
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

Sistema de Supervisión y Control con LOGO Web Editor para un Secador

Híbrido

PROYECTO INTEGRADOR

Previo a la obtención del Título de:

Ingeniero en Electrónica y Automatización

Presentado por:

Angel Ruben Zumba Toledo

Miguel Gustavo Mayorga Torres

GUAYAQUIL - ECUADOR

Año: 2025

DEDICATORIA

Deseo dedicar el presente trabajo a mi

familia, por su apoyo tanto moral como

económico y sin el cual no hubiera logrado

llegar a este punto de mi vida. También a mis

profesores por compartir no solo sus

conocimientos, sino también sus valores y

ejemplo de dedicación. A todos ustedes

dedico con gran gratitud y cariño este logro.

(Angel Zumba)

Quiero dedicar afectuosamente este

trabajo a todas aquellas personas que

directa e indirectamente contribuyeron

culminar con éxito este proyecto, a los

amigos que donaron materiales, a los

profesores que contribuyeron con ideas y

a mis familiares por su apoyo

incondicional. (Miguel Mayorga)

AGRADECIMIENTOS

Quiero agradecer a las personas que hicieron posible la culminación de este proyecto.

Al Sr. Pazmiño que gentilmente en más de una ocasión nos recogió en la universidad a

altas horas de la noche y nos acogió en su casa para pasar la noche, agradezco su

invaluable amistad. Quiero agradecer especialmente a los Ing. Xavier Ladines, Ing. Jaun

Peralta, Ing. Emerita Delgado y al Ing. José Reinoso, por abrirme las puertas del CDTS

de donde me llevo gratas experiencias y conocimiento práctico que apliqué durante el

desarrollo de este trabajo. Finalmente quiero agradecer a mi familia, pilar fundamental

de toda esta etapa. (Miguel Mayorga)

Quiero agradecer primero a Dios por darme la fuerza necesaria para superarme y

culminar con éxito esta fase de mi vida. A mi familia por su constante apoyo que me ha

impulsado en incontables ocasiones. A mi amigo Gabriel Pazmiño que a pesar de su

cansancio se tomó la molestia en varias ocasiones de ayudarnos con transporte y con

posada. Finalmente, a mis profesores, mi tutor de tesis el Ing. Holger Cevallos y mi

profesor de la materia integradora el Ing. Efrén Herrera, agradezco su paciencia y

colaboración que me ayudaron en gran medida a lograr este gran objetivo en mi vida. A

todos gracias por su gran ayuda. (Angel Zumba)

DECLARACIÓN EXPRESA

“Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de

propiedad intelectual de la institución; Angel Ruben Zumba Toledo y Miguel Gustavo

Mayorga Torres y damos nuestro consentimiento para que la ESPOL realice la

comunicación pública de la obra por cualquier medio con el fin de promover la consulta,

difusión y uso público de la producción intelectual"

_________________ ___________________

Angel Ruben Zumba Toledo Miguel Gustavo Mayorga Torres

EVALUADORES

PhD. Holger Ignacio Cevallos

Ulloa

PROFESOR TUTOR

PhD. Efrén Vinicio Herrera

Muentes

PROFESOR DE LA MATERIA

ÍNDICE GENERAL

EVALUADORES ... 5

ABREVIATURAS ... iii

CAPÍTULO 1 ... 1

1. INTRODUCCIÓN .. 1

1.1 Descripción del problema ... 1

1.2 Justificación del problema.. 1

1.3 Objetivos .. 2

1.3.1 Objetivo General .. 2

1.3.2 Objetivos Específicos .. 2

1.4 Marco Teórico .. 3

CAPÍTULO 2 ... 6

2. Metodología ... 6

2.1 Análisis de la estructura de secador ... 6

2.2 Diagrama de bloques .. 7

2.3 Diagrama topológico de Red .. 8

2.4 Entradas y salidas ... 9

2.5 Tabla de materiales .. 11

2.6 Diseño de tablero ... 12

2.7 Programación de la Raspberry Pi .. 14

2.8 Programación del PLC LOGO! .. 15

2.9 Consideraciones técnicas y normativas.. 16

CAPITULO 3 ... 18

3. Análisis y Resultados ... 18

3.1 Tabla de Precios de componentes. ... 18

3.2 Análisis y comparación de datos de sensores dht22 y termopares

externos: ... 19

3.3 Evolución de la temperatura del secador hibrido .. 22

3.4 Comparación Sensores DHT22 vs Termopares. .. 23

3.5 Comportamiento de la humedad relativa. .. 23

3.6 Visualización de datos y control de temperatura en la página web. 23

3.7 Discusión de resultados .. 25

3.8 Conclusiones parciales del capítulo ... 26

CAPÍTULO 4 ... 28

4. CONCLUSIONES Y RECOMENDACIONES ... 28

4.1 Conclusiones .. 28

4.2 Recomendaciones .. 29

BIBLIOGRAFÍA ... 30

ANEXOS ... 1

Anexo 1. Fotos de proceso de construcción del Sistema de Secado Hibrido...... 1

Apendice A. .. 1

Diseños en 3D .. 1

Apéndice B. .. 3

Pasos para instalación y configuración del sistema Rasbian 3

Apéndice C. .. 7

Programación de PLC Logo: ... 7

Apéndice D. .. 10

Código del script de Python para comunicación modbus entre PLC Logo y

servidor Raspberry pi. ... 10

Apéndice E ... 30

Diseño de tablero ... 30

Diagrama Unifilar ... 30

Apéndice F. ... 31

Finalización del Proyecto .. 31

ABREVIATURAS

ESPOL – Escuela Superior Politécnica del Litoral

CDTS – Centro de Desarrollo Tecnológico Sustentable

1

CAPÍTULO 1

1. INTRODUCCIÓN

1.1 Descripción del problema

En la ciudad de Guayaquil, a la altura del kilómetro 30.5 de la vía Perimetral, dentro

del Centro de Desarrollo Tecnológico Sustentable (CDTS) de la Escuela Superior

Politécnica del Litoral (ESPOL), se encuentra un secador híbrido diseñado para el

tratamiento de biomasa. Este equipo integra energía solar y resistencias eléctricas,

con el propósito de mantener las condiciones térmicas necesarias para el secado.

El sistema cuenta con una cámara de secado cubierta con una lámina de

policarbonato transparente y un flujo de aire precalentado mediante un colector

solar, complementado por resistencias que permiten dar estabilidad al proceso.

Actualmente, el secador presenta limitaciones operativas significativas. El registro

de datos se realiza de forma manual y se transfiere posteriormente a hojas de

cálculo en Excel, lo que genera pérdida de tiempo y aumenta la probabilidad de

errores. Adicionalmente, el controlador de temperatura encargado de regular las

resistencias se encuentra averiado, lo que dificulta su activación y ocasiona

discontinuidades en el proceso. Estas deficiencias afectan la eficiencia del sistema,

comprometen la calidad de los datos obtenidos y han provocado que el equipo se

encuentre fuera de servicio.

La ausencia de un sistema automatizado de supervisión y control limita el uso

experimental del secador, impidiendo validaciones técnicas y científicas. En

consecuencia, se desaprovecha el potencial del equipo para apoyar proyectos de

investigación orientados a la eficiencia energética y a la sostenibilidad de procesos

agrícolas.

1.2 Justificación del problema

La automatización del secador híbrido surge como una respuesta a las limitaciones

que presenta su operación manual. El registro no automatizado de variables

ambientales, así como la activación directa de los actuadores, incrementa el riesgo

de errores humanos y la exposición a condiciones eléctricas inseguras.

2

La implementación de un sistema automatizado permite garantizar la continuidad

operativa y la obtención de datos confiables en tiempo real, mejorando la eficiencia

energética y la calidad de los resultados experimentales. Al integrar tecnologías de

control y monitoreo, se reduce la dependencia de la intervención humana, se

optimiza el uso de la energía solar y se respalda el proceso con resistencias

eléctricas únicamente cuando es necesario.

El secador híbrido, además, constituye una alternativa sostenible para el

procesamiento de biomasa y productos agrícolas, al aprovechar fuentes renovables

y minimizar la huella ambiental. La incorporación de un sistema automatizado

fortalece su viabilidad como herramienta de investigación aplicada, permitiendo

validar parámetros técnicos y científicos con mayor precisión.

Finalmente, este proyecto tiene un impacto formativo relevante, pues al

desarrollarse en un entorno académico, contribuye al fortalecimiento de

competencias en áreas como la automatización, el control de procesos, las energías

renovables y el análisis de datos. De esta manera, no solo se optimiza un equipo

de laboratorio, sino que también se fomenta la generación de conocimiento y el

desarrollo de soluciones tecnológicas aplicables al sector agroindustrial.

1.3 Objetivos

1.3.1 Objetivo General

Desarrollar un sistema automatizado de supervisión y control para un secador

híbrido, que permita registrar en tiempo real las variables de humedad y

temperatura, gestionar el funcionamiento de la resistencia eléctrica de manera

eficiente y disponer de un registro confiable de datos para su análisis posterior.

1.3.2 Objetivos Específicos

 Automatizar la captura de datos de humedad y temperatura mediante sensores

conectados a un sistema de adquisición, con comunicación bidireccional hacia

el controlador lógico programable, para visualizar la información en tiempo real

en una interfaz web.

3

 Implementar una interfaz gráfica accesible dentro de la red local que permita

al usuario supervisar el sistema y gestionar el encendido y apagado de las

resistencias de manera segura y práctica.

 Diseñar un tablero de control que aloje los componentes eléctricos y

electrónicos del sistema, garantizando la correcta organización, seguridad y

facilidad de mantenimiento.

 Desarrollar un sistema de supervisión y control que permita el monitoreo en

tiempo real de las variables ambientales y del estado del secador híbrido,

incorporando además la generación de archivos en formato CSV para el

registro histórico y análisis de datos.

