrada Pulsador de arranque del modo Automático 

STOP_AUTO Entrada Pulsador de apagado del modo Automático 

AUTO_ON Salida Luz piloto verde que indica encendido del modo 

Automático. 

AUTO_OFF Salida Luz piloto roja que indica apagado del modo 

Automático. 

BLOWER_ON Salida Activación del blower 
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BLW_ON Salida Luz piloto verde que indica encendido del 

blower. 

BLW_OFF Salida Luz piloto roja que indica apagado del blower. 

RES_ON Salida Activación de la resistencia. 

PLT_ RES_ON Salida Luz piloto verde que indica encendido de la 

resistencia. 

PLT_ RES_OFF Salida Luz piloto roja que indica apagado de la 

resistencia. 

Fuente: Elaboración propia a partir de la implementación del sistema. 

2.5 Tabla de materiales 

Tabla 2.2 Lista de materiales. 

ÍTEM DESCRIPCIÓN CANTIDAD FUNCIÓN PRINCIPAL 

1 Controlador lógico 

programable (PLC) 

Siemens LOGO! 8.2 

1 Ejecución de la lógica de control 

del sistema. 

2 Raspberry Pi 3 Modelo B 1 Procesamiento de datos de 

sensores y comunicación con el 

PLC mediante Modbus TCP/IP. 

3 Switch Ethernet de 5 

puertos 

1 Interconexión de la red local (PLC, 

Raspberry Pi y router CDTS). 

4 Sensor DHT22 6 Medición de humedad relativa y 

temperatura en diferentes puntos 

de la cámara del secador. 

5 Pulsador de 

arranque/parada 

3 Control manual de la resistencia, 

blower y modo automático. 

6 Pulsador de paro de 

emergencia 

1 Detención del sistema en 

condiciones críticas. 

7 Luz piloto verde 220 V 3 Indicación visual de encendido 

(resistencia, blower y modo 

automático). 



12 
 

8 Luz piloto roja 220 V 3 Indicación visual de apagado 

(resistencia, blower y modo 

automático). 

9 Tablero eléctrico ABS 

con plafón metálico 

(50×40×18 cm) 

1 Montaje y protección de los 

componentes del sistema. 

10 Breaker 2P – 25 A 1 Breaker principal. 

11 Seccionador 2P – 16 A 1 Seccionamiento de la resistencia. 

12 Seccionador 1P – 4 A 1 Seccionamiento del blower. 

13 Seccionador 1P – 4A 1 Seccionamiento del circuito de 

control. 

14 Resistencia eléctrica 220 

V / 2 kW 

1 Calentamiento del aire que ingresa 

a la cámara de secado. 

15 Blower 282 W, salida 2.5” 1 Inyección de flujo de aire hacia el 

colector solar y la cámara de 

secado. 

16 Borneras 34 Conexión (alimentación, sensores, 

etc) 

17 Riel DIN 1 Montaje estructurado de los 

componentes eléctricos. 

18 Canaleta PVC 33×25 mm 1 Organización del cableado dentro 

del tablero. 

19 Cable eléctrico 18 AWG 40 m Cableado y conexiones de control. 

20 Cable eléctrico 12 AWG 15 m Alimentación del sistema de 

potencia. 

21 Cable eléctrico 22 AWG 20 m Conexión de señales de sensores 

22 Jumper para ensamblar 1 Ensamblaje y conexiones 

Fuente: Elaboración propia a partir de la implementación del sistema. 

2.6 Diseño de tablero 

Para la elaboración del sistema, se construyó un tablero eléctrico en el que se 

integraron todos los componentes principales del proyecto. El diseño se realizó 

considerando criterios de seguridad eléctrica, organización interna y facilidad de 
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mantenimiento, de manera que se asegurara un montaje confiable y accesible para 

futuras intervenciones. 

En el tablero se dispusieron el controlador lógico programable Siemens LOGO! 8.2, 

la Raspberry Pi 3 Modelo B, los seccionadores, el breaker principal, las borneras, 

el relé para la resistencia y los elementos de señalización. La distribución de los 

equipos se efectuó sobre un riel DIN, lo que permitió un montaje estructurado y 

ordenado, mientras que el cableado fue guiado mediante canaletas internas que 

facilitaron la organización y redujeron riesgos de interferencias o fallos eléctricos. 

El diseño incluyó también un conjunto de pulsadores de arranque/parada para la 

resistencia, el blower y el modo automático, así como un pulsador de paro de 

emergencia para asegurar la seguridad del operador. Los pilotos luminosos de color 

verde y rojo fueron instalados en el frente del tablero para indicar el estado de 

encendido y apagado de cada elemento, lo que proporcionó una referencia visual 

inmediata al operador. 

 

Gráfico 2.3 Boceto del tablero de control. 
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2.7 Programación de la Raspberry Pi 

Se empleó una Raspberry Pi 3 junto con el sistema operativo Raspberry Pi OS, la 

distribución oficial basada en Linux Debian, para llevar a cabo la implementación del 

sistema de adquisición de datos y comunicación, ya que ofreció estabilidad y soporte 

para las librerías necesarias en el desarrollo. 

El programa fue desarrollado en Python 3, utilizando librerías específicas para la 

adquisición de datos, comunicación y manejo de archivos: 

 pymodbus 2.5: empleada para implementar el servidor Modbus TCP/IP y 

establecer la comunicación bidireccional entre la Raspberry Pi y el PLC Siemens 

LOGO! 8.2. Se seleccionó la versión 2.5.x debido a que la versión 3.x presentaba 

cambios en la API que ocasionaban incompatibilidades con métodos usados en 

el proyecto. 

 adafruit_dht: utilizada para la adquisición de datos de los sensores DHT22 de 

humedad relativa y temperatura. 

 RPi.GPIO: empleada en el control de salidas digitales asociadas a pilotos y 

relevadores. 

 Librerías estándar de Python: time, threading, datetime, csv y os, necesarias 

para el manejo de procesos concurrentes, registro de datos y administración de 

archivos. 

El código ejecutado en la Raspberry Pi cumplió cuatro funciones principales: 

1. Lectura concurrente de sensores DHT22: 

Se conectaron seis sensores en diferentes posiciones de la cámara de secado. El 

programa realizó lecturas en paralelo con manejo de timeouts para evitar 

bloqueos. En caso de fallas consecutivas, los valores se reemplazaban por 0.0 

tanto en el registro Modbus como en el archivo CSV, de acuerdo con el umbral 

configurado. 

2. Comunicación con el PLC mediante Modbus TCP/IP: 

La Raspberry Pi operó como servidor Modbus TCP, publicando en tiempo real los 

datos de los sensores hacia el PLC Siemens LOGO! 8.2. Dichos datos fueron 

empleados por el PLC para ejecutar la lógica de control del proceso de secado. 
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3. Recepción de señales desde el PLC: 

Además de enviar información, la Raspberry Pi recibió instrucciones del PLC a 

través de registros Modbus. Estas señales se utilizaron para accionar salidas 

GPIO que controlaban pilotos y relevadores, complementando las salidas físicas 

limitadas del PLC. 

