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RESUMEN 

 

El presente trabajo nace de una inquietud muy concreta: ¿es posible ayudar a mejorar 

el tratamiento del Parkinson desde el campo de la inteligencia artificial? Partiendo de 

esa pregunta, se desarrolló este proyecto enfocado en la segmentación automática 

del núcleo subtalámico y la sustancia negra, dos estructuras cerebrales clave en el 

tratamiento quirúrgico de esta enfermedad, a partir de  IRM. 

Para alcanzar este objetivo, se construyó un flujo de trabajo completo que inició con 

un cuidadoso preprocesamiento de las imágenes, incluyendo corrección de 

inhomogeneidades del campo magnético, alineación AC-PC y recorte centrado en la 

región de interés. Posteriormente, se entrenaron dos modelos distintos de 

segmentación: uno basado en redes neuronales convolucionales tridimensionales 

(CNN U-Net 3D) y otro empleando una arquitectura más reciente conocida como Swin 

Transformer 3D. 

Durante el proceso, se adaptaron los datos al contexto clínico y técnico del problema, 

se optimizó el entrenamiento en un entorno de cómputo limitado, y se evaluaron los 

resultados mediante métricas específicas de segmentación médica como Dice Score, 

precisión, recall y exactitud. El modelo CNN mostró un mejor desempeño general, 

logrando una mayor coincidencia entre sus predicciones y las segmentaciones reales. 

Sin embargo, el modelo Swin Transformer también ofreció resultados prometedores, 

especialmente en la detección de las regiones objetivo, aunque con un nivel más alto 

de falsos positivos.
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INTRODUCCIÓN 

La enfermedad de Parkinson es una condición que, lamentablemente, afecta a 

muchas personas, especialmente a partir de los cincuenta años [1]. Esta enfermedad 

va mucho más allá de lo que la mayoría de la gente imagina: no solo se trata de 

temblores o movimientos rígidos, sino que también implica complicaciones en el 

equilibrio y el control corporal [2]. Todo esto ocurre porque, poco a poco, ciertas 

neuronas encargadas de producir dopamina en el cerebro, específicamente en una 

zona llamada sustancia negra, comienzan a deteriorarse. Esta pérdida afecta áreas 

cerebrales importantes para el movimiento, como el putamen, el núcleo subtalámico 

y el estriado, que trabajan juntas para permitirnos movernos con precisión y fluidez 

[3]. 

La sustancia negra y el núcleo subtalámico son regiones pequeñas y, en las imágenes 

de resonancia magnética (IRM), a veces es difícil distinguirlas de las áreas vecinas 

[4], especialmente en ciertas secuencias. Esto complica mucho el trabajo de los 

médicos y cirujanos, ya que una localización precisa es fundamental para que los 

tratamientos funcionen bien y no causen daños innecesarios. 

Cuando hablamos de tratamientos quirúrgicos, como la estimulación cerebral 

profunda, la exactitud en la localización de estas zonas es clave. Implantar electrodos 

o aplicar técnicas de ablación térmica o ultrasonido focalizado requiere saber 

exactamente dónde actuar, para así mejorar los síntomas motores y evitar efectos 

secundarios [5]. Si el procedimiento se realiza correctamente, se pueden reducir los 

temblores y la rigidez, y hasta mejorar aspectos no motores de la enfermedad, como 

el dolor, la depresión o los cambios en la expresión facial y el comportamiento social 

[6]. 

Por todo esto, en este proyecto me propongo explorar los modelos de segmentación 

en Deep Learning (DL) para identificar y delimitar estas estructuras cerebrales tan 

importantes. El objetivo es lograr que los tratamientos sean más seguros y efectivos, 

y así ayudar a quienes viven con esta enfermedad a tener una vida más plena y con 

menos limitaciones.  
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Las imágenes mostradas corresponden a cortes axiales de resonancia magnética 

cerebral ponderadas en T2. En la figura 1 se observa una visualización general del 

encéfalo, sin resaltar estructuras profundas de manera clara. 

 

Figura  1. IRM vista axial [7] 

La figura 2 permite una vista ampliada de la región mesencefálica, donde se localizan 

estructuras clave como la sustancia negra y el núcleo subtalámico. Estas estructuras 

aparecen como áreas más oscuras, lo que dificulta su delimitación manual y 

automática. 

 

Figura  2. Region mesencefálica ampliada [8] 
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CAPÍTULO 1  

Para el desarrollo del proyecto se utilizó Python como lenguaje de programación 

conjuntamente con diversas librerías para el análisis de IRM como son torch, numpy, 

nibabel y os. 

La metodología general del proyecto consta de las siguientes partes: 

1. Preprocesamiento de datos, esta etapa permite mejorar la calidad de las 

imágenes de resonancia magnética mediante corrección de artefactos, 

alineación espacial, normalización de intensidades y recorte centrado, 

asegurando condiciones uniformes para el entrenamiento de los modelos. 

