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Resumen
Las enfermedades cardiovasculares representan la principal causa de mortalidad a nivel
mundial. En ellas, las arritmias requieren deteccion temprana y precisa, siendo el
electrocardiograma (EKG) la herramienta estdndar para su analisis. Sin embargo, la
interpretacion manual demanda tiempo y experiencia clinica, lo que limita su aplicabilidad.
Tiene como objetivo implementar un sistema de clasificacion de latidos cardiacos en sefiales
de EKG mediante técnicas de IA, utilizando redes neuronales convolucionales (CNN) y la
clasificacion estandarizada de la AMMI. El proyecto se desarroll6 utilizando la base de datos
MIT-BIH Arrhythmia, procesada mediante técnicas de filtrado pasa eliminacion de ruido,
normalizacién y segmentacion de latidos. Se aplico balanceo de datos con SMOTE vy
posteriormente se entreno y validé una CNN en Python, empleando bibliotecas como WFDB,
TensorFlow y Keras. Los resultados evidenciaron un modelo con capacidad para clasificar
latidos cardiacos en las cinco categorias definidas por la AAMI, alcanzando métricas de
precision y sensibilidad para un diagnoéstico confiable. El sistema constituye una herramienta
complementaria para el personal médico y potencial de integracioén en dispositivos portatiles,
telemedicina, contribuyendo a la deteccion temprana de arritmias y optimizacion de la

atencion médica.

Palabras Clave: Arritmias, Redes Neuronales, AAMI.



Abstract

English to write the same as described before in the Resumen. Use cursive fonts in this
section. Cardiovascular diseases are the leading cause of mortality worldwide. Arrthythmias
require early and accurate detection, with the electrocardiogram (EKG) being the standard
tool for analysis. However, manual interpretation requires time and clinical expertise, which
limits its applicability. The project aims to implement a heartbeat classification system in
EKG signals using artificial intelligence techniques, utilizing convolutional neural networks
(CNNs) and the standardized AMMI classification. The project was developed using the MIT-
BIH Arrhythmia database, processed using noise removal, normalization, and heartbeat
segmentation filtering techniques. Data balancing was applied with SMOTE, and a CNN was
subsequently trained and validated in a Python environment using specialized libraries such
as WFDB, TensorFlow, and Keras. The results showed a model capable of classifying
heartbeats into the five categories defined by the AAMI, achieving accuracy and sensitivity
metrics for a reliable diagnosis. The system constitutes a complementary tool for medical
personnel and has the potential for integration into portable devices and telemedicine,

contributing to the early detection of arrhythmias and the optimizing medical care.

Keywords: Arrhythmias, Al, Neural Networks, AAMI.
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Abreviaturas
AAMI  Association for the Advancement of Medical Instrumentation (Asociacion para el
Avance de la Instrumentacion Médica)
ACC  Accuracy (Precision global del modelo)
EKG Electrocardiograma
1A Inteligencia Artificial
CNN Convolutional Neural Network (Red Neuronal Convolucional)
CpPU Central Processing Unit (Unidad Central de Procesamiento)
FFT Fast Fourier Transform (Transformada Rapida de Fourier)
FPR False Positive Rate (Tasa de Falsos Positivos)
F1-score Métrica de equilibrio entre precision (precision) y sensibilidad (recall)
GPU Graphics Processing Unit (Unidad de Procesamiento Grafico)
MIT-BIH Massachusetts Institute of Technology — Beth Israel Hospital Arrhythmia Database
ML Machine Learning (Aprendizaje Automatico)
QRS Complejo QRS (conjunto de ondas en el EKG que representan la despolarizacion
ventricular)
RMS Root Mean Square (Valor cuadratico medio)
R-peak Pico R (médximo de la onda R en el complejo QRS del EKG)
SNR Signal-to-Noise Ratio (Relacion Sefial/Ruido)
SMOTE Synthetic Minority Over-sampling Technique (Técnica de sobre-muestreo sintético
de minorias)
TPR True Positive Rate (Tasa de Verdaderos Positivos)

TPU Tensor Processing Unit (Unidad de Procesamiento de Tensores)
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Capitulo 1



1.1 Introduccion

Segun la World Heart Federation, en el afio 2021, las enfermedades cardiovasculares
(ECV) provocaron 20.5 millones de muertes, consolidandose como la principal causa de
muerte del mundo, tomando en cuenta que, cuatro de cada cinco defunciones por ECV
ocurrieron en paises de ingresos medio y bajo [1]. Dentro de este grupo, las arritmias
cardiacas requieren una deteccion temprana y precisa para reducir el riesgo de
complicaciones graves, por ende, el electrocardiograma (EKG) es la herramienta estandar
para analizar la actividad eléctrica del corazon y detectar esta clase de anomalias.

Pues que, la interpretacion de los registros EKG demanda una vasta experiencia
clinica por parte del cardidlogo y tiempo considerable, asi que el diagndstico puede verse
afectado por errores humanos, lo que limita su aplicabilidad en entornos con recursos
médicos limitados o escasa disponibilidad de especialistas médicos.

Frente a esta problematica, el uso de algoritmos de inteligencia artificial (IA) surge
como una herramienta eficaz para el personal médico frente al anlisis de las senales
fisiologicas del corazon. De esta manera se propone el desarrollo de un sistema para la
clasificacion de los latidos cardiacos en sefales de EKG, empleando la base de datos publica
MIT-BIH Arrhythmia y siguiendo la clasificacion estandarizada de la AAMI (Association for
the Advancement of Medical Instrumentation), que agrupa los latidos en cinco clases
clinicas: normales (N), supraventriculares (S), ventriculares (V), de fusion (F) y no
clasificados (Q).

La implementacion se realizara en un entorno de programacion accesible y eficiente,
utilizando de Jupiter Notebook y lenguaje de programacion Python junto con bibliotecas
especializadas como WFDB, TensorFlow y Keras, dentro de la plataforma de Visual Studio
Code. El proceso comenzara con la descarga y andlisis de registros EKG reales, los cuales

seran preprocesados mediante técnicas como filtrado para eliminacion de ruido,



segmentacion de latidos y normalizacion. Posteriormente, los latidos seran etiquetados
conforme al estdindar AAMI y utilizados como entrada para entrenar un modelo, cuyo disefio
permite reconocer patrones de la sefial cardiaca y clasificar los latidos con alta precision.