4. Almacenamiento de datos en archivos CSV: 

Los datos adquiridos se almacenaron en la propia Raspberry Pi en archivos de 

formato CSV, configurados con rotación diaria. El intervalo de muestreo se 

estableció en 5 minutos, dado que la temperatura es una variable de cambio lento 

y no se requerían frecuencias de adquisición más altas para representar 

adecuadamente la tendencia del proceso. 

La programación de la Raspberry Pi fue un elemento clave en la arquitectura del 

sistema, ya que permitió la adquisición confiable de las variables ambientales, la 

comunicación bidireccional con el PLC y la generación de registros históricos en un 

formato accesible para su análisis posterior. 

2.8 Programación del PLC LOGO! 

La programación del controlador lógico programable se realizó en el software LOGO! 

Soft Comfort v8.4, empleando diagramas en bloques de funciones (FBD). La lógica 

de control se estructuró en dos modos de operación: manual y automático, 

garantizando flexibilidad en la operación y seguridad en el uso del equipo. 

En el modo manual, tanto la resistencia eléctrica como el blower pudieron ser 

accionados desde las botoneras físicas ubicadas en el tablero de control o desde las 

botoneras virtuales disponibles en la interfaz web. Este esquema permitió que el 

operador contara con redundancia en los mecanismos de control, manteniendo la 

supervisión del estado del sistema en todo momento. 

En el modo automático, se implementó un control ON/OFF con histéresis, 

configurado con una ventana de operación de ±2 °C respecto al valor de consigna. 

De esta manera, la resistencia se encendía y apagaba automáticamente para 

mantener la temperatura dentro del rango establecido, mientras que el blower 

permanecía encendido durante todo el ciclo de secado. En este modo, se bloquearon 
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los accionamientos manuales tanto de la resistencia como del blower, a fin de 

prevenir activaciones accidentales mediante pulsos en las botoneras físicas. La 

desactivación del modo automático se efectuó exclusivamente desde la botonera de 

apagado del modo automático. 

La recepción de las señales de humedad y temperatura se realizó mediante el 

protocolo Modbus TCP/IP, configurando al PLC en modo cliente. A través de 

entradas analógicas de red, el LOGO recibió los datos transmitidos por la Raspberry 

Pi. Para la lógica de control, se seleccionaron cuatro señales de temperatura 

correspondientes a los sensores DHT22 TH6, TH5, TH4 y TH1, con las cuales se 

calculó un valor promedio que fue comparado contra el setpoint configurado en la 

interfaz web. 

Adicionalmente, se programó el envío de cuatro datos tipo coil hacia la Raspberry Pi, 

empleando salidas digitales de red. Estas señales se utilizaron para accionar las 

luces piloto correspondientes al estado del blower y del modo automático, integrando 

de esta manera la supervisión visual del proceso. 

La interfaz de usuario se desarrolló en LOGO! Web Editor, en la cual se diseñaron 

dos pantallas principales. En la primera se incluyeron los controles para el 

accionamiento manual y automático, junto con indicadores visuales animados que 

facilitaron la supervisión: 

 Una baliza azul en formato GIF para señalar el estado activo del modo automático. 

 Un ventilador animado en GIF para indicar el encendido del blower. 

 Una flama animada en GIF para mostrar el estado de encendido de la resistencia. 

Esta programación integró tanto los mecanismos de control como la interfaz de 

usuario, proporcionando una solución intuitiva y segura para la operación del secador 

híbrido. 

2.9 Consideraciones técnicas y normativas 

A lo largo del desarrollo del sistema se consideraron técnicas y normativas que 

garantizaron la seguridad, confiabilidad y replicabilidad del proyecto: 
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 Seguridad eléctrica: La construcción del tablero de control se realizó siguiendo 

criterios básicos de seguridad establecidos en la normativa IEC 60364 – 

Instalaciones eléctricas de baja tensión, así como en buenas prácticas de 

cableado industrial. Se incorporaron protecciones mediante breaker principal y 

seccionadores independientes para los circuitos de potencia, blower y control, a 

fin de aislar adecuadamente cada subsistema y proteger a los usuarios ante 

sobrecorrientes o fallas. 

 Organización de componentes: El montaje de los equipos en el tablero se 

efectuó sobre riel DIN, lo que permitió un orden estructurado y facilitó el 

mantenimiento. Asimismo, se utilizaron canaletas plásticas para guiar el cableado 

y borneras para las conexiones de potencia y señales, asegurando un sistema 

accesible y seguro. 

 Comunicación industrial: Para la transmisión de datos se implementó el 

protocolo Modbus TCP/IP, ampliamente aceptado en entornos industriales por su 

estandarización, compatibilidad y simplicidad. Esto garantizó la interoperabilidad 

entre el PLC y la Raspberry Pi, además de permitir la escalabilidad futura hacia 

sistemas de mayor complejidad. 

 Gestión de datos: El almacenamiento de registros en archivos CSV permitió 

disponer de información histórica de forma sencilla y accesible, sin requerir bases 

de datos externas. Esta estrategia se alineó con principios de eficiencia y facilidad 

de análisis, al ser compatible con herramientas comunes como Excel y 

plataformas de análisis de datos. 

 Interfaz de usuario: El desarrollo de la interfaz en LOGO! Web Editor se enfocó 

en la seguridad y en la usabilidad. Al estar restringida a la red local del CDTS, se 

evitó la exposición del sistema a accesos externos no autorizados. Además, se 

incorporaron elementos visuales intuitivos que facilitaron la supervisión de las 

variables y el control de los actuadores. 

Estas consideraciones aseguraron que el sistema cumpliera no solo con la 

funcionalidad prevista, sino también con criterios de seguridad, confiabilidad y 

buenas prácticas de ingeniería, lo que garantiza su utilidad como prototipo académico 

y su potencial de adaptación a entornos de mayor exigencia. 
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CAPITULO 3 

Con el sistema construido se procedió a tomar muestras de datos por periodos de una 

hora para comparar resultados y obtener una gráfica de histórico. Además, se utilizaron 

una serie de sensores termopares externos con el fin de tener una referencia externa 

con la cual comparar y validar resultados. 

También se hicieron pruebas de comunicación entre el servidor raspberry con los demás 

equipos para validar el acceso a los archivos con los datos tal como lo solicito el cliente.  

3. Análisis y Resultados 

3.1 Tabla de Precios de componentes. 

Tabla 3.1 Tabla de precios. 

Material Cantidad 
Precio por 

Unidad 

PLC Logo V8.2 1 $320 

Raspberry pi 3 modelo B 1 $125 

Luz Piloto 22[mm] Led verde de 220V 3 $5 

Luz Piloto 22[mm] Led Rojo de 220V 3 $5 

Cable concéntrico de 4 hilos 12awg 15[m] $4 

Switch de 8 puertos RJ45 1 $35 

Fuente conmutada 12V 10A 1 $15 

Pulsador doble metálico sin Luz 3 $10 

Pulsador tipo hongo de paro de emergencia 

22[mm] 
1 $9 

Sensor dht22 9 $6 

Cable 18awg de un hilo café 5[m] $0.80 

Cable 18awg de un hilo azul 5[m] $0.80 

Cable 18awg de un hilo negro 5[m] $0.80 

Tomacorriente sobrepuesto de 220V 2 $7.0 

Canaleta pvc 2[m]x20[mm]x12[mm] de ancho 3 $3.0 
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Tablero plástico con plafón metálico 

50[cm]x40[cm]x18[cm] 
1 $70 

Total  $770 

Fuente: Elaboración propia a partir de la implementación del sistema 

3.2 Análisis y comparación de datos de sensores dht22 y termopares externos:  

Para la obtención de datos se consideró cubrir en lo posible todas las secciones de 

la cámara de secado, colocando 4 de los 6 sensores en las 4 bandejas a diferentes 

alturas, el 5to sensor en una esquina de la cámara el cual se considera el punto 

muerto donde hay menos circulación de aire caliente. Finalmente, el 6to sensor se lo 

coloco en el exterior de la cámara para poder tener un censado de la temperatura del 

ambiente. En este análisis y comparación se utilizarán únicamente los 4 primeros 

sensores y como referencia 4 sensores termopares colocados en la misma posición. 