1.4 Marco Teórico

El secado de productos agrícolas constituye una etapa crítica en la cadena de

postcosecha, ya que influye directamente en la calidad, vida útil y valor comercial

del producto final. En regiones rurales o con infraestructura limitada, los métodos

tradicionales de secado suelen presentar desventajas significativas, entre ellas

tiempos prolongados, dependencia de las condiciones climáticas y riesgo de

contaminación por agentes externos como insectos, hongos o polvo. En este

contexto, los sistemas híbridos de secado solar-eléctrico se presentan como una

alternativa eficiente y sostenible, al combinar fuentes de energía renovable con el

respaldo de resistencias eléctricas que aseguran la continuidad del proceso.

La utilización de energía solar en procesos de secado ha sido ampliamente

investigada debido a su carácter renovable, bajo costo operativo y sostenibilidad

ambiental. Sin embargo, su intermitencia por factores climáticos adversos ha

impulsado el desarrollo de configuraciones híbridas que integran apoyos eléctricos

o mecánicos, como resistencias y blowers, garantizando así estabilidad térmica y

reducción en los tiempos de secado (Paes et al., 2022).

En los últimos años, la automatización ha desempeñado un rol fundamental en la

optimización de sistemas de secado. Diversos autores han desarrollado soluciones

que integran sensores, controladores lógicos programables (PLC),

microcontroladores y plataformas de visualización para supervisar variables críticas

como temperatura, humedad relativa, velocidad del aire y masa del producto. Por

4

ejemplo, Dharmender et al. (2024) propusieron un secador solar automatizado con

asistencia de desecantes, incorporando control de temperatura mediante sensores

y arquitectura basada en microcontroladores, lo que permitió mejorar la eficiencia

energética y la calidad de las semillas tratadas.

De igual manera, Paes et al. (2022) desarrollaron un sistema de adquisición

automática de datos en un secador híbrido, empleando sensores, comunicación

inalámbrica y aplicaciones móviles para facilitar el monitoreo remoto. Sus resultados

evidenciaron mayor precisión en la medición y validación frente a métodos

convencionales, lo que resalta la relevancia de incorporar tecnologías de bajo costo

y accesibles para el sector agrícola.

En el ámbito industrial, los PLC constituyen la solución más robusta y confiable para

la automatización de procesos. Rosa et al. (2020) implementaron un sistema

embebido para la supervisión de deshumidificadores industriales, integrando

sensores, interfaces gráficas y comunicación mediante protocolos estándar, como

Modbus RTU, lo que evidenció la importancia de la interoperabilidad en entornos

distribuidos. Asimismo, investigaciones recientes exploran la incorporación de

algoritmos evolutivos y técnicas de autooptimización en entornos PLC, generando

código de control adaptativo y reduciendo los tiempos de desarrollo (Löppenberg &

Schwung, 2023).

El uso de plataformas de visualización es otro pilar en la automatización de

procesos de secado. Herramientas como el Logo Web Editor permiten crear

interfaces gráficas accesibles desde una red local, facilitando tanto la supervisión

en tiempo real como el control directo de los actuadores del sistema. Si bien estos

entornos no alcanzan la complejidad de un sistema SCADA industrial, su

implementación constituye una arquitectura de supervisión simplificada que

satisface las necesidades de registro, visualización y control a escala de laboratorio.

En este tipo de soluciones, la generación de archivos en formato CSV cumple la

función de registro histórico, permitiendo analizar los datos en hojas de cálculo o

bases de datos sin necesidad de servidores dedicados.

Finalmente, la integración de sensores de bajo costo, sistemas embebidos y

controladores programables en sistemas híbridos de secado agrícola representa un

5

enfoque viable, económico y escalable hacia la digitalización de procesos rurales.

El proyecto actual se enmarca en esta línea, proponiendo la implementación de un

sistema automatizado que combina adquisición de datos, supervisión mediante

interfaz web y control de resistencias eléctricas, con potencial de evolución hacia

arquitecturas más avanzadas de monitoreo remoto y análisis predictivo.

6

CAPÍTULO 2

El presente capitulo contiene la descripción de todo el proceso seguido para la

realización del presente proyecto, así como los diferentes diagramas que explican las

conexiones y forma de funcionamiento de este mismo.

2. Metodología

2.1 Análisis de la estructura de secador

El secador híbrido utilizado en este proyecto se encuentra instalado en el Centro de

Desarrollo Tecnológico Sustentable (CDTS) y fue previamente diseñado y

construido como parte de iniciativas anteriores. Su configuración incluye una

cámara de secado cubierta por policarbonato transparente, un colector solar

encargado de precalentar el aire y resistencias eléctricas para complementar el

aporte térmico cuando las condiciones solares son insuficientes.

Durante la etapa inicial del proyecto se evaluó la posibilidad de alimentar la

resistencia eléctrica con la planta fotovoltaica existente en el sitio. Sin embargo, tras

la inspección técnica se determinó que dicha planta no contaba con la capacidad

suficiente para cubrir la demanda energética del sistema. En consecuencia, se

decidió conectar las resistencias a la red eléctrica, garantizando su operación

confiable y continua.

Con el fin de automatizar su funcionamiento y mejorar la precisión del registro de

datos, se identificaron los siguientes subsistemas de trabajo:

 Subsistema de alimentación: El aire de secado se precalentó en el colector solar

y posteriormente atravesó las resistencias eléctricas, alimentadas desde la red

pública, que permitieron mantener la temperatura de operación establecida.

 Subsistema de control: Se empleó un controlador lógico programable (PLC) en

conjunto con una unidad de procesamiento auxiliar para recibir la información de

los sensores de humedad y temperatura. Con base en estos datos, se ejecutó la

lógica de encendido y apagado de la resistencia de acuerdo con el valor de

consigna establecido.

7

 Subsistema de red y monitoreo: La comunicación entre dispositivos se

estableció mediante el protocolo Modbus TCP/IP, permitiendo la transmisión

bidireccional de datos entre el PLC, la unidad de procesamiento y el router del

CDTS. Gracias a esta infraestructura se desplegó una interfaz gráfica en Logo

Web Editor, desde la cual fue posible supervisar en tiempo real el estado del

sistema y registrar las variables en archivos de tipo CSV para su posterior análisis.

La integración de estos subsistemas permitió disponer de un equipo operativo y

automatizado, reduciendo la intervención manual y garantizando un monitoreo

confiable de las variables críticas del proceso de secado.

2.2 Diagrama de bloques

Con el fin de representar la organización funcional del secador híbrido y su sistema

de automatización, se elaboró un diagrama de bloques que muestra la interacción

entre los diferentes subsistemas y dispositivos empleados. Dicho diagrama se

presenta en el Gráfico 2.1

Gráfico 2.1 Diagrama de bloques del proyecto.

El sistema se estructuró en tres bloques principales:

Bloque de alimentación: El aire de secado fue precalentado mediante un colector

solar y posteriormente pasó a través de resistencias eléctricas de 2 kW, alimentadas

desde la red eléctrica pública. Este esquema permitió garantizar la estabilidad de la

temperatura requerida, complementando el aporte solar en momentos de baja

radiación.

8

Bloque de control: Se utilizó un controlador lógico programable (PLC) Siemens

LOGO! 8.2, en conjunto con una Raspberry Pi 3 Modelo B, que actuó como unidad

de procesamiento auxiliar. Los sensores de humedad y temperatura DHT22 se

conectaron a la Raspberry Pi, la cual transmitió los datos al PLC mediante el

protocolo Modbus TCP/IP. El PLC ejecutó la lógica de control, determinando el

encendido y apagado de las resistencias en función del valor de consigna

establecido.

Bloque de red y monitoreo: Para la comunicación entre los dispositivos se utilizó

un switch Ethernet, que interconectó el PLC, la Raspberry Pi y el router del CDTS.

Gracias a esta infraestructura, se desplegó una interfaz gráfica desarrollada en

Logo Web Editor, desde la cual fue posible supervisar en tiempo real el estado del

sistema y registrar automáticamente los datos obtenidos en archivos de formato

CSV, accesibles para su análisis en hojas de cálculo.

La integración de estos bloques permitió implementar una solución práctica y

confiable para la supervisión y control del secador híbrido, reduciendo la

intervención manual y garantizando un acceso confiable a la información del

proceso.

2.3 Diagrama topológico de Red

Con el fin de garantizar la comunicación entre el PLC y el servidor Raspberry, se

implementó una topología de red en estrella, representada en el Gráfico 2.2

En esta configuración, el switch Ethernet actuó como nodo central de conexión. A

través de él se interconectaron el PLC Siemens LOGO! 8.2, la Raspberry y el router

del CDTS, lo que permitió establecer un canal de comunicación estable mediante

el protocolo Modbus TCP/IP.

La Raspberry Pi recibió la información de los sensores DHT22 y la transmitió al

PLC, mientras que este último ejecutó la lógica de control y envió los datos hacia la

red. Gracias a la integración con el router, la interfaz desarrollada en Logo Web

Editor estuvo disponible dentro de la red local, posibilitando el acceso al dashboard

para la visualización en tiempo real del estado del sistema.

9

El empleo de esta topología permitió centralizar la gestión de las comunicaciones y

reducir la complejidad de las conexiones entre los dispositivos, asegurando un flujo

de información confiable para la supervisión y control del secador híbrido.

Gráfico 2.2 Topología de Red.

2.4 Entradas y salidas

Tabla 2.1Lista de entradas y salidas del sistema.

TABLA DE ENTRADAS Y SALIDAS

Señal Tipo Descripción

TH1 Entrada Sensor DHT22 ubicado en la cámara de secado

(posición bandeja inferior) para medir humedad y

temperatura.

10

TH2 Entrada Sensores DHT22 ubicados en posiciones

estratégicas dentro de la cámara del secador

para medir las variables de temperatura y de

humedad.

TH3 Entrada Sensor DHT22 ubicado en la cámara de secado

(posición punto muerto) para medir humedad y

temperatura.

TH4 Entrada Sensor DHT22 ubicado en la cámara de secado

(posición bandeja intermedia inferior) para medir

humedad y temperatura.

