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RESUMEN 

 

Se aborda el pronóstico para el abastecimiento de remolcadores en un terminal petrolero 

marítimo. El objetivo propuesto consistió en realizar un análisis descriptivo y predictivo 

de la demanda de remolcadores mediante técnicas de Machine Learning. Se plantea 

como hipótesis que los modelos ML pueden ser fiables, así como los modelos 

estadísticos-econométricos y Deep Learning; la justificación radica en la ausencia de 

herramientas tecnológicas en la logística portuaria. Para el desarrollo de esta solución 

se utilizó la metodología KDD (Knowledge Discovery in databases) para un enfoque 

heurístico e empírico. Se integraron y depuraron datos operativos y meteorológicos; se 

exploró la estructura temporal (nivel, tendencia, estacionalidad y ruido), y se aplicaron 

pruebas estadísticas y visuales sobre las características de la serie. Se modeló con 

árboles de gradiente usando la biblioteca Skforecast en un enfoque univariante y 

multistep, bajo restricción computacional. Para evitar data leakage se recurrió a la 

validación cruzada en conjunto con la técnica backtesting. Se adaptó métricas 

apropiadas a la serie para evaluar el desempeño bajo condiciones reales, reforzando la 

validez en contextos operativos con alta variabilidad e incertidumbre. En los resultados 

se obtuvo un modelo que alcanzó 81.11% de cobertura y con una precisión de 

RMdSE=0.051340. Como conclusión, esta propuesta sienta el inicio de las bases para 

una toma de decisiones más informada, eficiente y proactiva en un sector estratégico del 

país. 

 

 

Palabras clave: Skforecast; pronóstico de series temporales; remolcadores; puertos 

petroleros; forecasting. 
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ABSTRACT 

The forecast for the supply of tugboats at a maritime oil terminal is addressed. The 

proposed objective was to perform a descriptive and predictive analysis of the demand 

for tugboats using machine learning techniques. The hypothesis is that ML models can 

be reliable, as can statistical-econometric and deep learning models; the justification lies 

in the absence of technological tools in port logistics. To develop this solution, the KDD 

(Knowledge Discovery in Databases) methodology was used for a heuristic and empirical 

approach. Operational and meteorological data were integrated and refined; the temporal 

structure (level, trend, seasonality, and noise) was explored, and statistical and visual 

tests were applied to the characteristics of the series. Gradient trees were modeled using 

the Skforecast library in a univariate and multistep approach, under computational 

constraints. To avoid data leakage, cross-validation was used in conjunction with the 

backtesting technique. Appropriate metrics were adapted to the series to evaluate 

performance under real conditions, reinforcing validity in operational contexts with high 

variability and uncertainty. The results obtained a model that achieved 81.11% coverage 

and an accuracy of RMdSE=0.051340. In conclusion, this proposal lays the foundation 

for more informed, efficient, and proactive decision-making in a sector. 

 

Keywords: Skforecast; time series forecasting; tugboats; oil ports; forecasting.  
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CAPÍTULO 1 

1. PLANTEAMIENTO DE LA PROBLEMÁTICA 

1.1 Descripción del problema  

Los puertos marítimos son la sístole de la transportación del comercio mundial a través 

de rutas en diferentes tipos de buques. Por consiguiente, las operaciones portuarias 

marítimas conllevan una gran cantidad de datos que pueden ser aprovechados en la 

industria en conjunto con la academia teniendo por finalidad construir puertos eficientes.  

La Superintendencia Petrolera del Ecuador es parte del sector estratégico del estado, 

funge como autoridad portuaria, gestiona el tráfico marítimo de hidrocarburos a nivel 

nacional e internacional. Supervisa y controla actividades de maniobra en la 

transferencia de hidrocarburos a través de buques tanques, mediante cumplimiento de 

normativas y acuerdos internacionales en materia de prevención de riesgos ambientales. 

Los buques de pasajeros, hidrocarburos, portacontenedores y otros vehículos marítimos 

suelen estar equipados con equipos de comunicación AIS (Automatic Identification 

System) y VHF (Very High Frecuency). El tráfico marítimo en zonas portuarias es difícil 

de gestionar, especialmente en áreas con gran volumen de buques y una infraestructura 

de tecnológica insuficientemente desarrollada para satisfacer la demanda. 

La Superintendencia del Terminal Petrolero de La Libertad es la más grande de Ecuador 

-hasta la fecha-, tiene cinco fondeos para líquidos en el cantón La Libertad y un fondeo 

para gas en la comuna Monteverde (Figura 1). En la logística para las operaciones de 

traspaso de hidrocarburos se necesita lanchas, remolcadores y prácticos, estos son de 

carácter privado sin relación de dependencia. Además, carece de soluciones en gestión 

tecnológica de la información que permita identificar características, patrones y 

previsiones en las operaciones portuarias a través de software. Las compañías de 

hidrocarburos propietaria de los buques tienen obligaciones tarifarias para las 

operaciones marítimas en los puertos. En el Terminal, existen tarifas desde la llegada 

hasta la partida del buque, incluyendo el tiempo de espera cuando no existe 

disponibilidad para las operaciones de traspaso de hidrocarburos.  

El abastecimiento logístico para la demanda estocástica de buques tiene relevancia por 

la disponibilidad del remolcador en tipo y cantidad, supeditado al buque por atracar en 

las dársenas. Por lo general, el arribo de los buques no tiene previo aviso, siendo 

escasos tales notificaciones al puerto, en el mejor de los casos con 24 o 48 horas.  
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Ilustración 1. Ubicación de dársenas en la zona portuaria de la Superintendencia Terminal 

Petrolero de La Libertad. Izquierda: 6 dársenas. Centro: 1 dársena superior izquierda. Derecha: 

Monteverde 1 dársena superior derecha.  Fuente: Reglamento de Operaciones de SUINLI 

 

Por otra parte, debido a la literatura científica en inglés y en español, existen confusiones 

en algunos términos, por lo que es necesario aclarar las siguientes definiciones: 

o Un “buque” o “ship” se entiende un tanquero de hidrocarburos, un carguero o 

también barco de pasajeros. 

o Una “embarcación” o “vessel” se entiende por un “remolcador” o “tugboat” que 

asiste en las operaciones de atracadero de los buques. 

o La palabra “fondear” es la acción de maniobrar, consiste en estacionar y amarrar 

el barco al lecho marino mediante una cabo o cadena y utilizando un ancla.   

o “Atracar” es la acción de arrimar, acercar un buque a otro, o a tierra. 

o “Dársena” es un lugar del puerto resguardada y adecuada para estacionar el barco 

para las operaciones de carga y descarga de los hidrocarburos. Llamado también, 

atracadero, desembarcadero, fondeadero, amarradero, o muelle. 

o Un “práctico” es un marino experimentado y especializado en el manejo de 

buques, las particularidades de las aguas y dirección náutica dentro del puerto. 

Su función es asistir al capitán en tareas de navegación y maniobra en el ingreso 

y salida del puerto. Aunque, el práctico actúa como asesor en la dirección náutica 

del buque dentro del puerto, su presencia no disminuye en ningún momento la 

autoridad del capitán sobre la nave. En los puertos la profundidad disminuye y los 

espacios son reducidos, por lo que el capitán del buque necesita de la asistencia 

de “el práctico” entregándole el timón del buque. 
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1.2 Justificación del problema  

1.2.1 General 

El comercio marítimo de hidrocarburos es una actividad inherente para la energía y 

productividad de un país, esto implica numerosas actividades secuenciales y paralelas 

con respecto a la transportación. Considerando que la mayoría de los principales puertos 

del mundo están rodeados geográficamente de ciudades, lo que limita su expansión 

física, los puertos se ven obligados a aumentar su eficiencia en la disminución del costo 

general de la logística (Wu y Goh, citado por Siyavash, 2022). El uso o desarrollo de 

herramientas de gestión tecnológica de la información puede mejorar significativamente 

la eficiencia en la logística de suministro, transporte y distribución en los terminales 

portuarios (Siddiqui y Rodricks, 2010).   

En la segunda década de este siglo se ha desarrollado la digitalización y automatización 

de los puertos para mejorar la productividad y eficiencia operativa, esta transformación 

denominada “Smart Port” acuña “Business Analytics” para la calidad de decisiones en 

las operaciones e inversiones portuarias. Existen varias definiciones para el término 

Business Analytics proporcionada por Davenport y Harris como “El uso extensivo de 

datos, análisis estadístico y cuantitativo, modelos explicativos y predictivos y gestión 

basada en hechos para impulsar decisiones y acciones” (Filom et al., 2022). 

Según Filom et al. (2022), las aplicaciones de ML en operaciones terrestres son diversas 

debido a la amplia variedad de maniobras, donde son necesarios el análisis predictivo, 

el análisis prescriptivo y las automatizaciones. El autor señala que el 68% de los artículos 

se centraron en el análisis predictivo, mientras que solo el 22% realizaron análisis 

prescriptivos. En la mayoría de las operaciones portuarias, proporciona una mejor visión 

basada en el análisis predictivo; sin embargo, se necesita más investigación para cerrar 

la brecha entre percepción y acción, conocida como análisis prescriptivo (acción), que 

aporta mayor valor al negocio en comparación con el análisis predictivo (percepción). 

En relación con lo expuesto, cabe resaltar que existen varias decisiones críticas que 

deben resolverse para gestionar los recursos limitados del puerto, por ejemplo, 

asignación de atracaderos, despacho de buques, carga de combustible, planificación de 

remolcadores, entre otros. Aunque las operaciones costeras son probablemente el área 

de operaciones más rica en términos de disponibilidad de datos, el potencial final no se 

investiga completamente (Filom et al., 2022). 
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1.2.2 Específico 

En Ecuador, el petróleo es el producto de materia prima de mayor exportación, sumado 

a la importación de sus derivados, por lo que, es primordial la seguridad y eficiencia de 

las operaciones de los tres Terminales Petroleros Portuarios del país, ubicados en La 

Libertad, Balao y en Tres Bocas (Bucheli, 2014). 

Las operaciones como carga/descarga, almacenamiento y transporte son actividades 

centrales en los puertos. Cuando un buque arriba al puerto comunica su llegada y los 

servicios que necesita; las operaciones comienzan desde el arribo, esperar para que un 

práctico aborde el buque para el control del mismo, este toma las decisiones como el 

número y características de los remolcadores necesarios, luego con remolcadores se 

procede atracar el buque en las dársenas adecuadas, seguido se procede al traspaso 

de hidrocarburos a otro buque o a los tanques en tierra en la refinería por medio 

conductos submarinos, luego nuevamente con remolcadores se realiza el desatraque de 

las dársenas dirigiendo al buque a las vías marítimas, y, por último, el práctico entrega 

al capitán del buque el control para continuar con su ruta de navegación.  

El abastecimiento logístico para la demanda estocástica de buques tiene relevancia por 

la disponibilidad del remolcador en tipo y cantidad, supeditado al buque por atracar en 

las dársenas. Por lo general, el arribo de los buques no tiene previo aviso, siendo 

escasos tales notificaciones al puerto, en el mejor de los casos con 24 o 48 horas.  

Una herramienta de gestión de la información, enfocado a abastecer la demanda de las 

operaciones portuarias marítimas en el Terminal Petrolero de La Libertad mejoraría los 

servicios, partiendo del hecho que no disponen de ninguna solución tecnológica que 

permita un panorama descriptivo de las operaciones. Solo cuentan con un sistema de 

registro para la facturación de las operaciones desarrollado en Visual FoxPro útil en su 

momento, actualmente se requiere capacidad de integración con otros sistemas actuales 

para versatilidad, escalabilidad y seguridad de la información. 

El propósito de este trabajo de investigación exploratorio, emprende un análisis para 

predecir los patrones de arribo de los buques para el traspaso de hidrocarburos en el 

Terminal Portuario Marítimo, utilizando técnicas de Machine Learning. Inicialmente 

entrega un panorama descriptivo con datos del puerto, luego desarrolla un modelo 

predictivo para remolcadores.  
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1.3 Solución propuesta 

El Terminal Petrolero La Libertad en los servicios de operaciones portuarias requiere de 

herramientas tecnológicas para administrar y gestionar las actividades del puerto. 

Para facilitar servicios portuarios y prevención de la contaminación petrolera, es 

necesario planificar la logística necesaria para la demanda, considerando el número 

limitado de dársenas y remolcadores. Machine Learning con un alcance de análisis 

descriptivo, proporcionaría un prototipo con modelos explicativos sobre las operaciones, 

tiempo de maniobras, etc. Esta solución se traza con la metodología KDD (Knowledge 

Discovery in databases) conocida ampliamente en proyectos de Ciencia de Datos, se 

detalla más adelante en el epígrafe Metodología. 

Según los papers en journals, en el sector marítimo petrolero carecen soluciones ML que 

aborden la logística para satisfacer la demanda de servicios por medio una predicción. 

Con lo expuesto, esta investigación propone la siguiente interrogante ¿Los modelos de 

ML pueden anticiparme los remolcadores necesarios para atracar buques? 

 

1.4 Objetivos 

La temática de la propuesta de investigación se define como un Proyecto Conjunto 

Empresa-Academia, con un enfoque de investigación exploratorio y descriptivo. 

Corresponde a la línea de investigación es la Eficiencia energética, Energías renovables 

y Alternativas —de ODS 7 energía asequible y no contaminante—, perteneciente al área 

de Logística y Transporte.  

A continuación, se detalla los objetivos a través de la taxonomía Krathwohl (2000) 

basando por el autor Bloom: 

 

1.4.1 Objetivo General 

Realizar un análisis descriptivo y predictivo para el abastecimiento de remolcadores en 

maniobras de traspaso de hidrocarburos en un Terminal Portuario Marítimo, utilizando 

técnicas de Machine Learning. 

 

1.4.2 Objetivos Específicos  

(1). Identificar las variables endógenas y exógenas  
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(2). Comprender e interpretar patrones y características en función del análisis 
descriptivo 

(3). Aplicar técnicas de Machine Learning para un análisis predictivo de los 
remolcadores  

(4). Determinar el modelado optimo a través de métricas de evaluación 

 

1.5 Metodología 

KDD (Knowledge Discovery in Databases) es un proceso sistemático cuyo objetivo es 

extraer conocimiento útil y comprensible a partir de grandes volúmenes de datos, 

mediante etapas como la selección, transformación, minería de datos y evaluación de 

resultados (Figura 2). La selección de la metodología KDD para este proyecto de 

forecasting se justifica por su capacidad para abordar de manera estructurada y rigurosa 

el descubrimiento del conocimiento. El cual contempla las etapas necesarias para 

obtener predicciones precisas y relevantes, tales como selección, limpieza, análisis, 

transformación, modelado, evaluación e interpretación de resultados. De esta manera, 

se asegura no solo la calidad del proceso analítico, sino también la utilidad práctica del 

conocimiento generado para la toma de decisiones futuras (Fayyad et al., 1996). 

 

Ilustración 2. Componentes del proceso KDD. Fuente: Fayyad et al.,1996 

 

1.6 Dataset 

El conjunto de datos se obtuvo de la Superintendencia del Terminal Petrolero La Libertad 

(SUINLI) para el propósito de investigación por medio de un acuerdo de confidencialidad 

y anonimato de los datos. 
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En las Tablas 1, 2 y 3 se dispone de información relacionada con los buques y 

remolcadores, la cual proviene del sistema de facturación asociado a las operaciones 

logísticas.  

Tabla 1. Tabla arribo de buques con registros desde 1999 

ABREVIATURA DESCRIPCIÓN 

REGISTRO * Número de registro de la asistencia para la operación portuaria 

MATRICULA Número de identificación del Buque 

TIPONAVE Tipo de buque 

NOMBRENAVE Nombre del buque 

BANDERA País de procedencia 

CHARTEADO 
Buques internacionales que se encuentran fletados, Charteados por un período 
para operativos de EP PETROECUADOR. 

FECHAARRIBO Fecha cuando inicia la asistencia 

HORAARRIBO Hora cuando inicia la asistencia 

FECHZARPE Fecha cuando finaliza la asistencia 

HORAZARPE Hora cuando finaliza la asistencia 

TRAFARRIBO 
Tipo de buque al que se asiste: I para internacional. C para nacional llamado 
cabotaje. 

TRAFZARPE 
Tipo de buque al que se asiste: I para internacional. C para nacional llamado 
cabotaje. 

AGENCIA La agencia de la compañía naviera 

PTOARRIBO Terminal Portuario de Arribo 

PROCEDENCIA País de procedencia del buque 

DESTINO País donde se dirige el buque 

CARGA De la carga del buque el país de procedencia 

FACTURA Número de factura 

BOC Expresa cuando la asistencia solicitada es de carácter carga de combustible 

IMPORTACION 
Producto Internacional con la que arriba el buque para ser descargado en el 
puerto. 