2. Diseño de la arquitectura para segmentación, aquí se desarrollan y entrenan 

modelos de DL (CNN y Swin Transformer) capaces de identificar y segmentar 

el núcleo subtalámico y la sustancia negra. 

3. Evaluación de resultados, analiza cuantitativamente las predicciones 

utilizando métricas como Dice Score, precisión y exactitud, además de realizar 

visualizaciones comparativas.  

1. DESCRIPCIÓN DE LOS DATOS 

Las imágenes utilizadas en este proyecto corresponden a estudios de resonancia 

magnética cerebral en formato NIfTI, ya preseleccionados y anonimizados. Debido a 

la naturaleza del conjunto de datos, no se dispone de información demográfica 

adicional como edad, sexo o antecedentes clínicos de los sujetos, sin embargo, como 

primer paso se realizó una exploración estadística de las IRM pertenecientes a cinco 

pacientes. Todas las imágenes tienen dimensiones uniformes de 182 × 218 × 182 

voxeles, lo que asegura una resolución constante entre las imágenes. En cuanto a las 

intensidades de los voxeles, se observó una alta variabilidad entre pacientes como se 

observa en la tabla 1, tanto en la media como en la desviación estándar, la imagen 

IXI002_Guys2 presenta una intensidad promedio de 45.16 con una desviación 

estándar de 83.19, mientras que IXI014-HH2 alcanza una media de 145.87 y una 

desviación estándar de 265.62. Además, se identificaron valores máximos de 
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intensidad que superan los 1800 en algunos casos, lo cual sugiere la presencia de 

valores atípicos o artefactos de adquisición de la imagen lo que refuerza la necesidad 

del preprocesamiento. 

Tabla 1-1. Exploración estadística inicial de las IRM 

Nombre Dimensiones 
Media 

Intensidad 

Desv. 

Estándar 
Mínimo Máximo 

IXI002_Guys2 (182, 218, 182) 45.16 83.19 -0.000145 654.09 

IXI012-HH2 (182, 218, 182) 117.47 218.70 -0.000727 1507.64 

IXI013-HH2 (182, 218, 182) 119.24 223.06 -0.000202 1478.26 

IXI014-HH2 (182, 218, 182) 145.87 265.62 -0.000620 1837.01 

IXI015-HH2 (182, 218, 182) 109.76 204.07 -0.000455 1493.15 

 

2. PREPROCESAMIENTO DE DATOS. 

El preprocesamiento de imágenes es un paso fundamental para garantizar que los 

datos estén en condiciones adecuadas antes de ser analizados por un modelo de 

inteligencia artificial. En el caso de las IRM, este proceso permite corregir variaciones 

de intensidad, alinear anatómicamente los volúmenes, normalizar el contraste y 

enfocar regiones específicas. Estas mejoras no solo aumentan la calidad de los datos, 

sino que también permiten que el modelo aprenda patrones relevantes de manera 

más precisa, ayudando a reducir errores y mejorando el desempeño del sistema de 

segmentación. 

Para el preprocesamiento se tuvo dos bases de datos de imágenes, en las cuales la 

primera contiene 60 imágenes de baja resolución en total, segmentadas el núcleo 

subtalámico y la sustancia negra, las cuales se utilizarán para el primer entrenamiento 

del algoritmo, mientras que la segunda base de datos, que contiene 35 imágenes en 

total pero de mayor resolución, servirá para el entrenamiento del modelo final, además 

se utilizó “bias field correction” que es la corrección del campo de polarización, es 

decir, ajustar señales indeseables de baja frecuencia que corrompe las IRM[9]. Así 

como también la orientación “ACPC, comisura anterior y posterior” usando la 
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transformación de cuerpo rígido “rigid body transformation”. Donde todas las 

modificaciones espaciales serán aplicadas en las imágenes T2 y al ground truth. 

Posteriormente se recortó las imágenes de acuerdo a la región de interés. A 

continuación, se procedió a realizar las transformaciones necesarias para realizar el 

aumento de los datos. Estas transformaciones consistieron en rotaciones y aplicación 

de filtros, aumento o estiramiento y cizallamiento en los ejes X, Y, Z de forma 

independiente.  

2.1 CORRECCIÓN DE INHOMOGENEIDADES DEL CAMPO MAGNÉTICO. 

En el trabajo con IRM, muchas veces nos encontramos con que las fotos del cerebro 

no salen perfectamente uniformes. Hay zonas que pueden verse más claras o más 

oscuras de lo que realmente son, simplemente porque el campo magnético del 

resonador no es completamente uniforme [4]. Esto puede confundir a los médicos y a 

los programas de computadora cuando intentan identificar, por ejemplo, la sustancia 

negra o el núcleo subtalámico. 