Además, se debe tomar en cuenta que el tiempo del guardado de los datos del 

sistema coincida con el tiempo en que se tomen los datos de los termopares para 

evitar variaciones en lo posible.  

Tabla 3.1.232 Comparativa de ubicación de sensores DHT22 vs termopares. 

Sensores DHT22 Sensores Termopar 

T6 T1 

T5 T2 

T4 T3 

T1 T4 

Fuente: Elaboración propia a partir de la implementación del sistema 

El cuadro anterior muestra la posición de cada uno de los 4 sensores DHT22 ubicados 

a diferentes alturas en comparación a las ubicaciones de los sensores termopares.  
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Tabla 3.3 Valores de temperatura de termopares de referencia. 

Hora T1 T2 T3 T4 

16:45 32,8 33,4 33,4 33,3 

16:50 83,1 81 89,3 73,5 

16:55     

17:00     

17:05     

17:10 84,3 82,1 85,3 78,7 

17:15 88,7 87,5 92 85 

17:20 83,2 85,8 91,6 82,5 

17:25 90,3 89,4 93,9 88,1 

17:30 91,8 90 95,4 89,2 

17:35 94,7 90,5 96,2 90,2 

17:40 92,7 91,6 97,1 94,3 

17:45     

     

18:35 30,5 30,9 31,2 35,6 

18:40 64,5 60,7 58,8 53 

18:45 63 65 64,3 58,2 

18:50 63,3 65 64,3 53,2 

18:55     

Fuente: Elaboración propia a partir de la implementación del sistema 

 

 

 

 

Tabla 3.4 Valores de temperatura de sensores dht22. 
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Fuente: Elaboración propia a partir de la implementación del sistema 

El sistema de secado hibrido se configuro para guardar datos cada 5 minutos, debido 

a que la temperatura es un dato de baja variabilidad. Tomando en cuenta esto, se 

tomaron las medidas obtenidas de los termopares en intervalos de tiempo 

aproximados, aunque con cierto margen de diferencia en tiempo debido a algunos 

errores de comunicación que se corrigieron posteriormente.  

Se colocaron los márgenes de tiempo donde hubo errores de comunicación y no se 

pudieron tomar datos (rojo), con el fin de no cortar la continuidad en el intervalo de 

tiempo. De la misma forma se colocaron las franjas de tiempo donde si se obtuvieron 

datos, pero no se los utilizo en el análisis porque no había con que compararlos (gris).  

Hora T1 
T2 (T 

Ambiental) 

T3 

(Punto 

Muerto) 

T4 T5 T6 

16:43:32 35 31 32,1 34,9 35,2 35,1 

16:48:38 36,1 30 43,5 36,6 36,3 36,4 

16:53:38 52,7 31,9 61,2 52,6 53,1 53,2 

16:58:44 63,9 33,3 68 63,9 64,3 63,6 

17:03:50 69,7 34,1 71 70,1 70 69 

17:08:50 70,9 33,6 67,8 71,7 71,4 69,2 

17:13:50 72,6 33,7 77,2 72,8 72,5 70,8 

17:18:56 75,4 34,4 0 75,4 75,3 73,2 

17:24:02 75,2 33,4 79,1 75,5 75,2 72,7 

17:29:02 76,6 34,9 0 76,6 76,5 74,1 

17:34:08 77,4 33 0 77,5 77,3 74,7 

17:39:14 78 34,5 0 78,1 77,8 75,1 

17:45:00       

17:50:00       

18:34:56 32,3 27,3 31,7 32,1 32 31,6 

18:39:56 37 27,5 36,8 38,3 37,5 38,5 

18:45:02 50,9 28,6 49,7 51,8 53,3 53,8 

18:50:02 53,4 29,3 55 55,6 58,5 57,8 

18:55:08 51,9 29,6 51,3 53,3 54,9 53,4 
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Tabla 3.1.5. Valores de Humedad respecto al tiempo  

Fecha Hum1 
Hum2 (Hum 

del 
Ambiente) 

Hum3 Hum4 
Hum Punto 

Muerto 

16:43:32 40,7 42,1 43 42,1 47,7 

16:48:38 39 41 40,8 40,5 30 

16:53:38 21,7 23,4 22,2 21,1 15,9 

16:58:44 15,8 16,5 14,8 14 12,9 

17:03:50 13,8 14,3 12 12 12 

17:08:50 13,7 13,7 11,4 11,2 13 

17:13:50 13,2 13,4 11,1 10,9 10,4 

17:18:56 12,6 12,6 10,3 10 0 

17:24:02 12,6 12,7 10,5 10,2 9,9 

17:29:02 12,4 12,3 10,1 10 0 

17:34:08 12,3 12,2 10 9,6 0 

17:39:14 12,2 12 9,8 9,4 0 

17:44:20 12,1 11,9 9,6 9,3 0 

Fuente: Elaboración propia a partir de la implementación del sistema 

3.3 Evolución de la temperatura del secador hibrido 

Los sensores DHT22 mostraron un incremento progresivo de la temperatura en el 

interior de la cámara de secado, alcanzando valores aproximados entre 75 °C y 78 

°C. Cabe aclarar que la temperatura optima del secador es aproximadamente de 50 

°C a 55 °C ya que a temperaturas más altas cualquier muestra de biomasa pierde 

sus propiedades órgano-eléctricas, pero para consideraciones del análisis no se 

controló la temperatura límite del secador.   

 Etapa inicial (16:45–16:55): temperaturas entre 30 y 40 °C, con alta humedad 

relativa (40–50%). 

 Etapa de estabilización (17:00–17:20): ascenso sostenido de la temperatura por 

encima de 60 °C y descenso de la humedad a valores entre 10–15%. 

 Etapa de máxima operación (17:25–17:45): temperaturas superiores a 75 °C, 

con humedades cercanas al 10%. 
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Se presenta un comportamiento coherente con lo esperado en el sistema de 

secado, donde el aire caliente reduce el nivel de humedad interna del material a 

secar.  

3.4 Comparación Sensores DHT22 vs Termopares.  

Al comparar las lecturas de ambos sistemas de medición se observó lo siguiente: 

 Los termopares registraron temperaturas de referencia estables y coherentes con 

la dinámica de calentamiento del sistema. 

 Los DHT22 siguieron la misma tendencia, pero en algunos momentos presentaron 

desviaciones superiores al ±5 °C. 

