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RESUMEN

El presente trabajo nace de una inquietud muy concreta: ¢ es posible ayudar a mejorar
el tratamiento del Parkinson desde el campo de la inteligencia artificial? Partiendo de
esa pregunta, se desarroll6 este proyecto enfocado en la segmentacién automatica
del nucleo subtaldmico y la sustancia negra, dos estructuras cerebrales clave en el

tratamiento quirdrgico de esta enfermedad, a partir de IRM.

Para alcanzar este objetivo, se construyé un flujo de trabajo completo que inicié con
un cuidadoso preprocesamiento de las imagenes, incluyendo correccion de
inhomogeneidades del campo magnético, alineacién AC-PC y recorte centrado en la
region de interés. Posteriormente, se entrenaron dos modelos distintos de
segmentacion: uno basado en redes neuronales convolucionales tridimensionales
(CNN U-Net 3D) y otro empleando una arquitectura mas reciente conocida como Swin

Transformer 3D.

Durante el proceso, se adaptaron los datos al contexto clinico y técnico del problema,
se optimiz6 el entrenamiento en un entorno de computo limitado, y se evaluaron los
resultados mediante métricas especificas de segmentacion médica como Dice Score,
precision, recall y exactitud. El modelo CNN mostr6 un mejor desempefio general,
logrando una mayor coincidencia entre sus predicciones y las segmentaciones reales.
Sin embargo, el modelo Swin Transformer también ofrecié resultados prometedores,
especialmente en la deteccion de las regiones objetivo, aunque con un nivel mas alto

de falsos positivos.

Vi
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INTRODUCCION

La enfermedad de Parkinson es una condicion que, lamentablemente, afecta a
muchas personas, especialmente a partir de los cincuenta afios [1]. Esta enfermedad
va mucho mas alla de lo que la mayoria de la gente imagina: no solo se trata de
temblores 0 movimientos rigidos, sino que también implica complicaciones en el
equilibrio y el control corporal [2]. Todo esto ocurre porque, poco a poco, ciertas
neuronas encargadas de producir dopamina en el cerebro, especificamente en una
zona llamada sustancia negra, comienzan a deteriorarse. Esta pérdida afecta areas
cerebrales importantes para el movimiento, como el putamen, el nicleo subtalamico

y el estriado, que trabajan juntas para permitirnos movernos con precision y fluidez

3].

La sustancia negray el nlcleo subtalamico son regiones pequefiasy, en las imagenes
de resonancia magnética (IRM), a veces es dificil distinguirlas de las areas vecinas
[4], especialmente en ciertas secuencias. Esto complica mucho el trabajo de los
médicos y cirujanos, ya que una localizaciéon precisa es fundamental para que los

tratamientos funcionen bien y no causen dafios innecesarios.

Cuando hablamos de tratamientos quirdrgicos, como la estimulacion cerebral
profunda, la exactitud en la localizacion de estas zonas es clave. Implantar electrodos
0 aplicar técnicas de ablacién térmica o ultrasonido focalizado requiere saber
exactamente dénde actuar, para asi mejorar los sintomas motores y evitar efectos
secundarios [5]. Si el procedimiento se realiza correctamente, se pueden reducir los
temblores y la rigidez, y hasta mejorar aspectos no motores de la enfermedad, como

el dolor, la depresion o los cambios en la expresion facial y el comportamiento social

[6].

Por todo esto, en este proyecto me propongo explorar los modelos de segmentacion
en Deep Learning (DL) para identificar y delimitar estas estructuras cerebrales tan
importantes. El objetivo es lograr que los tratamientos sean mas seguros y efectivos,
y asi ayudar a quienes viven con esta enfermedad a tener una vida mas plena y con

menos limitaciones.



Las imagenes mostradas corresponden a cortes axiales de resonancia magnética
cerebral ponderadas en T2. En la figura 1 se observa una visualizacion general del

encéfalo, sin resaltar estructuras profundas de manera clara.

Figura 1. IRM vista axial [7]

La figura 2 permite una vista ampliada de la region mesencefélica, donde se localizan
estructuras clave como la sustancia negra y el ndcleo subtalamico. Estas estructuras
aparecen como areas mas oscuras, lo que dificulta su delimitacion manual y
automaética.

Anterior

5
Posterior "

Figura 2. Region mesencefalica ampliada [8]



CAPITULO 1

Para el desarrollo del proyecto se utilizé Python como lenguaje de programacion
conjuntamente con diversas librerias para el andlisis de IRM como son torch, numpy,

nibabel y os.
La metodologia general del proyecto consta de las siguientes partes:

1. Preprocesamiento de datos, esta etapa permite mejorar la calidad de las
imagenes de resonancia magnética mediante correccibn de artefactos,
alineacion espacial, normalizacién de intensidades y recorte centrado,

asegurando condiciones uniformes para el entrenamiento de los modelos.