TH5 Entrada Sensor DHT22 ubicado en la cámara de secado

(posición bandeja intermedia superior) para

medir humedad y temperatura.

TH6 Entrada Sensor DHT22 ubicado en la cámara de secado

(posición bandeja superior) para medir humedad

y temperatura.

PARO DE

EMERGENCIA

Entrada Pulsador de paro de emergencia para detener el

sistema en condiciones críticas.

START_RES Entrada Pulsador de arranque de la resistencia.

STOP_RES Entrada Pulsador de apagado de la resistencia.

START_BLOWER Entrada Pulsador de arranque del blower.

STOP_BLOWER Entrada Pulsador de apagado del blower.

START_AUTO Entrada Pulsador de arranque del modo Automático

STOP_AUTO Entrada Pulsador de apagado del modo Automático

AUTO_ON Salida Luz piloto verde que indica encendido del modo

Automático.

AUTO_OFF Salida Luz piloto roja que indica apagado del modo

Automático.

BLOWER_ON Salida Activación del blower

11

BLW_ON Salida Luz piloto verde que indica encendido del

blower.

BLW_OFF Salida Luz piloto roja que indica apagado del blower.

RES_ON Salida Activación de la resistencia.

PLT_ RES_ON Salida Luz piloto verde que indica encendido de la

resistencia.

PLT_ RES_OFF Salida Luz piloto roja que indica apagado de la

resistencia.

Fuente: Elaboración propia a partir de la implementación del sistema.

2.5 Tabla de materiales

Tabla 2.2 Lista de materiales.

ÍTEM DESCRIPCIÓN CANTIDAD FUNCIÓN PRINCIPAL

1 Controlador lógico

programable (PLC)

Siemens LOGO! 8.2

1 Ejecución de la lógica de control

del sistema.

2 Raspberry Pi 3 Modelo B 1 Procesamiento de datos de

sensores y comunicación con el

PLC mediante Modbus TCP/IP.

3 Switch Ethernet de 5

puertos

1 Interconexión de la red local (PLC,

Raspberry Pi y router CDTS).

4 Sensor DHT22 6 Medición de humedad relativa y

temperatura en diferentes puntos

de la cámara del secador.

5 Pulsador de

arranque/parada

3 Control manual de la resistencia,

blower y modo automático.

6 Pulsador de paro de

emergencia

1 Detención del sistema en

condiciones críticas.

7 Luz piloto verde 220 V 3 Indicación visual de encendido

(resistencia, blower y modo

automático).

12

8 Luz piloto roja 220 V 3 Indicación visual de apagado

(resistencia, blower y modo

automático).

9 Tablero eléctrico ABS

con plafón metálico

(50×40×18 cm)

1 Montaje y protección de los

componentes del sistema.

10 Breaker 2P – 25 A 1 Breaker principal.

11 Seccionador 2P – 16 A 1 Seccionamiento de la resistencia.

12 Seccionador 1P – 4 A 1 Seccionamiento del blower.

13 Seccionador 1P – 4A 1 Seccionamiento del circuito de

control.

14 Resistencia eléctrica 220

V / 2 kW

1 Calentamiento del aire que ingresa

a la cámara de secado.

15 Blower 282 W, salida 2.5” 1 Inyección de flujo de aire hacia el

colector solar y la cámara de

secado.

16 Borneras 34 Conexión (alimentación, sensores,

etc)

17 Riel DIN 1 Montaje estructurado de los

componentes eléctricos.

18 Canaleta PVC 33×25 mm 1 Organización del cableado dentro

del tablero.

19 Cable eléctrico 18 AWG 40 m Cableado y conexiones de control.

20 Cable eléctrico 12 AWG 15 m Alimentación del sistema de

potencia.

21 Cable eléctrico 22 AWG 20 m Conexión de señales de sensores

22 Jumper para ensamblar 1 Ensamblaje y conexiones

Fuente: Elaboración propia a partir de la implementación del sistema.

2.6 Diseño de tablero

Para la elaboración del sistema, se construyó un tablero eléctrico en el que se

integraron todos los componentes principales del proyecto. El diseño se realizó

considerando criterios de seguridad eléctrica, organización interna y facilidad de

13

mantenimiento, de manera que se asegurara un montaje confiable y accesible para

futuras intervenciones.

En el tablero se dispusieron el controlador lógico programable Siemens LOGO! 8.2,

la Raspberry Pi 3 Modelo B, los seccionadores, el breaker principal, las borneras,

el relé para la resistencia y los elementos de señalización. La distribución de los

equipos se efectuó sobre un riel DIN, lo que permitió un montaje estructurado y

ordenado, mientras que el cableado fue guiado mediante canaletas internas que

facilitaron la organización y redujeron riesgos de interferencias o fallos eléctricos.

El diseño incluyó también un conjunto de pulsadores de arranque/parada para la

resistencia, el blower y el modo automático, así como un pulsador de paro de

emergencia para asegurar la seguridad del operador. Los pilotos luminosos de color

verde y rojo fueron instalados en el frente del tablero para indicar el estado de

encendido y apagado de cada elemento, lo que proporcionó una referencia visual

inmediata al operador.

Gráfico 2.3 Boceto del tablero de control.

14

2.7 Programación de la Raspberry Pi

Se empleó una Raspberry Pi 3 junto con el sistema operativo Raspberry Pi OS, la

distribución oficial basada en Linux Debian, para llevar a cabo la implementación del

sistema de adquisición de datos y comunicación, ya que ofreció estabilidad y soporte

para las librerías necesarias en el desarrollo.

El programa fue desarrollado en Python 3, utilizando librerías específicas para la

adquisición de datos, comunicación y manejo de archivos:

 pymodbus 2.5: empleada para implementar el servidor Modbus TCP/IP y

establecer la comunicación bidireccional entre la Raspberry Pi y el PLC Siemens

LOGO! 8.2. Se seleccionó la versión 2.5.x debido a que la versión 3.x presentaba

cambios en la API que ocasionaban incompatibilidades con métodos usados en

el proyecto.

 adafruit_dht: utilizada para la adquisición de datos de los sensores DHT22 de

humedad relativa y temperatura.

 RPi.GPIO: empleada en el control de salidas digitales asociadas a pilotos y

relevadores.

 Librerías estándar de Python: time, threading, datetime, csv y os, necesarias

para el manejo de procesos concurrentes, registro de datos y administración de

archivos.

El código ejecutado en la Raspberry Pi cumplió cuatro funciones principales:

1. Lectura concurrente de sensores DHT22:

Se conectaron seis sensores en diferentes posiciones de la cámara de secado. El

programa realizó lecturas en paralelo con manejo de timeouts para evitar

bloqueos. En caso de fallas consecutivas, los valores se reemplazaban por 0.0

tanto en el registro Modbus como en el archivo CSV, de acuerdo con el umbral

configurado.

2. Comunicación con el PLC mediante Modbus TCP/IP:

La Raspberry Pi operó como servidor Modbus TCP, publicando en tiempo real los

datos de los sensores hacia el PLC Siemens LOGO! 8.2. Dichos datos fueron

empleados por el PLC para ejecutar la lógica de control del proceso de secado.

15

3. Recepción de señales desde el PLC:

Además de enviar información, la Raspberry Pi recibió instrucciones del PLC a

través de registros Modbus. Estas señales se utilizaron para accionar salidas

GPIO que controlaban pilotos y relevadores, complementando las salidas físicas

limitadas del PLC.

4. Almacenamiento de datos en archivos CSV:

Los datos adquiridos se almacenaron en la propia Raspberry Pi en archivos de

formato CSV, configurados con rotación diaria. El intervalo de muestreo se

estableció en 5 minutos, dado que la temperatura es una variable de cambio lento

y no se requerían frecuencias de adquisición más altas para representar

adecuadamente la tendencia del proceso.

La programación de la Raspberry Pi fue un elemento clave en la arquitectura del

sistema, ya que permitió la adquisición confiable de las variables ambientales, la

comunicación bidireccional con el PLC y la generación de registros históricos en un

formato accesible para su análisis posterior.

2.8 Programación del PLC LOGO!

La programación del controlador lógico programable se realizó en el software LOGO!

Soft Comfort v8.4, empleando diagramas en bloques de funciones (FBD). La lógica

de control se estructuró en dos modos de operación: manual y automático,

garantizando flexibilidad en la operación y seguridad en el uso del equipo.

En el modo manual, tanto la resistencia eléctrica como el blower pudieron ser

accionados desde las botoneras físicas ubicadas en el tablero de control o desde las

botoneras virtuales disponibles en la interfaz web. Este esquema permitió que el

operador contara con redundancia en los mecanismos de control, manteniendo la

supervisión del estado del sistema en todo momento.

En el modo automático, se implementó un control ON/OFF con histéresis,

configurado con una ventana de operación de ±2 °C respecto al valor de consigna.

De esta manera, la resistencia se encendía y apagaba automáticamente para

mantener la temperatura dentro del rango establecido, mientras que el blower

permanecía encendido durante todo el ciclo de secado. En este modo, se bloquearon

16

los accionamientos manuales tanto de la resistencia como del blower, a fin de

prevenir activaciones accidentales mediante pulsos en las botoneras físicas. La

desactivación del modo automático se efectuó exclusivamente desde la botonera de

apagado del modo automático.

La recepción de las señales de humedad y temperatura se realizó mediante el

protocolo Modbus TCP/IP, configurando al PLC en modo cliente. A través de

entradas analógicas de red, el LOGO recibió los datos transmitidos por la Raspberry

Pi. Para la lógica de control, se seleccionaron cuatro señales de temperatura

correspondientes a los sensores DHT22 TH6, TH5, TH4 y TH1, con las cuales se

calculó un valor promedio que fue comparado contra el setpoint configurado en la

interfaz web.

Adicionalmente, se programó el envío de cuatro datos tipo coil hacia la Raspberry Pi,

empleando salidas digitales de red. Estas señales se utilizaron para accionar las

luces piloto correspondientes al estado del blower y del modo automático, integrando

de esta manera la supervisión visual del proceso.

