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RESUMEN 

El cáncer de cuello uterino representa el cuarto lugar de mortalidad para mujeres de 

acuerdo a al Observatorio Global de Cáncer y GLOBOCAN 2022 a nivel mundial. La 

detección temprana mediante técnicas como la colposcopia, es crucial para reducir la 

mortalidad. El proyecto tiene como objetivo desarrollar un algoritmo de segmentación 

automática de lesiones en imágenes colposcópicas utilizando redes neuronales 

artificiales basadas en U-Net. Este enfoque radica en la necesidad de automatizar el 

análisis de imágenes médicas para segmentar lesiones de cuello uterino y reducir los 

errores causados por la interpretación subjetiva del médico. El proyecto utilizó una 

base de datos de 200 imágenes de colposcopia de la plataforma Kaggle, en las cuales 

se segmentó manualmente las regiones de interés (ROI) con colaboración de personal 

médico capacitado para generar máscaras binarias necesarias para entrenar el 

modelo. Se emplearon técnicas de aumento de datos y el rendimiento se evaluó con 

las métricas del coeficiente de Dice e Intersección sobre Unión (IoU). Los resultados 

mostraron que el modelo alcanzó un coeficiente de Dice de 84% en el conjunto de 

validación y una IoU de 75%. El modelo U-Net demostró ser efectivo para segmentar 

lesiones en imágenes de colposcopia, con un desempeño adecuado en la validación. 

El modelo podría ser usado en una herramienta de asistencia para ayudar al médico 

en la segmentación de lesiones cáncer de cuello uterino. 

 

Palabras Clave: Inteligencia Artificial, Colposcopia, Cérvix, U-Net, ROI. 
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ABSTRACT 

Cervical cancer is the fourth leading cause of mortality in women, according to the 

Global Cancer Observatory and GLOBOCAN 2022 worldwide. Early detection through 

techniques such as colposcopy is crucial to reducing mortality. The project aims to 

develop an algorithm for automatic lesion segmentation in colposcopic images using 

U-Net-based artificial neural networks. This approach stems from the need to automate 

medical image analysis to segment cervical lesions and reduce errors caused by 

physicians' subjective interpretation. The project used a database of 200 colposcopy 

images from the Kaggle platform, in which regions of interest (ROIs) were manually 

segmented with the collaboration of trained medical personnel to generate binary 

masks necessary to train the model. Data augmentation techniques were employed, 

and performance was evaluated using the Dice coefficient and Intersection over Union 

(IoU) metrics. The results showed that the model achieved a Dice coefficient of 84% on 

the validation set and the IoU achieved 75%. The U-Net model proved effective in 

segmenting lesions in colposcopy images, with adequate validation performance. The 

model could be used in an assistance tool to assist physicians in segmenting cervical 

cancer lesions. 

  

 

 

Keywords: Artificial Intelligence, Colposcopy, Cervix, U-Net, ROI. 
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INTRODUCCIÓN 

El cáncer de cuello uterino (cérvix) representa un desafío significativo para los sistemas 

de salud a nivel global. Según las estadísticas de la plataforma web del Observatorio 

Global de Cáncer (GCO, por sus siglas en inglés) y datos de GLOBOCAN 2022 la 

incidencia de los diferentes canceres a nivel global representa 9 664 889 casos 

diagnosticados [1].  

 

El cáncer de cuello uterino a nivel global se encuentra en cuarto lugar con 662 

301(6.9%) de casos nuevos [1]. En la Figura I.1 se tiene los diferentes cánceres a nivel 

global a) la incidencia representa en mama 2 296 840 (23.8%), pulmón 908 630 (9.4%), 

colon 856 979 (8.9%), cuello uterino 662 301(6.9%), tiroides 614 729 (6.4%), cuerpo 

del útero 420 368 (4.3%), y otros cánceres 3 905 042 (40.4%). En b) La mortalidad a 

nivel global es de 4 313 548 casos y la mortalidad del cáncer de cuello uterino se ubica 

en cuarto puesto con una representación de 348 874 (8.1%) de casos. 
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Figura I. 1 a) Incidencia, b) Mortalidad de cánceres a nivel global [1] 

 

En la Figura I.2 representa América Latina y el Caribe a) incidencia de cáncer de 

cuello uterino es de 63 171 (8.1%) casos, ocupando el tercer lugar del total de 

782 217 casos diagnosticados. b) La mortalidad con un total de 365 838 casos y 

en cáncer de cuello uterino representa el 33 514 (9.2%), ubicándose en cuarto 

lugar. 
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Figura I. 2 a) Incidencia, b) Mortalidad de cánceres en América Latina y el Caribe [1]  

 

En la Figura I.3 se tiene a Ecuador: a) incidencia de cánceres de 16 998 casos 

diagnosticados. En cuanto, al cáncer de cuello uterino es de 1 792 (10.5%) y 

representa el segundo cáncer con más casos nuevos por debajo del cáncer de 

mama que es el principal cáncer con más casos de 1 154 (13.6%), entre otros 

cánceres. En b) la mortalidad es de 8 500 casos y el cáncer de cuello uterino 

representa un 939 (11.0%) es el segundo cáncer con casos de mortalidad por 

debajo del cáncer de mama en el país. 
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Figura I. 3 a) Incidencia, b) Mortalidad de cánceres en Ecuador [1] 

 

El diagnóstico temprano de este tipo de cáncer es clave para reducir la mortalidad, y 

la segmentación de imágenes médicas juega un papel crucial en este proceso. En 

particular, la colposcopia, una técnica de imagen utilizada para examinar el cuello 

uterino, permite identificar anomalías precancerosas que podrían ser indicativas de 

cáncer. Sin embargo, la segmentación precisa de las lesiones en estas imágenes es 

un desafío técnico debido a la variabilidad en su apariencia, presencia de ruido y 

heterogeneidad en las imágenes. 

 

Las Redes Neuronales Artificiales (ANN, por sus siglas en inglés) han demostrado ser 

herramientas eficaces para abordar problemas de segmentación en imágenes 

médicas. Estas redes, que emulan el funcionamiento del cerebro humano, son 

capaces de aprender patrones complejos y detectar detalles sutiles en las imágenes, 

lo que las hace ideales para identificar y segmentar lesiones en colposcopia. La 

investigación se centra en el potencial de la Inteligencia Artificial (IA) para ayudar 

identificar lesiones en cáncer de cuello uterino, contribuyendo como herramienta de 

asistencia al médico. Por lo que, al desarrollar algoritmos avanzados basados en IA no 

solo podría acelerar el proceso de análisis, sino también aliviar la carga sobre los 

profesionales de la salud, mejorando así los resultados clínicos. 
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CAPÍTULO 1 

1. PLANTEAMIENTO DE LA PROBLEMÁTICA 

1.1 Identificación del problema 

La colposcopia es un procedimiento que ayuda a identificar cambios anormales en 

el cuello uterino (cérvix), que podrían estar relacionadas con el cáncer de útero. El 

diagnóstico es realizado por el ginecólogo y consiste en examinar el cérvix, la 

vagina y la vulva con un instrumento llamado colposcopio. Durante el examen, se 

aplican soluciones de ácido acético y/o Lugol en el cérvix para mejorar la visibilidad 

de posibles lesiones. El ácido acético hace que las células con cambios anormales 

se blanqueen, mientras que el Lugol tiñe las células normales en color marrón 

oscuro y a las células anormales no las tiñe. Estas sustancias ayudan al ginecólogo 

identificar áreas sospechosas que podrían ser lesiones precancerosas o anormales 

(ver Figura 1.1). Este examen es comúnmente realizado en mujeres mayores a 35 

años, debido a su mayor predisposición a desarrollar este tipo de patología [2][3].  

 

Observación del cérvix  

 

Figura 1. 1 Colposcopia [4] 

 

A pesar de la disponibilidad de métodos de diagnóstico como la citología cervical y 

la colposcopia, la interpretación de las imágenes obtenidas puede ser compleja y 

subjetiva, dependiendo en gran medida de la experiencia del médico especialista. 

La variabilidad en las características de las lesiones, la presencia de artefactos en 

las imágenes y las limitaciones en la resolución de las cámaras colposcópicas son 



 

 

 

 

factores que dificultan un diagnóstico preciso de las lesiones. Este análisis manual 

implica una intensa carga de trabajo para el especialista, quien podría incurrir en 

errores involuntarios de diagnóstico por agotamiento. El inconveniente radica en la 

identificación precisa de las lesiones de la patología durante los cambios en el 

epitelio blanco del ácido acético en el cérvix [5].   

  

La identificación de lesiones precancerosas en imágenes de colposcopia es un 

proceso manual realizado por el ginecólogo, quien interviene directamente para 

identificar, seleccionar y anotar la ubicación de lesiones sospechosas. Este 

proceso, conocido como segmentación manual, permite la creación de máscaras 

binarias, esenciales para la generación de bases de datos etiquetadas, que sirven 

para entrenar algoritmos de IA. Sin embargo, la intervención manual puede ser 

laboriosa, subjetiva y propensa a errores, lo que resalta la necesidad de automatizar 

este proceso.  

 

Además, se presentan cuellos de botella en los centros de salud, lo que provoca 

largos tiempos de espera y afecta tanto la calidad como la prontitud del diagnóstico 

para el paciente. En zonas urbanas, la sobrecarga de trabajo de los profesionales 

de salud, debido a la cantidad de pacientes, genera un cuello de botella que 

ralentiza el proceso de detección y diagnóstico temprano del cáncer de cérvix, a 

pesar de contar con recursos. Este problema está directamente vinculado con la 

insuficiencia en la optimización de los flujos de trabajo, lo que perjudica la eficacia 

del sistema de salud. Por otro lado, en zonas rurales, el acceso a servicios 

ginecológicos es aún más limitado, lo que crea un cuello de botella aún más crítico, 

ya que no cuenta con médicos especialistas, si no con médicos generales y la 

lejanía de los centros de salud dificultan la prevención y tratamiento de 

enfermedades. La falta de infraestructura adecuada y el aislamiento geográfico 

refuerzan estas limitaciones, haciendo que la detección y tratamiento temprano se 

conviertan en desafíos aún más complejos. 

 



 

 

 

 

1.2 Justificación 

Actualmente, las Redes Neuronales Convolucionales (CNN, por sus siglas en 

inglés), se están utilizando en el análisis de imágenes médicas debido a su 

capacidad de extracción automática de características para identificar patrones 

complejos en diferentes tipos de cánceres. En particular, la arquitectura U-Net ha 

demostrado ser efectiva en la identificación y localización de lesiones en la 

segmentación automática en imágenes biomédicas [6].  