TOTALHORAS Total horas de arribo hasta salida del buque 

ESLORA Largo del buque 

TRBNAVE Tonelaje de Registro Bruto. Peso del volumen de carga 

TRNNAVE Tonelaje de Registro Neto. Peso de la nave sin carga 

TPMNAVE Tonelaje de Peso Muerto. Es el total del peso del buque más el peso de la carga 

RANGOTPM Rango de tonelaje 

CALADONAVE 
Distancia vertical entre un punto de línea de flotación y la línea base o quilla, 
incluido el espesor del barco 

CALADOARRIBO Nivel de calado con que llega al puerto 

CALADOZARPE Nivel de calado con que sale del puerto 

Nota: * columna Registro. Es el enlace entre todos los servicios, desde la llegada hasta la partida del buque en el Terminal.   

 

Tabla 2. Tabla remolcadores con registros desde 2016 

ABREVIATURA DESCRIPCIÓN 

COMPANIA Compañía del remolcador 

REMOLCADOR Nombre del remolcador 

RANGOHP Potencia del remolcador 

BP Capacidad de empuje 

RANGOBP Rango de capacidad de empuje 

CLASE A: pequeño; B: mediano; C: grande 

REGISTRO * Número de registro de la asistencia para la operación portuaria 

BUQUE Tipo de buque al que se asiste: I para internacional. C para nacional llamado 
cabotaje. 

MATRICULABUQUE Matrícula del buque asistido 

NOMBREBRUQUE Nombre del buque asistido 

TRBBUQUE Tonelaje de Registro Bruto. Es el volumen total almacenado en el buque 
transportándose 

AGENCIABUQUE Agencia del buque 

PRACTICAJE Tipo de asistencia del practicaje en la operación portuaria 

BUQUE2 Nombre del buque asistido 2 

LUGAR Lugar de fondeo (estacionamiento) en el Terminal  

FECHAINI1 Fecha cuando inicia la asistencia 

HORAINI1 Hora cuando inicia la asistencia 

FECHAFIN2 Fecha cuando finaliza la asistencia 

HORAFIN2 Hora cuando finaliza la asistencia 

TOTALHORAS Hora total de asistencia en buques 
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TARIFABUQUE Tipo de buque al que se asiste: I para internacional. C para nacional llamado 
cabotaje. 

VAL_MONEDA Valor de la factura 

ANULADA Cuando se anula la papeleta por error en ingreso (digitación de numeración 
o duplicado) 

Nota: * columna Registro. Es el enlace entre todos los servicios, desde la llegada hasta la partida del buque en el Terminal.   

Tabla 3. Características de los remolcadores 

CLASE RANGO H.P. OPERADORA 
BOLLARD 
PULL 

A <= 1500 

OPERADOR1 S.A. 
11 

15 

OPERADOR2 S.A. 
11 

8 

OPERADOR3 S.A. 20 

OPERADOR4 S.A. 10 

B 1501 a 3000 

OPERADOR5 S.A. 18 

OPERADOR6 S.A. 29 

OPERADOR7 S.A. 29 

OPERADOR8 S.A. 31 

OPERADOR9 S.A. 29 

OPERADOR10 S.A. 25 

C >= 3000 

OPERADOR11 S.A. 

50 

60 

67 

OPERADOR12 S.A. 55 

OPERADOR13 S.A. 45 

Nota: ** Remolcadores que no están operativos 

Para el estudio de variables meteorológicas obtenidas desde estaciones terrestres, 

inicialmente se consideró el uso de la base de datos del Instituto Nacional de 

Meteorología e Hidrología (INAMHI) a través del Sistema de Estandarización de Datos 

Hidroclimáticos Crudos (SEDC). No obstante, dado que esta plataforma está orientada 

a estaciones ubicadas en la provincia de Pichincha, se optó por utilizar datos 

hidroclimáticos provenientes de la librería meteostat de Python, que proporciona 

registros históricos de estaciones meteorológicas a nivel global, incluyendo aquellas 

ubicadas en la zona de estudio. 

Meteostat es un proveedor de datos meteorológicos y climáticos de acceso abierto que 

ofrece series temporales a largo plazo provenientes de miles de estaciones 

meteorológicas distribuidas a nivel mundial. Su enfoque en datos de observación reales 

—en lugar de simulaciones o modelos suprarregionales— lo convierte en una fuente 

confiable para estudios científicos, proyectos educativos y desarrollos tecnológicos. La 

plataforma se destaca por su política de datos abiertos, su amplia cobertura geográfica, 

y su facilidad de integración a través de una biblioteca específica para Python. Además, 

obtiene sus datos de diversas fuentes oficiales como la NOAA (National Oceanic and 

Atmospheric Administration) y el Deutscher Wetterdienst (DWD), asegurando calidad y 

consistencia conforme a las normas establecidas por la Organización Meteorológica 

Mundial (OMM). Estas características hacen de Meteostat una herramienta adecuada 
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para el análisis hidroclimático en contextos donde otras fuentes, como SEDC, presentan 

limitaciones de cobertura. 

 

 

CAPÍTULO 2 

2. ESTADO DE ARTE 

2.1 Inteligencia Artificial (IA) en la logística marítima  

Según la Asociación para el Avance de la Inteligencia Artificial (AAAI), la IA se define 

como “avanzar en la comprensión científica de los mecanismos subyacentes al 

pensamiento y el comportamiento inteligente y su encarnación en las máquinas”. 

Machine Learning (ML) es un subcampo dentro de la IA, a través del cual un sistema 

puede aprender y mejorar automáticamente a partir de datos sin estar programado 

explícitamente (Bhavsar citado por Filom et al., 2022). El aprendizaje automático extrae 

conocimiento de los datos y realiza predicciones y decisiones informadas basadas en lo 

aprendido, sin necesidad de un conocimiento previo de los datos y el contexto (Hwarng 

y Ang citado por Filom et al., 2022).  

Una ventaja predominante de los modelos basados en ML es que, en muchos casos, el 

proceso de previsión podría automatizarse; por otro lado, los modelos estadísticos, como 

la Regresión Lineal (LR) y ARIMA, deben volver a realizarse periódicamente ya que los 

datos de entrada cambian constantemente (Önsel Ekici citado por Filom et al., 2022). 

Además, a diferencia de la minería de datos o sistemas expertos, que se basaban en 

reglas predeterminadas para analizar los datos, el ML no se basa en reglas o ecuaciones 

actuales como modelo (Filom et al., 2022). 

El aprendizaje automático es una herramienta poderosa para el análisis predictivo y 

prescriptivo, mientras que métodos Investigación Operativa son más adecuados para el 

análisis prescriptivo (Crainic et al., 2009). Por lo que, los métodos de ML están 

sustituyendo gradualmente estos enfoques para investigar problemas relevantes 

portuarios, tales como, predicción de la demanda, operaciones terrestres, operaciones 

costeras, seguridad, entre otras; dilatando nuevas vías para futuras investigaciones 

sobre puertos inteligentes (Filom et al., 2022).  En la Figura 3 muestra una vista 

panorámica de la analítica de negocios en las operaciones portuarias. 
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En los estudios recientes se destaca el cambio hacia la explotación de modelos híbridos, 

capaces de simular características tanto lineales como no lineales de los datos de 

entrada. Este tercer enfoque de modelo híbrido se trata de combinar modelos 

estadísticos con modelos ML, aprovechando las ventajas de ambos modelos para un 

mejor rendimiento de predicción (Ping y Fei citado por Filom et al., 2022). 

 

Ilustración 3. Vista panorámica de la analítica de negocios en las operaciones portuarias. 

Fuente: Filom et al., 2022 

Aunque la implementación de métodos de aprendizaje automático en el transporte 

marítimo y la industria portuaria ha ido atrayendo gradualmente a académicos, solo unos 

pocos estudios ofrecieron revisar, categorizar y encontrar direcciones de investigación 

en la literatura relevante. Según Filom (2022) en su investigación sistemática sobre el 

aprendizaje automático en operaciones portuarias, con un análisis final de 70 papers, 

manifiesta que el transporte marítimo a granel supera en más del 50% al transporte 

contenedores, además de no encontrar un estudio sobre el pronóstico de la demanda de 

carga a granel utilizando métodos ML; tomando en cuenta que el transporte marítimo 

está intrínsecamente impulsado por la demanda, que afecta al resultado por factores 

socioeconómicos. 

 

2.2 Trabajos de investigación relacionados 

La bibliografía sobre puertos inteligentes es muy amplia y variada, sin embargo, con 

respecto a terminales petroleros es escasa. Para efectos de este trabajo de investigación 

se citan un par de casos relevantes relacionado a buques con ML:  

o Kim y Lee (2019) desarrollaron un modelo DNN (Deep Neural Network) para predecir 

el destino de los buques en el puerto de Yeosu, Corea del Sur, se utilizó como datos 
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el área de navegación, tonelaje del barco, profundidad del barco, eslora, tipo y 

ocupación del puerto extraídos de AIS y del Sistema de Información de Gestión 

portuaria (MIS) basados en 2 años, logrando una precisión del 85%, superior en un 

10-15% al modelo de referencia. 

o En algunos puertos los canales de acceso para la navegación son limitados 

convirtiéndose en los activos más importantes del puerto. Por ejemplo, el puerto de 

Tianjin, China, su canal Dagusha es uno de los cuellos de botella más predominantes 

del puerto, por lo que una estimación realista de la capacidad es indispensable para 

los administradores portuarios. En el 2020 Liu et al. (citado por Filom et al., 2022) 

calcularon la capacidad de navegación del canal Dagusha usando datos AIS y el 

método de agrupación K-means, identificando la capacidad máxima del canal, el 

resultado ayudó en la planificación de la llegada y salida de los barcos 

Con respecto a remolcadores se encontró dos trabajos de investigación del 2020, estas 

soluciones no utilizan ML: 

o Chen et al., (2020) por medio de algoritmos analiza las actividades de los 

remolcadores utilizando datos AIS para el puerto Tiajin, China. Presenta algunas 

características como el número diario de trabajos y distribución espacial de los 

remolcadores, además realiza un análisis temporal y espacial para investigar la 

asignación de remolcadores, el tiempo de servicio, la utilización de los remolcadores 

y las ubicaciones de las operaciones de atraque y desatraque.  

o Wu y Miao (2020) por medio de algoritmos presenta un modelo estadístico 

programación robusto, abordando al problema de asignación continua de atraques 

con incertidumbre por la hora de llegada de los buques y el tiempo de operación y 

maniobras. 

Por último, se encontró un trabajo de postgrado orientado a remolcadores con ML de 

Borzyszkowski (2022), quien propone un modelo para estimar el número de 

remolcadores implicados en un evento operativo de remolque. Usaron datos históricos 

de un año con datos AIS de tipo dinámico sobre el tráfico marítimo y meteorológicos del 

mar Báltico en dos puertos, Rauma y Vuosaari. Logró construir modelos específicos por 

puerto con overall accuracy del 87% y 91.5% por medio de algoritmos de clasificación. 

Estos resultados demostraron que es posible desarrollar una herramienta predictiva para 

las operaciones de remolcadores y por ende coadyuvar a la eficiencia operativa en los 

puertos a través de IA. 
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2.3 Series temporales 

Las series temporales son secuencias de datos recopilados en intervalos de tiempo 

específicos, que se utilizan para analizar y predecir tendencias futuras. Esta área de 

análisis se centra en identificar patrones, tendencias, estacionalidades y otros 

comportamientos cíclicos en los datos a lo largo del tiempo (Filom et al., 2022). 

Un pronóstico se define como una estimación de un valor futuro para una variable, con 

la ayuda de técnicas para minimizar el margen de error. Además, es fundamental aplicar 

el buen juicio y la experiencia del experto que genera el pronóstico. El objetivo de 

forecasting (pronóstico) es predecir eventos futuros basándose en datos históricos, con 

el fin de mejorar la planificación, la toma de decisiones y la asignación de recursos 

(Jiahuan et al., 2023). 

El objetivo del análisis de series temporales suele ser doble: comprender o modelizar el 

mecanismo estocástico que da lugar a una serie observada y, predecir o pronosticar los 

valores futuros de una serie basándose en la historia de esa serie y, posiblemente, en 

otras series o factores relacionados. La lista de ámbitos en los que se estudian las series 

temporales es prácticamente interminable (Cryer y Chan, 2008). 

Una serie de datos es una secuencia de valores que representan la evolución de una 

sola variable a lo largo del tiempo o de algún otro criterio. Por ejemplo (Figura 4), si 

registramos la temperatura diaria durante una semana, estamos trabajando con una sola 

serie. En cambio, cuando se recopilan y analizan varias variables simultáneamente, 

como temperatura, humedad y velocidad del viento, en los mismos días, hablamos de 

múltiples series.  

 

Ilustración 4. Ejemplo de uniSerie y multiSerie 
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2.3.1 Modelos de predicción en series temporales 

El pronóstico o forecasting de variables cuantitativas puede abordarse mediante diversas 

técnicas de modelado predictivo, las cuales buscan representar el comportamiento 

histórico de una serie con el fin de anticipar sus valores futuros. Se agrupan en: 

• Modelos estadísticos y econométricos, como ARIMA, SARIMA o regresiones 

dinámicas, los cuales parten de supuestos teóricos sobre el comportamiento de 

la serie y su estructura de dependencia temporal (Jiahuan et al., 2023). 

• Modelos de machine learning, como árboles de decisión, bosques aleatorios y 

gradient boosting, que permiten capturar relaciones no lineales complejas sin 

necesidad de supuestos paramétricos estrictos. 

• Modelos de deep learning, como redes neuronales recurrentes (RNN), 

diseñados para aprender patrones secuenciales a gran escala en contextos donde 

existen múltiples fuentes de variabilidad y datos de alta dimensionalidad. 

La elección de una u otra técnica depende del contexto del problema, la disponibilidad 

de datos, la interpretabilidad deseada y el grado de precisión requerido. En este sentido, 

Hyndman y Athanasopoulos (2018) enfatizan que: cuando la serie tiene patrones fuertes 

(varianza explicada por tendencia/estacionalidad), los modelos simples (estadísticos y 

econométricos) funcionan bien; cuando hay alta incertidumbre (ruido) o factores externos 

no observados, están los modelos con regresores (ML) o técnicas más complejas (DL). 

 

2.3.2 Forecasting 

 

Ilustración 5. Contexto sobre Forecasting Model. Fuente: Abhishek Murthy 

Consiste en construir una representación matemática basada en datos históricos, con el 

objetivo de predecir los valores futuros de una serie temporal. En un modelo de 

https://www.youtube.com/watch?v=7NXCdfzr5d8&list=PLcgLImOk4dhoJRUwKKpxb16AfoqOl-6ht&index=28
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forecasting, los valores pasados (endógenos) de la variable objetivo se utilizan para 

identificar patrones históricos, mientras que los inputs exógenos pasados (como clima, 

tiempo o eventos) aportan contexto adicional al comportamiento de la serie. Los inputs 

exógenos futuros, conocidos de antemano (e.g. feriados, fines de semana), enriquecen 

las predicciones al incorporar información predecible anticipada. A partir del tiempo de 

pronóstico (forecast time), el modelo proyecta los valores hacia adelante según un 

horizonte de predicción (uno o varios pasos) definido, generando los valores 

pronosticados. Todo este proceso es gestionado por el modelo de forecasting, que 

integra estas entradas para estimar el comportamiento futuro de la variable de interés 

(Figura 5). 

 

Ilustración 6. Componentes de una serie temporal 

Este modelado puede realizarse considerando únicamente los patrones internos de la 

propia serie (modelo autorregresivo) o incorporando variables externas que influyan en 

el comportamiento de la variable de interés. De forma simplificada se puede representar: 

Yₜ = Nivel + Tendencia + Estacionalidad + Ruido 

Cada uno de estos elementos cumple una función específica (Figura 6): 

• Nivel (level): representa el valor base alrededor del cual fluctúa la serie: ejemplo, 

el promedio mensual de temperatura sin considerar la variación estacional. 
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• Tendencia (trend): refleja la dirección general del cambio a largo plazo (creciente 

o decreciente). 

• Estacionalidad (seasonality): corresponde a patrones que se repiten en intervalos 

regulares (como días, semanas o años). 

• Ruido (noise): incluye toda variación aleatoria no explicada por los otros 

componentes. Corresponde la parte impredecible de la serie. 

Desde una perspectiva orientada al modelado predictivo en machine learning, esta 

descomposición puede reinterpretarse como: 

FORECAST = Patrones + Varianza no explicada 

Patrones (Endógenas): Abarca todos los elementos repetitivos o sistemáticos que 

pueden ser aprendidos por el modelo. Para capturar estos elementos estacionales, 

tendencias y nivel, a continuación, algunas de las técnicas más usadas: 

• Retrasos Temporales (lags): Son valores pasados de la misma serie que permiten 

capturar la memoria, es decir, cómo el valor actual depende de valores pasados.  

• Estadísticas móviles (rolling stats): Son características estadísticas calculadas por 

medio de una ventana deslizante de valores pasados en una serie temporal. Estas 

ventanas capturan comportamientos locales, como la media, desviación estándar, 

mínimo o máximo recientes, proporcionando información sobre los patrones 

temporales sin perder la secuencia cronológica. Por ejemplo, una media móvil de 

7 días ayuda a suavizar la serie y resaltar tendencias de corto plazo.  

• Diferencias y transformaciones internas: Ayudan a estabilizar tendencia y varianza 

en la serie, revelando estructuras como crecimiento o estacionalidad oculta.  