2. Disefo de la arquitectura para segmentacion, aqui se desarrollan y entrenan
modelos de DL (CNN y Swin Transformer) capaces de identificar y segmentar

el nlcleo subtalamico y la sustancia negra.

3. Evaluacién de resultados, analiza cuantitativamente las predicciones
utilizando métricas como Dice Score, precision y exactitud, ademas de realizar

visualizaciones comparativas.

1. DESCRIPCION DE LOS DATOS

Las imagenes utilizadas en este proyecto corresponden a estudios de resonancia
magnética cerebral en formato NIfTI, ya preseleccionados y anonimizados. Debido a
la naturaleza del conjunto de datos, no se dispone de informacion demogréfica
adicional como edad, sexo 0 antecedentes clinicos de los sujetos, sin embargo, como
primer paso se realiz6 una exploracion estadistica de las IRM pertenecientes a cinco
pacientes. Todas las imagenes tienen dimensiones uniformes de 182 x 218 x 182
voxeles, lo que asegura una resolucion constante entre las imagenes. En cuanto a las
intensidades de los voxeles, se observé una alta variabilidad entre pacientes como se
observa en la tabla 1, tanto en la media como en la desviacion estandar, la imagen
IXI002_Guys2 presenta una intensidad promedio de 45.16 con una desviacion
estandar de 83.19, mientras que 1Xl014-HH2 alcanza una media de 145.87 y una

desviacion estandar de 265.62. Ademas, se identificaron valores maximos de



intensidad que superan los 1800 en algunos casos, lo cual sugiere la presencia de
valores atipicos o artefactos de adquisicion de la imagen lo que refuerza la necesidad

del preprocesamiento.

Tabla 1-1. Exploracién estadistica inicial de las IRM

Nombre Dimensiones Int'\élr?:i?ad E;Z?é'ar Minimo Maximo
IX1002_Guys2 (182, 218, 182) 45.16 83.19 -0.000145 654.09
IX1012-HH2 (182, 218, 182) 117.47 218.70 -0.000727 1507.64
IX1013-HH2 (182, 218, 182) 119.24 223.06 -0.000202 1478.26
1X1014-HH2 (182, 218, 182) 145.87 265.62 -0.000620 1837.01
IX1015-HH2 (182, 218, 182) 109.76 204.07 -0.000455 1493.15

2. PREPROCESAMIENTO DE DATOS.

El preprocesamiento de imagenes es un paso fundamental para garantizar que los
datos estén en condiciones adecuadas antes de ser analizados por un modelo de
inteligencia artificial. En el caso de las IRM, este proceso permite corregir variaciones
de intensidad, alinear anatbmicamente los voliumenes, normalizar el contraste y
enfocar regiones especificas. Estas mejoras no solo aumentan la calidad de los datos,
sino que también permiten que el modelo aprenda patrones relevantes de manera
mas precisa, ayudando a reducir errores y mejorando el desempefio del sistema de

segmentacion.

Para el preprocesamiento se tuvo dos bases de datos de imagenes, en las cuales la
primera contiene 60 imagenes de baja resolucién en total, segmentadas el nicleo
subtalamico y la sustancia negra, las cuales se utilizaran para el primer entrenamiento
del algoritmo, mientras que la segunda base de datos, que contiene 35 imagenes en
total pero de mayor resolucion, servira para el entrenamiento del modelo final, ademas
se utilizé “bias field correction” que es la correccion del campo de polarizacion, es
decir, ajustar sefiales indeseables de baja frecuencia que corrompe las IRM[9]. Asi

como también la orientacion “ACPC, comisura anterior y posterior” usando la



transformacion de cuerpo rigido “rigid body transformation”. Donde todas las

modificaciones espaciales seran aplicadas en las imagenes T2 y al ground truth.

Posteriormente se recortd las imagenes de acuerdo a la regién de interés. A
continuacion, se procedi6 a realizar las transformaciones necesarias para realizar el
aumento de los datos. Estas transformaciones consistieron en rotaciones y aplicacion
de filtros, aumento o estiramiento y cizallamiento en los ejes X, Y, Z de forma

independiente.

2.1 CORRECCION DE INHOMOGENEIDADES DEL CAMPO MAGNETICO.

En el trabajo con IRM, muchas veces nos encontramos con que las fotos del cerebro
no salen perfectamente uniformes. Hay zonas que pueden verse mas claras o0 mas
oscuras de lo que realmente son, simplemente porque el campo magnético del
resonador no es completamente uniforme [4]. Esto puede confundir a los médicosy a
los programas de computadora cuando intentan identificar, por ejemplo, la sustancia

negra o el nacleo subtalamico.

Aqui es donde entra en juego “Bias field correction” o correccion del campo de sesgo,
como se observa en la figura 2.1 lo que hace este proceso es “suavizar’ esas
diferencias de brillo en la imagen, para que el cerebro se vea lo mas parecido posible
a la realidad [10].