Aquí es donde entra en juego ¨Bias field correction¨ o corrección del campo de sesgo, 

como se observa en la figura 2.1 lo que hace este proceso es “suavizar” esas 

diferencias de brillo en la imagen, para que el cerebro se vea lo más parecido posible 

a la realidad [10].  

 

Figura 2.1: Comparación de imagen original vs imagen con ¨bias field 
correction¨ [autoría propia] 
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2.2 REORIENTACIÓN ACPC 

El alineamiento ACPC (Anterior Commissure–Posterior Commissure) es un 

procedimiento fundamental en el análisis neuroanatómico basado en IRM. Consiste 

en orientar y estandarizar los volúmenes cerebrales tomando como referencia dos 

estructuras anatómicas claramente identificables: la comisura anterior y la comisura 

posterior. Estas comisuras son puntos clave del sistema nervioso central y su 

conexión define una línea virtual que atraviesa el cerebro, permitiendo un 

posicionamiento anatómico consistente entre sujetos y estudios [11]. 

En el contexto de nuestro proyecto, el alineamiento ACPC resulta esencial por varias 

razones. En primer lugar, la variabilidad anatómica natural entre pacientes, así como 

las diferencias en la posición de la cabeza durante la adquisición de las imágenes, 

pueden introducir sesgos significativos en la localización y comparación de 

estructuras cerebrales de interés, como la sustancia negra o el núcleo subtalámico. 

Como se puede apreciar en la figura 2.2 al alinear todas las imágenes según el plano 

ACPC, logramos una base común de referencia espacial, lo que facilita la 

comparación objetiva de resultados y la integración de datos provenientes de 

diferentes pacientes o momentos de seguimiento. 

 

Figura 2.2: Comparación de imagen antes del registro vs imagen después del 
registro [autoría propia] 
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2.3 RECORTE DE LA REGIÓN DE INTERÉS 

El recorte de imágenes es un proceso esencial cuando trabajamos con resonancia 

magnética cerebral, especialmente si nuestro objetivo es analizar estructuras 

específicas, como la sustancia negra o el núcleo subtalámico. En la práctica, una 

imagen de RM abarca todo el cerebro y, aunque es muy útil para tener un panorama 

general, muchas veces solo necesitamos enfocarnos en una región particular para 

nuestros análisis o procedimientos [12]. 

Para enfocar el análisis únicamente en la sustancia negra y núcleo subtalámico, se 

realizó un recorte tridimensional en cada imagen, extrayendo un volumen de interés 

(VOI) centrado en el núcleo subtalámico y la sustancia negra. Este recorte se aplicó 

de manera automática mediante un algoritmo en Python, utilizando la función 

“center_crop” de la librería TorchIO, la cual permite generar un recorte simétrico a 

partir del centro de una imagen. Se definió un tamaño fijo de 64×64×64 vóxeles, que 

resultó adecuado tras analizar visualmente que este volumen cubría por completo la 

región de interés en todos los casos, como se muestra en la figura 2.3. 

Para establecer el centro de cada recorte, primero se calculó el centro de masa de la 

máscara asociada a cada imagen mediante la función “center_of_mass” de la librería 

SciPy, la cual nos permite analizar los vóxeles que tienen valores positivos y devuelve 

las coordenadas (x, y, z) del punto central promedio. Este punto fue usado como 

referencia para ubicar el recorte de forma precisa sobre las estructuras objetivo. La 

función “center_crop” generó entonces un nuevo volumen, más pequeño, pero 

centrado exclusivamente en la región relevante, sin necesidad de seleccionar 

coordenadas manuales. Este procedimiento no solo redujo el tamaño de los datos, 

sino que también permitió que los modelos de segmentación implementados, 

específicamente una arquitectura CNN tipo U-Net 3D y un modelo basado en Swin 

Transformer 3D, enfocaran su capacidad de aprendizaje directamente en el área de 

interés, mejorando la eficiencia del procesamiento y la precisión en la identificación 

de estructuras anatómicas pequeñas y de bajo contraste. 
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Figura 2.3: Comparación de imagen antes del recorte vs imagen después del 
recorte [autoría propia] 

2.4 AUMENTO DE DATOS 

Como parte del desarrollo del modelo de segmentación, se consideró aplicar técnicas 

de aumento de datos (data augmentation) para mejorar el rendimiento del 

entrenamiento, así como también para mejorar el desbalance de los datos. Esta 

estrategia busca generar nuevas variaciones a partir de las imágenes originales, de 

manera que el modelo pueda aprender con mayor diversidad y adaptarse mejor a 

diferentes formas anatómicas sin necesidad de ampliar el conjunto real de imágenes 

[13]. 