 

El desarrollo de algoritmos de IA, han permitido la creación de herramientas de 

asistencia de diagnóstico, con el fin ayudar a los profesionales de salud a optimizar 

la carga laboral, dado el volumen de imágenes que deben analizar, y reducir los 

errores derivados del cansancio y agotamiento.  Gracias a esta tecnología, se están 

logrando resultados comparables con el diagnóstico médico tradicional en cuanto 

a precisión de detección y clasificación [7]. 

 

Por lo tanto, la implementación de la IA representa una solución para abordar estas 

problemáticas, contribuyendo a la identificación temprana de lesiones en cérvix. 

Esto permitirá un flujo de trabajo más eficiente, reducirá los tiempos de espera y 

mejora la calidad del servicio. Asimismo, disminuirá los errores asociados al 

cansancio y agotamiento, ayudando al médico general y al ginecólogo como una 

segunda opinión en la identificación de patologías, asi disminuyendo la subjetividad 

del diagnóstico visual.  

 

Al presente, no se dispone de base de datos públicas en Ecuador de imágenes 

médicas para realizar investigaciones. Por lo que, se propone utilizar una base de 

datos pública internacional, que permita llevar la investigación y, a futuro, aplicar 

este modelo para realizar predicciones con imágenes de colposcopia de Ecuador. 

Cabe indicar que esta base de datos, no contiene las máscaras binarias que 

corresponde a las lesiones de cérvix. Por lo que, se crearan las máscaras binarias 

con la capacitación del médico especialista. Esta base no solo apoyaría la 

investigación en la identificación de lesiones de cérvix, sino que facilitarían el 

entrenamiento de modelos de IA.  



 

 

 

 

1.3 Objetivos 

1.3.1 Objetivo General 

Desarrollar un algoritmo para la segmentación automática de lesiones de 

cuello uterino a partir de imágenes de colposcopia usando redes neuronales 

artificiales.  

1.3.2 Objetivos Específicos  

1. Seleccionar una base de datos con imágenes de colposcopia que esté 

debidamente avalada por un comité de ética de seres humanos. 

El objetivo implica la búsqueda y selección de un conjunto de imágenes 

de colposcopia que contenga muestras representativas de lesiones de 

cuello uterino, tales como lesiones precancerosas. La base de datos 

seleccionada sea pública o privada debe cumplir con todos los 

estándares éticos y legales establecidos para el uso de datos médicos. 

Es crucial que las imágenes sean anonimizadas y que se haya obtenido 

el consentimiento informado de los pacientes para su uso en 

investigación.  

 

2. Colaborar con ginecólogos y expertos en diagnóstico de cáncer de cuello 

uterino para la construcción de las máscaras binarias. 

La colaboración con el médico especialista en diagnóstico es esencial 

para seleccionar las lesiones del cérvix y construir las imágenes de las 

máscaras binarias, que indican la localización de dichas lesiones en las 

imágenes de colposcopia. El especialista, con su experiencia, indicará 

las características a tener en cuenta al identificar las lesiones en el cérvix.  

Las máscaras binarias serán utilizadas como el ground-truth para 

entrenar el modelo, de modo que la red neuronal aprenda a identificar y 

segmentar las lesiones en nuevas imágenes.  

 

 

 



 

 

 

 

3. Entrenar redes neuronales artificiales para la segmentación de lesiones 

de cuello uterino en imágenes de colposcopia. 

Este objetivo se enfoca en el desarrollo y entrenamiento del modelo de 

red neuronal profunda U-Net para la segmentación automática de 

lesiones en las imágenes de colposcopia. La segmentación es el proceso 

de dividir una imagen en diferentes regiones, en este caso, para 

identificar áreas sospechosas que contienen lesiones en el cuello uterino. 

Se utiliza aprendizaje supervisado, en el que la red neuronal aprende a 

reconocer patrones en las imágenes a partir de las máscaras binarias 

previamente construidas. El entrenamiento requiere de imágenes de 

colposcopia con sus respectivas máscaras binarias, el ajuste de los 

hiperparámetros y la validación del modelo de segmentación.    

 

4. Implementar métricas para la evaluación del rendimiento del modelo de 

segmentación en lesiones de cuello uterino. 

Una vez entrenado el modelo, es necesario evaluar el rendimiento 

utilizando métricas de segmentación que permitan medir la precisión de 

las predicciones realizadas por la red neuronal. Las métricas para evaluar 

modelos de segmentación incluyen la Intersección Sobre Unión (IoU, por 

sus siglas en inglés) y el coeficiente de Dice, es la más utilizada para 

evaluar la segmentación en imágenes. Estas métricas son fundamentales 

para determinar la capacidad del modelo para segmentar lesiones en 

imágenes de colposcopia.  

 

1.4 Resultados esperados 

▪ Generar las máscaras binarias de la lesión de cáncer de cuello uterino a partir 

de la interpretación de médicos especialistas.  

A través de un proceso de segmentación manual realizado por el médico 

especialista en imágenes de colposcopia, se generarán las máscaras binarias 

que indiquen las regiones afectadas por lesiones precancerosas en el cuello 

uterino. Estas máscaras binarias, que son representaciones en blanco y negro, 

sirven como ground-truth para entrenar el modelo de red neuronal, ya que 



 

 

 

 

contienen la información sobre la ubicación y la extensión de las lesiones. Este 

proceso es crucial para proporcionar una base de datos para entrenar el modelo 

de segmentación. 

 

▪ Obtener una base de datos de imágenes de colposcopia que incluya la máscara 

binaria para la segmentación automática.  

Una vez construidas las máscaras binarias, se recopilarán para crear una base 

de datos de imágenes de colposcopia que incluya tanto las imágenes originales 

como las máscaras binarias correspondientes a las lesiones del cérvix. Esta 

base de datos servirá para alimentar la red neuronal durante el entrenamiento 

y validación del modelo. La cantidad de imágenes disponibles serán 

fundamental para que el modelo segmente las áreas de las lesiones en las 

imágenes no vistas durante el entrenamiento. Las imágenes deben ser 

variadas, representando distintas lesiones, condiciones de iluminación, ángulos 

de visión y resolución. 

 

▪ Automatizar la segmentación de lesiones en imágenes de colposcopia usando 

redes neuronales artificiales. 

Esto se logrará entrenando un modelo basado en redes neuronales artificiales, 

específicamente la arquitectura para segmentación U-Net. Esta CNN es 

adecuada para tareas de segmentación biomédica debido a su capacidad para 

trabajar con imágenes de alta resolución y el diseño permite una segmentación 

precisa incluso con pocos datos. El modelo entrenado será capaz de identificar 

y segmentar de manera automática las áreas afectadas por lesiones de cuello 

uterino en nuevas imágenes de colposcopia, lo que ahorrará tiempo al médico. 

 

▪ Establecer métricas de evaluación para medir el desempeño del modelo U-Net 

en imágenes de colposcopia.  

Para evaluar la eficacia del modelo de segmentación, se deben definir métricas 

de rendimiento. Las métricas para este tipo de tarea son: La intersección sobre 

unión, mide la superposición entre la máscara predicha por el modelo y la 

máscara real, y el coeficiente Dice, que también mide la similitud entre las áreas 



 

 

 

 

segmentadas por el modelo y las áreas reales de la lesión. Esta métrica es ideal 

en imágenes biomédicas, ya que se enfoca en la calidad de la segmentación. 

 

1.5 Propuesta 

En la Figura 1.2 se presenta la propuesta para el desarrollo del proyecto de 

investigación: 

▪ Base de datos 

Seleccionar una base de datos pública y/o esté validada por un comité de 

ética en investigación con seres humanos. Para el proyecto de titulación se 

cuenta con una base de datos pública internacional de imágenes de 

colposcopia. Cabe indicar que esta no contiene las máscaras binarias que 

corresponden a las lesiones de cérvix.  

▪ Colaboración con el médico 

Mediante la capacitación y colaboración del médico, se procederán a 

identificar las áreas sospechosas que podrían ser lesiones precancerosas o 

anormales. 

▪ Generación de máscara binaria 

En las imágenes de colposcopia se procederá con la selección de la región 

de interés (ROI, por sus siglas en inglés) y la segmentación de lesiones en 

el cérvix. Para la construcción de la máscara binaria se empleará una 

herramienta informática de tratamiento digital de imagen orientada a las 

ciencias de la salud. 

▪ DB combinada (Base de datos) 

El conjunto de datos consta de imágenes de colposcopia e imágenes de las 

máscaras binarias que corresponde a las lesiones en el cérvix. 

▪ U-Net: entrenamiento y evaluación 

El entrenamiento y validación del algoritmo se realizarán de manera local, 

utilizando un equipo de cómputo con Unidad de Procesamiento Gráfico 

(GPU). Asimismo, se emplearán métricas de evaluación para medir la 

eficiencia del modelo de segmentación empleado, tales como Intersección 

sobre unión (IoU) o Índice de Jaccard y el Coeficiente de Sorensen-Dice.  

 



 

 

 

 

Desarrollo del proyecto de investigación 

 

 

Figura 1. 2 Propuesta  

 

1.6 Marco Teórico 

1.6.1 Cáncer de cuello uterino 

El cáncer de cuello uterino, también conocido como cáncer cervical o de cérvix, 

se caracteriza por la aparición de células malignas en los tejidos que forman el 

cuello del útero. Antes de desarrollarse en cáncer, las células experimentan 

alteraciones (displasia) que conducen a la formación de células anormales. Con 

el tiempo, las células anormales se transforman en cancerosas, se multiplican y 

se expanden hacia zonas más profundas del cuello uterino y las áreas cercanas. 

Este tipo de cáncer suele ser causado por el Virus del Papiloma Humano (VPH), 

una infección de transmisión sexual común que afecta a la zona genital. Según la 

Organización Mundial de la Salud (OMS), el 95% de los casos de cáncer de cuello 

uterino son causados por la infección VPH. Es importante señalar que las células 

anormales pueden tardar entre 15 y 20 años en transformarse en cáncer. Sin 

embargo, en mujeres con un sistema inmunitario debilitado, como en el caso de 



 

 

 

 

quienes no reciben tratamiento para el Virus de la Inmunodeficiencia Humana 

(VIH), este proceso ocurre más rápidamente, en un período de 5 a 10 años. 