Varianza no explicada (Exógenas): Representa el componente de incertidumbre 

asociado a factores que afectan la variable respuesta, pero no están reflejados 

directamente en el pasado de la serie, ayudan a reducir la varianza no explicada, siendo: 

• Variables calendario-administrativas: Día de la semana, feriados, turnos 

laborales. No forman parte de la serie temporal directa. 

• Eventos meteorológicos, económicos, sociales: Son externos y no se reflejan en 

los lags ni rolling stats. Ej.: tormentas, huelgas, ferias, anuncios de política 

• Aleatoriedad estructural / ruido blanco / errores: Parte impredecible del sistema. 

La varianza no explicada incluye ruido blanco (azar puro), aleatoriedad estructural 
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(influencias no observadas o no modeladas) y los errores residuales del modelo. 

Define los límites del poder predictivo y justifica el uso de intervalos de predicción. 

La probabilidad de éxito en el pronóstico mejora cuando los patrones explican una mayor 

proporción de la variabilidad observada. En cambio, a medida que la varianza no 

explicada cobra mayor relevancia, se hace necesario incorporar variables exógenas —

si están disponibles— para mejorar la capacidad predictiva del modelo y capturar mejor 

el comportamiento histórico observado.  

 

2.4 Modelos Machine Learning para Forecasting 

2.4.1 Introducción a los árboles de decisión 

Los árboles de decisión son algoritmos predictivos en el que está basado en decisiones 

binarias (si/no) en función de varios atributos -que interactúan de forma no lineal- de una 

observación/variable respuesta. Estos no solo se destacan por su precisión en las tareas 

de clasificación -predice una etiqueta de clase- (Figura 7) y regresión -predice un valor 

numérico continuo- (Figura 8), los árboles de decisión son interpretables, requieren poca 

preparación de datos, funcionan bien en contextos donde se necesita trazabilidad o 

explicabilidad, y sobre todo, posee algoritmos ensemble que combinan muchos árboles 

simples en una colección de árboles combinados (ensemble) convirtiéndose en un 

predictor preciso, robusto y generalizable. 

Una de las desventajas en los árboles de decisión, es su incapacidad de extrapolar fuera 

del rango de predictores observados durante el entrenamiento, lo cual inicialmente es 

una limitación para forecasting. Esto quiere decir, si el modelo entrenado con variables 

independientes entre 45 y 100, el árbol no sabrá cómo comportarse al querer una 

predicción para 20 o 140; en este caso, el árbol solo puede asignar predicciones basadas 

en divisiones ya aprendidas, por lo que repite valores conocidos (constantes) en lugar 

de proyectar una tendencia creciente o decreciente. En la Figura 9 se aprecia la 

diferencia entre modelos de árboles de regresión y modelos lineales en la extrapolación. 
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Ilustración 7. Árboles de Decisión Clasificación. Fuente: https://fhernanb.github.io/libro_mod_pred/arb-de-

regre.html  

  

 

Ilustración 8. Árboles de Decisión Regresión. Fuente: https://www.cristobal-aguirre.com/arboles-de-decision  

 

Ilustración 9. Extrapolación con modelos de árboles y modelos lineal. Fuente: 

https://cienciadedatos.net/documentos/py07_arboles_decision_python  

 

https://fhernanb.github.io/libro_mod_pred/arb-de-regre.html
https://fhernanb.github.io/libro_mod_pred/arb-de-regre.html
https://www.cristobal-aguirre.com/arboles-de-decision
https://cienciadedatos.net/documentos/py07_arboles_decision_python
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2.4.2 Árboles de decisión: Extrapolación y Forecasting 

La extrapolación en los árboles de decisión tradicionales es ingenua cuando se trata de 

valores futuros o fuera de rango del conjunto de entrenamiento, el árbol tiende a repetir 

(valor constante) la salida con el último valor sin proyectar tendencias o estacionalidad, 

lo cual restringe su utilidad directa en tareas de pronóstico (Figura 9). No obstante, en la 

actualidad se ha desarrollado nuevas estrategias en el ecosistema de Python para 

adaptar los árboles de regresión a problemas de forecasting con escenarios de 

pronóstico complejos y realistas. La extrapolación en modelos predictivos se refiere a la 

capacidad de anticipar valores fuera del rango observado en los datos históricos. Este 

proceso se fundamenta en la suposición de que los patrones pasados son 

representativos del comportamiento futuro del sistema. En series temporales 

(forecasting), la extrapolación es crítica, porque constantemente se predicen valores 

futuros no observados (Tabla 4). 

Tabla 4. Diferencias entre árboles tradicionales y árboles forecasting 

 
ML en datos tabulares 
(regresión y clasificación) 

ML en datos tabulares 
(pronóstico/forecasting) 

División de 
entrenamiento/prueba 

Asignación aleatoria. División según el tiempo. 

Creación de 
características y objetivo 

Se pueden precomputar las características y 
el objetivo antes del momento de predicción. 

Las características se construyen a partir del objetivo generado 
“bajo demanda” en el momento de predicción para el conjunto 
de prueba. 

Predicción 
Solo se necesita el modelo entrenado en el 
momento de la predicción. 

Se necesita el modelo entrenado y el conjunto de 
entrenamiento en el momento de la predicción. 

Ingeniería de 
características 

No aplica 
Es específica para series temporales e implicaciones de fugas 
de datos 

 

2.4.3 Algoritmos combinados (ensemble) 

 

Ilustración 10. Error total de un modelo en 𝒃𝒊𝒂𝒔 + 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 + 𝝐. Fuente: Link 

El sesgo (bias) indica cuánto se alejan, en promedio, las predicciones de un modelo 

respecto a los valores reales; si el modelo es demasiado simple, no capta bien la relación 

entre variables y su sesgo es alto. La varianza, en cambio, muestra cuánto cambian las 

https://www.cnblogs.com/colaplus-v/p/14459890.html
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predicciones del modelo si se utiliza diferentes datos de entrenamiento (Figura 10). Los 

modelos basados en árboles pueden sufrir de ambos problemas underfitting como el 

overfitting, según el tamaño. Para equilibrarlos, se usan métodos ensemble como 

bagging y boosting, que combinan varios modelos para mejorar la precisión y estabilidad. 

 

NOTA: *Estable se refiere a que un modelo simple, no cambia mucho si se entrena con diferentes datos, por lo que tiene baja varianza. 
**Inestables se refiere a la flexibilidad para ajustarse, incluso a patrones sutiles o ruido, esto lo hace sensible a cambios en los datos: si se entrena 
con otro subconjunto, podría dar predicciones muy diferentes. Esto significa alta varianza. 

Aunque tanto bagging como boosting buscan mejorar la precisión del modelo, lo hacen 

de forma diferente: a) bagging reduce el error al disminuir la varianza, combinando 

muchos modelos entrenados con datos distintos. b) boosting reduce el sesgo (bias), 

corrigiendo los errores de un modelo tras otro de forma secuencial. 

 

Ilustración 11. Algoritmos ensemble: Bagging & Boosting 

En bagging los modelos se entrenan en paralelo con muestras aleatorias, mientras que 

en boosting cada modelo se ajusta con base en los errores del anterior (Figura 11). Las 

principales técnicas de boosting incluyen AdaBoost, que ajusta pesos para corregir 

errores; Gradient Boosting, que minimiza el error mediante gradientes; y variantes 

modernas como XGBoost, LightGBM y CatBoost, que optimizan el rendimiento con 

mejoras en velocidad, manejo de datos categóricos y regularización. Todas comparten 

el enfoque secuencial para combinar modelos débiles y mejorar la precisión. 

 

Modelos simples (underfitting) → aprenden poco 
(alto sesgo) pero son estables* (baja varianza). 

Modelos complejos (overfitting) → aprenden mucho 
(bajo sesgo), pero pueden ser inestables** (alta 

varianza).
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2.4.3.1 Gradient Boosting 

Boosting es una técnica general de ensamblado secuencial, mientras que gradient 

boosting es una variante específica que optimiza los errores usando descenso por 

gradiente. Un modelo gradient boosting está compuesto por varios de árboles de decisión 

(ensemble), el proceso de entrenamiento es secuencial, cada nuevo árbol aprende de 

sus predecesores obteniendo un menor error (residuo) en cada iteración (Figura 12). 

 

Ilustración 12. Proceso de los algoritmos Gradient Boosting. Fuente: Link 

 

Este algoritmo tiene varias ventajas: seleccionan automáticamente los predictores más 

relevantes, funcionan tanto para regresión como clasificación, admiten variables 

numéricas y categóricas sin codificación previa (según la implementación), y al ser no 

paramétricos, no requieren supuestos de distribución. Además, necesitan poco 

preprocesamiento, son resistentes a valores atípicos, pueden predecir incluso con datos 

faltantes, ayudan a identificar variables importantes y escalan bien con grandes 

volúmenes de datos. Entre sus desventajas, los modelos de árboles múltiples pierden 

interpretabilidad frente a un solo árbol y no pueden extrapolar más allá del rango de los 

datos de entrenamiento. 

 

2.5 Técnicas de Gradient Boosting adaptadas a forecasting 

Los modelos de gradient boosting son populares en machine learning por el buen 

rendimiento en tareas de clasificación y regresión, consolidándose como una de las 

principales opciones para trabajar con datos tabulares, lo que ha dado lugar a diversas 

implementaciones. Una de las implementaciones son los árboles de regresión orientados 

a forecasting donde se adaptan algunos algoritmos de gradient boosting, en que destaca 

su habilidad para modelar relaciones no lineales entre variables, su alta escalabilidad 

para manejar grandes volúmenes de datos. Esta investigación aborda solo dos de ellas: 

https://medium.com/@fraidoonomarzai99/gradient-boosting-in-depth-33fbe8f163aa
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2.5.1 XGBoost (Extreme Gradient Boosting) 

Es una implementación optimizada de gradient boosting que utiliza árboles de decisión 

como base. Se destaca por su eficiencia computacional y su capacidad para manejar 

datos dispersos y grandes volúmenes de información. Incorpora técnicas avanzadas 

como regularización L1/L2, poda inteligente de árboles y manejo de valores perdidos. La 

fortaleza principal es el rendimiento predictivo con capacidad de controlar el sobreajuste 

gracias a su regularización integrada. 

2.5.2 LightGBM (Light Gradient Boosting Machine) 

Desarrollado por Microsoft, LightGBM utiliza una estrategia de crecimiento de árboles 

"leaf-wise" y una técnica basada en histogramas para acelerar el entrenamiento. Es 

altamente eficiente en términos de memoria y velocidad, especialmente en conjuntos de 

datos grandes y de alta dimensionalidad. También soporta de forma nativa variables 

categóricas. La fortaleza principal es su capacidad para manejar grandes volúmenes de 

datos con alta velocidad de entrenamiento lo hace ideal para aplicaciones en tiempo real 

y sistemas de recomendación. 

2.6 Biblioteca SKForecast 

Skforecast es una biblioteca que simplifica el pronóstico de series temporales utilizando 

modelos de machine learning, integrando de forma fluida regresores compatibles con 

scikit-learn. Una de las principales fortalezas es su capacidad para incorporar tanto 

variables autorregresivas como variables exógenas de forma sencilla, permitiendo así 

capturar información relevante del entorno. Sin embargo, presentan retos: la necesidad 

de reestructurar los datos como problema de regresión; usar procesos iterativos para 

predicciones futuras; y aplicar métodos especiales de validación (backtesting), ya que la 

validación tradicional -K-Fold- es inadecuada para series temporales. 

 

2.6.1 Forecaster: objeto orquestador y estrategias de predicción 

En skforecast, un Forecaster es el objeto orquestador (implementa y coordina) que 

encapsula todo el flujo de pronóstico con estimadores tipo scikit-learn (XGBoost, 

LightGBM). Su propósito es estandarizar y automatizar la preparación de datos (dataset 

supervisado), el entrenamiento y la inferencia (uno o varios pasos) en series temporales, 

permitiendo comparar rigurosamente estrategias recursivas y directas, con o sin 

exógenas y soporte en pronóstico puntual o probabilístico (Tabla 5). Rol del Forecaster: 
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• Ingeniería de variables de serie temporal: creación de lags, window features y 

manejo de variables exógenas. 

• Transformaciones y consistencia: diferenciación/escala y posterior backtransform 

para volver a la unidad original. 

• Entrenamiento y predicción: ajuste/actualización del estimador y generación del 

horizonte de pronóstico. 

• Evaluación y utilidades: backtesting, búsqueda de hiperparámetros y, 

opcionalmente, predicción probabilística (intervalos por bootstrap/quantiles). 

Tabla 5. Tipos de Forecaster y sus características para modelos gradient boosting 
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ForecasterRecursive x - x - x - x x 

ForecasterDirect x - - x x - x x 

ForecasterRecursiveMultiSeries - x x - x x x x 

ForecasterDirectMultiVariate - x - x x - x x 

 

En pronóstico de series temporales, existen dos estrategias ampliamente utilizadas para 

abordar horizontes de predicción múltiples: la estrategia recursiva y la estrategia directa. 

La estrategia recursiva consiste en entrenar un modelo para predecir un único paso 

hacia adelante, el valor en t+1. Y en el caso, de querer predecir varios pasos futuros 

como t+2, t+3, ..., el modelo reutiliza sus propias predicciones anteriores como entradas 

(lags) para continuar proyectando hacia el futuro, y así sucesivamente (Figura 13). Esta 

metodología permite reutilizar el mismo modelo para todo el horizonte, lo que la hace 

computacionalmente eficiente; sin embargo, tiende a acumular errores, ya que cada 

nueva predicción depende de la anterior, afectando la precisión. Por otro lado, la 

estrategia directa aborda cada paso del horizonte de manera independiente. Es decir, 

se entrena un modelo diferente para predecir t+1, otro para t+2, y así sucesivamente 

(Figura 14). Esto evita la propagación de errores entre pasos, mejorando la precisión en 

horizontes largos. No obstante, implica costo computacional y mayor complejidad en el 

entrenamiento, ya que se ajusta y mantiene múltiples modelos. 
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Ilustración 13. Estrategia Recursive. Fuente: https://skforecast.org/0.16.0/introduction-forecasting/introduction-forecasting.html  

 

Ilustración 14. Estrategia Direct. Fuente: https://skforecast.org/0.16.0/introduction-forecasting/introduction-forecasting.html 

 

La elección entre ambas estrategias dependerá del equilibrio deseado entre precisión, 

carga computacional y complejidad del problema (Tabla 6). 

Tabla 6. Forecaster: Recursive Vs. Direct 

Características Estrategia Recursive Estrategia Direct 

Número de modelos 1 por serie 1 por horizonte 

Usa predicciones anteriores Si No 

Coste computacional Bajo Alto 

Acumulación de error Si No 

Precisión por paso Menor a largo plazo Alta por paso 

Cada predicción Depende del anterior Es independiente 

 

2.6.2 Transformación de la serie temporal para forecasting 

En el análisis de series temporales o datos secuenciales, es común que los datos no 

estén estructurados de forma supervisada, es decir, sin una variable objetivo explícita 

definida. Para aplicar modelos de aprendizaje supervisado —como redes neuronales 
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recurrentes o, árboles de regresión— es necesario transformar estos datos en un formato 

supervisado, donde se establezca una relación entre entradas (features) y salidas 

(targets). Este proceso consiste en reformular el problema de manera que el valor 

futuro de la serie (target) se prediga a partir de valores pasados (features).  

En esta investigación centrada árboles de decisión, la transformación es un paso 

esencial en forecasting moderno, ya que permite aprovechar la potencia de los 

algoritmos supervisados en contextos originalmente no supervisados. A continuación, 

dos puntos importante: 

1. Conversión a un dataset supervisado 

2. Emplear técnicas Ingeniería de Características (time series feature engineering) 

La conversión a un dataset supervisado consiste en reorganizar los datos para que exista 

una relación definida entre las variables independientes (x) —representa las entradas o 

features— y, la variable dependiente (y) —representa el target o valor que se desea 

predecir— (Figura 15). Este formato supervisado permite aplicar algoritmos de 

aprendizaje supervisado, que aprenden patrones en los datos para anticipar el valor de 

‘y’ a partir de ‘x’. En cambio, para los valores pasados (features) se aplica técnicas de 

ingeniería de características, esto es generar variables de retraso (lags), diferencias, 

ventanas móviles u otras características derivadas del tiempo (Figura 16).  
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Ilustración 15. Conversión de un dataset NO supervisado a supervisado. Fuente: Adaptado de Skforecast  

 

Ilustración 16. Transformación de series incluyendo una variable exógena. Fuente: Skforecast 

Existen algunas técnicas de feature engineering para obtener los patrones y la varianza 

no explicada (exógenas) de la serie temporal. A continuación: 

Patrones o Variables endógenas (varianza explicada) 

• Lags (retrasos temporales): Capturan la memoria del sistema, es decir, cómo el 

valor actual depende de valores pasados (Figura 17). Ej.: y[t-1], y[t-2], ..., y[t-n] 

• Rolling stats (ventanas móviles): Capturan comportamientos locales y suavizados, 

como tendencia a corto plazo (Figura 17). Ej.: mean(y[t-7:t-1]), std, min, max 

• Transformaciones internas: Suaviza el crecimiento exponencial de la serie. 