Durante el proceso de aumento de datos se aplicaron transformaciones aleatorias 

tanto a las imágenes como a sus respectivas máscaras, con el fin de mejorar la 

capacidad del modelo para generalizar frente a nuevos casos. Se utilizaron tres tipos 

principales de transformaciones: volteo aleatorio en los tres ejes (flip), rotación affine 

aleatoria y ligeras deformaciones espaciales. Estas modificaciones se implementaron 

utilizando la librería TorchIO, diseñada específicamente para el procesamiento y 

aumento de datos médicos en formato 3D, como IRM. Se eligió TorchIO debido a que 

ofrece un conjunto robusto y fácilmente integrable de transformaciones compatibles 

con PyTorch, permitiendo mantener la coherencia espacial entre imágenes y 

máscaras durante el aumento de datos. En total se partió de 95 imágenes originales, 

y a cada una se le generaron 3 nuevas versiones transformadas, resultando en un 

conjunto total de 380 imágenes. Este aumento permitió al modelo entrenarse con un 

conjunto más diverso, mejorando su robustez frente a variaciones anatómicas y de 

adquisición. 
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CAPÍTULO 2  

3. Diseño de la arquitectura para segmentación 

3.1. REDES NEURONALES CONVOLUCIONALES 3D 

Para la segmentación del núcleo subtalámico y la sustancia negra, se empleó una red 

neuronal convolucional tridimensional (3D-CNN) basada en la arquitectura U-Net 3D, 

adaptada para tareas de segmentación multiclase [14]. Esta arquitectura ha 

demostrado ser especialmente eficaz para delimitar estructuras anatómicas 

pequeñas gracias a su capacidad para integrar características espaciales locales y 

globales [14]. 

El diseño implementado presenta una estructura en forma de "U", compuesta por dos 

fases simétricas: una etapa de codificación (encoder) y otra de decodificación 

(decoder), conectadas por un bloque central (bridge). En la fase de codificación, se 

utilizan bloques secuenciales de dos convoluciones 3D (con kernel 3×3×3), cada una 

seguida por una normalización por lotes (BatchNorm3d) y una función de activación 

ReLU [15]. Esta fase también incluye operaciones de reducción espacial mediante 

MaxPooling3D, lo cual permite extraer representaciones profundas de la imagen [15]. 

El bloque central conecta ambos extremos y profundiza la extracción de 

características mediante convoluciones adicionales. Posteriormente, la fase de 

decodificación emplea convoluciones transpuestas (ConvTranspose3D) para 

recuperar progresivamente la resolución espacial. A través de concatenaciones tipo 

"skip connection", se incorporan características de la fase de codificación que ayudan 

a preservar la información de borde. Finalmente, una capa convolucional 1×1×1 

proyecta el volumen final al número de clases objetivo, generando un mapa de 

segmentación multiclase. 

Durante el entrenamiento, se utilizaron volúmenes 3D normalizados y centrados. Las 

máscaras de segmentación incluyeron cuatro etiquetas, correspondientes a 

estructuras diferenciadas. Para mejorar la generalización del modelo, se aplicaron 

técnicas de aumento de datos mediante deformaciones geométricas como rotaciones 

aleatorias, escalados y volteos. 
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Como función de pérdida, se utilizó la combinación de CrossEntropyLoss ponderada 

por clase y Dice Loss, lo que permitió equilibrar el desbalance entre clases y mejorar 

la segmentación de estructuras pequeñas. El entrenamiento se llevó a cabo en 

Google Colab, aprovechando aceleración por GPU, y se guardó automáticamente el 

mejor modelo en base a la pérdida de validación. 

3.2. VISION TRANSFORMERS 3D 

En los últimos años, el campo de la inteligencia artificial ha experimentado avances 

notables con la aparición de modelos basados en Transformers, inicialmente 

diseñados para el procesamiento de lenguaje natural [16]. Sin embargo, su estructura 

versátil ha permitido adaptarlos también al análisis de imágenes, dando lugar a una 

nueva categoría conocida como Vision Transformers (ViT). A diferencia de las redes 

convolucionales, que extraen patrones locales a través de filtros, los Vision 

Transformers procesan la información dividiendo la imagen en pequeñas secciones 

(o patches) y analizando las relaciones entre ellas mediante mecanismos de atención. 

Esto les permite capturar contextos más amplios, lo cual es particularmente valioso 

en tareas como la segmentación de IRM, donde las estructuras cerebrales pueden 

presentar variaciones anatómicas sutiles pero relevantes [17]. 

3.2.1. SWIN TRANSFORMER 

En este proyecto se empleó una arquitectura basada en Swin Transformer 

tridimensional (Swin 3D). Esta alternativa moderna a las redes convolucionales 

permite aprovechar mejor las relaciones espaciales de largo alcance dentro del 

volumen cerebral, lo que puede resultar especialmente útil para estructuras pequeñas 

y de bordes poco definidos [18]. 