La razdn de este proyecto es aportar una solucion tecnolédgica desde la perspectiva de
la ingenieria electronica y la inteligencia artificial al campo de la salud, facilitando
herramientas que puedan ser integradas en dispositivos portatiles, plataformas de
telemedicina o centros de salud. Se espera que el sistema propuesto contribuya a mejorar la
eficiencia del diagndstico, reducir la carga de trabajo del personal médico y extender la
cobertura del monitoreo cardiaco a regiones. En conjunto, el proyecto se alinea con los
objetivos de innovacion tecnoldgica y salud preventiva, respondiendo a una necesidad clinica
real mediante el aprovechamiento de los avances actuales en [A y procesamiento de sefiales

biomédicas.

1.2 Descripcion del Problema

En la actualidad, hay muchos electrocardidgrafos que, mediante software arroja una
interpretacion y diagndstico automatico de electrocardiogramas, que sirve como soporte para
médicos. En un estudio realizado, se evaluo el rendimiento de siete programas de
interpretacion automatica de EKG en mas de 2,000 EKG digitales obtenidos de hospitales y
bases de datos en Europa, EE. UU. y Australia, el cual arrojo en la deteccion en ritmos
anormales una precision promedio de 84.9% y una fiabilidad clinica, que es la concordancia
del diagnostico automadtico y realizado por profesional de salud, de 54%, descrito por De Bie
et Al [2].

Ante esta problemadtica, se propone implementar un sistema automatizado que
clasifique latidos cardiacos a partir de registros publicos de EKG, siguiendo el estandar de la

Asociacion para el Avance de Instrumentacion Médica (AAMI). En el cual, con el uso de



redes neuronales convolucionales (CNN), se busca obtener una clasificacion precisa 'y
confiable que apoye el diagndstico oportuno y reduzca la carga del personal médico.

Este proyecto, es desarrollado en conjunto con el cardiélogo Dr. Rafael Castilla, de la
corporacion médica InterHospital, que busca profundizar el alcance de los algoritmos de
inteligencia artificial (IA) en deteccion de arritmias a partir de una clasificacion de latidos de
electrocardiogramas.

La restriccion de nuestro proyecto es enlazar nuestro sistema asistido por IA con el
software predeterminado de un equipo de EKG. Puesto que, los resultados obtenidos por el

equipo de EKG deben de exportarse a formatos compatible con el sistema entrenado.

1.3 Justificacion del Problema

En los ultimos afos la tecnologia en el sector de la salud ha avanzado de manera
significativa para la deteccion de enfermedades con un alto indice de mortalidad y las
enfermedades cardiacas son unos de los problemas que afectan a una significativa proporcion
de la poblacion, por lo que, se requiere métodos confiables para su temprana deteccion.
El uso de datos reales como los del MIT-BIH Arrhythmia Database y técnicas de 1A
modernas, son métodos que permiten obtener un sistema capaz de detectar una afeccion
cardiaca, mediante la identificacion del latido. Un sistema de clasificacion de latidos puede
identificar alteraciones cardiacas que pasan desapercibidas en evaluaciones médicas. Esta
tecnologia puede mejorar la eficiencia diagndstica en hospitales, centros de salud rurales y
dispositivos de monitoreo personal. Ademas, facilita el analisis de grandes volumenes de
datos EKG sin sobrecargar al personal médico, y puede integrarse en herramientas

preventivas para la reduccion de eventos cardiovasculares graves[3].



1.4 Objetivos
1.4.1 Objetivo general

Implementar un sistema de clasificacion de latidos cardiacos a partir de registros
publicos de EKG, utilizando redes neuronales y la clasificacion AAMI como

referencia para el diagnostico.
1.4.2 Objetivos especificos
1. Preprocesar sefiales cardiacas de la base publica para entrenamiento del sistema.
2. Aplicar la clasificacion de los latidos segtn el estandar AAMI.
3. Entrenar una CNN para reconocer la clasificacion de latidos de pacientes usando
electrocardiogramas.
4. Evaluar el modelo en términos de precision, sensibilidad y especificidad.

5. Examinar el diagnostico que ofrece el sistema entrenado por IA.

1.5 Marco tedrico

El corazon es un 6érgano muscular que constituye el nucleo del sistema circulatorio,
impulsando la sangre a través de una red vascular. La sangre sin oxigeno se dirige a la
auricula derecha por las venas cavas hacia el ventriculo derecho. El ventriculo derecho se
contrae y envia la sangre a la arteria pulmonar, que se bifurca en dos arterias, uno para el
pulmon derecho e izquierdo respectivamente. Una vez que, en los pulmones se oxigena la
sangre, esta se dirige a la auricula izquierda que se contrae y pasa al ventriculo izquierdo. Al
contraerse bombea la sangre a través de la aorta hacia el cuerpo [4].

El sistema de conduccion cardiaca controla la frecuencia y el ritmo de latidos, por lo
que cada latido es una sefal eléctrica. El nodo sinoauricular (SA) genera un impulso
eléctrico, que viaja hacia el marcapasos nddulo auriculoventricular (AV), haciendo que la
sefial se retrase por un breve instante y que las auriculas se contraigan una fraccion de

segundo, dandole tiempo que fluya la sangre a los ventriculos. La sefial eléctrica continua



hacia el haz de His para que se contraigan los ventriculos derecho e izquierdo y bombear la

sangre fuera del corazoén, volviendo de nuevo el proceso [5].

El Sistema Eléctrico del Corazén

Noédulo Haz de Bachmann

Sinoatrial
(su sigla en -
inglés es SA) &

Ramificacion
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Tracto
Internodular
Mediano

| > Vias de
Conduccion
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Internodular
Posterior

Ramificacién Derecha
Nédulo Atrioventricular del Haz

(su sigla en inglés es NA)

Fig 1.1. Sistema eléctrico del corazon [5].