Estabiliza la varianza, útil cuando los valores aumentan (Figura 18). Ej.: log(y) 

• Diferenciación: Convierte una serie no estacionaria en estacionaria. Elimina la 

tendencia convirtiendo en una serie centrada en cero (Figura 18). Ej.: diff(y) 

Variables exógenas (varianza no explicada) 

• Variables temporales: creadas a partir del tiempo para capturar patrones 

estacionales o comportamiento humano, como: días festivos, calendario, luz solar. 

• Clima histórico: son variables que describen las condiciones meteorológicas 

pasadas, tales como: temperatura, precipitación, presión atmosférica. 

• Codificación cíclica: en variables temporales como la hora, el día o el mes tienen 

una naturaleza cíclica que los modelos no captan por sí solos, por ejemplo, la hora 

23 y la 0 son cercanas en el tiempo, pero no numéricamente. Para representar 

correctamente estos ciclos, se utiliza funciones seno y coseno, permitiendo al 

modelo reconocer patrones temporales repetitivos para mejorar su predicción. 

• Polinomiales: consisten en crear nuevas variables combinando entre sí variables 

externas elevadas a potencias (cuadrados, productos cruzados, etc.) para 

capturar relaciones no lineales entre ellas. Por ejemplo, puede que la demanda 

de energía no aumente linealmente con la temperatura, pero sí lo haga con la 

interacción de temperatura y humedad. 

https://skforecast.org/0.16.0/introduction-forecasting/introduction-forecasting.html
https://skforecast.org/0.16.0/introduction-forecasting/introduction-forecasting.html
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Ilustración 17. Visualización de los Lags y Window Features 

 

Ilustración 18. Visualización de las diferencias y transformaciones a una serie temporal 

 

2.6.3 Backtesting 

En aprendizaje automático la validación cruzada (cross-validation) es una técnica 

esencial para estimar el rendimiento de un modelo sobre datos no vistos. Su objetivo es 

reducir el riesgo de sobreajuste (overfitting) y garantizar que el modelo generalice más 

allá del conjunto de entrenamiento. Consiste en repetir el proceso de entrenamiento y 

evaluación del modelo utilizando diferentes particiones del conjunto de datos, de modo 

que todas las observaciones sean utilizadas tanto para entrenar como para validar el 

modelo en distintas rondas. Al generar múltiples combinaciones, se obtiene una 

estimación robusta y menos dependiente de una sola división de datos. 

Una de las formas más comunes de validación cruzada es la K-Fold Cross-Validation, 

donde los datos se dividen en K bloques o "folds", y el modelo se entrena y evalúa K 

veces, usando un fold diferente como conjunto de prueba en cada iteración. Sin embargo, 

esta técnica asume que los datos son independientes entre sí, por lo que no es adecuada 

ya que rompe el orden cronológico. En estos casos, es necesario utilizar métodos que 
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respeten la estructura secuencial de los datos, como el backtesting, también conocido 

como validación deslizante o walk-forward validation, que permite simular cómo 

habría funcionado el modelo al predecir en distintos puntos del pasado (Figura 19). 

 

Ilustración 19. Cross-Validation: K-fold Vs. Backtesting. Fuente: Rokoss et al., 2024 

Skforecast implementa este proceso de manera automatizada mediante la función 

backtesting_forecaster() para series univariadas y 

backtesting_forecaster_multiseries() para multivariables, la cual permite controlar 

parámetros como el tamaño del entrenamiento inicial initial_train_size, el número de 

pasos futuros a predecir steps llamado también horizonte de predicción (Figura 5) y, la 

estrategia de actualización del modelo refit, facilitando una evaluación realista y 

reproducible del desempeño en tareas de pronóstico (Tabla 7).  

Tabla 7. Parámetros de Backtesting 

 fixed_train_size = False fixed_train_size = True 

refit = False 
(1) Entrenado una sola vez con los datos iniciales (initial_train_size). Se usa 
para hacer predicciones sobre los datos disponibles. `fixed_train_size` no 
aplica. 

refit = True 
(2) Ventana creciente (expanding 
window) que aumenta en cada 
iteración según el horizonte 

(3) Ventana deslizante (sliding 
window) con paso igual al horizonte 
de predicción 

 

Backtesting proporciona un enfoque estructurado para este tipo de evaluación, con dos 

parámetros: `refit` y `fixed_train_size`. El parámetro `refit` determina si el modelo se 

reentrena en cada iteración del proceso de validación. Si fixed_train_size=False, se 

emplea una ventana creciente (expanding window), donde el tamaño del conjunto de 

entrenamiento se amplía progresivamente. En cambio, si fixed_train_size=True, se 

aplica una ventana deslizante (sliding window), manteniendo el tamaño constante del 

conjunto de entrenamiento, el cual se desplaza en el tiempo. Esta configuración permite 

simular escenarios realistas en producción, ajustando la estrategia de validación según 

las características y requerimientos del modelo y del dominio de aplicación (Figura 20).  

http://dx.doi.org/10.1007/s10845-023-02290-2
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En la Sección 3.5, Hewamalage et al. (2023) destacan la importancia de evitar el data 

leakage durante la evaluación de modelos de pronóstico. Este fenómeno ocurre cuando, 

directa o indirectamente, se emplean valores futuros al calcular métricas de error, lo cual 

puede invalidar la evaluación al dar una impresión artificialmente optimista del 

rendimiento del modelo. Una recomendación clave de los autores es que las métricas 

deben calcularse secuencialmente, utilizando únicamente la información disponible 

hasta el momento de cada predicción. 

La técnica de backtesting implementada por la función backtesting_forecaster o 

backtesting_forecaster_multiseries cumple con estos criterios. Permite evaluar modelos 

entrenados de forma única (refit=False) o reentrenados en cada paso (refit=True), 

siempre utilizando solo los datos disponibles hasta cada punto de predicción. Tanto el 

entrenamiento, la generación de predicciones y el cálculo de errores se realizan sin 

acceder a información futura, garantizano una evaluación temporalmente coherente y 

libre de filtraciones de datos. Este enfoque permite calcular métricas de rendimiento para 

cada bloque de tiempo, facilitando el análisis multi-horizonte. En resumen, el backtesting 

en Skforecast es una herramienta fundamental para validar la estabilidad y 

generalización de un modelo en escenarios temporales, respetando la lógica de la 

predicción futura basada únicamente en información pasada. 
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Ilustración 20. Ilustración de los parámetros de Backtesting de la Tabla 6 

2.6.4 Forecasting Probabilístico 

Existen diferencias entre Forecasting vs. Forecasting Probabilístico. En determinista se 

trata de predecir un valor puntual, en cambio el probabilístico predice un rango de valores 

posibles. Estas predicciones tienen un error, asumiendo que los errores futuros serán 

similares a los errores pasados, esta técnica simula diferentes predicciones tomando 

muestras de los errores vistos previamente en el pasado (es decir, los residuos) y 

agregándolos a las predicciones (Figura 21). 
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Ilustración 21. Forecasting Probabilístico. Fuente:Skforecast  

Forecasting probabilístico se utiliza en contextos donde las decisiones deben considerar 

riesgos y márgenes de error, por ejemplo, en la planificación de la demanda, energía, 

logística, finanzas o meteorología. Existen tres métodos de predicción probabilística en 

SKForecaster, sin embargo, en esta investigación se abordará los dos primeros: 

Booststrapped residuals; Conformal prediction y Quantile regression. 

 

2.6.4.1 Booststrapped residuales 

El método de Bootstrapped Residuals genera intervalos de predicción mediante el re-

muestreo de residuos del modelo, que consiste en generar múltiples simulaciones del 

futuro agregando residuos aleatorios a las predicciones puntuales. Estos residuos se 

originan en el entrenamiento del modelo con fit() que guarda los errores con el 

parámetro use_in_sample_residuals=True. A partir de estas simulaciones, se extraen los 

percentiles deseados para construir el intervalo, por ejemplo 80% o 95% (Figura 22). 

 

Ilustración 22. Boostrapped residuales. Fuente: Skforecast 

Este método solo requiere un solo entrenamiento, lo que lo hace computacionalmente 

eficiente de baja a moderada. Si los errores pasados no reflejan adecuadamente la 

variabilidad futura, el método puede producir intervalos poco fiables. Para generar 

intervalos de predicción, se puede emplear tres tipos de residuos (Figura 23):  

https://cienciadedatos.net/documentos/py42-forecasting-probabilistico#Intervalos_con_residuos_in-sample
https://cienciadedatos.net/documentos/py42-forecasting-probabilistico#Intervalos_con_residuos_in-sample
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Ilustración 23. Intervalos de predicción con diferentes residuales. Fuente: cienciadedatos 

 

Residuos In-sample: Son residuos calculados sobre los mismos datos que se usaron 

para entrenar el modelo. Representan la diferencia entre los valores reales y 

predicciones dentro del entrenamiento 𝑒𝑖 = |𝑦𝑖 − 𝑦𝑖̂|. Su limitación es basarse en datos 

ya vistos, estas subestiman el error futuro. use_in_sample_residuals=True 

Residuos Out-of-sample (no condicionados): Se obtienen a partir de predicciones sobre 

datos no vistos (validación o backtesting) durante el entrenamiento. Este enfoque mejora 

la estimación de incertidumbre frente a los in-sample, aunque como limitación no captura 

variaciones de error dependientes de la magnitud. use_in_sample_residuals=False 

Residuos out-of-sample binned (condicionados a valores predichos): Se calculan 

también con datos no vistos, pero se agrupan (bins) según rangos del valor predicho. 

Esto permite que los intervalos se ajusten dependiendo de la magnitud de la predicción, 

capturando mejor la variabilidad cuando existe heterocedasticidad, para estimar de forma 

fiable la variabilidad en cada grupo. use_in_sample_residuals=False 

 

2.6.4.2 Conformal predictions y calibration  

Conformal Prediction se basa en combinar las predicciones deterministas con sus 

residuales históricos (diferencias entre predicciones previas y valores reales). Estos 

residuales estiman la incertidumbre en la predicción y ajustan la amplitud del intervalo 

alrededor de la predicción puntual. Este método posee un procedimiento que calibra los 

intervalos -generados por otras técnicas: regresión cuantílica o bootstrapping- para 

alcanzar una cobertura objetivo (e.g. 80% o 95%) usando la distribución empírica de 

errores en datos no vistos (calibración) (Figura 24). Proceso: 

https://cienciadedatos.net/documentos/py42-forecasting-probabilistico#Intervalos_con_residuos_in-sample
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1. Los intervalos de predicción se estiman para el conjunto de 

validación (bootstrapping). use_in_sample_residuals=False 

2. Utiliza intervalos previstos y valores reales del conjunto de validación, 

el ConformalIntervalCalibrator aprende el factor de corrección para calibrar. 

3. Los intervalos de predicción para el conjunto de prueba se ajustan utilizando el 

factor de corrección aprendido del conjunto de validación. 

 

Ilustración 24. Antes y después del transformador ConformalIntervalCalibrator. Fuente: Skforecast 

 

2.6.4.3 Forecasting Probabilístico: precisión, confiabilidad y trade-off 

El forecasting probabilístico busca equilibrar el trade-off entre la precisión de los 

pronósticos puntuales y la confiabilidad de los intervalos de predicción, representando 

adecuadamente la incertidumbre asociada a cada estimación (Gneiting & Katzfuss, 

2014). Forecasting probabilístico no se trata sólo de predecir bien (precisión), sino de 

saber cuán seguro se está al predecir (confiabilidad). El mejor modelo balancea ambos. 

Intervalos más amplios suelen garantizar mayor cobertura del valor real, pero pierden 

poder informativo para la toma de decisiones. En cambio, intervalos estrechos resultan 

más específicos y útiles, aunque con menor probabilidad de contener el valor verdadero. 

Asimismo, es fundamental diferenciar entre precisión y confiabilidad. La precisión 

(análoga a la validez) se refiere a la cercanía de los pronósticos puntuales respecto al 

valor observado y suele evaluarse con métricas de error.  

https://skforecast.org/0.16.0/user_guides/probabilistic-forecasting-conformal-calibration.html
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2.7 Métricas en Forecasting 

En el aprendizaje automático, la evaluación del rendimiento de los modelos constituye 

una fase crítica para garantizar robustez, utilidad y capacidad de generalización 

(Hewamalage et al., 2022). Las métricas no solo cuantifican la calidad de las 

predicciones, sino orientan las decisiones durante el ajuste de hiperparámetros y la 

comparación entre algoritmos. En regresión, suelen utilizarse MAE o RMSE.  

  

Ilustración 25. Características frecuentes que puede dificultar el pronóstico. Fuente: Kishan Manani 

 

https://www.youtube.com/watch?v=dSTXd8Hx728
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Las series temporales pueden presentar múltiples características que afectan la calidad 

de la modelización y la evaluación de pronósticos (Figura 25). Entre estas se incluyen 

tendencia, estacionalidad, datos no disponibles, cambios de nivel o rupturas 

estructurales, comportamientos intermitentes con presencia frecuente de ceros, y la 

aparición de valores atípicos o picos inesperados. También pueden influir factores como 

la escala de los datos, la estructura jerárquica de series relacionadas, y la necesidad de 

generar informes comparables. Según Hewamalage et al. (2022), estas condiciones —

no estacionariedad, intermitencia o falta de normalidad— hacen que muchas métricas 

convencionales de error se vuelvan inadecuadas, por lo que es necesario adoptar 

enfoques de evaluación y modelos adaptados a las particularidades de cada serie. 

En el análisis exploratorio de la serie temporal cuando revela un comportamiento 

intermitente, caracterizado por la presencia predominante de ceros intercalados. Este 

patrón de datos común en demandas irregulares o eventos discreto, complica el proceso 

de modelado al romper supuestos clásicos estadísticos de estacionalidad o normalidad. 

Hewamalage et al. (2022) señalan que la intermitencia, junto con la no estacionariedad 

y la no normalidad, son factores críticos que degradan la validez de muchas métricas 

convencionales, y requieren otros enfoques para la evaluación del rendimiento (p. 792). 

Según Hewamalage et al. (2022), el uso de métricas inapropiadas puede llevar a 

conclusiones engañosas, aparentando que ciertos métodos son competitivos cuando en 

realidad no lo son. El artículo advierte que es frecuente observar en la literatura científica 

la aplicación de métricas erróneas —por ejemplo, el MAPE sobre series con valores 

cercanos a cero— lo que distorsiona completamente la evaluación de modelos (p. 790). 

Por ello, resulta esencial seleccionar métricas adecuadas al tipo de datos y objetivo de 

predicción, considerando otras alternativas como msMAPE, ND, bias o escalas relativas. 

 

2.7.1 Cálculo de errores y Cálculo de métricas de error: Separación Conceptual 

en la Evaluación de Modelos Forecasting en Series Temporales 

En la evaluación de modelos de series temporales, Hewamalage et al. (2022) distinguen 

claramente entre dos etapas fundamentales: Error Calculation y Error Measure 

Calculation. La primera se refiere al cálculo individual de los errores para cada 

observación en el conjunto de prueba, la diferencia entre el valor real y el valor predicho 

en un punto temporal 𝑡, es decir, 𝑒𝑡 = 𝑦𝑡 − 𝑦𝑡̂. Esta etapa produce una secuencia de 

errores crudos, que pueden adoptar diversas formas: absolutos, relativos o escalados.  
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Ilustración 26. Error Vs. Métrica. Fuente: Kishan Manani 

Como parte de las buenas prácticas (Figura 26), se recomienda graficar los errores 

individuales como parte del análisis de Error Calculation, antes de resumirlos con 

métricas (Error Measure Calculation). Esta información granular permite diagnosticar con 

precisión cómo y cuándo el modelo falla, y es útil para identificar patrones, tendencias, 

asimetrías o outliers en el comportamiento de los errores. Por otro lado, la Error Measure 

Calculation consiste en aplicar funciones de agregación sobre los errores individuales 

para obtener métricas globales de desempeño del modelo, como MAE, RMSE, MASE, 

entre otras. Según los autores Hewamalage et al. (2022), una buena práctica es 

mantener una separación conceptual y operativa entre estas dos etapas, evitando 

errores comunes como el uso indebido de estadísticas futuras al calcular errores 

escalados (lo que conduciría a data leakage) (Tabla 8). 

Tabla 8. Error Calculation Vs. Error Measure Calculation 

Concepto ¿Qué hace? Resultado 

Cálculo de errores  
(Error Calculation) 

Genera los errores individuales para 
cada 𝑡 

Vector de errores 𝑒𝑡 

Cálculo de la medida del error  
(Error Measure Calculation) 

Resume los errores individuales en una 
métrica global (e.g.: MAE, RMSE, …) 

Valor único o conjunto de 
métricas 

 

2.7.2 Niveles de agregación de error en la evaluación de series temporales 

En el proceso de evaluación de modelos de pronóstico, la forma en que se agregan a los 

errores individuales tiene un impacto en la interpretación de las métricas. Out-of-sample 

error (OOS) se refiere a los errores calculados sobre el conjunto de prueba (test) o 

validación (validation), es decir, valores no vistos por el modelo durante el entrenamiento. 