Algunos factores para la progresión es el grado de ecogenicidad del tipo de VPH, 

el estado del sistema inmunológico, la presencia de infecciones de transmisión 

sexual, la cantidad de partos, el embarazo a una edad temprana, el uso de 

anticonceptivos hormonales y el tabaquismo. Aunque la edad promedio de 

diagnóstico es alrededor de los 50 años, el cáncer se detecta con mayor 

frecuencia en mujeres entre 35 a 44 años [8], [9], [10]. 

 

1.6.2 Anatomía  

El cuello uterino es la porción inferior y angosta del útero que enlaza la cavidad 

uterina con la vagina. Esta estructura fibromuscular posee una longitud de 3 a 4 

cm, un diámetro de 2.5 cm y forma cilíndrica o cónica. La morfología de este 

órgano experimenta variaciones en tamaño y forma influenciadas por la edad, 

paridad y el ciclo menstrual. En el ámbito reproductivo, cumple una doble función 

esencial: sirve como via para el transporte de espermatozoides hacia el útero 

durante la fertilización y actúa como un mecanismo de defensa que previene la 

entrada de agentes infecciosos al útero. Además, durante el parto la dilatación del 

cuello uterino es fundamental para facilitar el nacimiento del bebé [11], [12], [13]. 

En la Figura 1.3 se muestra las características anatómicas del cuello uterino: 

▪ Orificio interno: abertura que une el cérvix con la región superior del útero. 

▪ Endocérvix:  abertura del cuello uterino que lleva hasta el útero y cubierto de 

epitelio cilíndrico/columnar de color rojizo.  

▪ Ectocérvix o exocérvix: sección externa del cérvix, accesible a la 

observación directa durante un examen ginecológico. Histológicamente, 

presenta un recubrimiento de epitelio escamoso estratificado de color rosa. 

▪ Orificio externo: conexión entre el cérvix y la vagina.   



 

 

 

 

 

Figura 1. 3 Características anatómicas del cuello uterino [11] 

 

En la Figura 1.4 se presenta una vista anatómica del cérvix desde la perspectiva 

del canal vaginal.  Aquí es donde ocurren las lesiones precancerosas. En términos 

generales, es la zona en la que el endocérvix se encuentra con el ectocérvix se 

denomina unión escamoso-columnar (SCJ, por sus siglas en inglés). Esta área 

está conformada por células glandulares en forma de columna que producen 

moco del endocérvix, así como por células escamosas planas y delgadas del 

ectocérvix. Esta unión escamosa-columnar es la zona de transformación, ya que 

en ella se encuentran tanto la unión escamosa-columnar antigua como la nueva. 

El epitelio escamoso metaplásico hace referencia al cambio natural del epitelio 

cilíndrico del endocérvix hacia un epitelio escamoso, que se forma a partir de las 

células de reserva subcilíndricas. La mayoría de los cánceres cervicales se 

desarrollan a partir de las células ubicadas en la zona de transformación [14], [15]. 

              

Figura 1. 4 Anatomía del cérvix visto desde el canal vaginal [14] 

 



 

 

 

 

1.6.3 Precánceres  

Las células de la zona de transformación no adquieren características cancerosas 

de manera repentina, sino que, previamente, las células normales del cuello 

uterino experimentan una serie de transformaciones anormales de manera 

gradual, se conocen como cambios precancerosos.  Estos cambios se son 

designados con distintos términos, tales como Neoplasia Intraepitelial Cervical 

(CIN), Lesión Intraepitelial Escamosa (SIL) y displasia [14], [16].  

 

En la Figura 1.5, se puede identificar los grados que tiene la CIN. A partir del grado 

II de la lesión es importante que se someta a la paciente a una biopsia, dado que, 

en estas etapas, es muy probable la presencia de cáncer de cérvix y no solo la 

lesión en tejido escamoso. Según la anormalidad del cuello uterino el CIN se 

clasifica en tres grados de acuerdo con la gravedad de las células [14], [16]: 

 

1. CIN I: se denomina SIL de bajo grado o displasia leve y se clasifica como la 

forma menos severa, dado que la presencia de tejido anormal es mínima. 

Generalmente se resuelve por sí sola sin tratamiento. La lesión se encuentra 

solamente en el tejido del cérvix, afectando la zona de transformación. 

2. CIN II: Lesión de grado intermedio, con cambios celulares más pronunciados, 

que puede progresar a un cáncer si no se trata. 

3. CIN III: Lesión de alto grado, donde los cambios celulares son graves y tiene 

una alta probabilidad de progresar a cáncer cervical invasivo si no se trata. 

 

El CIN II/CIN III, conocidos también como lesiones intraepiteliales escamosas de 

alto grado o displasias moderada/grave, presentan una mayor alteración del tejido. 

Estas lesiones representan la forma más avanzada de precáncer y conllevan un 

alto riesgo de progresar a cáncer. El diagnóstico se dificulta dependiendo del tipo 

de cérvix de la paciente, dado que esto genera que la zona de transformación 

presente una diferente ubicación y dependiendo del tipo, la CIN puede generar 

lesiones ocultas [14], [16]. 



 

 

 

 

                    

Figura 1. 5 Tipos de CIN [14] 

1.6.4 Antecedentes  

A continuación, se describen los antecedentes y factores vinculados al cáncer de 

cérvix: 

 

El Virus del Papiloma Humano (VPH): La infección persistente por determinados 

tipos del Virus del Papiloma Humano (VPH) constituye la causa principal del 

cáncer de cérvix. Es una Infección de Transmisión Sexual (ITS) común que afecta 

las células del cuello uterino. Las infecciones por VPH, en su mayoría, no son 

permanentes y el sistema inmune se encarga de combatirlas, pero en algunos 

casos, el virus persiste y puede provocar cambios celulares que, con el tiempo, 

pueden convertirse en cáncer. 

 

Historia clínica y factores de riesgo: Existen ciertos factores que incrementan 

la posibilidad de desarrollar el cáncer de cérvix:  

▪ Infección por VPH: a infección persistente por VPH es la causa más 

importante. 

▪ Edad: El diagnóstico de cáncer de cérvix es común en mujeres de entre 35 y 

44 años. 

▪ Actividad sexual temprana y múltiples parejas: las mujeres que inician su vida 

sexual a una edad temprana o que han tenido varias parejas sexuales 

presentan un mayor riesgo, ya que están más expuestas al VPH. 

▪ Tabaquismo: El consumo de tabaco incrementa la probabilidad de padecer 

cáncer de cérvix, ya que debilita el sistema inmunológico y puede permitir que 

las células infectadas por el VPH se conviertan en cancerosas. 

▪ Sistema inmunológico débil: Las mujeres con sistemas inmunológicos 

comprometidos, como las que viven con VIH/SIDA y las que toman 



 

 

 

 

medicamentos inmunosupresores presentan un riesgo incrementado de 

desarrollar cáncer cervical. 

 

Detección y diagnóstico: El Pap Test o prueba de Papanicolaou y la prueba del 

VPH son las herramientas clave para el diagnóstico temprano del cáncer de cérvix. 

La prueba de Papanicolaou analiza las células del cuello uterino para identificar 

posibles irregularidades, mientras que la prueba del VPH sirve para detectar los 

tipos de virus que podrían provocar alteraciones celulares. Si se detectan células 

anormales, es posible realizar pruebas adicionales (como una biopsia) utilizada 

para evaluar la presencia de cáncer o lesiones precancerosas.  

 

Precancer y etapas tempranas: El cáncer cervical suele progresar de forma 

paulatina a partir de una condición precursora conocida como neoplasia cervical 

intraepitelial, que es un aumento inusual y descontrolado de células en el cuello 

uterino. Esta condición no siempre progresa a cáncer, y a menudo, si se detecta 

a tiempo, se puede tratar con éxito antes de que se convierta en cáncer CIN I, CIN 

II, CIN III. 

 

1.6.5 Técnicas de imagenología 

Métodos utilizados para capturar imágenes del interior del cuerpo humano con 

fines diagnósticos o investigación médica. Estas técnicas permiten a los 

profesionales de la salud visualizar estructuras internas sin necesidad de 

procedimientos invasivos. Las imágenes obtenidas se emplean para detectar 

enfermedades, identificar lesiones, planificar tratamientos y monitorear la 

evolución de una afección. 

1.6.5.1 Colposcopia 

Examen médico empleado para observar detalladamente el cuello uterino, la 

vagina y la vulva con el fin de detectar signos de enfermedades o alteraciones, 

como infecciones o cambios celulares que puedan indicar un riesgo de cáncer. 

Este procedimiento generalmente lo realiza un ginecólogo o un médico 

especialista y se emplea con frecuencia cuando los resultados del examen de 

Papanicolau (Pap) son anormales o cuando la paciente presenta síntomas como 



 

 

 

 

sangrados anormales o lesiones visibles [14], [17]. Tiene la finalidad de 

identificar anormalidades tales como lesiones intraepiteliales escamosas de alto 

grado (HSIL, por sus siglas en inglés), CIN entre otras. 

 

                           

Figura 1. 6 Procedimiento de colposcopia [17] 

 

En la Figura 1.6 se tiene el procedimiento de la colposcopia, el cual consiste en: 

1. Se coloca en una mesa ginecológica, adoptando la posición típica de un 

examen pélvico (posición en litotomía). Luego, se inserta un espéculo en la 

vagina para separar las paredes vaginales y permitir una visualización clara 

del cuello uterino [14]. 

2. El colposcopio es un microscopio de luz brillante que se ubica a unos 30-40 

cm de la vulva, sin hacer contacto directo con la paciente. El médico examina 

el cuello uterino a través del ocular del colposcopio para detectar posibles 

anomalías visibles, como alteraciones en el color, la textura o la 

vascularización del cuello uterino [14].  

3. Para mejorar la visibilidad de las posibles lesiones, se aplican soluciones 

sobre el cuello uterino, estas son: 

▪ Ácido acético: Se aplica sobre el cuello uterino y se espera unos minutos. 

La sustancia hace que las áreas anormales se pongan blancas (signo de 

lesiones precoces o displasia).  

▪ Yodo (solución de Lugol): Tiñe las células normales de color marrón. Las 

células anormales no absorben el yodo y permanecen pálidas o no se 

tiñen, lo que ayuda a identificar áreas de preocupación. 

4. Retiro del espéculo.  



 

 

 

 

1.6.5.2 Biopsia  

Técnica médica que consiste en obtener una pequeña porción de tejido del cuello 

uterino (cérvix) con el propósito de realizar un análisis de laboratorio. Este 

método es fundamental para verificar la presencia de células anormales en la 

muestra. La realización de la biopsia es crucial para establecer un diagnóstico 

certero y, a partir de los hallazgos, orientar el tratamiento más adecuado. Se 

realiza cuando se han detectado células anormales en estudios previos, como 

una citología (Papanicolaou) o una colposcopía. Su objetivo es confirmar si 

dichas células anormales son cancerosas, lo cual es crucial para identificar el 

tipo y el alcance de las lesiones, y así definir el pronóstico y las opciones 

terapéuticas para la paciente [18]. 