Las alteraciones en esta dindmica eléctrica pueden desencadenar arritmias o
anomalias, cuya deteccidn rigurosa y oportuna resulta imperativa para prevenir eventos
cardiovasculares, de consecuencias devastadoras.

Los electrocardiogramas (EKG) registra la actividad eléctrica cardiaca mediante
electrodos cutaneos, generando una sefal definida por componentes especificos: la onda P
(despolarizacion/contraccion auricular), el complejo QRS (despolarizacion /contraccion
ventricular) en el cual la onda Q indica la despolarizacion inicial del tabique interventricular,
onda R despolarizacion de la masa de los ventriculos y la onda S la despolarizacién final de
los ventriculos y la onda T (repolarizacion ventricular) [6].

Los intervalos y segmentos son relevantes para la interpretacion de un EKG: el
intervalo PR, tiempo que tarda la sefial eléctrica en viajar desde la auricula hasta los
ventriculos, intervalo QT, tiempo total de la actividad eléctrica ventricular desde la
despolarizacion hasta la repolarizacion, intervalo RR, tiempo entre dos complejos QRS

consecutivos para calcular la frecuencia cardiaca, segmento ST, linea isoeléctrica.



Desde una perspectiva técnica, un electrocardiografo tiene varias etapas para el

procesamiento de la sefal:

1.

Conexion equipo al paciente: Se conecta los electrodos al paciente,
generalmente estdn compuesto de Cloruro de Plata (AgCl).

La senal del EKG de baja amplitud: Se recibe a través de un amplificador
buffer de alta impedancia, evitando que el contacto piel-electrodo se vea
cargado por el circuito y mantiene estable la sefial.

Amplificacion diferencia: Se usa un amplificador de instrumentacion, capaz de
rechazar el ruido de modo comun y resaltar pequefias diferencias de voltaje
entre los electrodos, amplificando la sefial sin distorsiones significativas.
Filtrado analodgico previo: Sefal pasa por filtros analdgicos que eliminan
artefactos antes de digitalizarse. El filtro pasa alto (HPF) atenua la deriva de la
linea base (baseline wander), oscilacion sefial lenta de la linea isoeléctrica. El
filtro pasa bajo (LPF) reduce interferencias musculares y de alta frecuencia. El
filtro notch, elimina el ruido de la red eléctrica de 50/60 Hz. El filtro anti-
aliasing para evitar distorsiones durante la conversion digital

Conversion analogico-digital (ADC): Toma muestras de la sefal a frecuencias
tipicas de 250 a 1000Hz con resoluciones de 16 bits o mas. Transforma la
sefal continua en datos digitales, para ser procesados por software.
Procesamiento digital: Elimina los artefactos digitales mediante filtros
software, el cual se corrige la deriva de la linea base, aplica filtrado de
50/60Hz, reducir ruidos musculares o movimiento.

Deteccion y segmentacion de latidos: El sistema identifica automaticamente

los picos R, para calcular intervalos y frecuencias cardiacas.

Asi, segmenta los intervalos y facilita el andlisis clinico de alteraciones cardiacas [7].



La clasificacion automatizada de latidos cardiacos se rige estrictamente por el
estandar de la AAMI, que los categoriza en cinco clases distintivas: N (normal), S
(supraventricular), V (ventricular), F (fusion) y Q (no clasificado). Este marco normativo
resulta crucial para el entrenamiento supervisado de algoritmos de inteligencia artificial.

La inteligencia artificial, en particular las redes neuronales profundas como las redes
convolucionales (CNN), ha transformado radicalmente el analisis de sefiales EKG. Estas
redes extraen de manera autonoma patrones morfoldgicos complejos directamente desde la
sefial cruda, eliminando la dependencia de la ingenieria manual de caracteristicas. Los
modelos basados en deep learning han demostrado precisiones superiores al 98% en la
clasificacion de arritmias, reduciendo el tiempo de procesamiento en hasta un 70% frente a
métodos tradicionales. Ademas, exhiben una capacidad sobresaliente para detectar anomalias
sutiles, incluyendo:

. Alteraciones en el intervalo PR

. Cambios en la morfologia del QRS

. Indicadores de fibrilacion auricular, taquicardias o bloqueos [8].

La MIT-BIH Arrhythmia Database, un repositorio de prestigio internacional
proporciona registros EKG anotados provenientes de pacientes reales, muestreados a 360 Hz
y acompafiados de etiquetas clinicas en formato atr [8]. Su disponibilidad abierta a través de
PhysioNet ha impulsado significativamente la investigacion en clasificacion de arritmias
mediante inteligencia artificial. El desarrollo y la implementacion de modelos se benefician
de herramientas computacionales de codigo abierto, tales como Python, TensorFlow, Keras y
la libreria WFDB, las cuales permiten la carga, preprocesamiento, entrenamiento y validacion
de redes neuronales en plataformas como Google Colab [9].

Investigaciones clinicas han revelado tasas de error de hasta el 25% en la

interpretacion manual de EKG, atribuidas a la variabilidad, la presencia de ruido y la fatiga



del personal médico. En contraste, los sistemas automatizados impulsados por inteligencia
artificial ofrecen una mejora sustancial en precision, reducen significativamente los falsos
positivos y negativos, y aseguran resultados reproducibles, incluso en entornos clinicos de

alta demanda o aplicaciones de telemedicina [10].
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2.1 Metodologia.

En este capitulo se describe la metodologia usada para la implementacion del sistema de
clasificacion de latidos usando algoritmos de inteligencia artificial. Tomando como referencia el
equipo de EKG del cardidlogo Dr. Rafael Castilla, GE cardiosoft cam-usb A/T, con su adaptador
de electrodos, el cual se encarga del procesamiento digital de sefiales de EKG de manera precisa

y segura. Toda su electronica se encuentra integrada en una Unica placa, dividida en tres bloques

funcionales: procesamiento de EKG, controlador y puerto de PC.