En cambio, in-sample per series, no es un tipo de error, sino una estrategia de 

escalado/normalizador del error. Para mayor comprensión, se detalla un ejemplo simple:  

 

https://www.youtube.com/watch?v=dSTXd8Hx728
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fullDataset = [10, 12, 11, 9, 8, 10, 12, 8] 

• y_train = [10, 12, 11, 9, 8]   # datos usados (muestra) para entrenar el modelo 

• y_test = [10, 12, 8]            # valores reales fuera de muestra 

• y_pred = [9, 11, 10]            # predicciones fuera de muestra 

Out-of-sample error: Con una métrica se calcula el error sobre el conjunto de prueba 

(test) o en el conjunto de validación (validation). 

RMSEoos = √
1

𝑛
∑(𝑦𝑡 − 𝑦𝑡̂)2

𝑛

𝑡=1

 

RMSEoos = √
(10 − 9)2 + (12 − 11)2 + (8 − 10)2

3
= √

1 + 1 + 4

3
= √2 ≈ 𝟏. 𝟒𝟏 

RMSE=1.41 es el error real del modelo en el test, lo que se reporta como desempeño. 

In-sample per series: Calculo del promedio en la muestra como base para escalar error: 

𝑦in̅̅ ̅̅  =  
1

𝑇
∑ 𝑦𝑡

𝑇

𝑡=1

 

Promedio in-sample =
10 + 12 + 11 + 9 + 8

5
= 10 

Ahora se calcula escalador sMSE (scaled MSE):  

sMSE =
1

𝑛
∑ (

𝑦𝑡
oos − 𝑦𝑡

ooŝ

𝑦in̅̅ ̅̅
)

2𝑛

𝑡=1

 

sMSE =
1

3
((

10 − 9

10
)

2

+ (
12 − 11

10
)

2

+ (
8 − 10

10
)

2

) =
1

3
(0.01 + 0.01 + 0.04) =

0.06

3
= 𝟎. 𝟎𝟐 

sMSE=0.02 representa un 2% del cuadrado del valor promedio de la serie, en otras 

palabras, el modelo predice con gran precisión con un error muy bajo. 

Si el valor es 0.5, el error sigue siendo razonable: representa el 50 % del nivel cuadrado 

promedio, lo cual refleja un desempeño aceptable. Un valor de 1.0 sugiere que el error 

es tan grande como el promedio cuadrado de la serie, señalando que el modelo no 

mejora sobre una predicción simple promedio. Un valor de ≥ 1.0 indica que el modelo 

está cometiendo errores grandes con relación al tamaño de los datos, es decir, el 

modelo tiene un desempeño deficiente. Esta interpretación hace del sMSE una 

herramienta útil para comparar modelos bajo una escala común y comprensible. 
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2.7.3 Métrica dependiente de la escala: Root Median Squared Error (RMdSE) 

Evalúa el desempeño de un modelo mediante la raíz cuadrada de la mediana de los 

errores al cuadrado. A diferencia del RMSE, que utiliza la media y es sensible a valores 

atípicos, el RMdSE emplea la mediana como medida de tendencia central, lo que lo hace 

más robusto frente a outliers. Esta métrica resulta especialmente útil en contextos donde 

existen observaciones atípicas o distribuciones asimétricas del error, como ocurre con 

series intermitentes o datos con alta dispersión. Matemáticamente, se define como: 

Ecuación 1 

RMdSE = √median((𝑦𝑡 − 𝑦𝑡̂)2) 

Donde: 

• 𝑦𝑡: valor real 

• 𝑦𝑡̂: valor predicho 

Desde el punto de vista interpretativo, el RMdSE al no estar escalado, sus valores son 

dependientes de la escala de la serie y se expresan en las mismas unidades que la 

variable pronosticada, lo que facilita su interpretación directa. Un valor bajo indica que la 

mayoría de las predicciones se encuentran cerca de los valores reales. 

 

2.7.4 Métrica basada en porcentajes de error: sMSE (Scaled Mean Squared Error) 

La métrica sMSE (Scaled Mean Squared Error) es una variante escalada del error 

cuadrático medio que permite evaluar el desempeño de un modelo en relación con el 

nivel promedio de la serie temporal. A diferencia del RMSE, que puede ser difícil de 

interpretar cuando se comparan series con diferentes magnitudes, el sMSE proporciona 

una forma de normalización que facilita la comparación entre modelos y entre series.  

Este enfoque no escala por desviación estándar ni por varianza, sino por el promedio in-

sample de los valores reales, lo cual evita la inestabilidad que puede surgir al dividir por 

varianzas pequeñas. Gracias a esta característica, resulta más estable en ciertos 

contextos, especialmente en datos con baja variabilidad o donde se busca una métrica 

robusta. En conjunto, el sMSE ofrece una evaluación escalada que es conceptualmente 

más sólida y comparativamente más robusta que el RMSE directo, siendo recomendado 

en la literatura como una alternativa útil cuando la varianza no es una opción fiable de 

escalado (Hewamalage et al., 2023; Petropoulos & Kourentzes, 2015). 
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Ecuación 2 

sMSE =
1

𝑛
∑ (

𝑦𝑡 − 𝑦𝑡̂

1
𝑇

∑ 𝑦𝑡
𝑇
𝑡=1

)

2
𝑛

𝑡=1

 

Donde: 

• 𝑦𝑡: valor real 

• 𝑦𝑡̂: valor predicho 

• 𝑦𝑡 − 𝑦𝑡̂: error de pronóstico 

• 
1

𝑇
∑ 𝑦𝑡

𝑇
𝑡=1 : media in-sample de los valores reales 

• 𝑇: tamaño del conjunto in-sample (puede coincidir con 𝑛) 

Un valor de sMSE cercano a cero indica predicciones muy precisas; entre 0.01 y 0.1 

sugiere un buen desempeño con errores pequeños; valores entre 0.1 y 1.0 reflejan 

errores moderados; mientras que un sMSE superior a 1.0 indica que el error cuadrático 

medio supera el valor medio de la serie, lo que señala un ajuste deficiente del modelo. 

 

2.7.5 Combinación de métricas 

Combinar métricas como RMdSE (dependiente de escala) y sMSE (normalizada) puede 

ser adecuado siempre que ambas compartan una base común (mínimo en 0, error 

cuadrático). Esta combinación permite capturar tanto el error absoluto como el error 

relativo, ofreciendo una evaluación equilibrada del modelo. Esta estrategia requiere 

cautela en contextos de múltiples series o distintas escalas. 

En contextos de este trabajo forecasting univariado, la combinación ponderada de 

métricas absolutas y relativas puede enriquecer la evaluación del modelo. En este 

trabajo, se emplea una métrica compuesta basada en RMdSE y sMSE, asignando igual 

peso a ambas (α = 0.5), con el objetivo de capturar tanto la precisión en escala original 

como la estabilidad relativa respecto a la media histórica del sistema. 

 

customMetric

sMSE

RMdSE
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En este estudio, la selección de métricas de evaluación se basó en criterios de 

Hewamalage et al. (2023) frente a características específicas de la serie, como la 

intermitencia y presencia de outliers (Tabla 9 y 10). 

Tabla 9. Métricas apropiadas a este caso de estudio, basado en Hewamalage et al. (2023) 

Métrica Justificación 

RMdSE ✔ Robusta ante outliers e intermitencia (usa mediana). 

msMAPE ✔ Alternativa mejor que MAPE para datos con ceros/intermitentes  

sMSE 
✔ Escala el error por media in-sample → adecuado para evitar divisores pequeños 
(intermitente). 

Tabla 10. Métricas excluidas a este caso de estudio, basado en Hewamalage et al. (2023) 

Métrica Justificación 

RMSE ❌ Sensible a outliers y heterocedasticidad. 

MAE ❌ No adecuada para intermitencia ni outliers significativos. 

MAPE ❌ No definida con ceros; se distorsiona con valores pequeños (tu serie va de 0 a 10). 

sMAPE ❌ Puede ser inestable con valores pequeños o ceros. 

 

 

2.8 Selección del modelo, herramienta, técnica y enfoque  

Los modelos estadísticos y econométricos, como ARIMA, SARIMA y VAR, son 

ampliamente utilizados en el pronóstico meteorológico y marítimo por su capacidad para 

representar relaciones temporales con base teórica. Sin embargo, su aplicabilidad puede 

verse limitada en escenarios con relaciones no lineales complejas o grandes volúmenes 

de datos. 

Skforecast resulta útil cuando se trabaja con estaciones meteorológicas, ya que permite 

aplicar modelos de machine learning con facilidad, incorporar variables exógenas (como 

viento, marea, visibilidad), validar mediante backtesting, y actualizar las predicciones sin 

reentrenar todo el modelo. Su estructura modular facilita un flujo reproducible y 

transparente. En contraste, las redes recurrentes implementadas en PyTorch son 

adecuadas cuando se requiere modelar patrones secuenciales complejos o 

dependencias cruzadas entre múltiples sensores u observaciones multivariadas, por 

ejemplo, la interacción entre oleaje, viento y corrientes marinas. No obstante, estas redes 

requieren mayor procesamiento, diseño arquitectónico, y son menos interpretables.  

Skforecast es recomendable para aplicaciones operativas y de diagnóstico, al combinar 

modelos de machine learning con interpretabilidad y flexibilidad. PyTorch, con redes 
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recurrentes, resulta más adecuado para desarrollos experimentales y contextos con 

datos abundantes y patrones complejos. En contraste, los modelos estadísticos y 

econométricos, aunque útiles para análisis explicativos, son menos eficaces ante 

relaciones no lineales o grandes volúmenes de datos, lo que limita su aplicabilidad en 

escenarios modernos.  

 

2.8.1 Selección del modelo acorde a la metodología KDD 

La metodología KDD (Knowledge Discovery in Databases) tiene por propósito la 

extracción de patrones relevantes y conocimiento a partir de datos. Los modelos de 

machine learning por medio de Skforecast ofrecen una solución equilibrada entre 

precisión predictiva y capacidad de incorporar múltiples variables con una razonable 

interpretabilidad de los resultados. A diferencia de los modelos deep learning y modelos 

estadísticos clásicos —e.g. ARIMA o SARIMA— que dependen de supuestos formales y 

estructuras rígidas. Los enfoques de ML permiten capturar relaciones no lineales y 

patrones complejos sin requerir los supuestos estadísticos como estacionaria, varianza 

homogénea, etc. Los modelos de ML son reproducibles y apropiados para contextos 

donde la explicabilidad y la trazabilidad del conocimiento son prioritarias en estudios 

hidrometeorológicos o logísticos. Esta elección responde al propósito de KDD, que es 

extraer conocimiento útil, interpretable y validado empíricamente para la comprensión 

del fenómeno bajo estudio, más allá del despliegue en producción (Figura 27). 

 

Ilustración 27. KDD aplicado al tema de investigación 
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2.8.2 Selección de la herramienta para el modelado con machine learning 

Existen múltiples librerías orientadas a Forecasting, tales como Functime, SKTime, 

Darts, Nixtla. Para este trabajo se explorará SKForecast, opción que facilita el desarrollo 

de prototipos, así como el despliegue en producción. 

Skforecast cuenta con una comunidad activa en crecimiento. Aunque no es tan amplia 

como la de librerías más consolidadas como Prophet o XGBoost, se caracteriza por ser 

técnica, receptiva y estar bien documentada, por lo que es valioso para proyectos 

académicos o industriales que demandan estabilidad y transparencia. Ventajas: 

1. Estrategias flexibles de forecasting: permite construir pronósticos de múltiples 

pasos (multi-step) con control total del horizonte. 

2. Compatibilidad con modelos avanzados: integra cualquier modelo compatible con 

scikit-learn: RandomForest, GradientBoosting, Ridge, etc. Además, de modelos 

externos como XGBoost, LightGBM, CatBoost, HistGradientBoosting. 

3. Validación temporal robusta: backtesting, walk-forward y Evaluación 

multihorizonte. Usa métricas estándar: MAE, RMSE, R², msMAPE, F1-Binary, etc 

4. Soporte para variables exógenas: conserva consistencia del entrenamiento y 

predicción con exógenas. Permite agregar múltiples regresores externos como 

meteorología, precio, indicadores económicos. 

5. Automatización de lags y ventanas: simplifica la ingeniería de características 

temporales. Genera automáticamente variables lags o características de ventana 

(rolling_mean, std, etc.) 

6. Actualización sin reentrenar: permite actualizar modelos entrenados con nuevos 

datos sin reiniciar el entrenamiento, gracias a last_window. Útil para flujos 

productivos o streaming de datos. 

7. Interpretabilidad: incluye funciones para calcular e interpretar (feature 

importance). Mide cuánto influye cada variable -o lag- en la predicción del modelo. 

8. Ajuste de hiperparámetros: compatible con GridSearchCV, RandomSearchCV y 

Optuna para tuning automatizado. 

9. Diseño modular y reproducible: su API está orientada a reproducibilidad y 

escalabilidad. Compatible con Pipelines, integración con notebooks, y estructuras 

de experimentación. 

10. Código abierto y documentación completa: licencia MIT uso libre académico e 

industrial. Documentación oficial muy clara: https://skforecast.org 

https://skforecast.org/
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2.8.3 Selección de enfoque acorde a la herramienta y capacidad de computo  

Se adoptó un enfoque univariante y multistep para el modelado de la serie temporal, 

centrado exclusivamente en la variable objetivo (Figura 28). El enfoque multistep, por su 

parte, permite anticipar varios pasos hacia adelante en un solo proceso de inferencia.  

 

Ilustración 28. Tipos de enfoques en Forecasting 

La estrategia planteada busca equilibrar la fiabilidad del error y la eficiencia en tiempo y 

memoria, priorizando un esquema que, sin ser el más costoso, mantiene una precisión 

aceptable en el horizonte de forecast (Figura 29). Para ello se empleó 

ForecasterRecursive, adecuado en modelos de árboles de decisión para series 

temporales, pues permite predicciones recursivas con menor carga computacional que 

enfoques como ForecasterRecursiveMultiSeries o ForecasterDirect. 

 

Ilustración 29. Fiabilidad Vs. Tiempo y memoria. Fuente: Adaptado de Kishan Manani 

A partir de mayo de 2025 el desarrollo y la ejecución de los modelos se llevaron a cabo 

en un equipo equipado con un procesador de 13th Gen Intel Core i7-13620H, que cuenta 

con 16 núcleos físicos y una frecuencia base de 2.92 GHz, acompañado de 15.64 GB de 

memoria RAM. Para tareas que requieren procesamiento paralelo, se contó con GPU 

NVIDIA GeForce RTX 4050 con 6 GB de memoria dedicada (6141 MB) y soporte CUDA 

versión 12.7, permitiendo manejar “medianamente” cargas computacionales asociadas 

al entrenamiento y validación en los modelos de machine learning planteados. 

https://www.youtube.com/watch?v=dSTXd8Hx728
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CAPÍTULO 3  

3. RESULTADOS Y ANÁLISIS 

Este capítulo aborda la implementación de la metodología Knowledge Discovery in 

Databases (KDD) y el análisis de costos de la solución. 

3.1 Problema 

El propósito de esta investigación es sobre el pronóstico de la demanda de remolcadores 

para buques en un terminal portuario de hidrocarburos. En la literatura científica no se 

encuentran este tipo de casos, no obstante, se toma el reto de la investigación e 

innovación en este amplio espectro del forecasting. 

3.2 FASE 1: Selección de datos 

3.2.1 Recolección  

Los datos (ver sección 1.7) para el estudio fueron proporcionados por la fuente bajo un 

acuerdo de confidencialidad y anonimato. 

Se trabajó en los dataset: remolcadores (34’657 registros desde 2016 mayo del 2024) y 

buques (26’945 registros desde 1999 hasta mayo del 2024). Se ejecuta el análisis de la 

consistencia de datos, con varias acciones, tales como: suprimir filas y columnas 

duplicadas o irrelevantes; detección de valores nulos y vacíos; imputación; limpiar de 

errores tipográficos y letras no reconocidas; renombrar y reubicar columnas; asignar el 

tipo de dato correcto; agregar columnas para incorporar información relevante -e.g. 

relación entre variables, categorización-, corroborar datos; entre otras. 

3.2.2 Primer cribado 

A partir de los dos dataset pretratados: buques y remolcadores. Estos se unifican 

quedando un dataset (Tabla 11) con registros individuales de la actividad del remolcador, 

esto quiere decir, un buque solicita una maniobra, cada maniobra involucra n 

remolcadores, por lo tanto, existen n registros. Por ejemplo, en la Tabla 12 tenemos, la 

instancia de un buque -llegada 31ene2024 y salida 1feb2024-, en el caso de la llegada 

del buque, solicitó la maniobra atraque que involucró 3 remolcadores, por lo tanto, se 

tiene 3 registros. 
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Tabla 11. Dataset unificado entre buque y remolcadores 

 

Tabla 12. Registros de remolcadores en la instancia de un buque 

 

Para obtener la suma de remolcadores por cada maniobra solicitada indistinto del buque. 