 

1.6.5.3 Estudios por imágenes  

Se utilizan para evaluar la extensión del cáncer, es decir, si ha invadido otros 

órganos o estructuras cercanas. Las técnicas más comunes incluyen: 

Ultrasonido transvaginal: Método más usados para examinar el cérvix y 

órganos adyacentes, como el útero, los ovarios y la vejiga. Puede detectar 

anomalías, masas o modificaciones en el tamaño y la  morfología del cuello 

uterino [19]. 

Tomografía Computarizada (TC): Es una técnica de imagen que utiliza rayos 

X para generar representaciones detalladas del interior del cuerpo. Para 

determinar la extensión del cáncer cervical (si se ha diseminado a otras zonas 

como los ganglios linfáticos, los huesos o los pulmones) y es útil en estadios más 

avanzados para evaluar metástasis [20]. 

Resonancia Magnética (RM): Obtiene imágenes precisas de los tejidos blandos 

y se utiliza para evaluar la invasión del cáncer en el útero, la vagina y los órganos 

cercanos [21]. 

 

1.6.6 Segmentación de imagen médica 

Tiene un rol importante en el ámbito de la salud, ya que permite extraer 

información valiosa para el diagnóstico de forma semiautomática o automática, y 

facilitar el seguimiento de diversas patologías [22]. El propósito de la 



 

 

 

 

segmentación es la separación y detección de la ROI de la imagen, esto 

dependerá del problema a resolver, por ejemplo, el caso de lesiones en cérvix se 

obtendría información como la textura, intensidad de color, forma, bordes, etc. 

[23].  

 

La segmentación es un procedimiento mediante el cual se divide una imagen en 

distintas regiones u objetos de interés. En este proceso, a cada píxel se le asigna 

una etiqueta o categoría que indica la región a la que pertenece. Los píxeles que 

comparten la misma etiqueta presentan características similares entre sí, que 

pueden ser el nivel gris, brillo, color, textura, contraste, etc. [24]. 

 

Las técnicas de segmentación en imágenes se utilizan para localizar órganos, 

tejidos, tumores o lesiones asociadas a diversas patologías. Al identificar una 

lesión, se obtiene información relevante para el análisis de la región segmentada. 

Estas técnicas se aplican a imágenes obtenidas mediante distintas tecnologías, 

como colposcopia, mamografía, ultrasonido, resonancia magnética, Tomografía 

por Emisión de Positrones (PET, por sus siglas en inglés), las cuales suelen 

requerir preprocesamiento o mejoras de calidad de la imagen médica. Al trabajar 

con imágenes médicas, se enfrentan diversos desafíos, como la presencia de 

artefactos, baja resolución, volúmenes parciales, movimientos y ruido en la 

imagen [24].  

 

En la Figura 1.7, se muestra la segmentación de lesión de cuello uterino (cérvix), 

donde a) es el cérvix y b) la máscara binaria que corresponde la lesión (color 

blanco) y no lesión (color negro). Por ende, el resultado de llevar la segmentación 

en la imagen médica es una nueva imagen donde se identifica la lesión de la 

patología conocida como máscara. Es decir, en cada píxel tiene establecido un 

color según la categoría o etiqueta asignada. Generalmente en segmentación de 

imágenes médicas se establece 2 categorías; lesión de color blanco y no lesión 

color negro. Para obtener una segmentación automática se utiliza técnicas de 

aprendizaje profundo de inteligencia artificial mediante del uso de redes 

neuronales artificiales. 



 

 

 

 

                                                    

  Figura 1. 7 Segmentación: a) imagen del cérvix, b) máscara binaria  

 

1.6.7 Técnicas de segmentación 

▪ Umbralización: establece umbrales de intensidad y clasifica los pixeles 

según el nivel de umbral al que corresponden [25]. Es decir, se analiza la 

imagen y se determina la región a segmentar utilizando el umbral óptimo, 

el cual se define a partir del histograma de la imagen. El histograma 

representa gráficamente cómo se distribuyen las diferentes intensidades de 

píxeles en la imagen [26].  

▪ Detección de bordes: consisten en detectar las posiciones que se hallan en 

los bordes de las imágenes. El borde es la frontera entre dos regiones de 

la imagen que poseen distintas intensidades de color o niveles de gris [27]. 

Estos cambios marcan la separación entre diferentes regiones de la 

imagen, y permiten delimitar los contornos de los elementos presentes. A 

partir de estos bordes, es posible definir regiones cerradas que representan 

los objetos segmentados dentro de la imagen [24].   

▪ Agrupamiento: reconocer y agrupar muestras de píxeles de la imagen, 

estos grupos de píxeles se los conoce como clústeres. El agrupamiento 

involucra dividir el área de la imagen en regiones de características 

similares [28]. Esta separación de grupos de píxeles pertenece a un 

espacio característico derivado de la imagen. Este espacio característico, 

es un conjunto de características que corresponde a funciones, bien sea 

de la imagen o provistas por el usuario [26]. 

 

1.6.8 Asistencia en la segmentación  

La asistencia en la segmentación en imágenes médicas, tiene un rol 

importante en los Sistemas de Diagnóstico Asistido por Computador (CAD, 



 

 

 

 

por sus siglas en inglés). El sistema CAD, es una herramienta auxiliar que 

facilita a los radiólogos a tomar decisiones de diagnóstico ante anomalías 

presentes en la imagen médica. Se utiliza, en el diagnóstico de cáncer de 

mama, cáncer de pulmón, enfermedad de las arterias, defectos cardíacos, 

detección patología del cerebro, etc. En general, se limita a marcar áreas 

posibles, donde puede existir una lesión o anomalías. Siendo el responsable 

el radiólogo de delimitar el área de la lesión para que pueda ser 

caracterizada y diagnosticada [29]. El sistema CAD consta de varias etapas:  

▪ Preprocesammiento: reducción de artefactos de fondo, eliminación de 

ruido y mejorar la calidad de imagen. 

▪ Segmentación: localizar y buscar regiones sospechosas que poseen 

anormalidad como tejido, lesiones, masas, etc. 

▪ Extracción de características: la región segmentada es analizada en 

busca de características sospechosas como textura, intensidad, 

tamaño, ubicación, borde, etc. 

▪ Clasificación: se clasifican las regiones sospechosas utilizando las 

características de la etapa anterior. 

 

 

 

 

 

 

 



 

 

 

 

CAPÍTULO 2 

2. ESTADO DEL ARTE 

2.1 Herramientas de asistencia en segmentación 

La segmentación de imágenes médicas es una tarea importante en el 

procesamiento de imágenes biomédicas, ya que permite la identificación y 

delimitación precisa de estructuras anatómicas y regiones de interés. En las últimas 

décadas, se han desarrollado diversas herramientas de software que permiten 

asistir este proceso, facilitando tanto el trabajo clínico como la investigación. 

2.1.1 3D Slicer 

Una plataforma de software libre y de código abierto diseñada para el 

análisis y visualización de imágenes médicas. Permite realizar 

segmentación, registro, reconstrucción 3D, análisis cuantitativo y 

visualización interactiva. Su arquitectura modular y su compatibilidad con 

múltiples formatos de imagen médica (como DICOM, NIfTI, entre otros) lo 

hacen una herramienta versátil tanto en investigación como en entornos 

clínicos [30]. 

 

Una de las principales fortalezas de 3D Slicer es la posibilidad de integrar 

algoritmos avanzados de segmentación basados en inteligencia artificial, 

aprendizaje profundo o métodos tradicionales como crecimientos de 

regiones, umbralización y métodos basados en contornos activos. Además, 

permite la personalización a través de scripts en Python y la integración de 

módulos externos [30]. 

 

Características: 

▪ Soporte multiplataforma (Windows, macOS, Linux). 

▪ Interfaz gráfica intuitiva y altamente configurable. 

▪ Repositorio extensivo de módulos desarrollados por la comunidad. 

▪ Amplio soporte para imágenes volumétricas y reconstrucción 3D. 

 



 

 

 

 

2.1.2 ITK-SNAP 

Aplicación de software gratuita de código abierto y multiplataforma que se 

utiliza para segmentar estructuras en imágenes biomédicas 3D y 4D. Fue 

desarrollada originalmente en la Universidad de Carolina del Norte. Esta 

herramienta proporciona segmentación semiautomática mediante métodos 

de contorno activo, así como delineación manual y navegación por imágenes 

[31]. 

 

ITK-SNAP se centra específicamente en la segmentación, lo hace más ligero 

y fácil de utilizar para tareas concretas. Es particular en estudios donde se 

requiere una intervención manual mínima pero precisa, como en la 

segmentación de tumores, ventrículos cerebrales y lesiones focales [31]. 

 

Características: 

▪ Acceso a algoritmos avanzados a través del servicio de segmentación 

distribuida. 

▪ Visualización en 3D y en cortes ortogonales (axial, coronal, sagital). 

▪ Una interfaz gráfica de usuario moderna basada en Qt6. 

▪ Compatibilidad con imágenes en color, multicanal y 3D+tiempo. 

▪ Soporte para visualización simultánea y vinculada, y segmentación de 

múltiples imágenes. 

▪ Capacidades de registro de imágenes manuales y automáticas. 

 

2.1.3 ImageJ - Fiji 

ImageJ es un software de procesamiento de imágenes ampliamente utilizado 

en la ciencia y la investigación. Originalmente desarrollado por Wayne 

Rasband en el National Institutes of Health (NIH, por sus siglas en inglés) en 

los Estados Unidos, ImageJ se ha convertido en una herramienta 

fundamental para la visualización, el análisis y la manipulación de imágenes 

científicas. Es una aplicación de código abierto, lo que permite a los usuarios 

modificar y personalizar el software según sus necesidades. ImageJ soporta 



 

 

 

 

una amplia gama de formatos de imágenes y proporciona una extensa 

colección de herramientas y funciones para el procesamiento de imágenes, 

como la medición de áreas, la filtración, la segmentación y la creación de 

imágenes en 3D. Además, su capacidad para integrar macros y plugins le 

otorga una gran flexibilidad y extensibilidad, lo que lo convierte en una opción 

popular entre los científicos de diversas disciplinas, como la biología, la 

medicina y la física [32]. 