! T
o o S
b 2 ‘ % )
s S — i ™z
pY} [ o = o2 Q
© 3 G s =
Lpl. CORINA | ®
‘ I
Pump Module N
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=]

Fig 2.1. GE cardiosoft cam-usb A/T.

En la etapa de procesamiento de EKG, las sefales bioeléctricas captadas por hasta 11
electrodos pasan por un circuito de proteccion y un preamplificador de alta impedancia, que evita
cargar al paciente y mejora la sensibilidad. Luego, estas sefales son acondicionadas,
amplificadas y convertidas a digital mediante ASICs dedicados. Esta seccion también realiza
funciones como deteccién de marcapasos, verificacion de sefial y medicion de voltaje de CC.

Los datos digitalizados se transfieren al controlador mediante una interfaz serial QSPI.

|
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H l— Clock
T

Fig 2.2. Procesamiento EKG.
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El controlador, basado en el microcontrolador, gestiona toda la logica del sistema.
Controla la comunicacién entre el procesador de EKG, el PC y modulos opcionales como el

CORINA. Integra memoria FLASH programable, temporizadores, manejo de interrupciones y

buses internos.

El médulo CORINA del sistema GE CardioSoft se encarga de procesar electronicamente
la sefal de EKG captada desde el paciente. El proceso inicia con la captacion de senales

bioeléctricas a través de los electrodos que detectan mV generados por la actividad eléctrica del

corazon, normalmente en el rango de mV.

Control-Bus

Data-Bus

A s-Bus
g J
<

68332
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Fig 2.3. Controlador
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Estas sefiales pasan primero por un amplificador diferencial de alta impedancia (>50

MQ), lo que asegura que no se genere carga sobre el paciente y se mantenga una buena

sensibilidad. Luego, se aplica un rechazo de modo comtin (CMRR) para eliminar interferencias

tipicas del entorno, como el ruido de 50 o 60 Hz.
Una etapa clave es la supresion de los pulsos de marcapasos, que podrian distorsionar el

trazado del EKG. Esta funcion se realiza mediante el canal F. Por ejemplo, una sefial de entrada

de 1 mV enunasalidade 1 V.

Posteriormente, se aplico un filtrado pasa bandas, que elimina las frecuencias no

deseadas: un filtro pasa bajo que corta a 150 Hz (evita interferencias musculares) y un pasa alto a

0,08 Hz (corrige la linea base).
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Fig 2.4. Transferencia de sefal a PC.

La seguridad del paciente esta garantizada con un disefio de aislamiento galvanico,
corriente de fuga limitada (<10 pA). Finalmente, la sefial acondicionada se envia como salida
analogica aislada, con 1 V por cada 1 mV de entrada.

Finalmente, el puerto de PC permite la alimentacion eléctrica del sistema a través de un
transductor DC/DC y protege la comunicacion mediante circuitos contra descargas
electrostaticas. La transmision de datos al software CardioSoft se realiza mediante una memoria
FIFO, que garantiza una transferencia ordenada y sin pérdidas. El electrocardiografo genera el
examen EKG en formato pdf, que posteriormente se lo imprime en una impresora convencional
usando papel bond.

Siendo este, un ejemplo de un electrocardiografo y analizando electronicamente el
proceso de adquisicion del EKG, se procedid con la carga de datos a nuestro sistema, utilizando
un conjunto de 48 registros de electrocardiogramas tomadas a una frecuencia de muestreo de 360
Hz por cada canal, la escala de la amplitud de la sefal estd en el rango de los mV, provienen de
la base de datos publica del MIT.

El desarrollo del proyecto sigui6 un disefio con una secuencia ldgica y cronologica, este
enfoque permitio establecer cada etapa del proyecto de manera ordenada, desde la carga de datos
de las sefiales eléctricas del corazon de los respectivos pacientes hasta la evaluacion del modelo
entrenado con el respectivo diagnostico de la clase de latido que posee el paciente.

A continuacion, se describe en detalle los pasos realizados para la elaboracion del

proyecto (figura 2.5):
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= (arga de base de datos MIT Arrhythmia.

= Aplicacién del filtro pasa banda (eliminacion de ruido).

= Normalizacion de la seiial EKG.

= Segmentacion de latidos.

= Balanceo de datos usando SMOTE.

= Entrenamiento del modelo.

= Validacion con nuevos datos de EKG.
= Evaluacion del modelo entrenado.

= Diagndstico.

' Y
A.pll.car ﬂltl:o Normalizar la Balancear
(Ellmlnarzmdo sefial datos con
de la senal) SMOTE

Entrenamiento
del modelo

Carga de Base
de Datos

MIT-Arrhythmia
-

Segmentacion
de Latidos

¢Cumple con las
métricas esperadas?
(Precisién del
modelo, eficaciay
sensibilidad)

Evaluacién del

Diagnéstico
9 modelo

Ajuste del modelo
(Cambio de
parametros del
entrenamiento)

v

Validacién con
EKG de otros
pacientes

Fig 2.5. Metodologia para implementacion del sistema.

NO

Para facilitar la explicacion de la metodologia propuesta, resumimos la estructura en carga

de la base de datos, preprocesamiento de la sefial, entrenamiento del modelo y evaluacion del

modelo.

2.2 Carga de la base de datos

En esta primera seccidon procedemos con la carga de la base datos MIT-Arrhythmia y

existen 2 maneras de realizarlo: descargando directamente el archivo desde el sitio web

PhysioNet o mediante comando en Visual Studio Code usando la libreria wtdb.
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Para este caso hemos importado mediante c6digo de la libreria wfdb, ya que con este
método es posible obtener de manera clara y precisa los archivos EKG de los pacientes. El otro
método en cambio posee directorios html, archivos xws y otros archivos que son en este caso
poco relevantes para el desarrollo del modelo.