Se agrupa los registros por maniobra, agregando la columna 

‘N_REMOLCADOR_xMANIOBRA’, de esta forma se obtiene en la Tabla 13, el número 

de remolcadores por cada maniobra solicitada, adjuntando el tipo de maniobra y las 

características de los buques —capacidad de tonelaje, calado, eslora y tipo de nave—. 

Luego, se delimita a partir del 2017 en adelante. 

Tabla 13. Primer cribado del dataset 
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3.2.3 Análisis Exploratorio de Datos (EDA): descriptivo  

Se procedió al análisis exploratorio con el fin de conocer el comportamiento de la logística 

portuaria, cabe mencionar que el año 2024 consta registrados datos hasta el mes de 

mayo.  

En el mapa de calor de la Figura 30, se detalla la frecuencia diaria de maniobras con 

remolcadores por año, e. g. en el 2023 hubo 9 maniobras en 54 ocasiones dentro del 

año, la más alta de todos los años registrados. Por otro lado, en la Figura 25 resumiendo 

toda la información, consta un máximo 7 maniobras al día en más de 300 ocasiones entre 

todos los años; también se observa la nulidad en maniobras en 60 ocasiones.  

 

Ilustración 30. Suma de maniobras por: frecuencia diaria resumida desglosada por año 

En la Figura 32, se presenta la evolución de la frecuencia diaria de maniobras de 

remolcadores entre enero y mayo de 2024. Se aprecia una alta varianza diaria y una leve 

tendencia ascendente, a partir de abril de 2024. Los valores atípicos hacia la nulidad de 

operaciones podrían corresponder a eventos no operativos o días no laborables. 
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Ilustración 31. Suma de maniobras: frecuencia diaria resumida 

 

Ilustración 32. Cantidad de Maniobras con Remolcadores: frecuencia diaria en los 5 primeros 

meses del 2024 

En las Figura 33 y 34, se detalla el número de remolcadores por maniobra de acuerdo 

con la eslora del buque. Aquí, la maniobra de atraque tiene un mayor número de 

remolcadores -3 y 4- a diferencia del desatraque. 

 

Ilustración 33. Maniobras de atraque: Número de remolcadores 
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Ilustración 34. Maniobras de desatraque: Número de remolcadores 

3.2.4 Segundo cribado 

Luego del análisis exploratorio, se observa diferencias significativas en la interacción 

buques y remolcadores, entre ellas: 

1. El arribo de los buques gaseros es esporádico (Figura 35) 

2. La estancia de los buques gaseros en su mayoría tiende a ser una semana, por 

lo que puede involucrar varias maniobras con remolcadores distintas a las 

cotidianas: atraque y desatraque (Figura 36) 

3. Los buques gaseros requieren un mayor tiempo de maniobra con remolcadores 

en comparación a los buques tanques (Figura 37) 

4. La concentración de remolcadores está ubicada en el puerto principal, teniendo 

que trasladarse aproximadamente 16millas náuticas para llegar al puerto 

secundario donde arriban los buques gaseros (Figura 1) 

 

lustración 35. Características de buques que arriban al puerto 
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Ilustración 36. Tiempo de estadía por tipo de buque 

 

Ilustración 37. Tiempo de servicio de remolcadores con buques por tipo de maniobra y por 

eslora (longitud) del buque 

Con este contexto, para evitar un desbalance en los datos, se decidió sectorizar el 

conjunto de datos y trabajar únicamente con maniobras de buques tanque (Figura 35). 

También, se delimitó la temporalidad a partir del 1 de enero de 2021, debido a la gran 

cantidad de registros acumulados desde 2017. En razón, de que para los algoritmos de 
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machine learning, un mayor volumen de datos implica mayor demanda de recursos 

computacionales, tanto en memoria como en procesamiento y tiempo. 

 

3.3 FASE 2: Pre-procesamiento 

3.3.1 Identificación del objeto de predicción y restructuración del dataset  

Para enfocar la variable objetivo ‘y’ con el número de remolcadores solicitados en el 

tiempo, se requiere una segunda transformación. Dado que el último dataset, los eventos 

de maniobra se traslapan debido al lapso de tiempo que conlleva cada maniobra. Por 

ejemplo, existen maniobras que pueden durar 24 horas o más, en este tiempo a la par 

pueden existir varias maniobras ejecutándose (Figura 37). 

Esta tarea tuvo dificultades e intentos fallidos, luego de un análisis exhaustivo, se optó 

por aplicar una transformación temporal de eventos y acumulación de remolcadores 

activos. 

En esta transformación, se busca conocer, minuto a minuto, cuántas maniobras están 

activas y cuántos remolcadores están en operación. Para lograrlo, se genera una serie 

temporal continua a nivel de minutos, y se marca el inicio y fin de cada evento (maniobra). 

A través de sumas acumuladas, se obtiene en cada momento el número de maniobras 

activas (SUMA_T) y el total de remolcadores operativos (SUMA_N). Esto permite crear una 

nueva representación temporal estructurada, que ahora sí puede ser utilizada como base 

para definir una variable objetivo clara. Por ejemplo, si se quisiera predecir cuántos 

remolcadores estarán activos en los próximos 15 minutos, la columna SUMA_N puede ser 

formalmente tratada como variable objetivo. Finalmente, debido a que una granularidad 

alta -un minuto- requiere mayor poder de cómputo, se generaliza aplicando una 

frecuencia de 10 minutos con el promedio o máximo número remolcadores activos 

(SUMA_N) dentro de cada intervalo. A continuación, en base a la Figura 38, el detalle: 

• t#: Representa cada maniobra 

• SUMA_T: Es la suma de maniobras 

• n#: Número de remolcadores en uso por maniobra 

• SUMA_N: La suma de remolcadores entre las maniobras 

• Frecuencia 10min_max: Baja la granularidad de la frecuencia en lapsos de 

tiempo de 10 minutos, tomando el máximo o el promedio de remolcadores activos. 
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Ilustración 38. Restructuración del dataset para la variable objetivo 

 

3.3.2 Exploración estadística y visual de la estructura temporal de la serie 

La exploración estadística y visual de la estructura temporal es un paso fundamental en 

el análisis de series temporales, esta exploración permite comprender los patrones 

subyacentes y las características propias de la serie antes de aplicar cualquier modelo 

predictivo. Con herramientas estadísticas y visuales, es posible identificar componentes 

como tendencia, estacionalidad, nivel, ciclos, outliers, interrupciones, anomalías. Este 

análisis inicial orienta la selección de técnicas de transformación, modelado y validación 

más adecuadas, para garantizar que el enfoque utilizado se ajuste a la naturaleza de los 

datos y a los objetivos del estudio. Antes de pasar a la exploración, se visualiza el dataset 

preprocesado en la fase anterior con 10 minutos de frecuencia, uno para la demanda 

promedio (Figura 39) y otro para la demanda máxima (Figura 40). 
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Ilustración 39. Demanda de remolcadores promedio en una frecuencia de 10 minutos 

 

Ilustración 40. Demanda de remolcadores máximo en una frecuencia de 10 minutos 

Para simplicidad en la exploración, se aplica las siguientes herramientas estadísticas y 

visuales sobre el dataset demanda promedio de remolcadores con frecuencia 10 

minutos. 

 

3.3.2.1 Normalidad 

Se aplicó la prueba estadística de Kolmogorov-Smirnov (K-S), H₀ (nula): los datos siguen 

una distribución normal y H₁ (alternativa): los datos no siguen una distribución normal. El 

resultado arrojó un estadístico D = 0.4030 y un p-valor = 0.0000, dado que el p-valor es 

menor al umbral (0.05), se rechaza la hipótesis nula, concluyendo que los datos no 

siguen una distribución normal. Así mismo, en el gráfico QQ-plot muestra una 

comparación entre los cuantiles teóricos de una distribución normal (línea roja) y los 

valores observados (puntos azules) (Figura 41). En este caso, los puntos se desvían 

considerablemente de la línea recta, especialmente en los extremos, lo que indica que 
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los datos no siguen una distribución normal o gaussiana, esto refuerza los resultados 

de la prueba de Kolmogorov-Smirnov, confirmando visualmente la falta de normalidad. 

 

Ilustración 41. Prueba visual QQ-plot 

 

3.3.2.2 Estacionalidad 

El Figura 42 en la sección c se ubica la descomposición estacional (promedio de 

demanda por día), donde muestra patrones repetitivos a lo largo del tiempo, sugiriendo 

una estructura cíclica diaria asociada a rutinas. Este patrón es consistente con los 

resultados de los gráficos de distribución por mes, día de la semana y hora del día, donde 

se observa una variabilidad sistemática en la demanda, destacándose picos específicos 

durante ciertas horas o días. 

Adicionalmente, los gráficos de autocorrelación (ACF) refuerzan esta observación. En 

particular, el de 1008 períodos (1 semana) muestra repuntes periódicos en los rezagos, 

lo que indica dependencia temporal con ciclos repetitivos, característica propia de series 

con estacionalidad. Así mismo, el de 144 períodos (1 día) refleja una estructura de 

autocorrelación que no decae completamente, lo cual es típico en datos con fuerte 

componente estacional. En conjunto, estos resultados confirman la necesidad de 

incorporar variables estacionales o transformaciones adecuadas en el modelado para 

capturar estos patrones cíclicos. 
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Ilustración 42. Estacionalidad de la serie temporal 

 

Ilustración 43. Autocorrelación de la variable objetivo para 144 pasos (1 día) 

 

Ilustración 44. Autocorrelación de la variable objetivo para 1008 pasos (1 semana) 

 

 

3.3.2.3 Estacionariedad 

Para la estacionariedad se aplica la prueba Augmented Dickey-Fuller (ADF), arrojo un 

estadístico de -47.58 y un p-valor de 0.0, lo que permite rechazar la hipótesis nula que 
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plantea que la serie tiene raíz unitaria (no es estacionaria). Por tanto, se concluye que la 

serie es estacionaria. 

La estacionariedad implica que las propiedades estadísticas de la serie, como la media, 

la varianza y la autocorrelación, se mantienen constantes a lo largo del tiempo; esto es 

un requisito clave para muchos modelos estadísticos, ya que garantiza que los patrones 

aprendidos en el pasado sigan siendo válidos en el futuro. Aunque los modelos de 

machine learning como LSTM o XGBoost no requieren que las series temporales sean 

estacionarias, sigue siendo útil identificar y manejar patrones como la tendencia 

(cambios sostenidos a lo largo del tiempo) y la estacionalidad (fluctuaciones cíclicas 

regulares), ya que esto puede mejorar la interpretación y el rendimiento del modelo. En 

contraste, modelos estadísticos tradicionales como ARIMA sí necesitan que la serie sea 

estacionaria, por lo que requieren transformaciones previas como la diferenciación para 

eliminar dichos patrones. 

 

 

3.3.2.4 Valores atípicos 

Para identificar valores atípicos en la serie temporal, se aplicaron dos enfoques 

complementarios: el Modified Z-Score y la descomposición STL con análisis de 

residuos. El primer método, basado en la mediana y la desviación absoluta mediana 

(MAD), adecuado por su resistencia a la asimetría y a la no normalidad de los datos, esta 

técnica detectó 59,932 outliers, lo que representa el 33.38 % del total de observaciones 

(Figura 45). Por otro lado, la técnica STL decomposition, que separa la serie en 

componentes de tendencia, estacionalidad y residuo, se identificaron 57,019 valores 

atípicos sobre la componente residual mediante criterios como IQR o Modified Z-Score, 

correspondientes al 31.76 % de la serie (Figura 46). Estos resultados evidencian una alta 

proporción de anomalías, y resaltan la importancia de aplicar métodos robustos para su 

identificación, especialmente en series con estacionalidad marcada. 
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Ilustración 45. Detección de outliers combinando las técnicas STL + IQR 

 

Ilustración 46. Tendencia, estacionalidad y residuos dataset 

 

3.3.2.5 Heteroscedasticidad 

Para evaluar la presencia de heterocedasticidad condicional en la serie temporal, se 

aplicó la prueba ARCH (Autoregressive Conditional Heteroskedasticity), el resultado 

arrojó un p-valor de 0.0000, lo que proporciona evidencia estadísticamente significativa 

para rechazar la hipótesis nula de homocedasticidad. Esto confirma la presencia de 

heterocedasticidad condicional, es decir, que la varianza de los errores no se mantiene 

constante a lo largo del tiempo. Como complemento, la Figura 47 evidencia una marcada 

variabilidad en la dispersión de los residuos, con periodos de alta volatilidad alternados 

con fases más estables. Este patrón refuerza la presencia de heterocedasticidad 

condicional y sugiere que los valores extremos tienden a agruparse en determinados 

intervalos de tiempo.  
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Ilustración 47. Evolución temporal de los residuos calculados a partir de media móvil simple 

 

3.3.2.6 Tendencia 

La detección de tendencia en la serie se abordó mediante un análisis estadístico y una 

inspección visual utilizando suavizado LOESS. Los resultados indican la presencia de 

una tendencia positiva estadísticamente significativa (p < 0.0001). Sin embargo, su 

efecto práctico es mínimo: el modelo de regresión lineal explica únicamente el 1% de la 

variabilidad (R² = 0.067), y el crecimiento estimado es de apenas un 1.1% mensual. 

Además, se observó una alta autocorrelación en los residuos (Durbin-Watson = 0.45), lo 

cual sugiere que el modelo no capta adecuadamente la dinámica temporal de los datos. 

La inspección visual en Figura 48 a través del suavizado LOESS confirma esta 

conclusión, ya que la curva de tendencia permanece prácticamente estable a lo largo del 

tiempo. Por tanto, aunque la serie presenta una tendencia estadística, esta es tan 

débil que puede considerarse irrelevante para fines analíticos o predictivos. 

 

Ilustración 48. Detección visual de la tendencia con LOESS smoothing 
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3.3.2.7 Intermitencia 

La distribución de la variable de remolcadores -Demand-, muestra una alta concentración 

de valores en torno a cero, con picos secundarios en valores discretos como 1, 2 y 3; 

siendo así esta distribución es fuertemente sesgada hacia la izquierda, lo que indica un 

patrón zero-inflated típico de variables de conteo con presencia frecuente de demanda 

nula. El análisis de intermitencia confirma este comportamiento: de un total de 179.540 

observaciones, 122.479 corresponden a ceros, lo que representa aproximadamente el 

68.22% del conjunto de datos. Esta alta proporción de ceros sugiere largos periodos 

de inactividad o demanda nula, característicos de contextos con eventos poco frecuentes 

o alta irregularidad operativa. La presencia de intermitencia no solo afecta la forma de la 

distribución —alejándola de una distribución normal—, sino que también introduce 

desafíos relevantes para la modelación predictiva (Figura 49). 

 

Ilustración 49. Distribución de frecuencia de la variable Demand 

A continuación, un resumen de las características de la serie temporal: 

Propiedad Valor 

Univariada ✅ 

Horizonte de pronóstico Multistep=144 

Dominio de valores [0, 10] 

Estacionaria ✅ 

Estacionalidad ✅ 

Tendencia Débil 

Normalidad ❌ No 

Outliers ✅ 31.72% 

Intermitencia ✅ 68.24% 

Heterocedasticidad ✅ 
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3.4 FASE 3: Transformación para forecasting 

3.4.1 Transformación a dataset supervisado 

Tras completar el preprocesamiento en la fase anterior, se procede a transformar el 

dataset desde una estructura no supervisada hacia un formato supervisado para el 

modelado de datos con árboles de regresión gradient boosting. A continuación, se detalla 

la explicación de este seudocódigo de python: 

from skforecast.recursive import ForecasterRecursive 

from sklearn.preprocessing import PowerTransformer 

# Crear forecaster univariante recursivo 

forecaster = ForecasterRecursive( 

    regressor       = regressor_gradient_boosting_seleccionado, 

    transformer_y   = PowerTransformer(method='yeo-johnson'), 

    transformer_exog= StandardScaler() 

    lags            = 144, 

    window_features = { 

        6: ['mean', 'std', 'min', 'max'],     # 1 hora (6 * 10min) 

        12: ['mean', 'std', 'min', 'max'],    # 2 horas 

        72: ['mean', 'std', 'min', 'max'],    # 12 horas 

        144: ['mean', 'std', 'min', 'max']    # 24 horas 

    } 

) 

Para transformar una serie temporal inicialmente no supervisada en un conjunto de datos 

apto para modelado predictivo, se empleó la librería SKForecast con el módulo 

skforecast.recursive, este proporciona herramientas que convierten modelos de 

regresión tradicionales (como LightGBM, XGBoost, Random Forest, etc.) en modelos de 

predicción de series temporales con un orquestador recursivo ForecasterRecursive.  

Esta técnica recursiva permite estructurar automáticamente los datos en un formato 

supervisado, donde la variable objetivo a predecir se construye como una versión 

desplazada temporalmente del propio valor de la serie. Esta configuración del modelo se 

basó en el uso de 144 rezagos (lags), equivalentes a 24 horas de historial a pasos de 10 

minutos, lo que permite capturar patrones diarios completos dentro de la ventana de 

entrenamiento. Junto a los rezagos, se aplicó estadísticas agregadas de ventanas 

móviles (media, desviación estándar, mínimo y máximo) calculadas sobre distintas 

escalas temporales (1h, 2h, 12h y 24h) mediante la clase RollingFeatures. Estas 

características agregadas permiten al modelo capturar información contextual y de 

tendencia en diferentes escalas temporales. La combinación de estas estadísticas con 
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los rezagos directos mejora la capacidad del modelo para aprender relaciones no lineales 

y dependencias temporales complejas. 