 Se identificaron valores atípicos (0.0 °C y 0.0 % HR en el sensor DHT22 #3), que 

corresponden a fallas de comunicación y fueron tratados como datos faltantes en 

el análisis. 

En promedio, los errores relativos de los DHT22 respecto a los termopares oscilaron 

entre 2% y 8%, con picos mayores en los momentos de rápida variación térmica. 

Estos resultados concuerdan con las especificaciones técnicas de los DHT22, que 

tienen un margen de error de ±0.5 °C, pero son sensibles a condiciones extremas de 

calor y baja humedad. 

3.5 Comportamiento de la humedad relativa. 

Los DHT22 registraron una disminución drástica de la humedad relativa conforme 

aumentaba la temperatura. En la etapa inicial, los valores se mantuvieron entre 40–

50%, mientras que al llegar a 70–75 °C descendieron hasta 10–12%, lo que confirma 

que el aire dentro de la cámara se volvió más seco y por tanto más efectivo para la 

extracción de humedad de los productos. 

3.6 Visualización de datos y control de temperatura en la página web.  

La solución desarrollada incluyó una interfaz web que permitió tanto la visualización 

en tiempo real de las variables medidas como el control de los parámetros operativos 

del secador híbrido. 
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Gráfico 3.1Pestaña de interfaz web con valores de temperatura y humedad. 

En dicha página se mostraron de manera dinámica los valores de temperatura y 

humedad relativa obtenidos a partir de los seis sensores DHT22 distribuidos dentro 

de la cámara de secado. Estos datos son actualizados automáticamente, lo que 

facilita al usuario el seguimiento del comportamiento térmico del sistema durante el 

proceso de secado.  

Además de la visualización, la interfaz web permitió establecer el valor de consigna 

(setpoint) de temperatura. Para ello se incorporó un control tipo “slider”, con el cual el 

usuario seleccionaba la temperatura objetivo deseada. Este valor era transmitido al 

PLC Siemens LOGO! 8.4, que ajustaba la operación de las resistencias eléctricas y 

el blower para mantener la cámara en condiciones óptimas de secado. 
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Gráfico 3.2 Pestaña de interfaz web para control del sistema. 

El uso de esta plataforma web simplificó la interacción con el sistema, eliminando la 

necesidad de ajustar parámetros de manera manual en el PLC. Asimismo, garantizó 

que cualquier operador, incluso con conocimientos básicos, pudiera supervisar y 

modificar la temperatura de trabajo de forma intuitiva y segura. 

Finalmente se agregó una red virtual gracias al uso del software Zero Tier, utilizando 

la Raspberry como Gateway para otorgarle una ip virtual al PLC Logo ya que este no 

es capaz de instalar el programa por su cuenta. De esta forma cualquier equipo con 

el permiso de la red virtual es capaz de ingresar a la página web y controlar el sistema 

desde cualquier parte del mundo siempre y cuando este esté encendido y conectado 

a la red física del CDTS.  

3.7 Discusión de resultados 

 El sistema de control y monitoreo permitió seguir en tiempo real la evolución de la 

temperatura y la humedad en el secador híbrido, lo que facilitó la supervisión del 

proceso y evitó la necesidad de registros manuales. 

 A pesar de las limitaciones de precisión de los sensores DHT22, la tendencia general 

de sus mediciones coincidió con la de los termopares de referencia, validando su uso 

en aplicaciones de bajo costo donde se prioriza la supervisión general y no la 

exactitud científica. 
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 Las discrepancias detectadas se debieron principalmente a fallas de comunicación 

en el sensor DHT22 #3 y a las limitaciones de este tipo de sensor en condiciones 

extremas de alta temperatura y baja humedad. 

 La interfaz web desarrollada representó un avance significativo, al mostrar 

dinámicamente las variables medidas (temperatura y humedad relativa) y permitir el 

control directo del setpoint de temperatura mediante un control tipo “slider”. Esta 

solución mejoró la interacción con el sistema, haciéndolo accesible incluso para 

operadores con conocimientos básicos. 

 La integración de la red virtual mediante ZeroTier permitió el acceso remoto desde 

cualquier dispositivo autorizado, garantizando que la supervisión y el control del 

sistema pudieran realizarse desde cualquier parte del mundo. Esta característica 

aumentó notablemente la versatilidad del sistema y su aplicabilidad en entornos 

rurales o industriales distribuidos. 

 En general, el sistema demostró ser tecnológicamente factible y económicamente 

viable, con la ventaja adicional de escalabilidad gracias a su conectividad y facilidad 

de operación. 

3.8 Conclusiones parciales del capítulo 

 El secador híbrido alcanzó condiciones adecuadas para el secado de biomasa, 

registrando temperaturas superiores a 70 °C y reducciones de humedad relativa por 

debajo del 15%, lo que confirma su eficiencia térmica. 

 Los sensores DHT22, aunque menos precisos que los termopares, demostraron ser 

útiles para el control general del sistema, validando su empleo en proyectos de bajo 

costo y fácil implementación. 

 La comparación con los termopares permitió identificar márgenes de error en un 

rango entre 2% y 8%, reforzando la validez de los datos y mostrando la necesidad 

de combinar sensores económicos con dispositivos de referencia para análisis más 

precisos. 

 La plataforma web implementada permitió tanto la visualización en tiempo real de 

los parámetros como la modificación del ‘setpoint’ de temperatura, simplificando la 

operación y eliminando la necesidad de interactuar directamente con el PLC. 
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 La integración de ZeroTier como red virtual otorgó acceso remoto seguro y global al 

sistema, lo que convierte a la solución en una herramienta flexible y escalable para 

distintos entornos de aplicación. 
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CAPÍTULO 4 

4. CONCLUSIONES Y RECOMENDACIONES 

4.1 Conclusiones 

 El secador híbrido logró mantener temperaturas superiores a 70 °C y niveles de 

humedad relativa inferiores al 15%, condiciones que resultaron adecuadas para el 

secado de biomasa, validando así la efectividad de la propuesta. 

 La incorporación del PLC Siemens LOGO! 8.4 permitió la automatización del proceso, 

reduciendo la dependencia de la intervención manual, mejorando la continuidad del 

secado y aumentando la confiabilidad operativa. 

 La comparación de lecturas entre los sensores DHT22 y los termopares de referencia 

mostró coherencia en la tendencia, a pesar de las limitaciones de precisión de los 

DHT22. Esto confirmó que son apropiados para aplicaciones de monitoreo en campo 

y de bajo costo, siempre que se utilicen con criterios de validación. 

 La plataforma web desarrollada facilitó la visualización en tiempo real de los 

parámetros de operación, así como la modificación del setpoint de temperatura. Esta 

herramienta simplificó la interacción con el sistema, eliminando la necesidad de 

ajustes directos en el PLC y garantizando un uso más accesible incluso para 

operadores con conocimientos básicos. 

 La integración de la red virtual ZeroTier permitió el acceso remoto seguro y global al 

sistema de secado, ampliando su versatilidad y ofreciendo la posibilidad de 

supervisar y controlar el proceso desde cualquier lugar del mundo. 