Una vez se obtuvo la carpeta con los archivos a usar se procede a convertir los archivos
dat, hea y atr, en archivos csv para facilitar la visualizacion de los datos EKG y su respectivo
procesamiento en la siguiente etapa de desarrollo, esto se lo realiza con la funcion presente en la

figura 2.6.

def guardar_ecg_csv(paciente_id, carpeta_salida="mitdb_csv", ruta_lectura="mitdb"):
try:
registro = wfdb.rdrecord(os.path.join(ruta_lectura, paciente_id))
derivaciones = registro.sig_name
datos_ecg = registro.p_signal

if not os.path.exists(carpeta_salida):
os.makedirs(carpeta_salida)

nombre_archivo = os.path.join(carpeta_salida, f"{paciente_id} ecg.csv")
with open(nombre_archivo, mode="w’, newline="') as archivo:
escritor_csv = csv.writer(archivo)
encabezado = [‘'indice’] + derivaciones + ['symbol']
escritor_csv.writerow(encabezado)
for i, fila in enumerate(datos_ecg):
fila_csv = [i] + list(fila) + ['']
escritor_csv.writerow(fila_csv)
print(f"Archivo guardado: {nombre_archivo}")

except Exception as e:
print(f"Error con paciente {paciente_id}: {e}")

Fig 2.6. Funcién de guardado para EKG en formato CSV.
2.3 Preprocesamiento de la sefial
En esta seccion después de la obtencion de los archivos CSV se requiere eliminar el ruido
presente en las sefiales EKG, en electronica se usan los filtros pasa banda para la obtencion de la
senal eléctricas del corazon y los filtros notch se usan para eliminar el ruido presente en la senal
por efecto de las sefiales electromagnéticas de otros equipos, sus propios componentes 0 por
problemas de disefo y su efectividad dependera del orden del filtro, generalmente para equipos

EKG se usan de orden 4 en adelante.
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De esta manera se empled un equivalente de los filtros notch y esta es la transformada de
wavelet, que funciona como un filtro base para el analisis de la sefial y dependiendo de su
configuracion puede eliminar la mayoria de las variaciones que tiene la sefial EKG, la figura 2.7
muestra la implementacion de la transformada de wavelet en una funcion para eliminar el ruido
de la sefial cardiaca.

def eliminar_ruido(signal, wavelet='dbd’, levelsd):
coeffs = pywt.wavedec(signal, wavelet, level=level)
sigma = (1/0.6745) * np.median(np.abs(coeffs[-level]))
uthresh « sigma * np.sqrt(2 * np.log(len(signal)))
coeffs_thresh = [pywt.threshold(c, valuesuthresh, mode=‘soft’) if 1 > @ else ¢ for i, ¢ in enumerate(coeffs)]
return pywt.waverec(coeffs_thresh, wavelet)

Fig 2.7. Funcidn para eliminar ruido de una sefial.

Una vez limpia la sefal, se guardaron los datos en variables y se procedié con la con la
segmentacion de los latidos del EKG de cada paciente, para este paso se requiere definir una
ventana de datos que es lo que define al latido como tal.

En la figura 2.8 se muestra como se realizd la segmentacion de latidos que depende de
definir una ventana antes y una ventana despues, este sera el segmento de datos que representa

el latido.

for i, pico in enumerate(ann_indices):
inicio = pico - ventana_antes
fin = pico + ventana despues
if inicio < 8 or fin > len{ecg_array):
continue
latido = ecg array[inicio:fin, :]

Fig 2.8. Segmentacion de latidos.

Para estar seguros de que hemos segmentado bien los latidos graficamos cada grupo de
latidos, pero antes hemos normalizado los latidos para que tengan una escala estandarizada como

se muestra en la figura 2.9.

# Rormalfizacidn por canal (min-max)

latido_norm = (latido_filtrado - latido filtrado.min(axiss@)) ¢ (latide filtrado.max(axissd) - latido filtrado.min(axis=@) &+ 1e-6)

Fig 2.9. Normalizacion de latidos.
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Ahora observamos si los latidos fueron correctamente segmentados y normalizados, para
este paso graficamos los latidos de acuerdo con el grupo perteneciente (figura 2.10), guidndonos
por las anotaciones de las sefiales cardiacas presente en el archivo CSV o en el caso que se use la

libreria wfdb, en los archivos atr.
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Fig 2.10. Graficas de latidos por clase.

Nuestro siguiente paso fue clasificar los latidos en 5 tipos fundamentales: Normal (N),
Supraventricular (S), Ventricular (V), Fusion (F) y Desconocidos (Q). Estas serdn las clases que
se usardn para el entrenamiento del modelo, la cantidad de datos por cada de estas clases se

presentan en la figura 2.11.
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Fig 2.11. Distribucion de datos por clase

Como se muestra en la figura anterior la distribucion por clases fue muy desbalanceada,
tal que la clase normal supera los 80000 datos, si entrenamos el modelo con esta distribucion
existiran sesgos durante el entrenamiento, afectando el diagnostico por predicciones equivocadas
del modelo.

Por esto se requirid de la creacion de un dataframe para balancear los latidos a 20000
muestras por clase (figura 2.12) usando SMOTE, este numero puede variar dependiendo de los
requerimientos del modelo a entrenar, cuando los datos se guardaron procedimos con el
almacenamiento de los datos balanceados en formatos csv y npz, esto facilitard su uso para el

entrenamiento del modelo.

18



num_muestras, longitud, canales = X.shape

X_flat = X.reshape((num_muestras, -1))

smote = SMOTE(sampling_ strategy='auto’, random_state=42,k_neighbors=1)
X_smote, Y_smote = smote.fit_resample(X_flat, Y_5)

print(f"Después de SMOTE: {X_smote.shape}, {Y_smote.shape}")
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target = 20000
df_smote = pd.DataFrame(X_smote)
df_smote["label”] = Y_smote

df_final = []
for clase in sorted(df_smote["label"].unique()):
df_clase = df_smote[df_smote["label"] == clase]
if len(df_clase) > target:
df_bal = resample(df_clase, replace=False, n_samples=target, random_state=42)
else:

df_bal = df _clase # Si justo tiene 20k, no tocar
df_final.append(df_bal)

Fig 2.12. Balance con SMOTE y ajuste de datos al nimero deseado.