Para reducir la asimetría en la distribución (sin normalización) de la variable objetivo y 

estabilizar la varianza (heterocedasticidad) de la serie temporal, se aplicó un 

preprocesamiento con PowerTransformer -en su variante Yeo-Johnson, tolerante a ceros- 

de sklearn.preprocessing. Esta técnica hace que los datos se asemejen más a una 

distribución normal (gaussiana), facilitando el entrenamiento de modelos sensibles a la 

escala o la distribución de los datos. Cabe destacar que este módulo facilita el trabajo, 

invisibilizando la transformación de la variable objetivo ‘y’ al momento de entrenar y 

deshaciendo dicha transformación automáticamente al predecir. Esto significa que 

PowerTransformer no solo estandariza, sino que también transforma la distribución de los 

datos, a diferencia de técnicas convencionales como StandardScaler, que únicamente 

realizan una estandarización sin modificar la forma de la distribución. 

En resumen, estas estrategias permitieron transformar la serie temporal en un conjunto 

supervisado con predictores sólidos basados en rezagos y estadísticas móviles. 

Además, se aplicó una transformación a la variable objetivo para estabilizar su 

distribución, paso fundamental para mejorar el rendimiento de modelos de aprendizaje 

automático como Gradient Boosting en tareas de pronóstico temporal. 

 

3.4.2 Ingeniería de características (time series feature engineering) 

En la transformación, luego de la conversión a un dataset supervisado sigue la etapa 

crucial, con un conjunto de técnicas llamada ingeniería de características en series 

temporales. Estas transformaciones estadísticas y temporales mejoran la capacidad 

predictiva del modelo, sin ellas, los modelos de machine learning no pueden 

aprovechar la estructura temporal inherente a los datos. A continuación, las 

características agregadas al dataset de la serie temporal: 

• Variables temporales: basadas en días festivos (booleano) además de pre-festivo 

y post-festivo; basadas en el calendario (discreto) con el mes, semana, día de la 

semana, y hora; basadas en la luz solar (booleano) además de la cantidad de 

horas (discreto) de salida del sol, puesta de sol y horas de luz solar 

• Clima histórico: En la librería Meteostat se encuentran disponibles diversas 

variables climáticas con frecuencia horaria; para este análisis se seleccionó un 

punto representativo de La Libertad, en la provincia de Santa Elena (Ecuador), 
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con coordenadas convertidas a formato decimal (-2.1000, -80.9333). Debido a la 

capacidad de cómputo disponible, se escogieron únicamente las variables 

principales: temperatura, precipitación, presión atmosférica promedio y velocidad 

del viento promedio, y se aplicó un remuestreo a intervalos de 10 minutos 

mediante resample('10min').mean() para adecuar la resolución temporal a los 

requerimientos del estudio. 

• Ventanas móviles: Se aplica a las variables climáticas, en este caso 1, 6 y 12 

horas, calculando la media, máximo y mínimo dentro de cada ventana móvil. 

• Codificación cíclica: Como su nombre lo expresa, se aplica a las variables cíclicas 

de tipo numérico discreto, en este caso, a la variable mes (1-12), semana (0-52), 

día de la semana (0-6), hora (0-23), horas de salida de sol (0-23) y horas de puesta 

del sol (0-23). 

Luego de esta ingeniería de características, a partir de la serie temporal se tiene un 

nuevo dataset, al que se le denomina variables exógenas (Figura 50).  

 

Ilustración 50. Variables exógenas por medio de técnicas feature engineering 

 

3.4.2.1 Selección de variables exógenas: Correlación de Pearson + Permutation 

Importance 

Se construye la función feature_analysis para identificar la relevancia de variables 

predictoras (exógenas) frente a una variable objetivo, combinando dos técnicas: la 

correlación de Pearson para medir relaciones lineales, y la Permutation Importance con 
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un umbral > 0.005 cuantifica el impacto real de cada variable en el rendimiento de un 

modelo de predicción basado en árboles (Figura 51). 

Variables exógenas con Variable objetivo MAX 

 
['hour_cos', 'hour_sin', 'hour', 'temp_window_6H_mean', 'week', 'wspd_window_6H_mean', 

'wspd_window_12H_mean', 'is_daylight', 'week_cos', 'pres_window_12H_mean'] 

 

Variables exógenas con Variable objetivo MEAN 

 
['hour_cos', 'hour_sin', 'hour', 'week', 'is_daylight', 'temp_window_12H_max'] 

 

Ilustración 51. Correlación de Pearson & Permutation Importance 

 

3.4.2.2 Selección de variables exógenas: RFECV (Recursive Feature Elimination 

with Cross-Validation) 

En RFECV se empleó como estimador auxiliar el algoritmo LGBMRegressor, esto 

permite identificar el subconjunto óptimo de predictores que maximiza el rendimiento del 

modelo en validación cruzada, sin realizar ajustes sobre los hiperparámetros del 

estimador ni generar nuevas variables. Consiste en evaluar de forma iterativa la 

importancia de los lags, endógenos, ventanas móviles y variables exógenas 

preexistentes -en nuestro caso-, eliminando aquellas con menor aporte predictivo de 

acuerdo a la métrica de error definida (por defecto, MSE); permitiendo reducir la 

dimensionalidad de las variables y evitar el sobreajuste del modelo (Figura 52).  

from sklearn.feature_selection import RFECV 

from lightgbm import LGBMRegressor 

 

# Paso 1: Definir el selector con LGBM 

selector = RFECV( 

    estimator=LGBMRegressor(), 

    scoring=scorer_s_mse, # por default es 'r2' (coeficiente de determinación) 
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    step=1, 

    cv=5,   # Buen equilibrio entre tiempo y robustez.  

    n_jobs=-1, 

    importance_getter='auto', 

    min_features_to_select = 20  # Aquí defines el mínimo que debe conservar 

) 

 

# Paso 2: Seleccionar características en univariado 

selected_lags, selected_window_features, selected_exog = select_features( 

    forecaster      = forecaster_custom, 

    selector        = selector, 

    y               = data_train_val['Demand'], 

    exog            = exog_train_val, 

    select_only     = None, 

    force_inclusion = None, 

    subsample       = 0.99,   # Coste computacional en la selección de predictores 

    random_state    = 123, 

    verbose         = True, 

) 

 

Ilustración 52. El resultado RFECV en variables exógenas 

 

3.5 FASE 4: Modelado y Evaluación 

Para la evaluación del modelo, se empleó una estrategia que permite simular escenarios 

realistas: el backtesting, en conjunto con la clase TimeSeriesFold de la librería 

Skforecast. Se optó por aplicar backtesting sin reentrenamiento debido a su bajo costo 

computacional y a su capacidad para evaluar el desempeño del modelo en múltiples 

ventanas temporales sin necesidad de ajustar nuevamente los parámetros en cada 

iteración. TimeSeriesFold gestiona la validación cruzada específica para series 

temporales, dividiendo los datos en bloques de entrenamiento y validación que respetan 

el orden cronológico, lo que evita el riesgo de data leakage. Esta combinación resulta 

especialmente adecuada para conjuntos de datos grandes, permitiendo obtener 
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estimaciones realistas del error de predicción con un uso eficiente de los recursos 

computacionales. 

 

Ilustración 53. Top en base la métrica RMdSE 

Se presentan tres listados de resultados (Figura 53, 54 y 55) con algunos parámetros 

importantes, se muestran en orden ascendente acorde a la métrica con que se evaluó 

cada uno de los modelos.  

Con respecto al parámetro enfoque, cabe aclarar que se entrenó y validó el modelo con 

la variable objetivo promedio como en máximo, punto que se mencionó en la fase 2 de 

preprocesamiento (Figura 38).  
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Ilustración 54. Top en base la métrica sMSE 

 

Se presentan tres listados de resultados (Figura 53, 54 y 55) con algunos parámetros 

importantes, se muestran en orden ascendente acorde a la métrica con que se evaluó 

cada uno de los modelos.  

Con respecto al parámetro enfoque, cabe aclarar que se entrenó y validó el modelo con 

la variable objetivo promedio como en máximo, punto que se mencionó en la fase 2 de 

preprocesamiento (Figura 38). 
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Ilustración 55. Top en base la métrica sMSE+RMdSE 

Para identificar los tres mejores modelos según la métrica, se aplicó un enfoque 

heurístico basado en una evaluación visual de los diez primeros modelos del listado. Esta 

evaluación consistió en comparar gráficamente la variable respuesta con su predicción. 

En muchos casos, a pesar de que algunos modelos mostraban un buen desempeño 

según la métrica, su comportamiento visual no era consistente con ese resultado. Por 

ejemplo, en la Figura 53 se muestra el primer modelo del listado con un 

RMdSE=0.007477, su gráfico correspondiente a la Figura 56, aquí puede notarse que el 

modelo XGBoost tiene mayor precisión en los rangos bajos de la serie, pero no logra 

capturar adecuadamente los eventos extremos o picos, por lo que limita su capacidad 

predictiva. 
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Ilustración 56. Primer modelo de la métrica RMdSE 

En base a este enfoque heurístico, en la Figura 57 se detallan los tres mejores modelos 

por métrica. Esta selección representa las opciones más destacadas en términos de 

desempeño del pronóstico. Luego, a estos modelos seleccionados se aplica Forecasting 

Probabilístico, con el fin de escoger aquel modelo que proporcione mayor validez y 

confiabilidad, expresado términos de porcentaje de probabilidad y eficiencia. 

Como parte del análisis comparativo entre métodos de estimación de intervalos de 

predicción, se realizaron dos procedimientos complementarios: 

1. En primer lugar, se calculó una métrica denominada eficiencia relativa, definida 

como la relación entre la cobertura empírica (en porcentaje) y el ancho medio del 

intervalo. Esta métrica permite cuantificar qué tan eficaz es un modelo para cubrir 

valores reales con el menor ancho posible, es decir, qué tanto "cubre más con 

menos". Un valor más alto en esta métrica indica un mejor balance: mayor 

cobertura utilizando intervalos más estrechos (Ecuación 4 y Figura 57). 

2. En segundo lugar, se construyó visualizaciones gráficas que permiten comparar 

la cobertura empírica y el ancho medio de los intervalos generados por cada 

modelo y método probabilístico (calibration, residuos in-sample y out-sample). Por 

lo que se identificó patrones y comportamientos en relación con su capacidad para 

balancear precisión y confiabilidad (Figura 58). 

Ecuación 3 

Eficiencia =
Cobertura (%)

Ancho del intervalo
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Ilustración 57. Forecasting Probabilístico a los modelos seleccionados. 

 

Ilustración 58. Cobertura vs. área para las estrategias de Forecasting Probabilístico 

Por el traslape de la Figura 58, se agregó un gráfico (Figura 59) de dispersión para mayor 

interpretación de la eficiencia entre los tres métodos. Aquí, bootstrap con residuos out-

of-sample muestra alta variabilidad, en algunos modelos alcanzan picos de eficiencia 

muy buenos, pero en otros caen notablemente, a diferencia de calibration/conformal que 

presentan eficiencias muy estables entre modelos. 

Basado en este contexto y la literatura, la estrategia Conformal es el método más robusto 

y válido, mientras que Bootstrap OoS puede superar en eficiencia a veces, pero no con 

la misma consistencia; Bootstrap in-sample es el menos fiable, pues tienden a ser 

optimistas. 
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Ilustración 59. Diagrama de dispersión de la eficiencia de métodos probabilístico en modelos 

seleccionados 

Basado en la Figura 59, se agrega la Figura 60 para identificar los métodos 

probabilísticos forecasting que alcanzaron la cobertura calculada (≥ 80%). Podemos 

notar que el modelo RMdSE_2XGB no solo destaca por la calibración con 81.11%, sino 

que además logró mantener la eficiencia en el escenario más exigente (datos no vistos) 

con 81.87%. Un modelo con buena calibración y residuos out-sample eficientes significa 

que predice con intervalos confiables en escenarios reales. 

El método Calibration corrige los intervalos para garantizar cubrir el valor real → In-

sample valida internamente con datos vistos (test sobre train+validation) → Out-of-

sample prueba la generalización con datos no vistos (validation sobre train). 

 

Ilustración 60. Métodos probabilísticos que alcanzaron la cobertura calculada ≥ 80% 

 

Continuando con los modelos que alcanzaron la cobertura del 80%, en la Figura 61 se 

discrimina las diez primeras eficiencias entre cobertura empírica y ancho medio del 
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intervalo. Aquí, se aprecia que solo 7 modelos cumplen con el requerimiento, también 

una vez más se evidencia que la mejor eficiencia entre los modelos es RMdSE_2XGB, 

con el método Bootstrapped residuals out-sample en primer lugar y en quinto lugar con 

el método ConformalIntervalCalibrator. 

 

Ilustración 61. Top 10 eficiencias filtrado por Cobertura ≥ 80% 

En consonancia con las Figuras 58, 60 y 61 se tiene el top final guardando la mayor 

precisión (métrica) y confiabilidad (eficiencia) posible de los modelos que alcanzaron la 

cobertura deseada del 80% de probabilidad de contener el valor real en los pronósticos 

(Figura 62). 

La estrategia evidencia que la elección del método de intervalos no solo debe considerar 

la cobertura deseada, sino también el ancho promedio generado, especialmente cuando 

se busca maximizar la confianza sin perder precisión. 

 

Ilustración 62. Top Final de los mejores modelos acorde a la precisión y confiabilidad 
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3.6 FASE 5: Interpretación del conocimiento  

En la investigación fue posible identificar los modelos con mejor desempeño relativo 

dentro de cada enfoque (Figura 62).  

Esta última fase de interpretación se basará en el modelo top RMdSE_2XGB llamado 

UniV_FR C.Pear-P.Impo: Backtesting2 [s_exog_cP_pI]. Tal modelo se posicionó como 

el más eficiente, logrando una cobertura del 81.11% con un ancho medio de 61,509.52 

unidades, permitiendo alcanzar la eficiencia relativa más alta entre todos los modelos 

evaluados con una precisión de RMdSE=0.051340 y sMSE=3.268971. 

 

3.6.1 Precisión del modelo top1: RMdSE_2XGB 

Recordemos que la precisión (análoga a la validez) se refiere a la cercanía de los 

pronósticos puntuales respecto al valor observado y suele evaluarse con métricas de 

error. 

En la Figura 63 se muestra las predicciones con respecto a los valores, la gráfica muestra 

que el modelo tiende a subestimar los valores reales sin capturar adecuadamente los 

picos ni la amplitud de las fluctuaciones. Como precisión del modelo RMdSE_2XGB tiene 

un RMdSE=0.051340, y sMSE=3.268971, msMAPE=3.794676. 

 

Ilustración 63. Mejor modelo: predicciones vs. valores reales 

Sin embargo, es importante señalar que, si bien este modelo despunta en eficiencia, las 

métricas de precisión utilizadas —Root Median Squared Error (RMdSE) y scaled Mean 

Squared Error (sMSE)— aún presentan valores alejados del valor real. Dado que ambas 

métricas penalizan los errores de predicción en relación con la dispersión de los datos, 
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su valor óptimo debe tender a cero. Siendo así, los valores observados indican que el 

modelo, aún presentan márgenes de error significativos. Esto sugiere que, si bien se ha 

logrado una mejora en eficiencia de cobertura, la precisión absoluta de las predicciones 

continúa siendo un desafío. 

 

Ilustración 64. Diagrama de flujo para la selección de la medida del error de previsión. Fuente: 

Hewamalage et al., 2023 

La razón de RMdSE se sustenta en el flujograma de Hewamalage et al. (2023), quienes 

aconsejan la elección de métricas acorde a las propiedades de la serie. En este estudio, 

se trabaja con una única serie univariada, por lo que no aplica la comparación entre 

conjuntos. También, se ha identificado que la serie no sigue una distribución normal, 

excluyendo métricas sensibles a la media como el RMSE. A esto se suma la presencia 

significativa de outliers (31.72%), que requiere métricas robustas como la mediana. 

Paralelamente, la serie presenta una alta intermitencia (68.24%), lo que también 

descarta métricas basadas en el error absoluto medio, como el MAE (Figura 64). 
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En el caso de multivariada (flecha contorno) se plantea si existen diferencias de escala 

dentro de la serie, se responde que sí debido a la heterocedasticidad (variación no 

constante del error). Luego, la ruta sigue hacia la evaluación de si la escala es 

significativa (es decir, si tiene un significado práctico), también se responde que sí, ya 

que los valores de la serie representan demanda real y tienen una escala interpretable. 

Ambas condiciones —outliers e intermitencia— convergen en recomendar el uso de la 

métrica Root Median Squared Error (RMdSE), ya que esta combina la robustez ante 

valores extremos con estabilidad en contextos donde los datos reales presentan ceros 

frecuentes (Figura 64). 