 El análisis de costos evidenció que el sistema diseñado resulta económicamente 

accesible, lo que refuerza la viabilidad de su implementación en contextos rurales o 

pequeñas agroindustrias. 

 En conjunto, el trabajo cumplió con los objetivos planteados, al demostrar que es 

posible implementar un sistema de secado híbrido solar–eléctrico automatizado, 

remoto, viable técnica y económicamente. 
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4.2 Recomendaciones 

 Evaluar el reemplazo o complementación de los sensores DHT22 por dispositivos 

de mayor precisión (como SHT31, SHT85 o PT100 con módulos de adquisición) en 

proyectos que requieran datos de carácter científico o de investigación. 

 Ampliar las pruebas a diferentes productos agrícolas con el fin de determinar la 

adaptabilidad del sistema a distintos procesos de secado y establecer curvas 

específicas de comportamiento. 

 Integrar un módulo de registro en la nube para permitir monitoreo remoto avanzado, 

almacenamiento histórico y análisis de datos a través de plataformas IoT o SCADA 

distribuidas. 

 Desarrollar un sistema de control inteligente que, mediante algoritmos de predicción 

o control adaptativo, optimice el uso de la resistencia eléctrica en función de la 

radiación solar disponible, reduciendo así el consumo energético. 

 Considerar la incorporación de un sistema de seguridad adicional en la interfaz web 

y en la red virtual para reforzar la protección contra accesos no autorizados. 

 Realizar pruebas de eficiencia energética comparativa entre el uso solar y eléctrico, 

de manera que se puedan cuantificar los ahorros obtenidos y la contribución a la 

sostenibilidad del proceso. 
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ANEXOS 

Anexo 1. Fotos de proceso de construcción del Sistema de Secado 

Hibrido 
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Apendice A. 

Diseños en 3D 

Diseño 3d de bases para riel Din:  

Se realizaron diseños de base para riel Din para imprimir en 3D debido para tener una 

mayor organización en el tablero, así como una mejor presentación.  

 

 

Imagen 1. Modelo de base para sujeción de módulo de 4 reles y raspberry pi 

 

 

 

Imagen 2. Modelo de base para sujeción de switch de 8 puertos rj45 
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Imagen 3. Modelo de base para sujeción de switch de 8 puertos rj45, vista frontal 
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Apéndice B. 

Pasos para instalación y configuración del sistema Rasbian  

 

Para la programación de la raspberry se procede a instalar el sistema basado en Linux, 

Raspbian. Se descarga de la página oficial donde se encuentra el programa de 

instalación para Windows.  

 

Normalmente se utiliza una SD de 32Gb con el fin no alcanzar el máximo de capacidad 

y evitar que se alenté.  

 

Posterior a la instalación del programa en Windows Raspberry Pi Imager, se lo ejecuta y 

con la SD colocada en la ranura de la laptop se procede a hacer la instalación del 
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sistema. Hay que considerar que ls SD será formateada y cualquier información previa 

se perderá. 

 

Una vez instalada el sistema se procede a encender la raspberry para verificar que el 

sistema se haya instalado bien. Considerar la alimentación de 5V para la Raspberry y la 

necesidad de un mouse y teclado para su manipulación. 
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Una vez instalado el sistema se realiza la actualización con el código sudo apt update y 

se espera, luego se realizan las instalaciones de Python y librerías para la 

comunicación con el PLC Logo 
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Finalmente se procede con la escritura y posterior ejecución del código. Se deben leer 

los datos de 6 sensores DHT22 para mandarlo por comunicación Modbus al PLC Logo. 
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Apéndice C. 

Programación de PLC Logo:  
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Usando diagrama de bloques se procedió con la programación del PLC Logo sin 

considerar las variables de los sensores DHT22 ya que estos vienen por comunicación 

Modbus y posteriormente se reflejan en el scada de Logo Web Editor.  

 

Diseños de HMI para la visualización de variables:  
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Apéndice D. 

Código del script de Python para comunicación modbus entre PLC 

Logo y servidor Raspberry pi. 

 

#!/home/admin/mi_entorno/bin/python 

# -*- coding: utf-8 -*- 

""" 

Proyecto Sistema de Supervision y Control de un Secador Hibrido 

Integrantes: Angel Zumba - Miguel Mayorga   

Codigo - Servidor Raspberry  

Raspberry Pi: Modbus TCP (pymodbus) + 6 DHT22 + 4 salidas (luces) 

 

Comportamiento: 

- CMD (print): si un sensor no entrega lectura válida EN EL CICLO -> 0.0 / 0.0 inmediato. 

- Modbus/CSV: enceran (0/0) SOLO si las fallas consecutivas >= 

FALLAS_CONSEC_PARA_ENCERAR. 

  Antes de ese umbral, se mantiene el ÚLTIMO VALOR VÁLIDO. 

- Lectura en paralelo por sensor con timeout (no bloquea el bucle). 

- Ciclo con sleep adaptativo para durar ~PERIODO_LECTURA_S. 

- Puerto Modbus TCP: 502 

""" 

 

import time 

import threading 

import adafruit_dht 

import board 

import RPi.GPIO as GPIO 

import csv, os 

from datetime import datetime, date, timedelta 
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from pymodbus.datastore import ( 

    ModbusSlaveContext, 

    ModbusServerContext, 

    ModbusSequentialDataBlock, 

) 

from pymodbus.device import ModbusDeviceIdentification 

 

# Compatibilidad pymodbus 3.x / 2.5.x 

try: 

    from pymodbus.server import StartTcpServer, ModbusConnectedRequestHandler  # 

>=3.x 

except Exception: 

    from pymodbus.server.sync import StartTcpServer, 

ModbusConnectedRequestHandler  # 2.5.x 

 

# ---------------- CONFIG ---------------- 

SENSORES = [ 

    ("DHT1", board.D4), 

    ("DHT2", board.D17), 

    ("DHT3", board.D27), 

    ("DHT4", board.D22), 

    ("DHT5", board.D5), 

    ("DHT6", board.D6), 

] 

 

SALIDAS_GPIO = {0: 23, 1: 24, 2: 25, 3: 26} 

RELES_ACTIVOS_EN_BAJO = False 

 

PERIODO_LECTURA_S = 6.0     # duración objetivo del ciclo 
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PERIODO_LOG_S     = 300.0     # CSV 

INTERVALO_PRINT_S = 6.0     # impresión agrupada 

_ultimo_print = 0.0 

 

LECTURA_TIMEOUT_S = 5.0     # timeout por sensor (por ciclo) 

 

# <<< UMBRAL CONFIGURABLE >>> 

FALLAS_CONSEC_PARA_ENCERAR = 7  # <-- cambia aquí: # de fallas seguidas para 

poner 0 en Modbus/CSV 

 

SERVER_BIND_IP = "0.0.0.0" 

SERVER_PORT    = 1502 

UNIT_ID        = 1 

 

CSV_DIR = "/home/admin/datos_secador" 

os.makedirs(CSV_DIR, exist_ok=True) 

ROTACION_DIAS = 1 

 

# ========= Inicialización ========= 

GPIO.setmode(GPIO.BCM) 

for _, bcm in SALIDAS_GPIO.items(): 

    inicial = GPIO.HIGH if RELES_ACTIVOS_EN_BAJO else GPIO.LOW 

    GPIO.setup(bcm, GPIO.OUT, initial=inicial) 