Antes del Bias

Después del Bias

Figura 2.1: Comparacion de imagen original vs imagen con “bias field
correction” [autoria propia]



2.2 REORIENTACION ACPC

El alineamiento ACPC (Anterior Commissure—Posterior Commissure) es un
procedimiento fundamental en el andlisis neuroanatdomico basado en IRM. Consiste
en orientar y estandarizar los volimenes cerebrales tomando como referencia dos
estructuras anatomicas claramente identificables: la comisura anterior y la comisura
posterior. Estas comisuras son puntos clave del sistema nervioso central y su
conexién define una linea virtual que atraviesa el cerebro, permitiendo un

posicionamiento anatémico consistente entre sujetos y estudios [11].

En el contexto de nuestro proyecto, el alineamiento ACPC resulta esencial por varias
razones. En primer lugar, la variabilidad anatomica natural entre pacientes, asi como
las diferencias en la posicion de la cabeza durante la adquisicion de las imagenes,
pueden introducir sesgos significativos en la localizacibn y comparacion de
estructuras cerebrales de interés, como la sustancia negra o el ndcleo subtalamico.
Como se puede apreciar en la figura 2.2 al alinear todas las imagenes segun el plano
ACPC, logramos una base comun de referencia espacial, lo que facilita la
comparacion objetiva de resultados y la integracion de datos provenientes de

diferentes pacientes o0 momentos de seguimiento.

Después del Registro

Antes del Registro

Figura 2.2: Comparacion de imagen antes del registro vs imagen después del
registro [autoria propia]



2.3 RECORTE DE LA REGION DE INTERES

El recorte de imagenes es un proceso esencial cuando trabajamos con resonancia
magnética cerebral, especialmente si nuestro objetivo es analizar estructuras
especificas, como la sustancia negra o el nlcleo subtalamico. En la practica, una
imagen de RM abarca todo el cerebro y, aunque es muy util para tener un panorama
general, muchas veces solo necesitamos enfocarnos en una region particular para

nuestros analisis 0 procedimientos [12].

Para enfocar el analisis Unicamente en la sustancia negra y nucleo subtalamico, se
realiz6 un recorte tridimensional en cada imagen, extrayendo un volumen de interés
(VOI) centrado en el nucleo subtalamico y la sustancia negra. Este recorte se aplicd
de manera automatica mediante un algoritmo en Python, utilizando la funcién
“center_crop” de la libreria TorchlO, la cual permite generar un recorte simétrico a
partir del centro de una imagen. Se definié un tamafio fijo de 64x64x64 voxeles, que
resulté adecuado tras analizar visualmente que este volumen cubria por completo la

region de interés en todos los casos, como se muestra en la figura 2.3.

Para establecer el centro de cada recorte, primero se calcul6 el centro de masa de la
mascara asociada a cada imagen mediante la funcion “center_of _mass” de la libreria
SciPy, la cual nos permite analizar los voxeles que tienen valores positivos y devuelve
las coordenadas (X, y, z) del punto central promedio. Este punto fue usado como
referencia para ubicar el recorte de forma precisa sobre las estructuras objetivo. La
funcion “center_crop” generé entonces un nuevo volumen, mas pequefio, pero
centrado exclusivamente en la regidn relevante, sin necesidad de seleccionar
coordenadas manuales. Este procedimiento no solo redujo el tamafio de los datos,
sino que también permiti6 que los modelos de segmentacion implementados,
especificamente una arquitectura CNN tipo U-Net 3D y un modelo basado en Swin
Transformer 3D, enfocaran su capacidad de aprendizaje directamente en el area de
interés, mejorando la eficiencia del procesamiento y la precisién en la identificacion

de estructuras anatémicas pequefas y de bajo contraste.



Antes del recorte

Después del recorte

Figura 2.3: Comparacion de imagen antes del recorte vs imagen después del
recorte [autoria propia]

24  AUMENTO DE DATOS

Como parte del desarrollo del modelo de segmentacion, se considero aplicar técnicas
de aumento de datos (data augmentation) para mejorar el rendimiento del
entrenamiento, asi como también para mejorar el desbalance de los datos. Esta
estrategia busca generar nuevas variaciones a partir de las imagenes originales, de
manera que el modelo pueda aprender con mayor diversidad y adaptarse mejor a
diferentes formas anatémicas sin necesidad de ampliar el conjunto real de imagenes
[13].