La interfaz de usuario se desarrolló en LOGO! Web Editor, en la cual se diseñaron

dos pantallas principales. En la primera se incluyeron los controles para el

accionamiento manual y automático, junto con indicadores visuales animados que

facilitaron la supervisión:

 Una baliza azul en formato GIF para señalar el estado activo del modo automático.

 Un ventilador animado en GIF para indicar el encendido del blower.

 Una flama animada en GIF para mostrar el estado de encendido de la resistencia.

Esta programación integró tanto los mecanismos de control como la interfaz de

usuario, proporcionando una solución intuitiva y segura para la operación del secador

híbrido.

2.9 Consideraciones técnicas y normativas

A lo largo del desarrollo del sistema se consideraron técnicas y normativas que

garantizaron la seguridad, confiabilidad y replicabilidad del proyecto:

17

 Seguridad eléctrica: La construcción del tablero de control se realizó siguiendo

criterios básicos de seguridad establecidos en la normativa IEC 60364 –

Instalaciones eléctricas de baja tensión, así como en buenas prácticas de

cableado industrial. Se incorporaron protecciones mediante breaker principal y

seccionadores independientes para los circuitos de potencia, blower y control, a

fin de aislar adecuadamente cada subsistema y proteger a los usuarios ante

sobrecorrientes o fallas.

 Organización de componentes: El montaje de los equipos en el tablero se

efectuó sobre riel DIN, lo que permitió un orden estructurado y facilitó el

mantenimiento. Asimismo, se utilizaron canaletas plásticas para guiar el cableado

y borneras para las conexiones de potencia y señales, asegurando un sistema

accesible y seguro.

 Comunicación industrial: Para la transmisión de datos se implementó el

protocolo Modbus TCP/IP, ampliamente aceptado en entornos industriales por su

estandarización, compatibilidad y simplicidad. Esto garantizó la interoperabilidad

entre el PLC y la Raspberry Pi, además de permitir la escalabilidad futura hacia

sistemas de mayor complejidad.

 Gestión de datos: El almacenamiento de registros en archivos CSV permitió

disponer de información histórica de forma sencilla y accesible, sin requerir bases

de datos externas. Esta estrategia se alineó con principios de eficiencia y facilidad

de análisis, al ser compatible con herramientas comunes como Excel y

plataformas de análisis de datos.

 Interfaz de usuario: El desarrollo de la interfaz en LOGO! Web Editor se enfocó

en la seguridad y en la usabilidad. Al estar restringida a la red local del CDTS, se

evitó la exposición del sistema a accesos externos no autorizados. Además, se

incorporaron elementos visuales intuitivos que facilitaron la supervisión de las

variables y el control de los actuadores.

Estas consideraciones aseguraron que el sistema cumpliera no solo con la

funcionalidad prevista, sino también con criterios de seguridad, confiabilidad y

buenas prácticas de ingeniería, lo que garantiza su utilidad como prototipo académico

y su potencial de adaptación a entornos de mayor exigencia.

18

CAPITULO 3

Con el sistema construido se procedió a tomar muestras de datos por periodos de una

hora para comparar resultados y obtener una gráfica de histórico. Además, se utilizaron

una serie de sensores termopares externos con el fin de tener una referencia externa

con la cual comparar y validar resultados.

También se hicieron pruebas de comunicación entre el servidor raspberry con los demás

equipos para validar el acceso a los archivos con los datos tal como lo solicito el cliente.

3. Análisis y Resultados

3.1 Tabla de Precios de componentes.

Tabla 3.1 Tabla de precios.

Material Cantidad
Precio por

Unidad

PLC Logo V8.2 1 $320

Raspberry pi 3 modelo B 1 $125

Luz Piloto 22[mm] Led verde de 220V 3 $5

Luz Piloto 22[mm] Led Rojo de 220V 3 $5

Cable concéntrico de 4 hilos 12awg 15[m] $4

Switch de 8 puertos RJ45 1 $35

Fuente conmutada 12V 10A 1 $15

Pulsador doble metálico sin Luz 3 $10

Pulsador tipo hongo de paro de emergencia

22[mm]
1 $9

Sensor dht22 9 $6

Cable 18awg de un hilo café 5[m] $0.80

Cable 18awg de un hilo azul 5[m] $0.80

Cable 18awg de un hilo negro 5[m] $0.80

Tomacorriente sobrepuesto de 220V 2 $7.0

Canaleta pvc 2[m]x20[mm]x12[mm] de ancho 3 $3.0

19

Tablero plástico con plafón metálico

50[cm]x40[cm]x18[cm]
1 $70

Total $770

Fuente: Elaboración propia a partir de la implementación del sistema

3.2 Análisis y comparación de datos de sensores dht22 y termopares externos:

Para la obtención de datos se consideró cubrir en lo posible todas las secciones de

la cámara de secado, colocando 4 de los 6 sensores en las 4 bandejas a diferentes

alturas, el 5to sensor en una esquina de la cámara el cual se considera el punto

muerto donde hay menos circulación de aire caliente. Finalmente, el 6to sensor se lo

coloco en el exterior de la cámara para poder tener un censado de la temperatura del

ambiente. En este análisis y comparación se utilizarán únicamente los 4 primeros

sensores y como referencia 4 sensores termopares colocados en la misma posición.

Además, se debe tomar en cuenta que el tiempo del guardado de los datos del

sistema coincida con el tiempo en que se tomen los datos de los termopares para

evitar variaciones en lo posible.

Tabla 3.1.232 Comparativa de ubicación de sensores DHT22 vs termopares.

Sensores DHT22 Sensores Termopar

T6 T1

T5 T2

T4 T3

T1 T4

Fuente: Elaboración propia a partir de la implementación del sistema

El cuadro anterior muestra la posición de cada uno de los 4 sensores DHT22 ubicados

a diferentes alturas en comparación a las ubicaciones de los sensores termopares.

20

Tabla 3.3 Valores de temperatura de termopares de referencia.

Hora T1 T2 T3 T4

16:45 32,8 33,4 33,4 33,3

16:50 83,1 81 89,3 73,5

16:55

17:00

17:05

17:10 84,3 82,1 85,3 78,7

17:15 88,7 87,5 92 85

17:20 83,2 85,8 91,6 82,5

17:25 90,3 89,4 93,9 88,1

17:30 91,8 90 95,4 89,2

17:35 94,7 90,5 96,2 90,2

17:40 92,7 91,6 97,1 94,3

17:45

18:35 30,5 30,9 31,2 35,6

18:40 64,5 60,7 58,8 53

18:45 63 65 64,3 58,2

18:50 63,3 65 64,3 53,2

18:55

Fuente: Elaboración propia a partir de la implementación del sistema

Tabla 3.4 Valores de temperatura de sensores dht22.

21

Fuente: Elaboración propia a partir de la implementación del sistema

El sistema de secado hibrido se configuro para guardar datos cada 5 minutos, debido

a que la temperatura es un dato de baja variabilidad. Tomando en cuenta esto, se

tomaron las medidas obtenidas de los termopares en intervalos de tiempo

aproximados, aunque con cierto margen de diferencia en tiempo debido a algunos

errores de comunicación que se corrigieron posteriormente.

Se colocaron los márgenes de tiempo donde hubo errores de comunicación y no se

pudieron tomar datos (rojo), con el fin de no cortar la continuidad en el intervalo de

tiempo. De la misma forma se colocaron las franjas de tiempo donde si se obtuvieron

datos, pero no se los utilizo en el análisis porque no había con que compararlos (gris).

Hora T1
T2 (T

Ambiental)

T3

(Punto

Muerto)

T4 T5 T6

16:43:32 35 31 32,1 34,9 35,2 35,1

16:48:38 36,1 30 43,5 36,6 36,3 36,4

16:53:38 52,7 31,9 61,2 52,6 53,1 53,2

16:58:44 63,9 33,3 68 63,9 64,3 63,6

17:03:50 69,7 34,1 71 70,1 70 69

17:08:50 70,9 33,6 67,8 71,7 71,4 69,2

17:13:50 72,6 33,7 77,2 72,8 72,5 70,8

17:18:56 75,4 34,4 0 75,4 75,3 73,2

17:24:02 75,2 33,4 79,1 75,5 75,2 72,7

17:29:02 76,6 34,9 0 76,6 76,5 74,1

17:34:08 77,4 33 0 77,5 77,3 74,7

17:39:14 78 34,5 0 78,1 77,8 75,1

17:45:00

17:50:00

18:34:56 32,3 27,3 31,7 32,1 32 31,6

18:39:56 37 27,5 36,8 38,3 37,5 38,5

18:45:02 50,9 28,6 49,7 51,8 53,3 53,8

18:50:02 53,4 29,3 55 55,6 58,5 57,8

18:55:08 51,9 29,6 51,3 53,3 54,9 53,4

22

Tabla 3.1.5. Valores de Humedad respecto al tiempo

Fecha Hum1
Hum2 (Hum

del
Ambiente)

Hum3 Hum4
Hum Punto

Muerto

16:43:32 40,7 42,1 43 42,1 47,7

16:48:38 39 41 40,8 40,5 30

16:53:38 21,7 23,4 22,2 21,1 15,9

16:58:44 15,8 16,5 14,8 14 12,9

17:03:50 13,8 14,3 12 12 12

17:08:50 13,7 13,7 11,4 11,2 13

17:13:50 13,2 13,4 11,1 10,9 10,4

17:18:56 12,6 12,6 10,3 10 0

17:24:02 12,6 12,7 10,5 10,2 9,9

17:29:02 12,4 12,3 10,1 10 0

17:34:08 12,3 12,2 10 9,6 0

17:39:14 12,2 12 9,8 9,4 0

17:44:20 12,1 11,9 9,6 9,3 0

Fuente: Elaboración propia a partir de la implementación del sistema

3.3 Evolución de la temperatura del secador hibrido

Los sensores DHT22 mostraron un incremento progresivo de la temperatura en el

interior de la cámara de secado, alcanzando valores aproximados entre 75 °C y 78

°C. Cabe aclarar que la temperatura optima del secador es aproximadamente de 50

°C a 55 °C ya que a temperaturas más altas cualquier muestra de biomasa pierde

sus propiedades órgano-eléctricas, pero para consideraciones del análisis no se

controló la temperatura límite del secador.