Con los datos cuya distribucion fue balanceada, son los Optimos que sirven para

finalmente proceder con el entrenamiento del modelo.

2.4 Entrenamiento del modelo
Se procedio con la division de los datos para entrenamiento y validacion, un 80% para

entrenamiento y 20% para validacion es un valor tipico para el aprendizaje del modelo.

# Divisidn en entrenamiento y prueba
X train, X test, y train, y test = train_test split(X, y cat, test size=0.2, random state=d42, stratify=y cat)

Fig 2.13. Division de datos para entrenamiento y validacion

Usando tensorflow se emplea como método de entrenamiento del modelo una red
neuronal convolucionada (CNN) de una dimension (1D) implementada en Keras, este método es

ideal para el procesamiento de sefiales temporales 1D como lo son los EKG ya que consta de

19



varias capas disefiadas para extraer las caracteristicas mas importantes de los latidos del corazon,
usando el comando Sequential hemos definido la arquitectura del modelo:

- ConvidlD: Estas capas se encargan de la extraccion de caracteristicas de la sefial
EKG, se definen la cantidad de filtros a usar para cada capa, el tamafio del kernel y si usa la
funcién ReLLU para la mejora de convergencia del modelo.

- Batch Normalization: Para acelerar y estabilizar el proceso de entrenamiento se
aplica la normalizacion de lotes después de cada capa.

- MaxPooling1D: Para reducir el tiempo de entrenamiento y el riesgo de sobreajuste
se empled un maxpooling para reducir la dimensionalidad de las caracteristicas extraidas del
EKG, para este caso se dejoé una ventana de 2.

- Flatten: Las capas densas requieren entradas de una sola dimension asi que se
requiere aplanar caracteristicas 3D obtenidas de las capas convolucionadas anteriores.

- Dense: Son capas densas que se incluyen después de las capas convolucionales,
para este entrenamiento se aplicod una capa de 128 neuronas, esto permite capturar patrones
complejos de las sefiales.

- Dropout: Previene el sobreajuste del modelo al desactivar aleatoriamente un
porcentaje de las neuronas de la capa densa anterior por cada iteracion durante el entrenamiento,

en la arquitectura se define un 0.3 (30%) de estas neuronas para su desactivacion.
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modelo = Sequential(]
ConviD(32, 5, activation="relu’, input_shape=(X.shape[1], 1)),
BatchNormalization(),
MaxPoolingiD(2),
ConvlD(64, 3, activation="relu’),
BatchNormalization(),
MaxPoolinglD(2),
Flatten(),
Dense(128, activation='relu'},
Dropout(e.3),
Dense(5, activation="softmax’) # S clases
1)
modelo.compile(optimizer="adam", loss='categorical_crossentropy’, metrics=[‘accuracy’])
modelo. summary( )

Fig 2.14. Arquitectura del modelo.

Para empezar con el entrenamiento se emple6 la funcion fit(), definimos una cantidad de
10 épocas para el entrenamiento, podemos reducir o aumentar el numero épocas si verificamos
que el modelo no sufra de un sobreajuste y tengamos los recursos computacionales necesarios
para dicho entrenamiento, ademas aqui se define el argumento validation_split con un valor de
0.2 que corresponde al 20% para validacion del modelo y por ende un 80% serd para el
entrenamiento.
history = modelo.fit(
X _train, y_train,
validation split=8.2,
epochs=18,

batch_size=64,
verbose=1

Fig 2.15. Entrenamiento del modelo.

modelo. save("modelo cnn_2888@.h5")

Fig 2.16. Guardado del modelo
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2.5 Evaluacion y prueba del modelo

Para evaluar la fiabilidad del modelo se visualiz6 los resultados de este mediante graficos
que muestran la evolucion de la precision y pérdidas a lo largo de las épocas durante el
entramiento, en la figura 2.17 se muestra el método para visualizar la precision y perdidas del
modelo durante su entrenamiento. Se evaliia si el modelo tiene problemas de sobreajuste o si no
cumple con los estindares de precision deseados para el sistema de clasificacion de latidos

mediante algoritmos de inteligencia artificial.

# Evaluacidn
loss, acc = modelo.evaluate(X test, y test)
print{f"Precisidon en test: {acc:.4f}")

Fig 2.17. Método para obtencion de precision y pérdidas del modelo.

Para tener mas resultados del modelo se requirié emplear métodos para obtener la matriz
de confusion del modelo y las métricas promedio que mostraran precision, sensibilidad y

eficacia.

# Matriz de confusidn
cm = confusion matrix(y_true, y_pred)
cm_percent = cm.astype(‘float'}) / ocm.sum{axis=1)[:, np.newaxis] * 188 # porcentajes

Fig 2.18. Implementacion de la matriz de confusion

# Reporte de clasificacion detallado (precision, recall, fl-score)
print(classification_report(y_true, y pred, target_names=['N', 'S’, 'V', 'F', 'Q']))

Fig 2.19. Obtencion del reporte de métricas del modelo por clase.

La prueba final del modelo se realizdé con datos EKG de pacientes de fuentes externas,
esta senal debe pasar por el proceso de preprocesamiento que hemos realizado para el
entrenamiento, ya que el modelo entrenado requiere entradas de datos cuya dimension sea
iguales a los datos con los que realizo el aprendizaje.

Definimos los pardmetros para interpretar los resultados arrojados por el sistema de

clasificacion ya que las clases de latidos son interpretadas por el modelo como clase 0 (N), clase
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1 (S), clase 2 (V), clase 3 (F) y clase 4 (Q), con el modelo cargado que ya fue guardado
previamente como ekg cnn_model.h5 hacemos uso de este, el resultado es la sefial EKG del

paciente con el diagndstico del latido en su pico R.