Durante el proceso de aumento de datos se aplicaron transformaciones aleatorias
tanto a las imagenes como a sus respectivas mascaras, con el fin de mejorar la
capacidad del modelo para generalizar frente a nuevos casos. Se utilizaron tres tipos
principales de transformaciones: volteo aleatorio en los tres ejes (flip), rotacion affine
aleatoria y ligeras deformaciones espaciales. Estas modificaciones se implementaron
utilizando la libreria TorchlO, disefiada especificamente para el procesamiento y
aumento de datos médicos en formato 3D, como IRM. Se eligié TorchlO debido a que
ofrece un conjunto robusto y facilmente integrable de transformaciones compatibles
con PyTorch, permitiendo mantener la coherencia espacial entre imagenes y
mascaras durante el aumento de datos. En total se partié de 95 imagenes originales,
y a cada una se le generaron 3 nuevas versiones transformadas, resultando en un
conjunto total de 380 imagenes. Este aumento permitié al modelo entrenarse con un
conjunto mas diverso, mejorando su robustez frente a variaciones anatémicas y de

adquisicion.



CAPITULO 2

3. Disefio de la arquitectura para segmentaciéon
3.1. REDES NEURONALES CONVOLUCIONALES 3D

Para la segmentacion del nacleo subtalamico y la sustancia negra, se emple6 unared
neuronal convolucional tridimensional (3D-CNN) basada en la arquitectura U-Net 3D,
adaptada para tareas de segmentacion multiclase [14]. Esta arquitectura ha
demostrado ser especialmente eficaz para delimitar estructuras anatdmicas
pequefias gracias a su capacidad para integrar caracteristicas espaciales locales y
globales [14].

El disefio implementado presenta una estructura en forma de "U", compuesta por dos
fases simétricas: una etapa de codificacién (encoder) y otra de decodificacion
(decoder), conectadas por un bloque central (bridge). En la fase de codificacion, se
utilizan bloques secuenciales de dos convoluciones 3D (con kernel 3x3x3), cada una
seguida por una normalizacién por lotes (BatchNorm3d) y una funcién de activacion
ReLU [15]. Esta fase también incluye operaciones de reduccion espacial mediante

MaxPooling3D, lo cual permite extraer representaciones profundas de la imagen [15].

El bloque central conecta ambos extremos y profundiza la extraccion de
caracteristicas mediante convoluciones adicionales. Posteriormente, la fase de
decodificacion emplea convoluciones transpuestas (ConvTranspose3D) para
recuperar progresivamente la resolucion espacial. A través de concatenaciones tipo
"skip connection”, se incorporan caracteristicas de la fase de codificacion que ayudan
a preservar la informacion de borde. Finalmente, una capa convolucional 1x1x1
proyecta el volumen final al nimero de clases objetivo, generando un mapa de

segmentacién multiclase.

Durante el entrenamiento, se utilizaron volimenes 3D normalizados y centrados. Las
mascaras de segmentacion incluyeron cuatro etiquetas, correspondientes a
estructuras diferenciadas. Para mejorar la generalizacion del modelo, se aplicaron
técnicas de aumento de datos mediante deformaciones geométricas como rotaciones

aleatorias, escalados y volteos.



Como funcién de pérdida, se utilizo la combinacion de CrossEntropyLoss ponderada
por clase y Dice Loss, lo que permitio equilibrar el desbalance entre clases y mejorar
la segmentacién de estructuras pequefas. El entrenamiento se llevd a cabo en
Google Colab, aprovechando aceleraciéon por GPU, y se guardd automaticamente el

mejor modelo en base a la pérdida de validacién.

3.2. VISION TRANSFORMERS 3D

En los ultimos afios, el campo de la inteligencia artificial ha experimentado avances
notables con la aparicion de modelos basados en Transformers, inicialmente
disefiados para el procesamiento de lenguaje natural [16]. Sin embargo, su estructura
versatil ha permitido adaptarlos también al andlisis de imagenes, dando lugar a una
nueva categoria conocida como Vision Transformers (ViT). A diferencia de las redes
convolucionales, que extraen patrones locales a través de filtros, los Vision
Transformers procesan la informacion dividiendo la imagen en pequefias secciones
(o patches) y analizando las relaciones entre ellas mediante mecanismos de atencion.
Esto les permite capturar contextos mas amplios, lo cual es particularmente valioso
en tareas como la segmentacion de IRM, donde las estructuras cerebrales pueden

presentar variaciones anatdmicas sutiles pero relevantes [17].

3.2.1. SWIN TRANSFORMER

En este proyecto se empledé una arquitectura basada en Swin Transformer
tridimensional (Swin 3D). Esta alternativa moderna a las redes convolucionales
permite aprovechar mejor las relaciones espaciales de largo alcance dentro del
volumen cerebral, lo que puede resultar especialmente Util para estructuras pequefas

y de bordes poco definidos [18].