 Etapa inicial (16:45–16:55): temperaturas entre 30 y 40 °C, con alta humedad

relativa (40–50%).

 Etapa de estabilización (17:00–17:20): ascenso sostenido de la temperatura por

encima de 60 °C y descenso de la humedad a valores entre 10–15%.

 Etapa de máxima operación (17:25–17:45): temperaturas superiores a 75 °C,

con humedades cercanas al 10%.

23

Se presenta un comportamiento coherente con lo esperado en el sistema de

secado, donde el aire caliente reduce el nivel de humedad interna del material a

secar.

3.4 Comparación Sensores DHT22 vs Termopares.

Al comparar las lecturas de ambos sistemas de medición se observó lo siguiente:

 Los termopares registraron temperaturas de referencia estables y coherentes con

la dinámica de calentamiento del sistema.

 Los DHT22 siguieron la misma tendencia, pero en algunos momentos presentaron

desviaciones superiores al ±5 °C.

 Se identificaron valores atípicos (0.0 °C y 0.0 % HR en el sensor DHT22 #3), que

corresponden a fallas de comunicación y fueron tratados como datos faltantes en

el análisis.

En promedio, los errores relativos de los DHT22 respecto a los termopares oscilaron

entre 2% y 8%, con picos mayores en los momentos de rápida variación térmica.

Estos resultados concuerdan con las especificaciones técnicas de los DHT22, que

tienen un margen de error de ±0.5 °C, pero son sensibles a condiciones extremas de

calor y baja humedad.

3.5 Comportamiento de la humedad relativa.

Los DHT22 registraron una disminución drástica de la humedad relativa conforme

aumentaba la temperatura. En la etapa inicial, los valores se mantuvieron entre 40–

50%, mientras que al llegar a 70–75 °C descendieron hasta 10–12%, lo que confirma

que el aire dentro de la cámara se volvió más seco y por tanto más efectivo para la

extracción de humedad de los productos.

3.6 Visualización de datos y control de temperatura en la página web.

La solución desarrollada incluyó una interfaz web que permitió tanto la visualización

en tiempo real de las variables medidas como el control de los parámetros operativos

del secador híbrido.

24

Gráfico 3.1Pestaña de interfaz web con valores de temperatura y humedad.

En dicha página se mostraron de manera dinámica los valores de temperatura y

humedad relativa obtenidos a partir de los seis sensores DHT22 distribuidos dentro

de la cámara de secado. Estos datos son actualizados automáticamente, lo que

facilita al usuario el seguimiento del comportamiento térmico del sistema durante el

proceso de secado.

Además de la visualización, la interfaz web permitió establecer el valor de consigna

(setpoint) de temperatura. Para ello se incorporó un control tipo “slider”, con el cual el

usuario seleccionaba la temperatura objetivo deseada. Este valor era transmitido al

PLC Siemens LOGO! 8.4, que ajustaba la operación de las resistencias eléctricas y

el blower para mantener la cámara en condiciones óptimas de secado.

25

Gráfico 3.2 Pestaña de interfaz web para control del sistema.

El uso de esta plataforma web simplificó la interacción con el sistema, eliminando la

necesidad de ajustar parámetros de manera manual en el PLC. Asimismo, garantizó

que cualquier operador, incluso con conocimientos básicos, pudiera supervisar y

modificar la temperatura de trabajo de forma intuitiva y segura.

Finalmente se agregó una red virtual gracias al uso del software Zero Tier, utilizando

la Raspberry como Gateway para otorgarle una ip virtual al PLC Logo ya que este no

es capaz de instalar el programa por su cuenta. De esta forma cualquier equipo con

el permiso de la red virtual es capaz de ingresar a la página web y controlar el sistema

desde cualquier parte del mundo siempre y cuando este esté encendido y conectado

a la red física del CDTS.

3.7 Discusión de resultados

 El sistema de control y monitoreo permitió seguir en tiempo real la evolución de la

temperatura y la humedad en el secador híbrido, lo que facilitó la supervisión del

proceso y evitó la necesidad de registros manuales.

 A pesar de las limitaciones de precisión de los sensores DHT22, la tendencia general

de sus mediciones coincidió con la de los termopares de referencia, validando su uso

en aplicaciones de bajo costo donde se prioriza la supervisión general y no la

exactitud científica.

26

 Las discrepancias detectadas se debieron principalmente a fallas de comunicación

en el sensor DHT22 #3 y a las limitaciones de este tipo de sensor en condiciones

extremas de alta temperatura y baja humedad.

 La interfaz web desarrollada representó un avance significativo, al mostrar

dinámicamente las variables medidas (temperatura y humedad relativa) y permitir el

control directo del setpoint de temperatura mediante un control tipo “slider”. Esta

solución mejoró la interacción con el sistema, haciéndolo accesible incluso para

operadores con conocimientos básicos.

 La integración de la red virtual mediante ZeroTier permitió el acceso remoto desde

cualquier dispositivo autorizado, garantizando que la supervisión y el control del

sistema pudieran realizarse desde cualquier parte del mundo. Esta característica

aumentó notablemente la versatilidad del sistema y su aplicabilidad en entornos

rurales o industriales distribuidos.

 En general, el sistema demostró ser tecnológicamente factible y económicamente

viable, con la ventaja adicional de escalabilidad gracias a su conectividad y facilidad

de operación.

3.8 Conclusiones parciales del capítulo

 El secador híbrido alcanzó condiciones adecuadas para el secado de biomasa,

registrando temperaturas superiores a 70 °C y reducciones de humedad relativa por

debajo del 15%, lo que confirma su eficiencia térmica.

 Los sensores DHT22, aunque menos precisos que los termopares, demostraron ser

útiles para el control general del sistema, validando su empleo en proyectos de bajo

costo y fácil implementación.

 La comparación con los termopares permitió identificar márgenes de error en un

rango entre 2% y 8%, reforzando la validez de los datos y mostrando la necesidad

de combinar sensores económicos con dispositivos de referencia para análisis más

precisos.

 La plataforma web implementada permitió tanto la visualización en tiempo real de

los parámetros como la modificación del ‘setpoint’ de temperatura, simplificando la

operación y eliminando la necesidad de interactuar directamente con el PLC.

27

 La integración de ZeroTier como red virtual otorgó acceso remoto seguro y global al

sistema, lo que convierte a la solución en una herramienta flexible y escalable para

distintos entornos de aplicación.

28

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

 El secador híbrido logró mantener temperaturas superiores a 70 °C y niveles de

humedad relativa inferiores al 15%, condiciones que resultaron adecuadas para el

secado de biomasa, validando así la efectividad de la propuesta.

 La incorporación del PLC Siemens LOGO! 8.4 permitió la automatización del proceso,

reduciendo la dependencia de la intervención manual, mejorando la continuidad del

secado y aumentando la confiabilidad operativa.

 La comparación de lecturas entre los sensores DHT22 y los termopares de referencia

mostró coherencia en la tendencia, a pesar de las limitaciones de precisión de los

DHT22. Esto confirmó que son apropiados para aplicaciones de monitoreo en campo

y de bajo costo, siempre que se utilicen con criterios de validación.

 La plataforma web desarrollada facilitó la visualización en tiempo real de los

parámetros de operación, así como la modificación del setpoint de temperatura. Esta

herramienta simplificó la interacción con el sistema, eliminando la necesidad de

ajustes directos en el PLC y garantizando un uso más accesible incluso para

operadores con conocimientos básicos.

 La integración de la red virtual ZeroTier permitió el acceso remoto seguro y global al

sistema de secado, ampliando su versatilidad y ofreciendo la posibilidad de

supervisar y controlar el proceso desde cualquier lugar del mundo.

 El análisis de costos evidenció que el sistema diseñado resulta económicamente

accesible, lo que refuerza la viabilidad de su implementación en contextos rurales o

pequeñas agroindustrias.

 En conjunto, el trabajo cumplió con los objetivos planteados, al demostrar que es

posible implementar un sistema de secado híbrido solar–eléctrico automatizado,

remoto, viable técnica y económicamente.

29

4.2 Recomendaciones

 Evaluar el reemplazo o complementación de los sensores DHT22 por dispositivos

de mayor precisión (como SHT31, SHT85 o PT100 con módulos de adquisición) en

proyectos que requieran datos de carácter científico o de investigación.

 Ampliar las pruebas a diferentes productos agrícolas con el fin de determinar la

adaptabilidad del sistema a distintos procesos de secado y establecer curvas

específicas de comportamiento.

 Integrar un módulo de registro en la nube para permitir monitoreo remoto avanzado,

almacenamiento histórico y análisis de datos a través de plataformas IoT o SCADA

distribuidas.

 Desarrollar un sistema de control inteligente que, mediante algoritmos de predicción

o control adaptativo, optimice el uso de la resistencia eléctrica en función de la

radiación solar disponible, reduciendo así el consumo energético.

 Considerar la incorporación de un sistema de seguridad adicional en la interfaz web

y en la red virtual para reforzar la protección contra accesos no autorizados.

 Realizar pruebas de eficiencia energética comparativa entre el uso solar y eléctrico,

de manera que se puedan cuantificar los ahorros obtenidos y la contribución a la

sostenibilidad del proceso.

30

BIBLIOGRAFÍA

 Cid, D., & Correa, C. (2019). Automatización de un prototipo secador de cacao

con control y monitoreo de variables físicas mediante una aplicación móvil.

Universidad Técnica de Manabí.