 

Fiji una distribución de ImageJ que incluye una serie de complementos 

(plugins) y bibliotecas adicionales para facilitar el análisis de imágenes 

científicas de manera más eficiente. Aunque Fiji se basa en ImageJ, su 

principal ventaja radica en la integración de una gran cantidad de 

herramientas preinstaladas, lo que elimina la necesidad de que los usuarios 

descarguen e instalen complementos por separado. Esto convierte a Fiji en 

una opción más accesible para quienes necesitan un entorno listo para usar 

sin complicaciones. Además, incluye mejoras en la interfaz de usuario y 

proporciona soporte optimizado para trabajos de análisis en imágenes 

volumétricas y series de imágenes. La compatibilidad con sistemas 

operativos como Windows, macOS, Linux y su enfoque en la comunidad de 

código abierto le otorgan una gran flexibilidad para ser utilizado en entornos 

de investigación colaborativos [33]. 

 

2.2 Algoritmos de segmentación: Aprendizaje Automático (ML) 

Los algoritmos de segmentación basados en Aprendizaje Automático permiten 

dividir conjuntos de datos en grupos con características similares de forma 

automática y eficiente. Entre los métodos más utilizados se encuentran K-means, 

Random Forest y Máquinas de Soporte Vectorial (SVM). Estos algoritmos pueden 

aplicarse tanto en tareas supervisadas como no supervisadas, dependiendo del tipo 

y disponibilidad de datos. Su uso se ha extendido en áreas como la visión por 

computadora y la medicina. Gracias a la capacidad de adaptación y aprendizaje, el 

ML ha superado a muchos enfoques tradicionales en precisión y escalabilidad. 



 

 

 

 

2.2.1 K-means 

El artículo de Bai et al. [34], se utiliza el algoritmo k-means para segmentar 

la imagen colposcópica transformada al espacio de color HSV, 

específicamente para extraer la componente V, que es la que contiene la 

mayor información clínica sobre la región cervical. En este proceso, los 

píxeles de la imagen se dividen en K centros de agrupamiento, y luego se 

calcula la distancia de cada muestra a los centros de los grupos, asignando 

cada muestra al centro de grupo más cercano. Este enfoque permite separar 

las distintas áreas de la imagen, como la región cervical, la zona extra-

cervical y la región del endoscopio, facilitando así la segmentación precisa 

de la región de interés [34]. 

 

Para llevar a cabo esta segmentación, se siguen varios pasos. Primero, se 

seleccionan aleatoriamente K centros de agrupamiento en el espacio HSV. 

Luego, cada punto de la imagen se asigna al centro de agrupamiento más 

cercano, lo que se calcula mediante una fórmula de distancia. 

Posteriormente, los centros de agrupamiento se actualizan, y el proceso de 

asignación se repite iterativamente hasta que los centros ya no cambian, 

indicando que se ha alcanzado la convergencia. Con este procedimiento, se 

obtienen tres regiones principales: la zona cervical, la región externa del 

cuello uterino y la zona del endoscopio [34].  

 

Una vez realizada la segmentación utilizando K-means, se aplica un filtro de 

área para suavizar los bordes de la región cervical. Este filtro elimina las 

pequeñas regiones conectadas que no corresponden a la zona cervical, 

asegurando que solo se mantenga la parte relevante de la imagen para el 

análisis. El filtro también ayuda a preservar las características detalladas de 

la imagen, mientras suprime el ruido, lo que mejora la precisión de la 

segmentación y facilita la evaluación clínica. Este enfoque ha demostrado 

ser efectivo para identificar y segmentar de manera precisa la región 

cervical, incluso en imágenes con detalles complejo [34]. 

 



 

 

 

 

2.2.2 Random Forests (RF) 

El artículo de Yao & Li [35],  este estudio se propone un método mejorado 

para el reconocimiento de cambios citopáticos cervicales, utilizando el 

algoritmo Random Forest (RF, por sus siglas en inglés)  enfocado en el 

reconocimiento de características locales de las lesiones. Para optimizar el 

tiempo de ejecución del algoritmo, se aplicó una simplificación en la 

selección de características, contribuyo la precisión de identificación. 

Además, se empleó una selección equilibrada de árboles de decisión para 

fortalecer la robustez del modelo. La efectividad del método fue validada 

mediante simulaciones que mostraron mejoras significativas [35]. 

 

El algoritmo Random Forest se construye a partir de múltiples árboles de 

decisión generados mediante el método de muestreo Bootstrap. A partir del 

conjunto de entrenamiento, se extraen aleatoriamente múltiples 

subconjuntos de datos, y para cada uno de ellos se selecciona un 

subconjunto de características de manera aleatoria. En cada nodo de un 

árbol, se elige la mejor característica para dividir, utilizando criterios como la 

ganancia de información. La clasificación final se realiza mediante votación 

mayoritaria entre todos los árboles, lo que permite una toma de decisión más 

precisa y reduce la posibilidad de sobreajuste [35]. 

 

Para comprobar la eficacia del modelo, se utilizaron 280 imágenes TCT de 

células cervicales obtenidas de un hospital, divididas entre células normales 

y células con lesiones. El algoritmo fue implementado en un entorno Matlab, 

alcanzando una sensibilidad del 93.5% en la identificación de lesiones. Los 

resultados indican que el modelo RF no solo es factible y práctico, sino que 

también mejora la precisión en el reconocimiento de enfermedades 

cervicales, superando incluso a métodos tradicionales [35]. 

 



 

 

 

 

2.2.3 Máquinas de Soporte Vectorial (SVM) 

El artículo de Artan & Huang [36], Máquinas de Soporte Vectorial (SVM, por 

sus siglas en inglés) es un método de clasificación utilizado con frecuencia 

en aplicaciones de procesamiento de imágenes y reconocimiento de 

patrones. El objetivo de SVM es construir un hiperplano de decisión que 

separe las diferentes clases con el margen máximo, es decir, la distancia 

máxima entre el hiperplano de decisión y el punto más cercano a este. Este 

hiperplano de decisión se obtiene mediante la resolución de un problema de 

programación cuadrática convexa. Para aplicaciones de clasificación, se 

utiliza la formulación C-SVM original, donde el parámetro C controla el 

sobreajuste. Sin embargo, en ciertas aplicaciones, la penalización del error 

es desigual entre las clases, lo que da lugar a la propuesta de un SVM 

ponderado, el 2C-SVM, donde se asignan diferentes costos a los errores de 

clasificación de una clase más importante que la otra [36]. 

 

En aplicaciones de clasificación donde el costo de etiquetar erróneamente 

una muestra de una clase de región acetoblanca (AW, por sus siglas en 

inglés) es mayor que el de cometer un error con la clase región de cuello 

uterino (CE, por sus siglas en inglés), se propone el uso de un SVM sensible 

al costo. Este enfoque se aplica en la segmentación de imágenes del cérvix 

para clasificar las regiones de tejido como AW o CE. Para optimizar el 

rendimiento de clasificación, se utiliza un sistema de clasificadores múltiples 

basado en SVM sensible al costo. Este método ha demostrado buenos 

resultados en un conjunto reducido de imágenes, donde cada imagen aporta 

cientos de muestras de píxeles AW y CE. Durante la fase de entrenamiento, 

se determinan los mejores parámetros para cada clasificador y se aplican 

durante la prueba a las imágenes nuevas [36].  

 

El uso de un SVM sensible al costo ha mostrado ser ventajoso en la 

segmentación de lesiones en imágenes del cérvix. Al emplear este enfoque, 

se realiza una búsqueda de parámetros en una malla regular para minimizar 

la tasa de falsos positivos y maximizar la tasa de verdaderos positivos. Cada 



 

 

 

 

clasificador 2ν-SVM proporciona una segmentación de la imagen, y estas 

segmentaciones se combinan utilizando el algoritmo STAPLE maneja 

información de verosimilitud iterativa sobre píxeles individuales para estimar 

la segmentación verdadera oculta de las áreas afectadas (AW) de una 

imagen de prueba dada. Los resultados obtenidos con esta técnica son 

prometedores, y el sistema está siendo optimizado mediante la selección 

dinámica de clasificadores, lo que permite elegir los clasificadores más 

adecuados para cada imagen de prueba [36]. 

 

2.3 Algoritmos de segmentación: Aprendizaje Profundo (DL) 

El Aprendizaje Profundo (Deep Learning) ha revolucionado los algoritmos de 

segmentación al permitir el análisis de datos complejos con un alto nivel de 

precisión. Modelos como las redes neuronales convolucionales, U-Net y DeepLab 

son ampliamente utilizados para tareas de segmentación, especialmente en el 

procesamiento de imágenes. Estos algoritmos pueden aprender representaciones 

jerárquicas de los datos, lo que mejora significativamente la detección de patrones 

sutiles y detallados. Su aplicación ha demostrado resultados sobresalientes en 

campos como la medicina. A pesar de requerir grandes volúmenes de datos y poder 

computacional, el DL se posiciona como una de las técnicas más efectivas en 

segmentación avanzada. 

2.3.1 Mask R-CNN 

El artículo de Saranya & Sujatha [37], propone un sistema de detección de 

cáncer de cuello uterino mediante la aplicación del modelo Mask R-CNN, 

una arquitectura de aprendizaje profundo en la detección de objetos y 

segmentación por instancia. Se adapta para analizar imágenes de 

colposcopia, permitiendo no solo identificar la presencia de lesiones 

cervicales, sino también delinear sus contornos. El modelo, preentrenado 

con el conjunto de datos COCO, es ajustado con imágenes etiquetadas de 

colposcopia para aprender las características de las lesiones cervicales. 

Esta adaptación permite al sistema detectar las lesiones precancerosas 



 

 

 

 

como cancerosas, facilitando el análisis detallado y automatizado que puede 

complementar el diagnóstico clínico tradicional [37]. 

 

La arquitectura Mask R-CNN se basa en una red convolucional profunda que 

extrae características relevantes de las imágenes. Utiliza una red de 

propuestas de regiones para identificar áreas que podrían contener lesiones, 

las cuales son posteriormente refinadas mediante capas adicionales que 

predicen tanto la clase (lesión o no) como una máscara binaria que 

segmenta la región afectada. Este enfoque permite manejar imágenes con 

diferentes calidades, resoluciones y variabilidad en las condiciones de 

iluminación o estructura del tejido, es común en imágenes clínicas reales. Al 

generar una máscara de segmentación para cada región de interés, se 

proporciona una representación visual clara de las zonas sospechosas, lo 

que resulta de gran utilidad para el personal médico [37]. 