El modelo utilizado se estructuró en dos fases principales: una fase de codificación 

que extrae características jerárquicas del volumen mediante ventanas deslizantes 

(window-based self-attention), y una fase de decodificación que reconstruye la 

segmentación a través de operaciones de interpolación y convoluciones. Además, se 

integran mecanismos de atención que permiten que el modelo aprenda a identificar 

patrones contextuales complejos sin depender de filtros convolucionales locales [19]. 
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Para este trabajo, se adaptó una versión ligera del Swin Transformer 3D, ajustada a 

las restricciones de memoria disponibles en Google Colab. Las imágenes fueron 

recortadas y redimensionadas a volúmenes de 48×48×48 voxeles, centrados en la 

región anatómica de interés. Antes del entrenamiento, los datos fueron corregidos por 

campo de bias, alineados a la orientación AC-PC, normalizados en intensidad y 

etiquetados en cuatro clases diferenciadas. 

El entrenamiento se llevó a cabo con un conjunto mixto de imágenes de baja y alta 

resolución, usando aumento de datos que incluye rotaciones aleatorias, escalamiento 

y volteos tridimensionales, con el fin de robustecer el aprendizaje del modelo. La 

función de pérdida combinó Dice Loss y Cross Entropy ponderada por clase, para 

mitigar el desequilibrio entre regiones segmentadas y fondo. 

El modelo fue entrenado durante 100 épocas, utilizando optimización con Adam 

(técnica utilizada para actualizar los pesos de una red neuronal durante el 

entrenamiento, con el objetivo de minimizar la función de pérdida) y un aprendizaje 

supervisado completo. Una vez finalizado, se aplicó el modelo entrenado para generar 

predicciones sobre volúmenes no vistos. Las salidas fueron evaluadas utilizando 

métricas cuantitativas como Dice Score, precisión, recall y exactitud, y se realizaron 

visualizaciones de las predicciones superpuestas sobre las imágenes originales para 

su análisis cualitativo. 

3.3. ENTRENAMIENTO 

En este trabajo se emplearon dos enfoques diferentes para la segmentación del 

núcleo subtalámico y sustancia negra partir de IRM: un modelo basado en redes 

neuronales convolucionales tridimensionales (CNN 3D) y otro fundamentado en 

arquitecturas de tipo Transformer, específicamente Swin Transformer 3D. El modelo 

CNN que se implementó corresponde a una versión de U-Net adaptada a datos 

volumétricos, con bloques de codificación y decodificación que permiten extraer 

características espaciales locales y reconstruir el mapa de segmentación. Esta 

arquitectura es particularmente eficaz para capturar detalles anatómicos finos en 

regiones pequeñas gracias a sus operaciones de convolución y conexiones de salto, 

lo que la convierte en una opción robusta para tareas de segmentación médica. 
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Por otro lado, Swin Transformer 3D introduce una estrategia distinta al aprovechar 

mecanismos de atención auto-regresiva en ventanas deslizantes jerárquicas, lo que 

permite modelar relaciones espaciales de largo alcance sin perder la información 

local. Esta característica le otorga una mayor capacidad de generalización ante 

variaciones morfológicas complejas. Ambos modelos fueron entrenados desde cero 

utilizando imágenes T2 preprocesadas, alineadas, normalizadas y recortadas a un 

volumen de 48×48×48 voxeles en el caso de Swin Transformer, mientras que en CNN 

se pudo entrenar con imágenes de volumen 64x64x64 voxeles. El entrenamiento se 

realizó en la plataforma Google Colab, con soporte GPU (NVIDIA Tesla T4), utilizando 

la función de pérdida Dice Loss y el optimizador Adam. Para evaluar el desempeño, 

se aplicaron métricas como Dice Score, precisión y exactitud, lo que permitió realizar 

una comparación cuantitativa entre ambas arquitecturas en el contexto de la 

segmentación del núcleo subtalámico y la sustancia negra. 

 

3.4. EVALUACIÓN DE LOS ALGORITMOS DE SEGMENTACIÓN 

La evaluación de los modelos se llevará a cabo utilizando métricas específicas para 

segmentación médica, como el Dice Score, la precisión (precisión), la sensibilidad 

(recall) y la exactitud (accuracy) [20]. Estas métricas permitirán cuantificar la calidad 

de las segmentaciones generadas por el modelo en comparación con las máscaras 

reales. La evaluación se aplicará tanto al modelo CNN como al Swin Transformer, con 

el objetivo de analizar cuál de las dos arquitecturas presenta un mejor desempeño en 

la segmentación. 

3.4.1. DICE SCORE 

Esta métrica evalúa la superposición entre la máscara predicha y el ground truth 

(máscara real). Es especialmente útil en segmentación médica, donde el desbalance 

entre clases es común [21]. Definida por la ecuación (2.1) 

𝐷𝑖𝑐𝑒 =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
                                                                (2.1) 

donde: 
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A: conjunto de vóxeles predichos como positivos (por el modelo). 

B: conjunto de vóxeles reales positivos (ground truth). 