 Dharmender, D., Khura, T. K., Mani, I., Parray, R. A., Dubey, A., Kumari, S.,

Malkani, P., & Mandal, S. (2024). Improving vegetable seed quality and dryer

performance with an automated desiccant-assisted hybrid solar dryer system.

AATCC Review, 12(02), 284-289.

https://doi.org/10.21276/AATCCReview.2024.12.02.284

 Löppenberg, M., & Schwung, A. (2023). Self optimisation and automatic code

generation by evolutionary algorithms in PLC based controlling processes. arXiv

preprint arXiv:2304.05638.

 Malkani, P., Dubey, A., & Mandal, S. (2024). Design and Performance of an

Automated Desiccant-based Hybrid Solar Dryer for Onion Seed Drying.

International Journal of Agricultural Science and Technology.

 Oliveira, C. M. de, Pacheco, J. R., & Almeida, G. T. (2021). Diseño e

implementación de un sistema automático de control para regulación y monitoreo

de las condiciones internas de un secador de cacao. Universidad Técnica Estatal

de Quevedo.

 Paes, J. L., Ramos, V. A., de Oliveira, M. V. M., Pinto, M. F., Lovisi, T. A. P., & de

Souza, W. D. (2022). Automation of monitoring of drying parameters in hybrid solar

electric dryer for agricultural product. Revista Brasileira de Engenharia Agrícola e

Ambiental, 26(4), 283-291. https://doi.org/10.1590/1807-

1929/agriambi.v26n4p283-291

https://doi.org/10.21276/AATCCReview.2024.12.02.284
https://doi.org/10.1590/1807-1929/agriambi.v26n4p283-291
https://doi.org/10.1590/1807-1929/agriambi.v26n4p283-291

31

 Rosa, E. de O., Grabarski, L., Fragoso, M. F., Ferrari, A. C. K., Schuertz, J. R., &

da Silva, C. A. G. (2020). An embedded system for monitoring industrial air

dehumidifiers using a mobile Android application for IEEE 802.11 networks. arXiv

preprint arXiv:2008.11123}

 Solowjow, E., Ugalde, I., Shahapurkar, Y., Aparicio, J., Mahler, J., Satish, V.,

Goldberg, K., & Claussen, H. (2020). Industrial Robot Grasping with Deep

Learning using a Programmable Logic Controller (PLC). arXiv preprint

arXiv:2004.10251.

1

ANEXOS

Anexo 1. Fotos de proceso de construcción del Sistema de Secado

Hibrido

2

1

Apendice A.

Diseños en 3D

Diseño 3d de bases para riel Din:

Se realizaron diseños de base para riel Din para imprimir en 3D debido para tener una

mayor organización en el tablero, así como una mejor presentación.

Imagen 1. Modelo de base para sujeción de módulo de 4 reles y raspberry pi

Imagen 2. Modelo de base para sujeción de switch de 8 puertos rj45

2

Imagen 3. Modelo de base para sujeción de switch de 8 puertos rj45, vista frontal

3

Apéndice B.

Pasos para instalación y configuración del sistema Rasbian

Para la programación de la raspberry se procede a instalar el sistema basado en Linux,

Raspbian. Se descarga de la página oficial donde se encuentra el programa de

instalación para Windows.

Normalmente se utiliza una SD de 32Gb con el fin no alcanzar el máximo de capacidad

y evitar que se alenté.

Posterior a la instalación del programa en Windows Raspberry Pi Imager, se lo ejecuta y

con la SD colocada en la ranura de la laptop se procede a hacer la instalación del

4

sistema. Hay que considerar que ls SD será formateada y cualquier información previa

se perderá.

Una vez instalada el sistema se procede a encender la raspberry para verificar que el

sistema se haya instalado bien. Considerar la alimentación de 5V para la Raspberry y la

necesidad de un mouse y teclado para su manipulación.

5

Una vez instalado el sistema se realiza la actualización con el código sudo apt update y

se espera, luego se realizan las instalaciones de Python y librerías para la

comunicación con el PLC Logo

6

Finalmente se procede con la escritura y posterior ejecución del código. Se deben leer

los datos de 6 sensores DHT22 para mandarlo por comunicación Modbus al PLC Logo.

7

Apéndice C.

Programación de PLC Logo:

8

Usando diagrama de bloques se procedió con la programación del PLC Logo sin

considerar las variables de los sensores DHT22 ya que estos vienen por comunicación

Modbus y posteriormente se reflejan en el scada de Logo Web Editor.

Diseños de HMI para la visualización de variables:

9

10

Apéndice D.

Código del script de Python para comunicación modbus entre PLC

Logo y servidor Raspberry pi.

#!/home/admin/mi_entorno/bin/python

-*- coding: utf-8 -*-

"""

Proyecto Sistema de Supervision y Control de un Secador Hibrido

Integrantes: Angel Zumba - Miguel Mayorga

Codigo - Servidor Raspberry

Raspberry Pi: Modbus TCP (pymodbus) + 6 DHT22 + 4 salidas (luces)

Comportamiento:

- CMD (print): si un sensor no entrega lectura válida EN EL CICLO -> 0.0 / 0.0 inmediato.

- Modbus/CSV: enceran (0/0) SOLO si las fallas consecutivas >=

FALLAS_CONSEC_PARA_ENCERAR.

 Antes de ese umbral, se mantiene el ÚLTIMO VALOR VÁLIDO.

- Lectura en paralelo por sensor con timeout (no bloquea el bucle).

- Ciclo con sleep adaptativo para durar ~PERIODO_LECTURA_S.

- Puerto Modbus TCP: 502

"""

import time

import threading

import adafruit_dht

import board

import RPi.GPIO as GPIO

import csv, os

from datetime import datetime, date, timedelta

11

from pymodbus.datastore import (

 ModbusSlaveContext,

 ModbusServerContext,

 ModbusSequentialDataBlock,

)

from pymodbus.device import ModbusDeviceIdentification

Compatibilidad pymodbus 3.x / 2.5.x

try:

 from pymodbus.server import StartTcpServer, ModbusConnectedRequestHandler #

>=3.x

except Exception:

 from pymodbus.server.sync import StartTcpServer,

ModbusConnectedRequestHandler # 2.5.x

---------------- CONFIG ----------------

SENSORES = [

 ("DHT1", board.D4),

 ("DHT2", board.D17),

 ("DHT3", board.D27),

 ("DHT4", board.D22),

 ("DHT5", board.D5),

 ("DHT6", board.D6),

]

SALIDAS_GPIO = {0: 23, 1: 24, 2: 25, 3: 26}

RELES_ACTIVOS_EN_BAJO = False

PERIODO_LECTURA_S = 6.0 # duración objetivo del ciclo

12

PERIODO_LOG_S = 300.0 # CSV

INTERVALO_PRINT_S = 6.0 # impresión agrupada

_ultimo_print = 0.0

LECTURA_TIMEOUT_S = 5.0 # timeout por sensor (por ciclo)

<<< UMBRAL CONFIGURABLE >>>

FALLAS_CONSEC_PARA_ENCERAR = 7 # <-- cambia aquí: # de fallas seguidas para

poner 0 en Modbus/CSV

SERVER_BIND_IP = "0.0.0.0"

SERVER_PORT = 1502

UNIT_ID = 1

CSV_DIR = "/home/admin/datos_secador"

os.makedirs(CSV_DIR, exist_ok=True)

ROTACION_DIAS = 1

========= Inicialización =========

GPIO.setmode(GPIO.BCM)

for _, bcm in SALIDAS_GPIO.items():

 inicial = GPIO.HIGH if RELES_ACTIVOS_EN_BAJO else GPIO.LOW

 GPIO.setup(bcm, GPIO.OUT, initial=inicial)

def x10(v):

 return int(round(v*10)) if v is not None else 0

HRs/coils base

hr_block = ModbusSequentialDataBlock(0, [0]*20)

13

co_block = ModbusSequentialDataBlock(0, [0]*16)

store = ModbusSlaveContext(hr=hr_block, co=co_block, zero_mode=False)

context = ModbusServerContext(slaves={UNIT_ID: store}, single=False)

_conectado = False

ds_lock = threading.Lock()

Estado por sensor

fallas_consecutivas = {nombre: 0 for nombre, _ in SENSORES}

last_good_x10 = {nombre: (0, 0) for nombre, _ in SENSORES} # último valor válido para

Modbus (x10)

last_good_flt = {nombre: (0.0, 0.0) for nombre, _ in SENSORES}# último valor válido para

CSV/uso humano

class ConnLoggerHandler(ModbusConnectedRequestHandler):

 def connectionMade(self):

 global _conectado

 super().connectionMade()

 _conectado = True

 try:

 host, port = self.request.getpeername()

 print(f"[CONN] Cliente conectado: {host}:{port}", flush=True)

 except Exception:

 print("[CONN] Cliente conectado (peername no disponible)", flush=True)

 def connectionLost(self, reason):

 global _conectado

 print(f"[DISC] Cliente desconectado: {reason}", flush=True)

 _conectado = False

 super().connectionLost(reason)

14

identity = ModbusDeviceIdentification()

identity.VendorName = 'Raspberry Pi Server'

identity.ProductCode = 'PM'

identity.ProductName = 'DHT22+GPIO Server'

identity.ModelName = 'Secador Híbrido'

identity.MajorMinorRevision = '1.0'

def ventana_n_dias(hoy: date):

 idx = hoy.toordinal() // ROTACION_DIAS

 inicio_ord = idx * ROTACION_DIAS

 inicio = date.fromordinal(inicio_ord)

 fin = inicio + timedelta(days=ROTACION_DIAS - 1)

 return inicio, fin

def ruta_csv_actual(dt: datetime):

 d0, _ = ventana_n_dias(dt.date())

 return os.path.join(CSV_DIR, f"secador_{d0:%d_%m_%Y}.csv")

def preparar_csv(path):

 nuevo = not os.path.exists(path)

 if nuevo:

 with open(path, "a", newline="") as f:

 w = csv.writer(f)

 header = ["timestamp"]

 for i in range(1, 7):

 header += [f"T{i}", f"Hum{i}"]

 w.writerow(header)

15

def lectura_dht_valida(t, h):

 if t is None or h is None: return False

 if not (-40.0 <= t <= 80.0): return False

 if not (0.0 <= h <= 100.0): return False

 return True

--- Lectura concurrente con timeout y SIN CACHE (nuevo objeto por lectura) ---

def _worker_leer_dht(pin, idx, result_dict, name):

 """

 Hilo: crea un DHT22 nuevo, intenta hasta 2 lecturas rápidas.