 

El modelo se optimiza mediante Adam que ajusta las tasas de aprendizaje 

para mejorar la convergencia y estabilidad durante la fase de entrenamiento. 

La combinación entre la arquitectura Mask R-CNN y la optimización de Adam 

permite el desarrollo del sistema robusto, capaz de distinguir entre células 

sanas y cancerosas. El modelo se evalúa con métricas como precisión, 

sensibilidad, especificidad, y se integra en una plataforma que permite a los 

profesionales de la salud cargar imágenes y recibir análisis automáticos en 

tiempo real. De este modo, ofrecen una herramienta eficiente para apoyar el 

diagnóstico temprano del cáncer de cérvix [37]. 

 

2.3.2 DeepLab V3 

En Chun Li et al. [38], evaluó un estudio de la eficacia del modelo DeepLab 

V3 para la segmentación automática de tumores cervicales a partir de 

imágenes de resonancia magnética. La red empleó Xception como 

arquitectura base e implementó un proceso de normalización de las 

intensidades de imagen, técnicas de aumento de datos para fortalecer el 



 

 

 

 

modelo. En total, fue entrenado con más de 10 mil imágenes derivadas de 

256 pacientes con cáncer uterino [38]. 

 

Este modelo fue aplicado a un conjunto de datos específico del cérvix 

compuesto por 144 pacientes. Se desarrollaron tres enfoques para evaluar 

su rendimiento: un modelo exclusivo del útero entrenado desde cero, un 

modelo de transferencia de aprendizaje que reutilizaba el modelo cervical 

preentrenado, y un modelo agregado que combinaba datos uterinos y 

cervicales para evaluar su capacidad de generalización. Para el modelo de 

transferencia de aprendizaje, se exploraron diferentes niveles de 

congelamiento y ajuste de capas, evaluaron cómo la reutilización de 

características extraídas previamente influía en la precisión del modelo al 

segmentar lesiones cervicales [38]. 

 

Los resultados de la segmentación se evaluaron mediante el coeficiente de 

similitud Dice, teniendo una alta concordancia entre las segmentaciones 

automáticas y las manuales realizadas por especialistas. Asimismo, para 

validar la utilidad clínica de los modelos, extrajeron características 

radiómicas de los ROIs predichos y compararon con las obtenidas 

manualmente, teniendo consistencia entre ambos enfoques. Esto respaldo 

la efectividad de DeepLab V3 como una herramienta precisa y confiable para 

la segmentación automática de lesiones del cérvix [38].  

 

2.3.3 Redes Neuronales Generativas (GANs) 

El artículo de Huang et al. [39], la segmentación de células cervicales en 

imágenes de smear es un paso crucial para la detección temprana del cáncer 

de cérvix. Esta tarea presenta grandes desafíos debido al bajo contraste, la 

variabilidad morfológica de las células y la superposición entre ellas. Para 

abordar este problema propusieron un enfoque basado en redes generativas 

adversariales denominado Cell-GAN, que segmenta células individuales 

incluso en imágenes densamente pobladas. La red aprende la distribución 

de probabilidad de la morfología celular mediante la comparación entre 



 

 

 

 

imágenes generadas y anotadas manualmente, permitiendo identificar la 

estructura completa de una célula y descartar información no relevante, 

como células superpuestas o ruido [39].  

 

El modelo Cell-GAN se basa en la arquitectura DCGAN y está diseñada 

como un autoencoder, donde el codificador utiliza módulos Inception y el 

decodificador emplea capas de deconvolución más simples. El sistema 

recibe como entrada una imagen con múltiples células y un factor guía el 

núcleo, que actúa como referencia para localizar y segmentar únicamente la 

célula de interés. A través de una fusión aditiva de características, enfatizan 

las regiones relevantes del núcleo, evitando la generación de imágenes con 

múltiples células. Durante el posprocesamiento, aplican un umbral binario 

alto y eliminan contornos irrelevantes para refinar los resultados, asegurando 

que la imagen final contenga una única célula segmentada [39].  

 

Los resultados muestran que logran una segmentación precisa tanto en 

imágenes de células individuales como en aquellas con superposición. 

Alcanzaron valores de 94.3% en el coeficiente Dice y 7.9% de falsos 

negativos en imágenes individuales, y 89.9% Dice y 6.4% falsos negativos 

en imágenes con células superpuestas. Las métricas demuestran la eficacia 

del modelo para adaptarse a distintas condiciones morfológicas y 

posicionando al modelo como una alternativa para la segmentación 

automática en contextos clínicos [39]. 
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CAPÍTULO 3 

3. METODOLOGÍA 

La metodología se presenta en la Figura 3.1, esta consista en: 

▪ Base de datos (DB): se utilizó un conjunto de imágenes de colposcopia de 

la plataforma web Kaggle y se tomó 200 imágenes para realizar la 

investigación. Esta DB no tiene las máscaras binarias que corresponde a las 

lesiones del cérvix. 

▪ Preprocesamiento: se seleccionó el cérvix como la ROI en las imágenes de 

colposcopia.  

▪ Segmentación manual: se procedió con la selección, delimitación de las 

lesiones del cérvix en las imágenes con colaboración y capacitación del 

médico especialista. Posterior, se generó la máscara binaria donde estará la 

lesión del cérvix.  

 

Se realizó un estandarizado de [256x256] píxeles en las imágenes de 

colposcopia y máscaras binarias, debido a que hay variedad en tamaño en las 

imágenes. 

▪ Aumento de datos: para aumentar el conjunto de datos se utilizó 4 rotaciones 

para cada imagen de colposcopia y máscara binaria. 

▪ Segmentación automática: se utilizó U-Net para segmentar las imágenes de 

colposcopia del conjunto de imágenes de validación. 

▪ Predicción: con el algoritmo entrando se procedió con la predicción de la 

máscara binaria donde estará la lesión del cérvix y se evaluó el rendimiento 

del modelo con métricas para segmentación: Intersección sobre Unión (IoU) 

y el coeficiente de Dice. 

 



 

 

 

 

 
Figura 3. 1 Metodología: segmentación de lesiones en imagen de colposcopia 

 

3.1 Base de datos  

Se utilizó una Base de Datos (DB) internacional de la plataforma web Kaggle con 

el nombre Intel & MobileODT Cervical Cancer Screening. Esta DB contiene archivos 

con imágenes de colposcopia: conjunto para entrenamiento de 1482 imágenes; 

conjunto para test de 512 imágenes. Adicional, hay archivos de imágenes con lo 

siguiente: conjunto de test_stg2 de 3506 y un conjunto de imágenes adicionales de 

6734 imágenes, sobre este conjunto menciona que son imágenes de pacientes 

duplicados, mismas que pueden parecer similares, son tomadas en la misma sesión 

y otras son casos que no se han seleccionado debido a la calidad de la imagen [40].  

  

Para llevar la investigación se seleccionó el archivo de imágenes de colposcopia 

de entrenamiento tienen formato JPG (en ingles Joint Photographic Experts Group) 

con dimensiones aproximada [4000x3000] píxeles. El tamaño de las imágenes 

varía, algunas imágenes son borrosas con ruido que no se observan las patologías. 

Cabe indicar que la DB no contiene las máscaras binarias que corresponde a la 

identificación de la lesión en el cérvix. Por ende, el conjunto de imágenes de 

colposcopia que se utilizó son 200 y se generó 200 máscaras binarias que 

corresponden a la lesión del cérvix que se utilizó para el entrenamiento y validación 

del modelo. 

 



 

 

 

 

3.1.1 Extracción manual del ROI  

Para la extracción manual de la región de interés (ROI, por sus siglas en 

inglés) se utilizó ImageJ con distribución Fiji (ver Figura 3.2). Un software 

informático de tratamiento digital de imagen orientada a las ciencias de la 

salud, desarrollado en los Institutos Nacionales de Salud de Estados Unidos. 

Esta herramienta cuenta con opciones para seleccionar, editar, procesar, 

analizar imágenes, etc. [32]. Con fiji se procedió a seleccionar y extraer la 

ROI para este caso el cérvix en las 200 imágenes de colposcopia.  

 

Figura 3. 2 Software ImageJ con distribución Fiji [32] 

 

3.1.2 Mascara binaria 

Se utilizó la herramienta de Fiji para generar la máscara binaria. A partir de 

la ROI del cérvix, se escogió una opción para delimitar la segmentación de 

la lesión en el cérvix para esto se empleó la selección de polígono ubicado 

en la parte izquierda de la herramienta.  

 

El criterio que se consideró con la colaboración y capacitación del médico 

especialista fue fundamental para la segmentación manual e identificación 

de las lesiones en el cuello uterino en imagen de colposcopia (ver Figura 3.3 

literal a) es observar la zona del ectocérvix la presencia blanquecina manto 

superpuesto y tipo coliflor en la zona debido a la aplicación de la sustancia 

ácido acético que permite observar las posibles lesiones, ya que esta zona 

es de color rosa antes de aplicar la sustancia.  

 

Una vez identificada la lesión, se utilizó la opción de créate mask para 

generar la máscara binaria correspondiente. Estas servirán como ground-

truth para entrenar y validar el modelo de segmentación. En la Figura 3.3, se 



 

 

 

 

muestra lo mencionado y este proceso se realizó para cada una de las 

respectivas imágenes de colposcopia del presente trabajo. 

 

                          a)                            b) 

Figura 3. 3  a) Selección de lesión en cérvix, b) Generación de máscara binaria (lesión) 

  

3.1.3 Aumento de datos 

Antes de realizar el aumento de datos se procedió a redimensionar al 

tamaño [256x256] píxeles tanto para las ROI del cérvix con las macaras 

binaria de la lesión. Con el objetivo que el conjunto de imágenes sea de un 

mismo tamaño. Posterior, para realizar el aumento de datos se utilizó 

rotación en 4 giros para cada una de ROI y mascara binaria, como se 

muestra en la Figura 3.4. Por ende, el conjunto final de datos es de 800 

imágenes.  

 

 Figura 3. 4 Rotación imágenes  

 

3.2 U-Net 

Una arquitectura de red completamente convolucional, reconocida por su estructura 

simétrica en forma de U, y compuesta por 23 capas convolucionales. Fue propuesta 

en 2015 por Olaf Ronneberger, Philipp Fischer y Thomas Brox con el objetivo de 

realizar segmentación de imágenes biomédicas. Esta red tiene la capacidad de ser 

entrenada de manera eficiente incluso con un número reducido de imágenes [41]. 