3.4.2. PRECISIÓN 

Indica la proporción de verdaderos positivos entre todos los positivos predichos. Es 

decir, de todo lo que el modelo dijo que era una estructura [4]. Tal como se aprecia 

en la ecuación (2.2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (2.2) 

Donde: 

TP: verdaderos positivos 

FP: falsos positivos 

3.4.3. SENSIBILIDAD O RECALL 

Mide la capacidad del modelo para encontrar todos los positivos reales. Es decir, de 

todo lo que realmente era la estructura [22]. Como se define en la ecuación (2.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                          (2.3) 

Donde: 

FN: falsos negativos 

3.4.4. EXACTITUD (ACCURACY) 

Indica la proporción total de aciertos (positivos y negativos) entre todos los vóxeles 

analizados [22]. Se define en la ecuación (2.4) 

𝐸𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                           (2.4) 
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Donde: 

TN: verdaderos negativos (cuando el modelo correctamente predice que un voxel no 

pertenece a la estructura). 

 

4. RESULTADOS 

En el presente capítulo se muestran los resultados obtenidos con los dos modelos 

indicados en la sección anterior: 

4.1. MODELO A PARTIR DE REDES NEURONALES CONVOLUCIONALES 

Una vez completado el proceso de entrenamiento con el modelo CNN 3D U-Net, se 

procedió a evaluar su desempeño sobre un conjunto de validación compuesto por 

imágenes previamente segmentadas del núcleo subtalámico y la sustancia negra. Las 

métricas obtenidas reflejan una capacidad del modelo para aproximarse de forma 

razonable a la segmentación manual, aunque con ciertas variaciones dependiendo 

del caso. 

A continuación, se resumen los resultados obtenidos en cinco muestras 

representativas: 

Tabla 4-1: Resultados de las métricas para el dataset de pruebas del modelo  
U-Net 3D 

IMAGEN DICE PRECISION RECALL ACCURACY 

IXI002_GUYS2_NORM 0,555 0,5157 0,6008 0,9973 

IXI012-HH2_NORM 0,7632 0,8639 0,6835 0,9983 

IXI013-HH2_NORM 0,8072 0,7538 0,8689 0,9985 

IXI014-HH2_NORM 0,7815 0,7984 0,7654 0,9985 

IXI015-HH2_NORM 0,7532 0,8033 0,709 0,9985 

Como se observa, el valor promedio del Dice Score en estas muestras se encuentra 

en un rango moderado (aproximadamente entre 0.55 y 0.80), lo cual indica una 

superposición parcial entre las segmentaciones predichas y las reales. Si bien no se 
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alcanza una coincidencia perfecta, estos resultados reflejan que el modelo ha logrado 

aprender características relevantes de las estructuras de interés. Además, los valores 

de precisión y recall se mantienen relativamente equilibrados, lo que sugiere que el 

modelo presenta un compromiso aceptable entre la detección de regiones verdaderas 

y la minimización de errores por omisión o exceso. 

 

Figura 4.1: Comparación de la imagen general vs predicción vs máscara real 
obtenido con U-Net 3D [autoría propia] 

En términos visuales, como se observa en la figura 4.1 la comparación entre la imagen 

original, la máscara real y la máscara predicha muestra que el modelo es capaz de 

capturar correctamente la forma y posición del núcleo subtalámico y la sustancia 

negra, aunque existen algunos casos en los que se observan predicciones más 

limitadas o regiones parcialmente subsegmentadas. 

A continuación, se muestra la gráfica obtenida de perdida vs época que muestra la 

evolución de la función de pérdida (loss) durante el proceso de entrenamiento y 

validación del modelo U-Net 3D multiclase. En el eje X se representan las épocas (de 

1 a 100), y en el eje Y se muestra el valor de la pérdida, se puede observar que la 

línea azul corresponde a la pérdida calculada sobre el conjunto de entrenamiento, 

mientras que la línea naranja representa la pérdida sobre el conjunto de validación. 



 
 

16 
 

 

Figura 4.2 Gráfica pérdida vs épocas [autoría propia] 

En la figura 4.2 se aprecia que, al inicio del entrenamiento, las pérdidas de 

entrenamiento y validación presentan valores altos, reflejo de la incertidumbre típica 

de un modelo recién inicializado. Conforme avanzan las primeras épocas, ambas 

curvas descienden con rapidez debido a los ajustes iniciales de los parámetros. Más 

adelante, la pérdida de entrenamiento continúa disminuyendo de forma gradual, 

mientras que la de validación exhibe pequeñas oscilaciones atribuibles a la 

variabilidad entre muestras. Aun así, las dos curvas se mantienen próximas entre sí, 

lo que sugiere que no se produce un sobreajuste significativo y que el modelo optimiza 

de manera adecuada la función objetivo a lo largo del proceso de aprendizaje. 