El modelo utilizado se estructuré en dos fases principales: una fase de codificacion
gue extrae caracteristicas jerarquicas del volumen mediante ventanas deslizantes
(window-based self-attention), y una fase de decodificacion que reconstruye la
segmentacion a través de operaciones de interpolacion y convoluciones. Ademas, se
integran mecanismos de atencion que permiten que el modelo aprenda a identificar

patrones contextuales complejos sin depender de filtros convolucionales locales [19].
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Para este trabajo, se adaptd una version ligera del Swin Transformer 3D, ajustada a
las restricciones de memoria disponibles en Google Colab. Las imégenes fueron
recortadas y redimensionadas a volimenes de 48x48x48 voxeles, centrados en la
region anatémica de interés. Antes del entrenamiento, los datos fueron corregidos por
campo de bias, alineados a la orientacion AC-PC, normalizados en intensidad y

etiguetados en cuatro clases diferenciadas.

El entrenamiento se llevd a cabo con un conjunto mixto de imagenes de baja y alta
resolucion, usando aumento de datos que incluye rotaciones aleatorias, escalamiento
y volteos tridimensionales, con el fin de robustecer el aprendizaje del modelo. La
funcion de pérdida combiné Dice Loss y Cross Entropy ponderada por clase, para

mitigar el desequilibrio entre regiones segmentadas y fondo.

El modelo fue entrenado durante 100 épocas, utilizando optimizacion con Adam
(técnica utilizada para actualizar los pesos de una red neuronal durante el
entrenamiento, con el objetivo de minimizar la funcién de pérdida) y un aprendizaje
supervisado completo. Una vez finalizado, se aplicé el modelo entrenado para generar
predicciones sobre volimenes no vistos. Las salidas fueron evaluadas utilizando
métricas cuantitativas como Dice Score, precision, recall y exactitud, y se realizaron
visualizaciones de las predicciones superpuestas sobre las imagenes originales para

su andlisis cualitativo.

3.3. ENTRENAMIENTO

En este trabajo se emplearon dos enfoques diferentes para la segmentacion del
ndcleo subtalamico y sustancia negra partir de IRM: un modelo basado en redes
neuronales convolucionales tridimensionales (CNN 3D) y otro fundamentado en
arquitecturas de tipo Transformer, especificamente Swin Transformer 3D. El modelo
CNN que se implementé corresponde a una version de U-Net adaptada a datos
volumétricos, con bloques de codificacion y decodificacion que permiten extraer
caracteristicas espaciales locales y reconstruir el mapa de segmentacién. Esta
arquitectura es particularmente eficaz para capturar detalles anatdémicos finos en
regiones pequefias gracias a sus operaciones de convolucion y conexiones de salto,

lo que la convierte en una opcion robusta para tareas de segmentacion médica.
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Por otro lado, Swin Transformer 3D introduce una estrategia distinta al aprovechar
mecanismos de atencion auto-regresiva en ventanas deslizantes jerarquicas, lo que
permite modelar relaciones espaciales de largo alcance sin perder la informacién
local. Esta caracteristica le otorga una mayor capacidad de generalizacién ante
variaciones morfolégicas complejas. Ambos modelos fueron entrenados desde cero
utilizando imégenes T2 preprocesadas, alineadas, normalizadas y recortadas a un
volumen de 48x48x48 voxeles en el caso de Swin Transformer, mientras que en CNN
se pudo entrenar con imagenes de volumen 64x64x64 voxeles. El entrenamiento se
realizé en la plataforma Google Colab, con soporte GPU (NVIDIA Tesla T4), utilizando
la funcién de pérdida Dice Loss y el optimizador Adam. Para evaluar el desempefio,
se aplicaron métricas como Dice Score, precision y exactitud, lo que permitié realizar
una comparacion cuantitativa entre ambas arquitecturas en el contexto de la

segmentacién del nlcleo subtalamico y la sustancia negra.

3.4. EVALUACION DE LOS ALGORITMOS DE SEGMENTACION

La evaluacion de los modelos se llevara a cabo utilizando métricas especificas para
segmentacién médica, como el Dice Score, la precisién (precision), la sensibilidad
(recall) y la exactitud (accuracy) [20]. Estas métricas permitiran cuantificar la calidad
de las segmentaciones generadas por el modelo en comparacion con las mascaras
reales. La evaluacion se aplicara tanto al modelo CNN como al Swin Transformer, con
el objetivo de analizar cuél de las dos arquitecturas presenta un mejor desempefio en

la segmentacién.

3.4.1. DICE SCORE

Esta métrica evalua la superposicion entre la mascara predicha y el ground truth
(méscara real). Es especialmente util en segmentacién médica, donde el desbalance
entre clases es comun [21]. Definida por la ecuacion (2.1)

2|A N B|

Dice = ———— 2.1
AT+ 15] @1

donde:
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A: conjunto de voxeles predichos como positivos (por el modelo).

B: conjunto de vOxeles reales positivos (ground truth).