 Si no hay sensor/pin desconectado, levantará excepción y devolvemos falla.

 """

 t = h = None

 ok = False

 for _ in range(2):

 dht = None

 try:

 dht = adafruit_dht.DHT22(pin, use_pulseio=False)

 t = dht.temperature

 h = dht.humidity

 if lectura_dht_valida(t, h):

 ok = True

 break

 except Exception:

 pass

 finally:

 try:

 if dht is not None:

 dht.exit()

16

 except Exception:

 pass

 time.sleep(0.2)

 result_dict[idx] = (ok, t if ok else None, h if ok else None, name)

def leer_todos_los_sensores_con_timeout():

 threads = []

 results = {}

 for i, (nombre_pin) in enumerate(SENSORES):

 nombre, pin = nombre_pin

 th = threading.Thread(target=_worker_leer_dht, args=(pin, i, results, nombre),

daemon=True)

 th.start()

 threads.append(th)

 deadline = time.time() + LECTURA_TIMEOUT_S

 for th in threads:

 remaining = deadline - time.time()

 if remaining > 0:

 th.join(remaining)

 for i, (nombre, _) in enumerate(SENSORES):

 if i not in results:

 results[i] = (False, None, None, nombre)

 return results # idx -> (ok, t, h, nombre)

========= Tareas =========

def tarea_lecturas_y_hr():

 global _ultimo_print

17

 ultimo_log = 0.0

 csv_path = ruta_csv_actual(datetime.now())

 preparar_csv(csv_path)

 while True:

 ciclo_inicio = time.time()

 ahora = datetime.now()

 # rotación CSV

 nuevo_path = ruta_csv_actual(ahora)

 if nuevo_path != csv_path:

 csv_path = nuevo_path

 preparar_csv(csv_path)

 # 1) Leer sensores en paralelo con timeout y sin cache

 resultados = leer_todos_los_sensores_con_timeout()

 # 2) Preparar HR, CSV y datos para imprimir

 regs = [0]*12

 fila_csv = [ahora.isoformat(sep=" ", timespec="seconds")]

 lecturas_print = [] # (nombre, t_ok|None, h_ok|None)

 for i in range(len(SENSORES)):

 ok, t, h, nombre = resultados[i]

 idxT = 2*i

 idxH = idxT + 1

 if ok:

 # reset fallas y actualiza último válido

18

 fallas_consecutivas[nombre] = 0

 last_good_x10[nombre] = (x10(t), x10(h))

 last_good_flt[nombre] = (float(f"{t:.1f}"), float(f"{h:.1f}"))

 # Modbus/CSV usan el valor actual (válido)

 regs[idxT], regs[idxH] = last_good_x10[nombre]

 fila_csv.extend([f"T{i+1}: {t:.1f}", f"Hum{i+1}: {h:.1f}"])

 # Print muestra el valor real

 lecturas_print.append((nombre, t, h))

 else:

 # falla este ciclo

 fallas_consecutivas[nombre] += 1

 # CMD: SIEMPRE 0/0 cuando falla el ciclo

 lecturas_print.append((nombre, None, None))

 # Modbus/CSV: solo 0/0 si superó umbral; si no, mantener último válido

 if fallas_consecutivas[nombre] >= FALLAS_CONSEC_PARA_ENCERAR:

 regs[idxT], regs[idxH] = (0, 0)

 fila_csv.extend([f"T{i+1}: 0.0", f"Hum{i+1}: 0.0"])

 else:

 # Mantener último válido (si no hay histórico, será 0/0 por defecto)

 lt_x10, lh_x10 = last_good_x10[nombre]

 lt_f, lh_f = last_good_flt[nombre]

 regs[idxT], regs[idxH] = (lt_x10, lh_x10)

 fila_csv.extend([f"T{i+1}: {lt_f:.1f}", f"Hum{i+1}: {lh_f:.1f}"])

19

 # 3) Escribir HRs

 with ds_lock:

 context[UNIT_ID].setValues(3, 0, regs)

 # 4) Print agrupado (CMD: 0/0 si falla en el ciclo)

 if time.time() - _ultimo_print >= INTERVALO_PRINT_S:

 ok_count = sum(1 for _, t_ok, h_ok in lecturas_print if t_ok is not None and h_ok

is not None)

 fail = len(lecturas_print) - ok_count

 print(f"[{ahora:%Y-%m-%d %H:%M:%S}] Lecturas DHT (ok={ok_count},

fail={fail})", flush=True)

 for j, (nombre, t_ok, h_ok) in enumerate(lecturas_print, start=1):

 t_str = f"{t_ok:.1f}°C" if t_ok is not None else "0.0°C"

 h_str = f"{h_ok:.1f}%" if h_ok is not None else "0.0%"

 fc = fallas_consecutivas[nombre]

 extra = f" (fallas={fc})" if (t_ok is None or h_ok is None) else ""

 print(f" HR{2*(j-1):02d}/HR{2*(j-1)+1:02d} <- {nombre}: T={t_str} |

H={h_str}{extra}", flush=True)

 print("[HR] ->", regs, flush=True)

 with ds_lock:

 coils = context[UNIT_ID].getValues(1, 0, count=4)

 coils_str = " | ".join([f"C{i}={int(coils[i])}" for i in range(4)])

 print(f"[COILS] <- {coils_str}", flush=True)

 print("[MODBUS] Cliente conectado" if _conectado else "[MODBUS] Esperando

conexión de cliente...", flush=True)

 print("-"*60, flush=True)

 _ultimo_print = time.time()

 # 5) CSV

20

 if time.time() - ultimo_log >= PERIODO_LOG_S:

 with open(csv_path, "a", newline="") as f:

 csv.writer(f).writerow(fila_csv)

 ultimo_log = time.time()

 # 6) Sleep adaptativo

 elapsed = time.time() - ciclo_inicio

 rest = max(0.0, PERIODO_LECTURA_S - elapsed)

 time.sleep(rest)

def tarea_coils_a_gpio():

 while True:

 with ds_lock:

 coils = context[UNIT_ID].getValues(1, 0, count=max(8, len(SALIDAS_GPIO)))

 for coil_idx, bcm in SALIDAS_GPIO.items():

 activo = bool(coils[coil_idx]) if coil_idx < len(coils) else False

 if RELES_ACTIVOS_EN_BAJO:

 GPIO.output(bcm, GPIO.LOW if activo else GPIO.HIGH)

 else:

 GPIO.output(bcm, GPIO.HIGH if activo else GPIO.LOW)

 time.sleep(0.1)

========= Main =========

def main():

 try:

 th1 = threading.Thread(target=tarea_lecturas_y_hr, daemon=True)

 th2 = threading.Thread(target=tarea_coils_a_gpio, daemon=True)

 th1.start()

 th2.start()

21

 print(f"[SRV] Modbus TCP escuchando en {SERVER_BIND_IP}:{SERVER_PORT}

(UnitID={UNIT_ID})", flush=True)

 StartTcpServer(context, identity=identity, address=(SERVER_BIND_IP,

SERVER_PORT), handler=ConnLoggerHandler)

 finally:

 GPIO.cleanup()

if __name__ == "__main__":

 main()

Integrantes: Angel Zumba - Miguel Mayorga

 Antes de ese umbral, se mantiene el ÚLTIMO VALOR VÁLIDO.

 ModbusSlaveContext,

 ModbusServerContext,

 ModbusSequentialDataBlock,

 from pymodbus.server import StartTcpServer, ModbusConnectedRequestHandler #

>=3.x

 from pymodbus.server.sync import StartTcpServer,

ModbusConnectedRequestHandler # 2.5.x

 ("DHT1", board.D4),

 ("DHT2", board.D17),

 ("DHT3", board.D27),

 ("DHT4", board.D22),

 ("DHT5", board.D5),

 ("DHT6", board.D6),

PERIODO_LECTURA_S = 6.0 # duración objetivo del ciclo

PERIODO_LOG_S = 300.0 # CSV

INTERVALO_PRINT_S = 6.0 # impresión agrupada

LECTURA_TIMEOUT_S = 5.0 # timeout por sensor (por ciclo)

FALLAS_CONSEC_PARA_ENCERAR = 7 # <-- cambia aquí: # de fallas seguidas para

poner 0 en Modbus/CSV

SERVER_PORT = 1502

22

UNIT_ID = 1

 inicial = GPIO.HIGH if RELES_ACTIVOS_EN_BAJO else GPIO.LOW

 GPIO.setup(bcm, GPIO.OUT, initial=inicial)

 return int(round(v*10)) if v is not None else 0

store = ModbusSlaveContext(hr=hr_block, co=co_block, zero_mode=False)

last_good_x10 = {nombre: (0, 0) for nombre, _ in SENSORES} # último valor válido para

Modbus (x10)

 def connectionMade(self):

 global _conectado

 super().connectionMade()

 _conectado = True

 try:

 host, port = self.request.getpeername()

 print(f"[CONN] Cliente conectado: {host}:{port}", flush=True)

 except Exception:

 print("[CONN] Cliente conectado (peername no disponible)", flush=True)

 def connectionLost(self, reason):

 global _conectado

 print(f"[DISC] Cliente desconectado: {reason}", flush=True)

 _conectado = False

 super().connectionLost(reason)

 idx = hoy.toordinal() // ROTACION_DIAS

 inicio_ord = idx * ROTACION_DIAS

 inicio = date.fromordinal(inicio_ord)

 fin = inicio + timedelta(days=ROTACION_DIAS - 1)

 return inicio, fin

 d0, _ = ventana_n_dias(dt.date())

 return os.path.join(CSV_DIR, f"secador_{d0:%d_%m_%Y}.csv")

23

 nuevo = not os.path.exists(path)

 if nuevo:

 with open(path, "a", newline="") as f:

 w = csv.writer(f)

 header = ["timestamp"]

 for i in range(1, 7):

 header += [f"T{i}", f"Hum{i}"]

 w.writerow(header)

 if t is None or h is None: return False

 if not (-40.0 <= t <= 80.0): return False

 if not (0.0 <= h <= 100.0): return False

 return True

 """

 Hilo: crea un DHT22 nuevo, intenta hasta 2 lecturas rápidas.