 

def x10(v): 

    return int(round(v*10)) if v is not None else 0 

 

# HRs/coils base 

hr_block = ModbusSequentialDataBlock(0, [0]*20) 
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co_block = ModbusSequentialDataBlock(0, [0]*16) 

store   = ModbusSlaveContext(hr=hr_block, co=co_block, zero_mode=False) 

context = ModbusServerContext(slaves={UNIT_ID: store}, single=False) 

 

_conectado = False 

ds_lock = threading.Lock() 

 

# Estado por sensor 

fallas_consecutivas = {nombre: 0 for nombre, _ in SENSORES} 

last_good_x10 = {nombre: (0, 0) for nombre, _ in SENSORES}   # último valor válido para 

Modbus (x10) 

last_good_flt = {nombre: (0.0, 0.0) for nombre, _ in SENSORES}# último valor válido para 

CSV/uso humano 

 

class ConnLoggerHandler(ModbusConnectedRequestHandler): 

    def connectionMade(self): 

        global _conectado 

        super().connectionMade() 

        _conectado = True 

        try: 

            host, port = self.request.getpeername() 

            print(f"[CONN] Cliente conectado: {host}:{port}", flush=True) 

        except Exception: 

            print("[CONN] Cliente conectado (peername no disponible)", flush=True) 

 

    def connectionLost(self, reason): 

        global _conectado 

        print(f"[DISC] Cliente desconectado: {reason}", flush=True) 

        _conectado = False 

        super().connectionLost(reason) 
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identity = ModbusDeviceIdentification() 

identity.VendorName = 'Raspberry Pi Server' 

identity.ProductCode = 'PM' 

identity.ProductName = 'DHT22+GPIO Server' 

identity.ModelName = 'Secador Híbrido' 

identity.MajorMinorRevision = '1.0' 

 

def ventana_n_dias(hoy: date): 

    idx = hoy.toordinal() // ROTACION_DIAS 

    inicio_ord = idx * ROTACION_DIAS 

    inicio = date.fromordinal(inicio_ord) 

    fin = inicio + timedelta(days=ROTACION_DIAS - 1) 

    return inicio, fin 

 

def ruta_csv_actual(dt: datetime): 

    d0, _ = ventana_n_dias(dt.date()) 

    return os.path.join(CSV_DIR, f"secador_{d0:%d_%m_%Y}.csv") 

 

def preparar_csv(path): 

    nuevo = not os.path.exists(path) 

    if nuevo: 

        with open(path, "a", newline="") as f: 

            w = csv.writer(f) 

            header = ["timestamp"] 

            for i in range(1, 7): 

                header += [f"T{i}", f"Hum{i}"] 

            w.writerow(header) 
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def lectura_dht_valida(t, h): 

    if t is None or h is None: return False 

    if not (-40.0 <= t <= 80.0): return False 

    if not (0.0 <= h <= 100.0):  return False 

    return True 

 

# --- Lectura concurrente con timeout y SIN CACHE (nuevo objeto por lectura) --- 

def _worker_leer_dht(pin, idx, result_dict, name): 

    """ 

    Hilo: crea un DHT22 nuevo, intenta hasta 2 lecturas rápidas. 

    Si no hay sensor/pin desconectado, levantará excepción y devolvemos falla. 

    """ 

    t = h = None 

    ok = False 

    for _ in range(2): 

        dht = None 

        try: 

            dht = adafruit_dht.DHT22(pin, use_pulseio=False) 

            t = dht.temperature 

            h = dht.humidity 

            if lectura_dht_valida(t, h): 

                ok = True 

                break 

        except Exception: 

            pass 

        finally: 

            try: 

                if dht is not None: 

                    dht.exit() 
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            except Exception: 

                pass 

        time.sleep(0.2) 

    result_dict[idx] = (ok, t if ok else None, h if ok else None, name) 

 

def leer_todos_los_sensores_con_timeout(): 

    threads = [] 

    results = {} 

    for i, (nombre_pin) in enumerate(SENSORES): 

        nombre, pin = nombre_pin 

        th = threading.Thread(target=_worker_leer_dht, args=(pin, i, results, nombre), 

daemon=True) 

        th.start() 

        threads.append(th) 

 

    deadline = time.time() + LECTURA_TIMEOUT_S 

    for th in threads: 

        remaining = deadline - time.time() 

        if remaining > 0: 

            th.join(remaining) 

 

    for i, (nombre, _) in enumerate(SENSORES): 

        if i not in results: 

            results[i] = (False, None, None, nombre) 

    return results  # idx -> (ok, t, h, nombre) 

 

# ========= Tareas ========= 

def tarea_lecturas_y_hr(): 

    global _ultimo_print 
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    ultimo_log = 0.0 

    csv_path = ruta_csv_actual(datetime.now()) 

    preparar_csv(csv_path) 

 

    while True: 

        ciclo_inicio = time.time() 

        ahora = datetime.now() 

 

        # rotación CSV 

        nuevo_path = ruta_csv_actual(ahora) 

        if nuevo_path != csv_path: 

            csv_path = nuevo_path 

            preparar_csv(csv_path) 

 

        # 1) Leer sensores en paralelo con timeout y sin cache 

        resultados = leer_todos_los_sensores_con_timeout() 

 

        # 2) Preparar HR, CSV y datos para imprimir 

        regs = [0]*12 

        fila_csv = [ahora.isoformat(sep=" ", timespec="seconds")] 

        lecturas_print = []  # (nombre, t_ok|None, h_ok|None) 

 

        for i in range(len(SENSORES)): 

            ok, t, h, nombre = resultados[i] 

            idxT = 2*i 

            idxH = idxT + 1 

 

            if ok: 

                # reset fallas y actualiza último válido 
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                fallas_consecutivas[nombre] = 0 

                last_good_x10[nombre] = (x10(t), x10(h)) 

                last_good_flt[nombre] = (float(f"{t:.1f}"), float(f"{h:.1f}")) 

 

                # Modbus/CSV usan el valor actual (válido) 

                regs[idxT], regs[idxH] = last_good_x10[nombre] 

                fila_csv.extend([f"T{i+1}: {t:.1f}", f"Hum{i+1}: {h:.1f}"]) 

 

                # Print muestra el valor real 

                lecturas_print.append((nombre, t, h)) 

 

            else: 

                # falla este ciclo 

                fallas_consecutivas[nombre] += 1 

 

                # CMD: SIEMPRE 0/0 cuando falla el ciclo 

                lecturas_print.append((nombre, None, None)) 

 

                # Modbus/CSV: solo 0/0 si superó umbral; si no, mantener último válido 

                if fallas_consecutivas[nombre] >= FALLAS_CONSEC_PARA_ENCERAR: 

                    regs[idxT], regs[idxH] = (0, 0) 

                    fila_csv.extend([f"T{i+1}: 0.0", f"Hum{i+1}: 0.0"]) 

                else: 