En la figura 4.3 se presenta la gráfica de Dice Score vs Épocas la cual muestra la 

evolución del Dice Score promedio en el conjunto de validación durante el 

entrenamiento. Este valor mide la superposición entre las máscaras predichas y las 

reales, siendo un indicador directo del rendimiento del modelo en la tarea de 

segmentación. El eje X representa las épocas, mientras que el eje Y indica el valor 

del Dice Score. 
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Figura 4.3 Gráfica dice score vs épocas [autoría propia] 

Se puede apreciar que a medida que avanzan las épocas, se observa un incremento 

progresivo del Dice Score, lo que indica que el modelo mejora su capacidad para 

segmentar el núcleo subtalámico y sustancia negra. Aunque se presentan pequeñas 

variaciones, la tendencia ascendente es clara, lo que sugiere que el modelo está 

aprendiendo patrones relevantes. Esto valida que la red convolucional ha sido eficaz 

en la tarea de segmentación. 

4.2. MODELO DE TRANSFORMERS: SWIN TRANSFORMER 

Para esta parte del proyecto, decidimos trabajar con un modelo Swin Transformer en 

3D, adaptado especialmente para nuestras imágenes médicas. A diferencia de los 

modelos tradicionales, este enfoque nos permite analizar los volúmenes de 

resonancia magnética desde distintas perspectivas, reconociendo patrones 

espaciales más complejos gracias al uso de una técnica llamada “atención”, que actúa 

como si el modelo observara distintas partes de la imagen con mayor detalle. 

El proceso comenzó dividiendo las imágenes en pequeños bloques para que el 

modelo pueda analizarlos más fácilmente. Luego, se fue entrenando poco a poco para 

aprender a identificar y resaltar las regiones más importantes en cada imagen, en este 

caso el núcleo subtalámico y la sustancia negra. 
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Diseñamos el modelo para que primero recoja la información, la resuma, y luego la 

reconstruya como una especie de “máscara” que marca exactamente las zonas que 

queremos segmentar. Para que el aprendizaje fuera efectivo, usamos una función 

especial que mide qué tan bien la predicción del modelo se parece a la realidad. 

Además, como las imágenes que usamos ocupan bastante memoria, trabajamos con 

versiones más pequeñas (48x48x48), lo que permitió que el entrenamiento fuera más 

rápido y sin errores.  

 

Figura 4.4: Comparación de la imagen general vs predicción vs máscara real 

obtenido con Swin Transformer [autoría propia] 

En términos visuales, como se observa en la figura 4.4 la comparación entre la imagen 

original, la máscara real y la máscara predicha muestra que el modelo es capaz de 

capturar la forma y posición del núcleo subtalámico y la sustancia negra, aunque 

existen casos en los que se observan predicciones más limitadas o regiones 

parcialmente subsegmentadas. 

La figura 4.5 presenta la evolución del Dice Score durante las 100 épocas de 

entrenamiento del modelo Swin Transformer 3D. Inicialmente, se observa un 

aprendizaje progresivo con valores bajos de segmentación, lo cual es esperable dado 

que el modelo aún no ha identificado patrones relevantes. A partir de la época 55, se 

produce un cambio notable con una mejora rápida y sostenida del rendimiento. Este 

comportamiento podría atribuirse a la capacidad del optimizador Adam para ajustar 

dinámicamente los gradientes durante el entrenamiento, permitiendo que el modelo 
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escape de mínimos locales y mejore la generalización. Adicionalmente, el uso de 

técnicas de aumento de datos puede haber contribuido a exponer al modelo a 

representaciones más diversas y útiles para el aprendizaje, favoreciendo un avance 

más efectivo en las últimas fases del entrenamiento. 

 

Figura 4.5 Gráfica Dice Score vs Épocas [autoría propia] 

En la figura 4.6 se representa la evolución de la pérdida (loss) durante el proceso de 

entrenamiento y validación. La pérdida combina dos funciones: CrossEntropyLoss y 

DiceLoss, las cuales permiten al modelo ajustar sus parámetros para minimizar el 

error en la predicción de clases segmentadas. Se puede observar que, desde las 

primeras épocas, ambas curvas (azul para entrenamiento y naranja para validación) 

disminuyen rápidamente, lo que indica que el modelo está aprendiendo patrones 

relevantes en los datos. A lo largo del entrenamiento, ambas curvas siguen 

reduciéndose de manera paralela, lo cual sugiere un comportamiento estable sin 

evidencia de sobreajuste. La cercanía entre ambas curvas también muestra que el 

modelo generaliza relativamente bien a los datos de validación, lo cual es fundamental 

en tareas de segmentación. 
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Figura 4.6 Gráfica pérdidas vs épocas [autoría propia] 

A continuación, se resumen los resultados obtenidos en cinco muestras 

representativas: 