# ====== Pardmetros ======

ventana_antes = 99

ventana_despues = 281

mapa_Sclases = {8: 'N', 1: 'S", 2: V', 3: "F', 4: 'Q'}

colores_clases = {"N": 'green’, 'S': ‘orange’, 'V': 'red’, 'F": "purple’, 'Q': ‘blue’}

Fig 2.20. Parametros para interpretacion de resultados del modelo.
# ====== Cargar modelo ======

modelo = load model("modelo cnn_28888.h5")

Fig 2.21. Carga de modelo
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Capitulo 3
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3. Resultados y analisis

31

Precision y pérdida del entrenamiento

Se obtuvo el comportamiento de los datos de entrenamiento en comparacion con los

datos de validacion durante las 10 épocas que dura el aprendizaje del modelo como se muestra

en la figura 3.1.
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Fig 3.1. Grafica de precision y pérdida durante el entrenamiento.

El comportamiento de los datos se puede evaluar en términos de precision y pérdida, la

precision muestra una proporcion de predicciones correctas sobre las realizadas por el modelo,

esto quiere decir que el modelo identifico el 98.64% de los datos como correctos.

La pérdida muestra el error que se obtuvieron entre los datos reales y las predicciones del

modelo, en este caso la perdida fue inferior al 10%.

3.2 Matriz de confusion

La matriz de confusion es una herramienta utilizada en estadistica y aprendizaje

automatico para evaluar el rendimiento de un modelo de clasificacion. Se representa como una

tabla que muestra la relacion entre las predicciones realizadas por el modelo y las clases reales

de los datos. Cada fila de la matriz corresponde a la clase real, mientras que cada columna

representa la clase predicha, permitiendo visualizar los aciertos y errores del modelo.
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El total de datos utilizados para el entrenamiento es de 16.000 por cada clase, de esta
manera se empled 4000 datos por cada clase para la validacion del modelo durante el aprendizaje
y pueden ser interpretadas de la siguiente manera de acuerdo con la figura 3.2:

- Para la clase 0 que corresponde a los latidos normales (N), se estd prediciendo de
manera correcta 3912 datos.

- Para la clase 1 que corresponde a los latidos supraventriculares (S), se esta
prediciendo de manera correcta 3926 datos.

- Para la clase 2 que corresponde a los latidos ventriculares (V), se esta prediciendo
de manera correcta 3941 datos.

- Para la clase 3 que corresponde a los latidos fusion (F), se esta prediciendo de
manera correcta 3983 datos.

- Para la clase 4 que corresponde a los latidos desconocidos (Q), se esta prediciendo
de manera correcta 3965 datos.

Matriz de Confusion

3500
3000

- 2500

= 2000

Etigueta real

= 1500

= 1000

N S W F Q
Prediccion

Fig 3.2. Matriz de confusion
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Para una mayor comprension de la matriz de confusion se observo en porcentajes la
cantidad de aciertos del modelo durante el entrenamiento. En la figura 3.3 se visualiza dichos
resultados de la siguiente manera:

- 97.8% de manera correcta estad prediciendo la clase N.

- 98.2% de manera correcta estd prediciendo la clase S.

- 98.5% de manera correcta esta prediciendo la clase V.

- 99.6% de manera correcta estd prediciendo la clase F.

- 99.1% de manera correcta esta prediciendo la clase Q.

Matriz de Confusion (%)

80
- 60
- 40
-20
] o 0
N S \" F Q
Prediccion

Fig 3.3. Matriz de confusion porcentual

3.3 Meétricas generales
En la tabla 1, se muestra la evaluacion promedio obtenida del modelo después del

entrenamiento que define su rendimiento para la clasificacion de latidos.
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Tabla 3.1 Métricas de modelo

Métricas promedio del modelo

Precision 98.64 %
Recall 98.63%
F1-Score 98.64%

El modelo evaluado mostrd una precision del 98.64%, lo que indica que el 98.64% de las
instancias clasificadas como verdaderos positivos fueron correctas. El recall muestra la
sensibilidad del modelo para identificar casos positivos que fue del 98.63%. Por ultimo, el F1-
Score refleja la eficacia del modelo para detectar los verdaderos positivos mientras minimiza los

falsos positivos, su valor fue del 98.64%.

3.4 Prueba con EKG de otros pacientes

En esta seccidon se muestran los resultados obtenidos durante la prueba del sistema de
clasificacion de EKG entrenado con la base de datos ptblica del MIT-BIH Arrhythmia Database.
El modelo fue probado con varios EKG que no fueron usados durante el entrenamiento del
modelo con el objetivo de validar la capacidad de clasificacion de los diferentes latidos
cardiacos.

La figura 3.4 representa una sefial de EKG de un paciente con la clasificacion de los 20
primeros latidos con la respectiva clasificacion de cada latido del EKG de acuerdo con la
clasificacion AAMI como diagndstico. Se empled marcadores en el pico R de los latidos que
sefiala que clase de latido tiene el paciente, de color verde para la clase normal (N) y de color

naranja para la clase supraventricular (S), en este caso 19 de 20 latidos son de clase normal.
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i Clasificacion de EKG para 20 Latidos
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Fig 3.4. Seiial EKG de paciente sano.

La figura 3.5 muestra una sefial EKG con mayor variabilidad de clase como verde para
normales, rojo para ventriculares y morado para fusion. En esta sefial hay una mayor cantidad de
anomalias que la mostrada en la figura 3.4, pero muestra la capacidad del sistema para detectar

mas clases de latidos.
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Fig 3.5. Sefial EKG de paciente con anomalias cardiacas.

3.5 Analisis de resultados

En base a la matriz de confusion porcentual obtenida se puede observar un excelente
desempefio del modelo de clasificacion de EKG, la clase N alcanza el 97.8% con un nivel de
confusion relativamente bajo, alrededor del 1.5% de confusion con la clase S y menos del 1%

para las clases V,F y Q.
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La clase S muestra una precision del 98.2%, con una confusion del 1.8% para la clase N,
para las otras clases no muestra confusiones y este resultado muestra que el modelo distingue
con un buen indice de aciertos los latidos supraventriculares que las otras clases, reduciendo en
gran medida que se pase por alto arritmias por latidos supraventriculares.