                    # Mantener último válido (si no hay histórico, será 0/0 por defecto) 

                    lt_x10, lh_x10 = last_good_x10[nombre] 

                    lt_f, lh_f = last_good_flt[nombre] 

                    regs[idxT], regs[idxH] = (lt_x10, lh_x10) 

                    fila_csv.extend([f"T{i+1}: {lt_f:.1f}", f"Hum{i+1}: {lh_f:.1f}"]) 
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        # 3) Escribir HRs 

        with ds_lock: 

            context[UNIT_ID].setValues(3, 0, regs) 

 

        # 4) Print agrupado (CMD: 0/0 si falla en el ciclo) 

        if time.time() - _ultimo_print >= INTERVALO_PRINT_S: 

            ok_count = sum(1 for _, t_ok, h_ok in lecturas_print if t_ok is not None and h_ok 

is not None) 

            fail = len(lecturas_print) - ok_count 

            print(f"[{ahora:%Y-%m-%d %H:%M:%S}] Lecturas DHT (ok={ok_count}, 

fail={fail})", flush=True) 

            for j, (nombre, t_ok, h_ok) in enumerate(lecturas_print, start=1): 

                t_str = f"{t_ok:.1f}°C" if t_ok is not None else "0.0°C" 

                h_str = f"{h_ok:.1f}%"  if h_ok is not None else "0.0%" 

                fc = fallas_consecutivas[nombre] 

                extra = f" (fallas={fc})" if (t_ok is None or h_ok is None) else "" 

                print(f"  HR{2*(j-1):02d}/HR{2*(j-1)+1:02d} <- {nombre}: T={t_str} | 

H={h_str}{extra}", flush=True) 

            print("[HR] ->", regs, flush=True) 

 

            with ds_lock: 

                coils = context[UNIT_ID].getValues(1, 0, count=4) 

            coils_str = " | ".join([f"C{i}={int(coils[i])}" for i in range(4)]) 

            print(f"[COILS] <- {coils_str}", flush=True) 

            print("[MODBUS] Cliente conectado" if _conectado else "[MODBUS] Esperando 

conexión de cliente...", flush=True) 

            print("-"*60, flush=True) 

            _ultimo_print = time.time() 

 

        # 5) CSV 
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        if time.time() - ultimo_log >= PERIODO_LOG_S: 

            with open(csv_path, "a", newline="") as f: 

                csv.writer(f).writerow(fila_csv) 

            ultimo_log = time.time() 

 

        # 6) Sleep adaptativo 

        elapsed = time.time() - ciclo_inicio 

        rest = max(0.0, PERIODO_LECTURA_S - elapsed) 

        time.sleep(rest) 

 

def tarea_coils_a_gpio(): 

    while True: 

        with ds_lock: 

            coils = context[UNIT_ID].getValues(1, 0, count=max(8, len(SALIDAS_GPIO))) 

        for coil_idx, bcm in SALIDAS_GPIO.items(): 

            activo = bool(coils[coil_idx]) if coil_idx < len(coils) else False 

            if RELES_ACTIVOS_EN_BAJO: 

                GPIO.output(bcm, GPIO.LOW if activo else GPIO.HIGH) 

            else: 

                GPIO.output(bcm, GPIO.HIGH if activo else GPIO.LOW) 

        time.sleep(0.1) 

 

# ========= Main ========= 

def main(): 

    try: 

        th1 = threading.Thread(target=tarea_lecturas_y_hr, daemon=True) 

        th2 = threading.Thread(target=tarea_coils_a_gpio, daemon=True) 

        th1.start() 

        th2.start() 
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        print(f"[SRV] Modbus TCP escuchando en {SERVER_BIND_IP}:{SERVER_PORT} 

(UnitID={UNIT_ID})", flush=True) 

        StartTcpServer(context, identity=identity, address=(SERVER_BIND_IP, 

SERVER_PORT), handler=ConnLoggerHandler) 

    finally: 

        GPIO.cleanup() 

 

if __name__ == "__main__": 

    main() 

Integrantes: Angel Zumba - Miguel Mayorga   

  Antes de ese umbral, se mantiene el ÚLTIMO VALOR VÁLIDO. 

    ModbusSlaveContext, 

    ModbusServerContext, 

    ModbusSequentialDataBlock, 

    from pymodbus.server import StartTcpServer, ModbusConnectedRequestHandler  # 

>=3.x 

    from pymodbus.server.sync import StartTcpServer, 

ModbusConnectedRequestHandler  # 2.5.x 

    ("DHT1", board.D4), 

    ("DHT2", board.D17), 

    ("DHT3", board.D27), 

    ("DHT4", board.D22), 

    ("DHT5", board.D5), 

    ("DHT6", board.D6), 

PERIODO_LECTURA_S = 6.0     # duración objetivo del ciclo 

PERIODO_LOG_S     = 300.0     # CSV 

INTERVALO_PRINT_S = 6.0     # impresión agrupada 

LECTURA_TIMEOUT_S = 5.0     # timeout por sensor (por ciclo) 

FALLAS_CONSEC_PARA_ENCERAR = 7  # <-- cambia aquí: # de fallas seguidas para 

poner 0 en Modbus/CSV 

SERVER_PORT    = 1502 
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UNIT_ID        = 1 

    inicial = GPIO.HIGH if RELES_ACTIVOS_EN_BAJO else GPIO.LOW 

    GPIO.setup(bcm, GPIO.OUT, initial=inicial) 

    return int(round(v*10)) if v is not None else 0 

store   = ModbusSlaveContext(hr=hr_block, co=co_block, zero_mode=False) 

last_good_x10 = {nombre: (0, 0) for nombre, _ in SENSORES}   # último valor válido para 

Modbus (x10) 

    def connectionMade(self): 

        global _conectado 

        super().connectionMade() 

        _conectado = True 

        try: 

            host, port = self.request.getpeername() 

            print(f"[CONN] Cliente conectado: {host}:{port}", flush=True) 

        except Exception: 

            print("[CONN] Cliente conectado (peername no disponible)", flush=True) 

 

    def connectionLost(self, reason): 

        global _conectado 

        print(f"[DISC] Cliente desconectado: {reason}", flush=True) 

        _conectado = False 

        super().connectionLost(reason) 

    idx = hoy.toordinal() // ROTACION_DIAS 

    inicio_ord = idx * ROTACION_DIAS 

    inicio = date.fromordinal(inicio_ord) 

    fin = inicio + timedelta(days=ROTACION_DIAS - 1) 

    return inicio, fin 

    d0, _ = ventana_n_dias(dt.date()) 

    return os.path.join(CSV_DIR, f"secador_{d0:%d_%m_%Y}.csv") 
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    nuevo = not os.path.exists(path) 

    if nuevo: 

        with open(path, "a", newline="") as f: 

            w = csv.writer(f) 

            header = ["timestamp"] 

            for i in range(1, 7): 

                header += [f"T{i}", f"Hum{i}"] 

            w.writerow(header) 

    if t is None or h is None: return False 

    if not (-40.0 <= t <= 80.0): return False 

    if not (0.0 <= h <= 100.0):  return False 

    return True 

    """ 

    Hilo: crea un DHT22 nuevo, intenta hasta 2 lecturas rápidas. 

    Si no hay sensor/pin desconectado, levantará excepción y devolvemos falla. 