 

 

 

 

La arquitectura no tiene ningún tipo de limitación de uso exclusivo a la medicina, 

también, es aplicable a diferentes tipos de problemas de segmentación. 

 

La red U-Net se basa en aplicar convoluciones a la imagen de entrada para 

comprimir la información y extraer características, lo que se conoce como la ruta 

de contracción. Posteriormente, se genera la nueva imagen utilizando las 

características aprendidas en esta fase, en un proceso denominado ruta expansiva. 

Durante este proceso, se emplean deconvoluciones, que son operaciones inversas 

a las convoluciones, y que usan los filtros previamente aprendidos para restaurar 

la imagen comprimida [42]. 

 

3.2.1 Red neuronal artificial 

Es un modelo computacional que toma como referencia el funcionamiento 

del cerebro humano, orientado al reconocimiento de patrones y al 

aprendizaje a partir de datos. Está formado por una estructura de neuronas 

en distintas capas: una capa inicial de entrada, una o varias capas 

intermedias denominadas ocultas, y una capa final de salida. Cada neurona 

recibe señales de entrada, las transforma mediante una función matemática 

y luego envía el resultado a las neuronas de la siguiente capa [43]. Este tipo 

de red es utilizado en tareas de segmentación, clasificación, entre otros. 

 

En la Figura 3.5, se presenta la arquitectura U-Net modificada con 41 capas 

convolucionales que consiste en una ruta de contracción (parte codificador) 

y una ruta expansiva (parte decodificador). El recuadro azul corresponde a 

un mapa de características, con la cantidad de canales indicada en la parte 

superior del mismo. El tamaño(x,y) se especifican en la esquina inferior 

izquierda (caja azul). Los recuadros blancos representan mapas de 

características duplicados, mientras que las flechas señalan las distintas 

operaciones realizadas [41], [42]. 

 

La ruta de contracción, se basa en la aplicación repetida de cuatro 

convoluciones con filtros de tamaño 3x3, seguidas por la activación ReLU 



 

 

 

 

(unidad lineal rectificada), y una capa de agrupamiento mediante max-

pooling 2x2. Esta última se encarga de reducir a la mitad la resolución 

espacial del mapa de características. Con cada reducción en la resolución, 

es decir, al descender un nivel en la red se duplica la cantidad de canales 

en las capas convolucionales, comenzando con 128 y aumentando 

progresivamente a 256, 512, hasta alcanzar los 2048. Esta etapa tiene como 

finalidad principal capturar el contexto global de la imagen para facilitar el 

proceso de segmentación [41], [42]. 

 

La ruta de expansión, consiste en realizar una deconvolución o convolución 

transpuesta (up-convolution), para la deconvolución se hace uso de un 

upsampling seguido de una convolución de tamaño 2x2; el upsampling 

duplica las dimensiones del mapa de características, mientras que la 

convolución reduce a la mitad la cantidad de canales. Luego, se concatena 

este resultado con el mapa de características recortado correspondiente de 

la ruta de contracción, y a continuación se aplican cuatro capas 

convolucionales de 3x3, cada una seguida por la función de activación 

ReLU. Finalmente, en la capa de salida se emplea una convolución 1x1 para 

transformar cada vector de características de 64 elementos en el número 

deseado de clases [41], [42]. 

 

 

Figura 3. 5 Arquitectura U-Net modificada 

 



 

 

 

 

3.3 Marco Experimental 

3.3.1 Validación 

El conjunto de datos de 800 ROIs del cérvix y 800 máscaras binarias se 

dividió en dos partes, uno de entrenamiento y otro de validación. El conjunto 

de entrenamiento como su nombre indica, se usa para entrenar el modelo y 

el conjunto de validación para validar el modelo. Para nuestro proyecto se 

dividió el 80% en entrenamiento equivalente a 640 imágenes ROIs con sus 

máscaras binarias, y 20% en validación que corresponden a160 imágenes 

ROIs con sus máscaras binarias.  

 

3.3.2 Entorno de trabajo 

Para el desarrollo del Proyecto de Titulación se empleó las siguientes 

herramientas: 

 

Anaconda: Interfaz gráfica de usuario de escritorio que facilita el 

lanzamiento de aplicaciones como Jupyter Notebook, Spyder, Rstudio. Se 

utilizó para crear un entorno de desarrollo controlado. En el cual se gestionó 

los paquetes como NumPy, Pandas, Matplotlib, entre otros para el 

procesamiento de imágenes. Además, la creación del entorno virtual permitió 

trabajar con versiones específicas de TensorFlow y Keras, lo que garantizó 

la compatibilidad entre las herramientas y librerías utilizadas [44]. 

 

Spyder: Se utilizó como Entorno de Desarrollo Integrado (IDE) disponible a 

través de Anaconda, debido a su compatibilidad con Python y las bibliotecas 

científicas orientadas al aprendizaje automático, como TensorFlow, Keras, 

OpenCV. Este entorno fue empleado para el desarrollo interactivo de código, 

permitiendo la ejecución y visualización en tiempo real de los resultados 

durante el proceso de desarrollo. Esto resultó útil en el contexto en la 

experimentación y ajuste de hiperparámetros durante la fase de desarrollo 

del proyecto [45].   

 



 

 

 

 

Python: Se utilizó por su versatilidad y amplia disponibilidad de librerías 

especializadas en procesamiento de imágenes en inteligencia artificial. Su 

sintaxis clara y su capacidad de manejar grandes volúmenes de datos 

permitió un desarrollo rápido, facilitando la experimentación y ajuste de los 

modelos [46]. 

 

Keras: Se utilizó para la implementación y construcción del modelo U-Net, 

facilitando la creación y ajuste de la arquitectura del modelo sin 

complicaciones. Esta librería permitió experimentar con diferentes capas y 

parámetros, optimizando el modelo para la segmentación de las imágenes 

[47]. 

 

Tensorflow: Se utilizó en el proyecto debido a la necesidad de manejar 

cálculos intensivos y grandes volúmenes de datos. Las imágenes de 

colposcopia al ser de tamaño [256x256] píxeles, requieren un procesamiento 

considerable de cálculos de cómputo. Tensorflow garantizó que el modelo 

se ejecutara de forma optimizada para aprovechar la aceleración por GPU, 

para el entrenamiento del modelo.   debido a la capacidad de la GPU para 

manejar eficientemente la gran cantidad de operaciones matemáticas 

involucradas en el entrenamiento del modelo [48]. 

 

3.3.3 Métricas de evaluación  

Para comprobar la eficiencia del modelo de red, se procede a evaluar los 

resultados obtenidos mediante métricas de evaluación para la segmentación 

de imágenes. En la figura 3.6, se observa los 4 tipos de predicciones, el 

positivo como presencia de lesión (píxel activo) y el negativo como no lesión 

o fondo [49]. 

 

Verdaderos Positivos (TP): aquellos píxeles clasificados correctamente 

por el modelo, que corresponden con la región de interés (lesión), también 

conocidos como sensibilidad o recuperación (recall).  



 

 

 

 

Falsos Positivos (FP): aquellos píxeles que no deben ser clasificados por 

el modelo, pero el modelo clasifica como parte de la región de interés 

(lesión). 

Verdaderos Negativos (TN): aquellos píxeles no clasificados por el modelo, 

ya que, efectivamente no corresponden como parte de la región de interés 

(lesión), también conocidos como especificidad.  

Falsos Negativos (FN): aquellos píxeles que deben ser clasificados por el 

modelo, pero el modelo no ha clasificado como parte de la región de interés 

(lesión). 

 

Figura 3. 6 Tipos de predicciones en segmentación 

 

A continuación, se define las métricas para evaluar el modelo de 

segmentación en imágenes: 

 

Intersección sobre Unión (IoU): También conocido como índice de jaccard, 

mide el grado de similitud entre dos conjuntos de muestras, A y B. Se 

considera A como el valor predicho y B como el valor real o conocido como 

ground-truth. Esta métrica también se conoce como Índice de Jaccard; 

medida de solapamiento entre los píxeles de dos imágenes.  

 

El la figura 3.7, se representa un ejemplo de IoU. El cual, representa B el 

cuadro verde de la segmentación manual y A el cuadro rojo de la 

segmentación de la imagen predicha por el modelo [50], [51]. Se toman 

valores entre 0 y 1, considerándose 1 como igualdad entre ambos conjuntos, 



 

 

 

 

valores mayores a 0.5 se considera buen resultado y valores menores a 0.5 

como malos resultados, la fórmula: 

IoU =
|A∩B|

|A ∪ B|
=

TP

TP + FN + FP
 

 

Coeficiente de Sorensen-Dice: Es una medida que se utiliza comúnmente 

en el campo del procesamiento de imágenes. En la segmentación de 

imágenes es la más utilizada para evaluar los modelos de segmentación 

de inteligencia artificial. La métrica evalúa la similitud entre dos conjuntos, 

donde A, cuadro rojo representa la segmentación manual o ground-truth y 

B, cuadro verde es la segmentación predicha por el modelo, la fórmula: 

DSC =
2|A∩B|

|A|+|B|
=

2 ∗ TP

2 ∗ TP + FN + FP
 

 

Se toman valores que varía entre 0 (sin similitud no hay coincidencia con el 

ground-truth) y 1 (similitud total coincide totalmente con el ground-truth) que 

es poco realista que suceda en segmentación de imágenes médicas. 

Entonces, para evaluar si una detección es mala, buena y excelente se 

utiliza un valor mínimo de Dice que es conocido como umbral, el valor es 

de 0.6, es decir que si es mayor a ese valor se considera una segmentación 

con buenos resultados, pero si es menor a ese valor se considera un mal 

resultado de segmentación para el modelo entrenado. En la figura 3.7 se 

representa. 

 

Figura 3. 7  Métricas de evaluación para segmentación: IoU y Dice 



   

 

CAPÍTULO 4  

4. RESULTADOS 

Se presentan los resultados del entrenamiento de la arquitectura U-Net para la 

segmentación de lesiones en el cérvix a partir de imágenes de colposcopia. El 

conjunto de datos consta de 800 ROIs del cérvix y 800 máscaras binarias. Este 

conjunto se dividió en dos partes: el 80% (640 imágenes de ROIs con sus máscaras 

binarias) para el entrenamiento, mientras que el 20% restante (160 imágenes de 

ROIs con sus máscaras binarias) se utilizó para validación. 