Tabla 4-2: Resultados de las métricas para el dataset de pruebas del modelo 

Swin Transformers 

IMAGEN DICE PRECISION RECALL ACCURACY 

IXI012-HH2_NORM 0,5656 0,4593 0,7359 0,9893 

IXI013-HH2_NORM 0,6015 0,4921 0,7736 0,9914 

IXI014-HH2_NORM 0,6099 0,5268 0,724 0,9925 

IXI015-HH2_NORM 0,5435 0,42 0,7701 0,9902 

IXI034-HH2_NORM_READY 0,5177 0,403 0,7237 0,9904 

 

4.3. ANÁLISIS DE LOS RESULTADOS 

Tabla 4-3: Tabla comparativa de las métricas obtenidas en los modelos 

implementados 

 
                            U-NET 3D 

SWIN TRANSFORMER 

IMAGEN dice precision recall accuracy dice precision recall accuracy 

IXI012-HH2_NORM 0,7632 0,8639 0,6835 0,9983 0,5656 0,4593 0,7359 0,9893 

IXI013-HH2_NORM 0,8072 0,7538 0,8689 0,9985 0,6015 0,4921 0,7736 0,9914 

IXI014-HH2_NORM 0,7815 0,7984 0,7654 0,9985 0,6099 0,5268 0,724 0,9925 

IXI015-HH2_NORM 0,7532 0,8033 0,709 0,9985 0,5435 0,42 0,7701 0,9902 
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Una vez completado el entrenamiento de ambos modelos, se procedió a evaluar su 

rendimiento utilizando un mismo grupo de imágenes y aplicando las mismas métricas: 

Dice Score, precisión, recall y exactitud. 

Los resultados muestran que el modelo basado en redes neuronales convolucionales 

(CNN) obtuvo un mejor desempeño general. En casi todos los casos analizados, la 

CNN presentó valores más altos tanto en la coincidencia de las predicciones con las 

máscaras reales (medido con el Dice Score), como en la precisión y exactitud. Por 

ejemplo, en la imagen IXI013-HH2_norm, la CNN logró un Dice de 0,8072, mientras 

que el modelo Swin Transformer apenas alcanzó 0,6015. 

Esto sugiere que, en este caso, la CNN fue capaz de aprender de manera más 

efectiva la forma y localización del núcleo subtalámico y la sustancia negra, mientras 

que el modelo basado en Swin Transformer tuvo más dificultades para ajustarse al 

patrón de los datos. Una posible razón es que este último modelo, aunque más 

moderno, necesita muchos más datos para entrenarse correctamente. Como en 

nuestro caso los datos son limitados, la CNN logró adaptarse mejor. 

Sin embargo, el modelo Swin no es del todo malo. De hecho, en varias imágenes 

obtuvo un recall relativamente alto, lo que significa que fue capaz de identificar bien 

las regiones de interés, aunque también cometió más errores al incluir zonas que no 

correspondían (de ahí su menor precisión). Esto sugiere que tiene potencial, pero 

requiere más datos o ajustes para mostrar lo que realmente puede hacer. 

  



 
 

22 
 

CONCLUSIONES Y RECOMENDACIONES 

CONCLUSIONES 

•  El modelo CNN resultó ser el más efectivo para el proyecto. A pesar de ser una 

arquitectura más tradicional, logró aprender con mayor precisión la forma y ubicación 

del núcleo subtalámico y la sustancia negra, superando claramente al modelo Swin 

Transformer en las métricas evaluadas. 

•  El modelo Swin Transformer, no alcanzó el rendimiento esperado. Su desempeño 

fue más bajo en casi todos los casos, lo que podría deberse a la necesidad de más 

datos o mayor capacidad de cómputo para explotar todo su potencial. 

•  El preprocesamiento tuvo un papel clave. Pasos como la normalización, la 

corrección del bias y la orientación AC-PC facilitaron que los modelos trabajaran sobre 

datos más homogéneos y comparables, mejorando la calidad del entrenamiento y las 

predicciones. 

•  El uso de imágenes médicas requiere enfoques cuidadosamente diseñados. A 

diferencia de otros tipos de imágenes, aquí cada pequeño error tiene un peso 

importante, por lo que es fundamental adaptar tanto los modelos como los parámetros 

al tipo de datos y al problema específico. 

 

RECOMENDACIONES 

•  Se sugiere incrementar la cantidad de imágenes de resonancia magnética (IRM) 

reales, es decir, incorporar datos adicionales provenientes de más sujetos o 

pacientes. Esto permitiría ampliar la diversidad anatómica y mejorar la generalización 

del modelo, particularmente en el caso de los Vision Transformers, que suelen 

beneficiarse significativamente de grandes volúmenes de datos reales para alcanzar 

un rendimiento óptimo. Cabe aclarar que, si bien en este proyecto se utilizó data 

augmentation para generar variaciones sintéticas a partir de las imágenes originales, 

estas técnicas no sustituyen completamente la necesidad de contar con un conjunto 

amplio y variado de imágenes reales. 
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