3.4.2. PRECISION

Indica la proporcion de verdaderos positivos entre todos los positivos predichos. Es
decir, de todo lo que el modelo dijo que era una estructura [4]. Tal como se aprecia

en la ecuacion (2.2)

Precision = TP 2.2
recision = TP L FP (2.2)

Donde:

TP: verdaderos positivos

FP: falsos positivos

3.4.3. SENSIBILIDAD O RECALL

Mide la capacidad del modelo para encontrar todos los positivos reales. Es decir, de

todo lo que realmente era la estructura [22]. Como se define en la ecuacion (2.3)

Precision = e 2.3
recision = TP L FN (2.3)

Donde:

FN: falsos negativos

3.4.4. EXACTITUD (ACCURACY)

Indica la proporcion total de aciertos (positivos y negativos) entre todos los voxeles
analizados [22]. Se define en la ecuacion (2.4)
TP+ TN

Exactitud = TP+ TN+ FP + FN (2.4)
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Donde:

TN: verdaderos negativos (cuando el modelo correctamente predice que un voxel no

pertenece a la estructura).

4. RESULTADOS

En el presente capitulo se muestran los resultados obtenidos con los dos modelos

indicados en la seccién anterior:

4.1. MODELO A PARTIR DE REDES NEURONALES CONVOLUCIONALES

Una vez completado el proceso de entrenamiento con el modelo CNN 3D U-Net, se
procedié a evaluar su desempefio sobre un conjunto de validacién compuesto por
imagenes previamente segmentadas del nucleo subtalamico y la sustancia negra. Las
métricas obtenidas reflejan una capacidad del modelo para aproximarse de forma
razonable a la segmentacion manual, aunque con ciertas variaciones dependiendo

del caso.

A continuacion, se resumen los resultados obtenidos en cinco muestras

representativas .

Tabla 4-1: Resultados de las métricas para el dataset de pruebas del modelo

U-Net 3D
IMAGEN DICE PRECISION RECALL  ACCURACY
IXI002_GUYS2_NORM 0,555 0,5157 0,6008 0,9973
IXI012-HH2_NORM 0,7632  0,8639 0,6835 0,9983
IXI013-HH2_NORM 0,8072  0,7538 0,8689 0,9985
IXI014-HH2_NORM 0,7815  0,7984 0,7654 0,9985
IXI015-HH2_NORM 0,7532  0,8033 0,709 0,9985

Como se observa, el valor promedio del Dice Score en estas muestras se encuentra
en un rango moderado (aproximadamente entre 0.55 y 0.80), lo cual indica una

superposicion parcial entre las segmentaciones predichas y las reales. Si bien no se
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alcanza una coincidencia perfecta, estos resultados reflejan que el modelo ha logrado
aprender caracteristicas relevantes de las estructuras de interés. Ademas, los valores
de precision y recall se mantienen relativamente equilibrados, lo que sugiere que el
modelo presenta un compromiso aceptable entre la deteccidn de regiones verdaderas

y la minimizacién de errores por omisién o exceso.

Mascara real

Imagen original Prediccion superpuesta

Figura 4.1: Comparacion de laimagen general vs prediccion vs mascara real
obtenido con U-Net 3D [autoria propia]
En términos visuales, como se observa en la figura 4.1 la comparacion entre laimagen
original, la mascara real y la mascara predicha muestra que el modelo es capaz de
capturar correctamente la forma y posicién del ndcleo subtalamico y la sustancia
negra, aunque existen algunos casos en los que se observan predicciones mas

limitadas o regiones parcialmente subsegmentadas.

A continuacion, se muestra la grafica obtenida de perdida vs época que muestra la
evolucion de la funcidon de pérdida (loss) durante el proceso de entrenamiento y
validacién del modelo U-Net 3D multiclase. En el eje X se representan las épocas (de
1 a 100), y en el eje Y se muestra el valor de la pérdida, se puede observar que la
linea azul corresponde a la pérdida calculada sobre el conjunto de entrenamiento,

mientras que la linea naranja representa la pérdida sobre el conjunto de validacion.
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Pérdida vs Epocas
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Figura 4.2 Grafica pérdida vs épocas [autoria propia]

En la figura 4.2 se aprecia que, al inicio del entrenamiento, las pérdidas de
entrenamiento y validacion presentan valores altos, reflejo de la incertidumbre tipica
de un modelo recién inicializado. Conforme avanzan las primeras épocas, ambas
curvas descienden con rapidez debido a los ajustes iniciales de los parametros. Mas
adelante, la pérdida de entrenamiento continda disminuyendo de forma gradual,
mientras que la de validacion exhibe pequefias oscilaciones atribuibles a la
variabilidad entre muestras. Aun asi, las dos curvas se mantienen proximas entre si,
lo que sugiere que no se produce un sobreajuste significativo y que el modelo optimiza

de manera adecuada la funcién objetivo a lo largo del proceso de aprendizaje.