 Si no hay sensor/pin desconectado, levantará excepción y devolvemos falla.

 """

 t = h = None

 ok = False

 for _ in range(2):

 dht = None

 try:

 dht = adafruit_dht.DHT22(pin, use_pulseio=False)

 t = dht.temperature

 h = dht.humidity

 if lectura_dht_valida(t, h):

 ok = True

 break

 except Exception:

 pass

24

 finally:

 try:

 if dht is not None:

 dht.exit()

 except Exception:

 pass

 time.sleep(0.2)

 result_dict[idx] = (ok, t if ok else None, h if ok else None, name)

 threads = []

 results = {}

 for i, (nombre_pin) in enumerate(SENSORES):

 nombre, pin = nombre_pin

 th = threading.Thread(target=_worker_leer_dht, args=(pin, i, results, nombre),

daemon=True)

 th.start()

 threads.append(th)

 deadline = time.time() + LECTURA_TIMEOUT_S

 for th in threads:

 remaining = deadline - time.time()

 if remaining > 0:

 th.join(remaining)

 for i, (nombre, _) in enumerate(SENSORES):

 if i not in results:

 results[i] = (False, None, None, nombre)

 return results # idx -> (ok, t, h, nombre)

 global _ultimo_print

 ultimo_log = 0.0

25

 csv_path = ruta_csv_actual(datetime.now())

 preparar_csv(csv_path)

 while True:

 ciclo_inicio = time.time()

 ahora = datetime.now()

 # rotación CSV

 nuevo_path = ruta_csv_actual(ahora)

 if nuevo_path != csv_path:

 csv_path = nuevo_path

 preparar_csv(csv_path)

 # 1) Leer sensores en paralelo con timeout y sin cache

 resultados = leer_todos_los_sensores_con_timeout()

 # 2) Preparar HR, CSV y datos para imprimir

 regs = [0]*12

 fila_csv = [ahora.isoformat(sep=" ", timespec="seconds")]

 lecturas_print = [] # (nombre, t_ok|None, h_ok|None)

 for i in range(len(SENSORES)):

 ok, t, h, nombre = resultados[i]

 idxT = 2*i

 idxH = idxT + 1

 if ok:

 # reset fallas y actualiza último válido

 fallas_consecutivas[nombre] = 0

26

 last_good_x10[nombre] = (x10(t), x10(h))

 last_good_flt[nombre] = (float(f"{t:.1f}"), float(f"{h:.1f}"))

 # Modbus/CSV usan el valor actual (válido)

 regs[idxT], regs[idxH] = last_good_x10[nombre]

 fila_csv.extend([f"T{i+1}: {t:.1f}", f"Hum{i+1}: {h:.1f}"])

 # Print muestra el valor real

 lecturas_print.append((nombre, t, h))

 else:

 # falla este ciclo

 fallas_consecutivas[nombre] += 1

 # CMD: SIEMPRE 0/0 cuando falla el ciclo

 lecturas_print.append((nombre, None, None))

 # Modbus/CSV: solo 0/0 si superó umbral; si no, mantener último válido

 if fallas_consecutivas[nombre] >= FALLAS_CONSEC_PARA_ENCERAR:

 regs[idxT], regs[idxH] = (0, 0)

 fila_csv.extend([f"T{i+1}: 0.0", f"Hum{i+1}: 0.0"])

 else:

 # Mantener último válido (si no hay histórico, será 0/0 por defecto)

 lt_x10, lh_x10 = last_good_x10[nombre]

 lt_f, lh_f = last_good_flt[nombre]

 regs[idxT], regs[idxH] = (lt_x10, lh_x10)

 fila_csv.extend([f"T{i+1}: {lt_f:.1f}", f"Hum{i+1}: {lh_f:.1f}"])

 # 3) Escribir HRs

27

 with ds_lock:

 context[UNIT_ID].setValues(3, 0, regs)

 # 4) Print agrupado (CMD: 0/0 si falla en el ciclo)

 if time.time() - _ultimo_print >= INTERVALO_PRINT_S:

 ok_count = sum(1 for _, t_ok, h_ok in lecturas_print if t_ok is not None and h_ok

is not None)

 fail = len(lecturas_print) - ok_count

 print(f"[{ahora:%Y-%m-%d %H:%M:%S}] Lecturas DHT (ok={ok_count},

fail={fail})", flush=True)

 for j, (nombre, t_ok, h_ok) in enumerate(lecturas_print, start=1):

 t_str = f"{t_ok:.1f}°C" if t_ok is not None else "0.0°C"

 h_str = f"{h_ok:.1f}%" if h_ok is not None else "0.0%"

 fc = fallas_consecutivas[nombre]

 extra = f" (fallas={fc})" if (t_ok is None or h_ok is None) else ""

 print(f" HR{2*(j-1):02d}/HR{2*(j-1)+1:02d} <- {nombre}: T={t_str} |

H={h_str}{extra}", flush=True)

 print("[HR] ->", regs, flush=True)

 with ds_lock:

 coils = context[UNIT_ID].getValues(1, 0, count=4)

 coils_str = " | ".join([f"C{i}={int(coils[i])}" for i in range(4)])

 print(f"[COILS] <- {coils_str}", flush=True)

 print("[MODBUS] Cliente conectado" if _conectado else "[MODBUS] Esperando

conexión de cliente...", flush=True)

 print("-"*60, flush=True)

 _ultimo_print = time.time()

 # 5) CSV

 if time.time() - ultimo_log >= PERIODO_LOG_S:

28

 with open(csv_path, "a", newline="") as f:

 csv.writer(f).writerow(fila_csv)

 ultimo_log = time.time()

 # 6) Sleep adaptativo

 elapsed = time.time() - ciclo_inicio

 rest = max(0.0, PERIODO_LECTURA_S - elapsed)

 time.sleep(rest)

 while True:

 with ds_lock:

 coils = context[UNIT_ID].getValues(1, 0, count=max(8, len(SALIDAS_GPIO)))

 for coil_idx, bcm in SALIDAS_GPIO.items():

 activo = bool(coils[coil_idx]) if coil_idx < len(coils) else False

 if RELES_ACTIVOS_EN_BAJO:

 GPIO.output(bcm, GPIO.LOW if activo else GPIO.HIGH)

 else:

 GPIO.output(bcm, GPIO.HIGH if activo else GPIO.LOW)

 time.sleep(0.1)

 try:

 th1 = threading.Thread(target=tarea_lecturas_y_hr, daemon=True)

 th2 = threading.Thread(target=tarea_coils_a_gpio, daemon=True)

 th1.start()

 th2.start()

 print(f"[SRV] Modbus TCP escuchando en {SERVER_BIND_IP}:{SERVER_PORT}

(UnitID={UNIT_ID})", flush=True)

 StartTcpServer(context, identity=identity, address=(SERVER_BIND_IP,

SERVER_PORT), handler=ConnLoggerHandler)

 finally:

 GPIO.cleanup()

 main()

29

30

Apéndice E

Diseño de tablero

Diagrama Unifilar

31

Apéndice F.

Finalización del Proyecto

	EVALUADORES
	ABREVIATURAS
	CAPÍTULO 1
	1. INTRODUCCIÓN
	1.1 Descripción del problema
	1.2 Justificación del problema
	1.3 Objetivos
	1.3.1 Objetivo General
	1.3.2 Objetivos Específicos
	1.4 Marco Teórico

	CAPÍTULO 2
	2. Metodología
	2.1 Análisis de la estructura de secador
	2.2 Diagrama de bloques
	2.3 Diagrama topológico de Red
	2.4 Entradas y salidas
	2.5 Tabla de materiales
	2.6 Diseño de tablero
	2.7 Programación de la Raspberry Pi
	2.8 Programación del PLC LOGO!
	2.9 Consideraciones técnicas y normativas

	CAPITULO 3
	3. Análisis y Resultados
	3.1 Tabla de Precios de componentes.
	3.2 Análisis y comparación de datos de sensores dht22 y termopares externos:
	3.3 Evolución de la temperatura del secador hibrido
	3.4 Comparación Sensores DHT22 vs Termopares.
	3.5 Comportamiento de la humedad relativa.
	3.6 Visualización de datos y control de temperatura en la página web.
	3.7 Discusión de resultados
	3.8 Conclusiones parciales del capítulo

	CAPÍTULO 4
	4. CONCLUSIONES Y RECOMENDACIONES
	4.1 Conclusiones
	4.2 Recomendaciones

	BIBLIOGRAFÍA
	ANEXOS
	Anexo 1. Fotos de proceso de construcción del Sistema de Secado Hibrido

	Apendice A.
	Diseños en 3D

	Apéndice B.
	Pasos para instalación y configuración del sistema Rasbian

	Apéndice C.
	Programación de PLC Logo:

	Apéndice D.
	Código del script de Python para comunicación modbus entre PLC Logo y servidor Raspberry pi.

	Apéndice E
	Diseño de tablero
	Diagrama Unifilar

	Apéndice F.
	Finalización del Proyecto

		2025-09-09T03:27:55-0500
	HOLGER IGNACIO CEVALLOS ULLOA

		2025-09-09T22:52:47-0500

		2025-09-09T23:01:33-0500

		2025-09-09T23:23:00-0500
	EFREN VINICIO HERRERA MUENTES