La clase V alcanzo un porcentaje del 98.5% de aciertos, con confusiones pequefias del
0.4% con la clase N, 0.9% con la clase F y 0.1% con la clase Q, este nivel de aciertos es 6ptimo
para la deteccion temprana de alteraciones ventriculares.

La clase F alcanzo un porcentaje del 99.6% de aciertos con confusiones del 0.1% con la
clase Ny 0.3% para la clase V, esto muestra que la clase F es la que tiene mayor nivel de
precision por lo que se sugiere que el modelo clasifica mejor esta clase de latidos.

La clase Q obtuvo una precision del 99.1% con confusiones del 0.6% con la clase N y del
0.3% con la clase V, esto confirma la capacidad del modelo para detectar latidos atipicos que
estan fuera de las categorias principales.

Los resultados graficos de los EKG clasificados refuerzan los resultados obtenidos en la
matriz de confusion, en la figura 3.4 que corresponde a un paciente relativamente sano, se
observo que la mayoria de los latidos fueron categorizados como normales (N), validando de esta
manera que no existen falsos positivos significativos.

En la figura 3.5 corresponde a un paciente con anomalias cardiacas, pues el modelo
identifico varios tipos de latidos (N, S, V, F) en la misma sefial, esta clasificacion demuestra que
el sistema es consistente con la deteccion de cada latido.

Finalmente, se puede concluir que tanto la matriz de confusién como los resultados de la
clasificacion de EKG validan el sistema de clasificacién como una herramienta de diagndstico
asistido para el personal médico capacitado, integracion en entonos clinicos y de telemedicina

para el monitoreo de senales cardiacas.
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Capitulo 4
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4. CONCLUSIONES Y RECOMENDACIONES
4.1 Conclusiones

. El sistema implementado basado en redes neuronales convoluciones (CNN)
alcanzo, en la clasificacion de latidos cardiacos, una precision promedio equivalente al 98.64%,
en las clases evaluadas. Confirmando la viabilidad de la IA como herramienta confiable para la
deteccion de arritmias en electrocardiogramas.

. La baja confusion porcentual entre las clases confirma que el proceso de: filtrado,
normalizacion, segmentacion y balanceo de datos mediante SMOTE, optimizo la calidad de las
senales y permitié al modelo distinguir patrones con alta precision.

. Los resultados obtenidos evidencia que el sistema puede integrarse como una
herramienta de soporte en entornos hospitalarios, de telemedicina o en dispositivos portatiles de
monitoreo cardiaco.

. El sistema contribuye a disminuir el tiempo de interpretacion de registros EKG y

reducir el riesgo de errores humanos, lo cual aumenta eficiencia diagnostica en centros de salud.

4.2 Recomendaciones

. Se recomienda obtener mas datos de EKG externos para validacion y prueba del
modelo, pues es posible que valores tan altos de precision se deban a que la etapa de validacion
se la realice con la misma base de datos.

. Se debe evaluar el uso del sistema de clasificacion en conjunto con los programas
de los electrocardiografos, de esta manera puede ser posible un diagnodstico en tiempo real.

. El modelo puede ser embebido en una Raspberry o una FPGA, de esta manera se
puede analizar su uso comercial como una herramienta portatil para el personal médico y

aplicaciones de telemedicina.

32



Referencias

[1] World Heart Federation, Deaths from cardiovascular disease surged 60% globally over
the last 30 years: Report, World Heart Federation. [En linea]. Disponible en: www.world-heart-
federation.org/news/deaths-from-cardiovascular-disease-surged-60-globally-over-the-last-30-
years-report/

[2] J. De Bie, C. Martignani, G. Massaro, y 1. Diemberger, Performance of seven ECG
interpretation programs in identifying arrhythmia and acute cardiovascular syndrome, vol. 58,
pp. 143-149, 2020, doi: 10.1016/j.jelectrocard.2019.11.043.

[3] J. Bailey et al., Recommendations for standardization and specifications in automated
electrocardiography: bandwidth and digital signal processing. A report for health professionals
by an ad hoc writing group of the Committee on Electrocardiography and Cardiac
Electrophysiology of the Council on Clinical Cardiology, American Heart Association, vol. 81,
n.o 2, pp. 730-739, feb. 1990, doi: 10.1161/01.CIR.81.2.730.

[4] National Heart, Lung, and Blood Institute, How the Heart Works, National Heart, Lung,
and Blood Institute. Accedido: 17 de agosto de 2025. [En linea]. Disponible en:
https://www.nhlbi.nih.gov/es/salud/corazon/latidos-cardiacos.

[5] Stanford Medicine Children’s Health, Anatomy and Function of the Electrical System,
Stanford Medicine Children’s Health. Accedido: 17 de agosto de 2025. [En linea]. Disponible
en: https://www.stanfordchildrens.org/es/topic/default?id=anatomy-and-function-of-the-
electrical-system-90-P04865

[6] R. M. Rangayyan y S. Krishnan, Biomedical Signal Analysis. John Wiley & Sons, 2024.
[7] GE HealthCare, A Guide to ECG Signal Filtering. [En linea]. Disponible en:
www.gehealthcare.co.uk/insights/article/a-guide-to-ecg-signal-filtering

[8] A. Darmawahyuni et al., Deep learning-based electrocardiogram rhythm and beat features
for heart abnormality classification, Peer] Comput. Sci., vol. 8, p. €825, ene. 2022, doi:
10.7717/peerj-cs.825.

[9] M. Sermesant, H. Delingette, H. Cochet, P. Jais, y N. Ayache, Applications of artificial
intelligence in cardiovascular imaging, Nat. Rev. Cardiol., vol. 18, n.o 8, pp. 600-609, ago. 2021,
doi: 10.1038/s41569-021-00527-2.

[10] H. Lu et al., Métodos computacionales y matematicos en medicina, Wiley Online

Library. [En linea]. Disponible en: www.onlinelibrary.wiley.com/doi/10.1155/2022/3016532

33



		2025-11-08T22:40:58-0500


		2025-11-10T09:26:08-0500
	EFREN VINICIO HERRERA MUENTES