En la figura 4.3 se presenta la grafica de Dice Score vs Epocas la cual muestra la
evolucion del Dice Score promedio en el conjunto de validacion durante el
entrenamiento. Este valor mide la superposicién entre las mascaras predichas y las
reales, siendo un indicador directo del rendimiento del modelo en la tarea de
segmentacién. El eje X representa las épocas, mientras que el eje Y indica el valor

del Dice Score.
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Dice Score vs Epocas
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Figura 4.3 Grafica dice score vs épocas [autoria propia]

Se puede apreciar que a medida que avanzan las épocas, se observa un incremento
progresivo del Dice Score, lo que indica que el modelo mejora su capacidad para
segmentar el ndcleo subtalamico y sustancia negra. Aunque se presentan pequefias
variaciones, la tendencia ascendente es clara, lo que sugiere que el modelo esta
aprendiendo patrones relevantes. Esto valida que la red convolucional ha sido eficaz

en la tarea de segmentacion.

4.2. MODELO DE TRANSFORMERS: SWIN TRANSFORMER

Para esta parte del proyecto, decidimos trabajar con un modelo Swin Transformer en
3D, adaptado especialmente para nuestras imagenes médicas. A diferencia de los
modelos tradicionales, este enfoque nos permite analizar los volimenes de
resonancia magnética desde distintas perspectivas, reconociendo patrones
espaciales mas complejos gracias al uso de una técnica llamada “atencion”, que actua

como si el modelo observara distintas partes de la imagen con mayor detalle.

El proceso comenzé dividiendo las imagenes en pequefios bloques para que el
modelo pueda analizarlos mas facilmente. Luego, se fue entrenando poco a poco para
aprender a identificar y resaltar las regiones mas importantes en cada imagen, en este

caso el nucleo subtalamico y la sustancia negra.
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Disefiamos el modelo para que primero recoja la informacion, la resuma, y luego la
reconstruya como una especie de “mascara” que marca exactamente las zonas que
gueremos segmentar. Para que el aprendizaje fuera efectivo, usamos una funcion

especial que mide qué tan bien la prediccion del modelo se parece a la realidad.

Ademas, como las imagenes que usamos ocupan bastante memoria, trabajamos con
versiones mas pequefas (48x48x48), lo que permitié que el entrenamiento fuera mas

rapido y sin errores.

Mascara real

Imagen original Prediccion superpuesta

Figura 4.4: Comparacion de laimagen general vs prediccién vs méascara real

obtenido con Swin Transformer [autoria propia]

En términos visuales, como se observa en la figura 4.4 la comparacién entre laimagen
original, la mascara real y la mascara predicha muestra que el modelo es capaz de
capturar la forma y posicion del ndcleo subtalamico y la sustancia negra, aunque
existen casos en los que se observan predicciones mas limitadas o regiones

parcialmente subsegmentadas.

La figura 4.5 presenta la evolucion del Dice Score durante las 100 épocas de
entrenamiento del modelo Swin Transformer 3D. Inicialmente, se observa un
aprendizaje progresivo con valores bajos de segmentacion, lo cual es esperable dado
gue el modelo aun no ha identificado patrones relevantes. A partir de la época 55, se
produce un cambio notable con una mejora rapida y sostenida del rendimiento. Este
comportamiento podria atribuirse a la capacidad del optimizador Adam para ajustar

dinAmicamente los gradientes durante el entrenamiento, permitiendo que el modelo
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escape de minimos locales y mejore la generalizacion. Adicionalmente, el uso de
técnicas de aumento de datos puede haber contribuido a exponer al modelo a
representaciones mas diversas y Utiles para el aprendizaje, favoreciendo un avance

mas efectivo en las Ultimas fases del entrenamiento.

Evolucion del Dice Score por época
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Figura 4.5 Gréfica Dice Score vs Epocas [autoria propia]

En la figura 4.6 se representa la evolucion de la pérdida (loss) durante el proceso de
entrenamiento y validacion. La pérdida combina dos funciones: CrossEntropyLoss y
Diceloss, las cuales permiten al modelo ajustar sus parametros para minimizar el
error en la prediccion de clases segmentadas. Se puede observar que, desde las
primeras épocas, ambas curvas (azul para entrenamiento y naranja para validacion)
disminuyen rapidamente, lo que indica que el modelo esta aprendiendo patrones
relevantes en los datos. A lo largo del entrenamiento, ambas curvas siguen
reduciéndose de manera paralela, lo cual sugiere un comportamiento estable sin
evidencia de sobreajuste. La cercania entre ambas curvas también muestra que el
modelo generaliza relativamente bien a los datos de validacion, lo cual es fundamental

en tareas de segmentacion.
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Figura 4.6 Gréfica pérdidas vs épocas [autoria propia]

A continuacién, se resumen los resultados obtenidos en cinco muestras

representativas:

Tabla 4-2: Resultados de las métricas para el dataset de pruebas del modelo

Swin Transformers

IMAGEN DICE PRECISION RECALL ACCURACY
IX1012-HH2_NORM 0,5656 0,4593 0,7359 0,9893
IX1013-HH2_NORM 0,6015 0,4921 0,7736 0,9914
IX1014-HH2_NORM 0,6099 0,5268 0,724 0,9925
IXI015-HH2_NORM 0,5435 0,42 0,7701 0,9902
IX1034-HH2_NORM_READY 0,5177 0,403 0,7237 0,9904

4.3. ANALISIS DE LOS RESULTADOS

Tabla 4-3: Tabla comparativa de las métricas obtenidas en los modelos

implementados

SWIN TRANSFORMER
U-NET 3D

IMAGEN dice precision recall accuracy dice precision recall accuracy

1X1012-HH2_NORM 0,7632 0,8639 0,6835 0,9983 0,5656 0,4593 0,7359 0,9893

1X1013-HH2_NORM 0,8072 0,7538 0,8689 0,9985 0,6015 0,4921 0,7736 0,9914

1X1014-HH2_NORM 0,7815 0,7984 0,7654 0,9985 0,6099 0,5268 0,724 0,9925
1X1015-HH2_NORM 0,7532 0,8033 0,709 0,9985 0,5435 0,42 0,7701 0,9902
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Una vez completado el entrenamiento de ambos modelos, se procedié a evaluar su
rendimiento utilizando un mismo grupo de imagenes y aplicando las mismas métricas:

Dice Score, precision, recall y exactitud.

Los resultados muestran que el modelo basado en redes neuronales convolucionales
(CNN) obtuvo un mejor desempefio general. En casi todos los casos analizados, la
CNN presento valores mas altos tanto en la coincidencia de las predicciones con las
mascaras reales (medido con el Dice Score), como en la precision y exactitud. Por
ejemplo, en la imagen IXI013-HH2_norm, la CNN logré un Dice de 0,8072, mientras

gue el modelo Swin Transformer apenas alcanz6 0,6015.

Esto sugiere que, en este caso, la CNN fue capaz de aprender de manera mas
efectiva la forma y localizacién del nicleo subtalamico y la sustancia negra, mientras
que el modelo basado en Swin Transformer tuvo mas dificultades para ajustarse al
patron de los datos. Una posible razén es que este ultimo modelo, aunque mas
moderno, necesita muchos mas datos para entrenarse correctamente. Como en

nuestro caso los datos son limitados, la CNN logré adaptarse mejor.

Sin embargo, el modelo Swin no es del todo malo. De hecho, en varias imagenes
obtuvo un recall relativamente alto, lo que significa que fue capaz de identificar bien
las regiones de interés, aunque también cometié mas errores al incluir zonas que no
correspondian (de ahi su menor precisién). Esto sugiere que tiene potencial, pero

requiere mas datos o ajustes para mostrar lo que realmente puede hacer.
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CONCLUSIONES Y RECOMENDACIONES
CONCLUSIONES

¢ ElI modelo CNN resultd ser el mas efectivo para el proyecto. A pesar de ser una
arquitectura mas tradicional, logré aprender con mayor precision la forma y ubicacion
del nucleo subtaldmico y la sustancia negra, superando claramente al modelo Swin

Transformer en las métricas evaluadas.

e El modelo Swin Transformer, no alcanzé el rendimiento esperado. Su desempefio
fue mas bajo en casi todos los casos, lo que podria deberse a la necesidad de mas

datos o mayor capacidad de computo para explotar todo su potencial.

e EIl preprocesamiento tuvo un papel clave. Pasos como la normalizacién, la
correccion del bias y la orientacion AC-PC facilitaron que los modelos trabajaran sobre
datos mas homogéneos y comparables, mejorando la calidad del entrenamiento y las

predicciones.

e El uso de imagenes médicas requiere enfoques cuidadosamente disefiados. A
diferencia de otros tipos de imagenes, aqui cada pequefio error tiene un peso
importante, por lo que es fundamental adaptar tanto los modelos como los parametros

al tipo de datos y al problema especifico.

RECOMENDACIONES

e Se sugiere incrementar la cantidad de imagenes de resonancia magnética (IRM)
reales, es decir, incorporar datos adicionales provenientes de mas sujetos o
pacientes. Esto permitiria ampliar la diversidad anatdmica y mejorar la generalizacion
del modelo, particularmente en el caso de los Vision Transformers, que suelen
beneficiarse significativamente de grandes voliumenes de datos reales para alcanzar
un rendimiento Optimo. Cabe aclarar que, si bien en este proyecto se utilizé6 data
augmentation para generar variaciones sintéticas a partir de las imagenes originales,
estas técnicas no sustituyen completamente la necesidad de contar con un conjunto

amplio y variado de imagenes reales.
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