    """ 

    t = h = None 

    ok = False 

    for _ in range(2): 

        dht = None 

        try: 

            dht = adafruit_dht.DHT22(pin, use_pulseio=False) 

            t = dht.temperature 

            h = dht.humidity 

            if lectura_dht_valida(t, h): 

                ok = True 

                break 

        except Exception: 

            pass 
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        finally: 

            try: 

                if dht is not None: 

                    dht.exit() 

            except Exception: 

                pass 

        time.sleep(0.2) 

    result_dict[idx] = (ok, t if ok else None, h if ok else None, name) 

    threads = [] 

    results = {} 

    for i, (nombre_pin) in enumerate(SENSORES): 

        nombre, pin = nombre_pin 

        th = threading.Thread(target=_worker_leer_dht, args=(pin, i, results, nombre), 

daemon=True) 

        th.start() 

        threads.append(th) 

 

    deadline = time.time() + LECTURA_TIMEOUT_S 

    for th in threads: 

        remaining = deadline - time.time() 

        if remaining > 0: 

            th.join(remaining) 

 

    for i, (nombre, _) in enumerate(SENSORES): 

        if i not in results: 

            results[i] = (False, None, None, nombre) 

    return results  # idx -> (ok, t, h, nombre) 

    global _ultimo_print 

    ultimo_log = 0.0 
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    csv_path = ruta_csv_actual(datetime.now()) 

    preparar_csv(csv_path) 

 

    while True: 

        ciclo_inicio = time.time() 

        ahora = datetime.now() 

 

        # rotación CSV 

        nuevo_path = ruta_csv_actual(ahora) 

        if nuevo_path != csv_path: 

            csv_path = nuevo_path 

            preparar_csv(csv_path) 

 

        # 1) Leer sensores en paralelo con timeout y sin cache 

        resultados = leer_todos_los_sensores_con_timeout() 

 

        # 2) Preparar HR, CSV y datos para imprimir 

        regs = [0]*12 

        fila_csv = [ahora.isoformat(sep=" ", timespec="seconds")] 

        lecturas_print = []  # (nombre, t_ok|None, h_ok|None) 

 

        for i in range(len(SENSORES)): 

            ok, t, h, nombre = resultados[i] 

            idxT = 2*i 

            idxH = idxT + 1 

 

            if ok: 

                # reset fallas y actualiza último válido 

                fallas_consecutivas[nombre] = 0 
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                last_good_x10[nombre] = (x10(t), x10(h)) 

                last_good_flt[nombre] = (float(f"{t:.1f}"), float(f"{h:.1f}")) 

 

                # Modbus/CSV usan el valor actual (válido) 

                regs[idxT], regs[idxH] = last_good_x10[nombre] 

                fila_csv.extend([f"T{i+1}: {t:.1f}", f"Hum{i+1}: {h:.1f}"]) 

 

                # Print muestra el valor real 

                lecturas_print.append((nombre, t, h)) 

 

            else: 

                # falla este ciclo 

                fallas_consecutivas[nombre] += 1 

 

                # CMD: SIEMPRE 0/0 cuando falla el ciclo 

                lecturas_print.append((nombre, None, None)) 

 

                # Modbus/CSV: solo 0/0 si superó umbral; si no, mantener último válido 

                if fallas_consecutivas[nombre] >= FALLAS_CONSEC_PARA_ENCERAR: 

                    regs[idxT], regs[idxH] = (0, 0) 

                    fila_csv.extend([f"T{i+1}: 0.0", f"Hum{i+1}: 0.0"]) 

                else: 

                    # Mantener último válido (si no hay histórico, será 0/0 por defecto) 

                    lt_x10, lh_x10 = last_good_x10[nombre] 

                    lt_f, lh_f = last_good_flt[nombre] 

                    regs[idxT], regs[idxH] = (lt_x10, lh_x10) 

                    fila_csv.extend([f"T{i+1}: {lt_f:.1f}", f"Hum{i+1}: {lh_f:.1f}"]) 

 

        # 3) Escribir HRs 
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        with ds_lock: 

            context[UNIT_ID].setValues(3, 0, regs) 

 

        # 4) Print agrupado (CMD: 0/0 si falla en el ciclo) 

        if time.time() - _ultimo_print >= INTERVALO_PRINT_S: 

            ok_count = sum(1 for _, t_ok, h_ok in lecturas_print if t_ok is not None and h_ok 

is not None) 

            fail = len(lecturas_print) - ok_count 

            print(f"[{ahora:%Y-%m-%d %H:%M:%S}] Lecturas DHT (ok={ok_count}, 

fail={fail})", flush=True) 

            for j, (nombre, t_ok, h_ok) in enumerate(lecturas_print, start=1): 

                t_str = f"{t_ok:.1f}°C" if t_ok is not None else "0.0°C" 

                h_str = f"{h_ok:.1f}%"  if h_ok is not None else "0.0%" 

                fc = fallas_consecutivas[nombre] 

                extra = f" (fallas={fc})" if (t_ok is None or h_ok is None) else "" 

                print(f"  HR{2*(j-1):02d}/HR{2*(j-1)+1:02d} <- {nombre}: T={t_str} | 

H={h_str}{extra}", flush=True) 

            print("[HR] ->", regs, flush=True) 

 

            with ds_lock: 

                coils = context[UNIT_ID].getValues(1, 0, count=4) 

            coils_str = " | ".join([f"C{i}={int(coils[i])}" for i in range(4)]) 

            print(f"[COILS] <- {coils_str}", flush=True) 

            print("[MODBUS] Cliente conectado" if _conectado else "[MODBUS] Esperando 

conexión de cliente...", flush=True) 

            print("-"*60, flush=True) 

            _ultimo_print = time.time() 

 

        # 5) CSV 

        if time.time() - ultimo_log >= PERIODO_LOG_S: 
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            with open(csv_path, "a", newline="") as f: 

                csv.writer(f).writerow(fila_csv) 

            ultimo_log = time.time() 

 

        # 6) Sleep adaptativo 

        elapsed = time.time() - ciclo_inicio 

        rest = max(0.0, PERIODO_LECTURA_S - elapsed) 

        time.sleep(rest) 

    while True: 

        with ds_lock: 

            coils = context[UNIT_ID].getValues(1, 0, count=max(8, len(SALIDAS_GPIO))) 

        for coil_idx, bcm in SALIDAS_GPIO.items(): 

            activo = bool(coils[coil_idx]) if coil_idx < len(coils) else False 

            if RELES_ACTIVOS_EN_BAJO: 

                GPIO.output(bcm, GPIO.LOW if activo else GPIO.HIGH) 

            else: 

                GPIO.output(bcm, GPIO.HIGH if activo else GPIO.LOW) 

        time.sleep(0.1) 

    try: 

        th1 = threading.Thread(target=tarea_lecturas_y_hr, daemon=True) 

        th2 = threading.Thread(target=tarea_coils_a_gpio, daemon=True) 

        th1.start() 

        th2.start() 

        print(f"[SRV] Modbus TCP escuchando en {SERVER_BIND_IP}:{SERVER_PORT} 

(UnitID={UNIT_ID})", flush=True) 

        StartTcpServer(context, identity=identity, address=(SERVER_BIND_IP, 

SERVER_PORT), handler=ConnLoggerHandler) 

    finally: 

        GPIO.cleanup() 

    main() 
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