 

En la Figura 4.1, se presentan las gráficas de los resultados obtenidos durante el 

entrenamiento y validación de la arquitectura U-Net. En a) se representa la exactitud 

(accuracy), mostrando la evolución del entrenamiento del modelo U-Net durante 323 

épocas. La curva naranja representa el accuracy del conjunto de validación, que 

comienza con 66% en las primeras épocas con un leve decrecimiento en las épocas 

2 y 3 que posterior empieza aumentar progresivamente, alcanzando 91% en la época 

323, y mediante la técnica early stopping detiene automáticamente cuando el modelo 

dejo de mejorar. Además, se observa que hay un buen ajuste del modelo sin indicios 

de sobreajuste.  

 

En b) representa la evolución del coeficiente de dice en 323 épocas. La curva naranja 

representa la validación comenzando con 1% durante la primera época, un pequeño 

decrecimiento en la época 2, 3 pero entre la época 4,5, 6 asciende a 65% y decrece 

en las épocas 7,8 y 9 en un 55%. Posterior empieza a progresar hasta la época 323 

manteniéndose alrededor del 87%, lo que indica que el modelo generaliza bien los 

datos. 

 

En c) representa la pérdida (loss) para el conjunto de datos de validación la curva 

naranja muestra un comportamiento decreciente en cuanto a la pérdida, ya que a 

medida que aumentan las épocas, la pérdida de validación también disminuye, 

alcanzando un 25% para el modelo U-Net. A partir de esa época tiende aumentar la 

pérdida y mediante la técnica early stopping detiene automáticamente el 

entrenamiento cuando el modelo dejo de mejorar. 



 

 

 

 

 

a) 

 

b) 

 

c) 

Figura 4. 1 Gráficas: a) Exactitud (Accuracy), b) Coeficiente Dice, c) Función de pérdida (Loss) 

 

4.1 Resultados de la segmentación 

4.1.1 Coeficiente de Sorensen-Dice 

En la Figura 4.2 se presenta cualitativamente los resultados de la 

segmentación del sistema propuesto, en donde a) muestra las imágenes de 

colposcopia original, b) y c) imágenes Ground-truth (i.e., segmentación 

manual delimitada en color azul), d) y e) imágenes de la segmentación 

predicha por el modelo U-Net delimitadas por el color verde, donde pueden 

existir lesiones o anomalías en el cérvix.  Para la métrica Dice se obtuvo un 



 

 

 

 

84% del conjunto de datos de validación que es una de las más utilizadas 

para evaluar este tipo de problemas en segmentación. 

     

 

     

 

     

 

(a) (b) (c) (d) (e)  

Figura 4. 2 Segmentación: (a) Imágenes originales, (b - c) Imágenes Ground-truth, (d - e) Imágenes U-Net 

 

4.1.2 Intersección Sobre Unión o Índice de Jaccard 

En la Figura 4.3 se presenta cualitativamente los resultados de la 

segmentación del sistema propuesto, en donde a) imágenes de colposcopia 

original, b) y c) imágenes Ground-truth (i.e., segmentación manual 

delimitada en color azul), d) y e) imágenes de la segmentación predicha por 

el modelo U-Net delimitadas por el color verde, donde pueden existir 

lesiones o anomalías en el cérvix.  En cambio, para IoU se obtuvo un 75% 

del conjunto de datos de validación. Esto se debe a la fórmula de la métrica 

que al no contar con el factor multiplicador de 2 como en el caso de Dice, 

penaliza de manera más estricta la forma de las regiones segmentadas.   

 

 



 

 

 

 

     

 

     

 

      

 

(a) (b) (c) (d) (e)  

Figura 4. 3 Segmentación: (a) Imágenes originales, (b - c) Imágenes Ground truth, (d - e) Imágenes U-Net 

 

4.2 Análisis Cuantitativo  

En la Tabla 4.1 se presentan los resultados promedio obtenidos en el conjunto de 

validación (160 imágenes de colposcopia). Para el coeficiente de Dice alcanzó un 

valor del 84%, lo que indica una buena similitud entre las áreas segmentadas por 

U-Net. Sin embargo, el valor del IoU fue de 75%, lo que señala una menor 

superposición entre las áreas predichas y las reales del ground-truth.  

 

Los resultados obtenidos para la arquitectura U-Net, se observa que el valor 

promedio del Dice es superior al del IoU. Esto sugiere que ambas métricas evalúan 

la calidad de la segmentación de manera diferente. El coeficiente de Dice tiende a 

ser más alto debido a su fórmula, que tiene un mayor peso a la intersección entre 

la predicción y el ground-truth, lo que hace menos sensible a errores pequeños en 

los bordes de la segmentación. Es decir, aunque el modelo tiene una buena 

capacidad para identificar áreas de superposición, los pequeños errores en los 

bordes de las regiones predichas afectan menos el valor de Dice. Por otro lado, la 



 

 

 

 

intersección sobre la unión mide la proporción entre las áreas predicha y el ground-

truth, y al no contar con el factor multiplicador de 2 como en el caso de Dice, 

penaliza de manera más estricta la forma de las regiones segmentadas.   

Tabla 4. 1  Valor promedio de evaluación  

Arquitectura Dice IoU 

U-Net 84% 75% 

 

4.3 Discusión de los resultados 

En la gráfica de accuracy se ilustra que el modelo U-Net presenta un rendimiento 

de 91% de exactitud en el conjunto de validación. Por otro lado, en la gráfica del 

coeficiente Dice, el modelo obtiene un 87% en validación. A partir de estos 

resultados, aún se puede mejorar el aprendizaje de entrenamiento del modelo 

segmentador.  

 

La principal limitación del sistema de segmentación de lesiones en imágenes de 

colposcopia utilizando ANN es la dependencia de la calidad y la diversidad del 

conjunto de datos de entrenamiento. Aunque U-Net ha demostrado ser eficaz en la 

segmentación en imágenes médicas, el rendimiento puede verse afectado por la 

calidad de las imágenes como la borrosidad, la iluminación e intensidad de color 

blanco en las imágenes del cérvix. Estas variaciones limitan la capacidad del 

modelo para aprender de una manera eficiente.  

 

Para mejorar la segmentación, se podría implementar técnicas adicionales de 

preprocesamiento de imágenes, como la normalización de la iluminación y la 

eliminación de ruido mediante filtros. Esto contribuiría a mejorar la calidad de las 

imágenes de entrada y, por ende, un mejor aprendizaje del modelo para la 

segmentación. Además, explorar enfoques de segmentación multitarea, en los que 

se combinen la predicción de la segmentación con la de otros parámetros 

relevantes, como la forma de las lesiones, para ofrecer un análisis más robusto. 

Finalmente, considerar incorporar modelos de redes neuronales más avanzados o 

híbridos para segmentar imágenes médicas.  



 

 

 

 

CONCLUSIONES Y RECOMENDACIONES 

Conclusiones 

La selección de una base de datos internacional disponible en la plataforma 

Kaggle fue adecuada para garantizar la calidad del estudio en la segmentación de 

imágenes de colposcopia. Se logró conformar una base de datos con 200 

imágenes de ROIs del cérvix. Esta base de datos pública resultó ideal para 

asegurar un proceso de segmentación ético, alineado con los estándares legales 

y con la debida anonimización de los datos. Este enfoque no solo protegió la 

privacidad de los pacientes, sino que también permitió obtener resultados válidos, 

ya que el modelo de segmentación alcanzó una exactitud del 91 % en la etapa de 

validación, sin sobreajuste, lo cual demuestra que los datos utilizados fueron 

representativos. 

 

La colaboración con el médico especialista en cáncer de cuello uterino fue 

esencial para alcanzar el objetivo de construir un conjunto de datos confiable, 

mediante la creación de máscaras binarias que sirvieron como ground-truth para 

entrenar y validar el modelo de segmentación. Esta participación especializada 

aseguró que las lesiones fueran identificadas y segmentadas según las 

indicaciones del experto. Como resultado, el modelo U-Net entrenado con las 

imágenes de ROIs del cérvix y las máscaras binarias alcanzó un coeficiente de 

Dice del 84% en validación. Este valor indica que el modelo aprendió a identificar 

las lesiones de cérvix, lo que demuestra un buen desempeño en la predicción de 

lesiones en imágenes de colposcopia. 

 

El entrenamiento de la red neuronal artificial U-Net logró segmentar lesiones de 

cérvix en imágenes de colposcopia. A lo largo de las 323 épocas, el modelo mostró 

un aprendizaje progresivo, alcanzando una exactitud del 91% en el conjunto de 

validación, lo que refleja un desempeño sólido en la tarea de segmentación. 

 

La implementación de métricas de evaluación como Dice e IoU permitió una 

valoración cuantitativa del rendimiento del modelo en la tarea de segmentación de 

lesiones de cuello uterino. Los resultados obtenidos indican un buen desempeño 



 

 

 

 

del modelo con un Dice del 84% y un IoU del 75% en el conjunto de datos de 

validación, lo que indica una buena similitud entre las lesiones de cérvix en el 

ground-truth y la predicción de la región segmentada por U-Net. De forma 

cualitativa, las imágenes de colposcopia muestran una segmentación adecuada 

de las lesiones de cuello uterino.    

 

Recomendaciones 

Para asegurar un mejor desempeño del modelo, es necesario contar con imágenes 

de alta calidad en las que se puedan observar tanto las lesiones como las áreas sin 

lesión. Esto permitirá obtener mejores resultados durante el entrenamiento del 

modelo. Aunque el conjunto de datos utilizado consta de 800 imágenes, incluyendo 

máscaras binarias y técnicas de aumento de datos, un número mayor de imágenes 

que representen diferentes etapas y tipos de lesiones en el cérvix contribuiría a 

mejorar la robustez del modelo y a hacerlo más generalizable.  

 

Si bien la arquitectura U-Net ha mostrado buenos resultados, el uso de variantes 

de redes neuronales más avanzadas como U-Net++, modelos basados en 

Transformers, entre otros, podrían mejorar aún más el desempeño en la 

segmentación. Estas redes incorporan bloques diseñados para enfocarse mejor en 

áreas específicas de interés, lo que contribuiría a una mayor exactitud en la 

segmentación de lesiones.  

 

Es necesario probar el modelo con imágenes de colposcopia locales para validar 

su efectividad en la práctica médica. Esto incluye el uso del modelo en imágenes 

de pacientes que no hayan sido parte del conjunto de datos de validación, para 

analizar cómo responde el modelo a variabilidad clínica de los datos. 

Finalmente, es importante implementar una interfaz intuitiva para los médicos que 

permita visualizar la segmentación y facilite la interpretación de los resultados. Esta 

interfaz debería incluir una herramienta de visualización que resalte las áreas 

sospechosas y sirva como apoyo para que los profesionales puedan tomar 

decisiones informadas.  
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