Desde esta perspectiva cuantitativa, las métricas de desempeño obtenidas para el 

modelo reflejan una combinación de fortalezas y oportunidades de mejora. El valor de 

RMdSE = 0.051340, al estar expresado en las mismas unidades que la variable objetivo, 

indica que la mayoría de las predicciones se encuentran cercanas a los valores reales –

a cero por la intermitencia con un 68.22%-, lo cual respalda el comportamiento típico de 

la serie. A la par, el valor de sMSE = 3.268971 resulta considerablemente superior a 1.0, 

lo que implica que el error cuadrático medio del modelo es más de tres veces mayor que 

el valor medio de la serie, señalando un ajuste general deficiente en términos absolutos. 

Esta discrepancia sugiere que, aunque el modelo logra capturar bien la mediana de los 

errores (como muestra el RMdSE), existen errores extremos que elevan el promedio 

cuadrático. En conjunto, estas métricas sugieren que el modelo ofrece un buen nivel de 

precisión en términos relativos y mediana de errores, aunque la dispersión de algunos 

errores grandes está afectando negativamente su ajuste global. 

 

3.6.2 Confiabilidad del modelo top1: RMdSE_2XGB 

Recordemos que Forecasting Probabilístico no se trata sólo de predecir bien (precisión), 

sino de saber cuán seguro se está al predecir (confiabilidad). 

En la Figura 65 la cuantificación de la incertidumbre del pronóstico. El uso de intervalos 

de predicción construidos con bootstrapping de residuos out-of-sample no condicionados 

sin imponer supuestos fuertes (e.g. normalidad), arroja una cobertura observada del 

81.11% para un objetivo del 80% sugiere una calibración adecuada con un área/ancho 

del intervalo de 61,509.5. Esta técnica es agnóstica al modelo, sencilla de implementar 

y muy práctica para decisiones de riesgo (stock, capacidad, alertas).  
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Ilustración 65. Mejor modelo: intervalo de predicción 80% con la técnica Bootstrapping 

residuales Out-of-sample (no condicionados) 

Los residuos OOS no condicionados, muestran más valores negativos que positivos, si 

el residuo se define como y_true − y_pred, el modelo tiende a sobreestimar con mayor 

frecuencia (residuo negativo). Por otro lado, cuando el error es positivo, suele ser más 

grande la cola derecha es larga (valores hasta ~8). Además, la distribución no es 

gaussiana y presenta rasgos de bimodalidad/heterogeneidad (Figura 66). 

El ACF revela autocorrelación que decae recién hacia lag 20–25, por lo que los residuos 

no son i.i.d. (significa independientes e idénticamente distribuidos) y tienden a agruparse 

en rachas. Cuando hay dependencia temporal, los errores aparecen en rachas 

(autocorrelación). Por ejemplo, si a las 10:00 el modelo se queda corto en +4 (real 9, 
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predicho 5), es probable que a las 10:10, 10:20 y 10:30 también se quede corto con 

magnitudes similares (+5, +6, +3). No es un error aislado, sino una secuencia con el 

mismo signo y tamaño parecido. Si, al construir intervalos, se remuestran residuos al 

azar como si fueran independientes, el muestreo mezcla positivos y negativos y rompe 

esas rachas (varios pasos seguidos con el mismo signo). Al romperlas, los errores se 

cancelan con más frecuencia en la simulación que en la realidad y, por tanto, la 

variabilidad de las trayectorias multi-paso queda subestimada. Esto conduce a intervalos 

más estrechos de lo que corresponde, cuando en la práctica pueden presentarse varios 

pasos consecutivos con errores del mismo signo. En escenarios multi-paso, ese 

remuestreo ingenuo tiende a subestimar la incertidumbre, porque no contempla 

secuencias realistas de errores encadenados (Figura 66). 

 

Ilustración 66. Mejor modelo: Residuales off-of-sample 

Con este trasfondo, el bootstrapping de residuos OOS (out-of-sample) no condicionado 

tiene dos caras. Por el lado favorable, al basarse en la distribución empírica de los 

errores, captura de forma natural la asimetría y las colas pesadas. Por el lado limitante, 

al ignorar la dependencia serial y el sesgo de signo, puede producir intervalos 

ligeramente descentrados y optimistas en tramos donde la autocorrelación es fuerte. Aun 

así, la cobertura global del 81.11% para un objetivo del 80% sugiere calibración 

razonable en promedio, aunque con posibles desajustes locales por horizonte y periodos 

de racha. 
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3.6.3 Métrica y distribución del error por paso del modelo top1: RMdSE_2XGB 

Ahora, para reforzar el análisis se examina el error por horizonte de predicción, 

expresado en pasos de 10 minutos hasta un total de 144 (equivalente a 24 horas) en dos 

gráfios: métrica del error por paso (Figura 67) y distribución del error por paso (Figura 

68).  

 

Ilustración 67. Mejor modelo: métrica del Error por paso 

 

Ilustración 68. Mejor modelo: distribución del Error por paso 

El análisis del error por paso mediante una métrica agregada, como el RMdSE, ofrece 

una visión resumida y cuantitativa del desempeño del modelo en cada horizonte, 

permitiendo identificar rápidamente dónde se concentran los mayores errores. No 

obstante, al ser un promedio, oculta detalles sobre sesgo, dispersión o valores atípicos. 

En contraste, el boxplot complementa este análisis mostrando la distribución completa 

de los errores, lo que permite detectar tendencias de subestimación, inestabilidad y 

outliers. En síntesis, la métrica responde: “¿En promedio, qué tan mal me va en cada 

horizonte?”, mientras que el boxplot responde: “¿Cómo se distribuyen esos errores? 

¿Tengo sesgo, dispersión o outliers que debería preocuparme?”. 
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En la Tabla 14 se muestra en síntesis el comportamiento del modelo, rinde bien en el 

corto plazo, luego es razonablemente estable, terminano en los últimos pasos con un 

tramo débil. Sugiriendo considerar ajustes/recalibración para el horizonte de predicción. 

Tabla 14. Interpretación de las gráficas errores por paso 

Horizonte de 
predicción 

RMdSE por paso (error 
medio) 

Boxplot de errores 
(distribución) 

Interpretación conjunta 

Corto plazo (1 
a ~10 pasos) 

Errores bajos (≤ 2), luego 
se duplica (≤ 4), 
tendencia creciente 
inicial 

Cajas compactas, 
mediana cercana a 0, 
pocos outliers 

Predicciones medianamente confiables 
y estables en el corto plazo 

Temprano–
intermedio 
(~10 a ~35 
pasos) 

Zona crítica con un error 
máximo 7–8 unidades 

Cajas compactas, 
mediana cercana a 0, 
pocos outliers 

En horas de la madrugada existe 
comportamientos atípicos en la 
demanda 

Intermedio 
estable (~35 a 
~115 pasos) 

Error bajo y 
relativamente estable 
(1–2 unidades) 

Medianas desplazadas 
hacia valores positivos, 
dispersión muy amplia y 
presencia de outliers 

A partir de las 6am aproximadamente 
el modelo posee un error ~2 en el 
rango intercuartílico  

Largo plazo 
(~115 a ~144) 

Error en aumento 
progresivo (hasta ~3.5 
unidades) 

Cajas compactas, 
dispersión creciente, 
outliers más frecuentes 
hacia positivos 

El modelo pierde precisión 
gradualmente y agarra tendencia a 
subestimar 

 

 

3.6.4 Explicabilidad del modelo top1: RMdSE_2XGB 

SHAP (SHapley Additive exPlanations) es un método muy utilizado para explicar los 

modelos de machine learning. SHAP summary plot ofrece una visión global de cómo 

cada característica influye en las predicciones del modelo en todo el conjunto de datos. 

Las variables con mayor impacto global se ubican arriba. En las abscisas, el valor SHAP 

indica cuánto sube (positivo) o baja (negativo) la predicción en magnitud, de existir rojos 

y azules en ambos lados, hay efectos no lineales/interacciones.  

En la Figura 69 el modelo es fuertemente autoregresivo (“inercia” del dato 

inmediatamente anterior) a 1 paso (lag_1/inercia/momentum inmediato), en lag_6, 

lag_12, lag_72 (≈ 1 h, 2 h y 12 h) tienen impacto medio: el modelo usa memoria de 

corto/medio plazo para ajustar nivel y tendencia intradía. Esto quiere decir que el modelo 

está impulsado por memoria inmediata (lag_1), nivel reciente (roll_mean_6) y patrón 

diario (lag_144) que revela la estacionalidad diaria; combina además medidas de 

volatilidad (roll_std_12) y extremos (roll_max_144) para modular la respuesta. Esta 

estructura explica por qué el modelo sigue la dirección general, pero subestima los picos 

en los horizontes críticos. 
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Ilustración 69. Explicabilidad del modelo con SHAP Summary 

 

3.6.5 Trazabilidad y composición del modelo top1: RMdSE_2XGB 

En base al modelo top RMdSE_2XGB llamado UniV_FR C.Pear-P.Impo: Backtesting2 

[s_exog_cP_pI], grosso modo se explica su composición y trazabilidad (Figura 70).  

 

Ilustración 70. Trazabilidad de los modelos explorados para esta investigación 

Para una explicación sencilla se creó bloques jerarquía en la Figura 70, estas permiten 

comprender la trazabilidad del modelo RMdSE_2XGB que está representado por la 

ilustración por Modelo 5 (bloque contorno lila), el cual se compone de la siguiente forma: 
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1. Baseline (UniV_FED Baseline: Backtesting): En forecasting, es recomendable 

disponer de un modelo de referencia simple para iniciar. Se aplica el módulo 

ForecasterEquivalentDate de skforecast.recursive, es una estrategia particular de 

entrenamiento y predicción que busca en el pasado las observaciones 

equivalentes en fecha al horizonte de predicción, en lugar de usar una regresión 

normal con lags. Resultados: RMdSE=0.961866 y sMSE=2.445422. 

 

2. Modelo 1 (UniV_FR Baseline: Backtesting): Se construye con el orquestador 

ForecasterRecursive de skforecast.recursive con el estimador XGBRegressor de 

Scikit-learn. A partir de aquí se activa la GPU para el regresor. Resultados: 

RMdSE=0.018918 y sMSE=3.467356. 

 

3. Modelo 2 (UniV_FR Tunning1: SearchBayesiana + UniV_FR Tunning1: 

Backtesting): Basado en el anterior Modelo 1 se procede buscar la mejor 

combinación de lags e hiperparámetros que minimizan un error de predicción 

como el RMdSE, sobre un conjunto de validación. Resultados: RMdSE=0.016228 

y sMSE=3.452158  
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4. Se pasa por alto Modelo 3 y Modelo 4, ya que estos no intervienen en el modelo 

top que se está analizando.  

5. Modelo 5 (UniV_FR C.Pear-P.Impo: Backtesting2 [s_exog_cP_iP): En vista que 

en Modelo 3 sobre RFECV (Recursive Feature Elimination with Cross-Validation) 

no ayudó al performance del modelo (RMdSE=0.067011). Se retoma el 

orquestador construido por el Modelo2, para buscar otra perspectiva. Luego de un 

análisis se construye una función que evalúa la relevancia de variables predictoras 

(exógenas) frente a una variable objetivo combinando dos enfoques: correlación 

de Pearson para medir relaciones lineales, y la Permutation Importance para 

cuantificar el impacto real de cada variable en el rendimiento del modelo 

predictivo. Las variables exógenas de 63 pasan 6 variables con esta función 

personalizada. Resultado: RMdSE=0.051340. 
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CAPÍTULO 4  

4. CONCLUSIONES Y RECOMENDACIONES 

Este estudio representa un avance en la gestión logística portuaria del Ecuador, al 

abordar una dimensión poco explorada en la literatura: la planificación de servicios 

auxiliares en puertos de hidrocarburos. Su enfoque basado en inteligencia artificial 

constituye una contribución original que aporta nuevas perspectivas a las investigaciones 

en entornos portuarios estratégicos. 

Al aplicar técnicas de Machine Learning para anticipar la demanda de remolcadores, se 

explora una solución innovadora frente a la ausencia de herramientas tecnológicas 

actuales en el caso de estudio. Este enfoque responde a una problemática crítica, ya que 

la logística operativa portuaria depende de múltiples factores inciertos, comprometiendo 

la planificación del servicio y costos asociados. Esta propuesta sienta el inicio de las 

bases para una toma de decisiones más informada y proactiva, corresponde a la línea 

de investigación Eficiencia energética, Energías renovables y Alternativas, perteneciente 

al área de Logística y Transporte del país. 

 

CONCLUSIONES 

El propósito del trabajo consistió en realizar un análisis descriptivo y predictivo 

para el abastecimiento de remolcadores en maniobras de traspaso de 

hidrocarburos en un terminal portuario marítimo, integrando técnicas de Machine 

Learning bajo un enfoque univariante y multistep. Los resultados se sustentan en 

una rigurosa exploración estadística y visual de la serie temporal, que permitió 

comprender sus componentes estructurales —como estacionalidad, intermitencia 

y leve tendencia— y guiar adecuadamente el modelado. 

Respecto al primer objetivo, se identificaron variables endógenas y exógenas: 

como endógenas, la demanda de remolcadores a 10 minutos modelada con 

retardos [1, 6, 12, 72, 144] capturando la memoria de la serie, y el resumen del 

nivel y la variabilidad con window features [roll_mean_6, roll_std_12, roll_min_72, 

roll_max_144]; y como exógenas, con la función personalizada (Correlación de 

Pearson y Permutation Importance) evaluó la relevancia de variables predictoras 

pasando de 63 variables a 6 variables: temporales [hour_cos, hour_sin, hour, 

week, is_daylight] y meteorológicas [temp_window_12H_max]. La selección se 
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realizó con criterios técnicos coherentes con el dominio y la estructura temporal 

de los datos. En relación con el segundo objetivo, el análisis exploratorio reveló 

un comportamiento altamente intermitente (68% de ceros), estacionalidad diaria 

significativa, y una débil tendencia positiva, entre otros. Para el tercer objetivo, se 

escogió modelos de aprendizaje supervisado basados en árboles de decisión —

específicamente con Gradient Boosting Machines— por su fortaleza en 

herramientas que emulan el comportamiento en entorno operativos reales, tales 

como backtesting y validación cruzada mediante TimeSeriesFold. Finalmente, en 

cumplimiento del cuarto objetivo, se determinaron métricas adecuadas al contexto 

(RMdSE y sMSE) basadas en recomendaciones de literatura especializada como 

Hewamalage et al. (2023), excluyendo aquellas inadecuadas para datos 

intermitentes con ceros. Con ello, se identificó el modelo, proporcionando una 

validación robusta. 

 

LIMITACIONES 

Una limitación fue la aplicación de características polinómicas derivadas de 

interacciones entre variables exógenas, estas a menudo no actúan de forma 

independiente; su impacto en la variable objetivo puede depender de otras 

variables exógenas. Por ejemplo, el efecto de la temperatura sobre la demanda 

eléctrica varía según la hora del día. Estas interacciones se pueden crear 

aplicando combinaciones polinómicas de grado 2 con el fin de capturar relaciones 

no lineales entre variables y mejorar el rendimiento de modelos predictivos. Sin 

embargo, no se aplicó esta técnica debido a las limitaciones en la capacidad de 

cómputo, ya que el número de combinaciones en ocasiones superaba más de 300 

variables, lo cual al momento de aplicar fit(), backtesting_forecaster() o 

bayesian_search_forecaster(), sobrepasaba la capacidad de memoria disponible 

—6 GB— impidiendo continuar con los procesos. 

El modelo desarrollado no alcanzó una generalización aceptable a lo largo del 

horizonte completo. Aunque los intervalos al 80% lograron una cobertura cercana 

al nominal (≈81.11%), las métricas de precisión mostraron un ajuste insuficiente y 

el análisis de errores evidenció subestimación sistemática, junto con 

autocorrelación, asimetría, colas pesadas y heterocedasticidad en los residuos. 

Estas limitaciones son consistentes con las características de la serie (frecuencia 
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de 10 minutos, alta variabilidad intradía, picos abruptos y posibles cambios de 

régimen), que el modelo no logró capturar de forma estable, especialmente en 

horizontes intermedios y largos.  

Esto sugiere que, si bien se ha logrado una mejora en eficiencia de cobertura, la 

precisión absoluta de las predicciones continúa siendo un desafío, y podría 

beneficiarse de técnicas de modelado fiables como el orquestador 

ForecasterDirect, a pesar del poder computacional que este demanda. 

 

 

RECOMENDACIONES 

Fortalecer la generalización del modelo con horizontes cortos (7 o 15 días) 

agregando datos dinámicos (AIS/VHF) para reforzar la ingeniería de 

características.  

Como línea futura, explorar con modelos econométricos y Deep Learning para 

capturas dependencias complejas no lineales, con monitoreo y actualización ante 

cambios de régimen. Además, plantear modelos prescriptivos que sugieran 

acciones concretas frente a escenarios de demanda. También sería valioso 

escalar esta solución a otros terminales del país, fortaleciendo la eficiencia 

operativa en el sistema portuario petróleo nacional.  
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