
 

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL 

 

Facultad de Ingeniería en Electricidad y Computación 

 

“DISEÑO DE DIAGRAMAS DE COMPONENTES DE SOFTWARE, 

UTILIZANDO UN GRAN MODELO DE LENGUAJE Y APLICANDO 

TÉCNICAS DE OPTIMIZACIÓN PARA LOGRAR RESULTADOS 

CONTEXTUALMENTE RELEVANTES” 

 

 

TESIS DE GRADO 

 

 

Previa a la obtención del Título de: 

 

MAGISTER EN SISTEMAS DE INFORMACIÓN GERENCIAL 

 

 

Presentada por: 

 

JUAN FRANCISCO ROMERO AGUILAR 

 

 

 

 

GUAYAQUIL – ECUADOR 

 

AÑO 2024 

 



ii 

 

 

 

 

 

AGRADECIMIENTO 

 

 

 

 

 

 

 

 

 

Expreso mi agradecimiento a Dios por 

darme la salud y la fortaleza necesarias 

para llevar a cabo este trabajo. A mi 

empresa y a mis jefas, por su constante 

apoyo en la consecución de esta meta. 

Y a la ESPOL, así como al Mgs. Lenin 

Freire, por brindarme la invaluable 

oportunidad de cursar esta maestría en 

su prestigiosa institución. 

 

Ing. Juan Romero Aguilar 

 

 

 

 

 

 

 

 

  



iii 

 

 

 

 

 

DEDICATORIA 

 

 

 

 

 

 

 

 

 

 

 

Dedico este trabajo a mis padres, pilares 

fundamentales de lo que soy hoy; a mis 

hermanas, ejemplo constante de 

superación; a mi esposa, mi apoyo 

incondicional; y a mis hijas, el motor que 

me impulsa a seguir cada día. 

 

Ing. Juan Romero Aguilar 

 

 

 

 

 

 

 

 

 
  



iv 

 

 

 

 

DECLARACIÓN EXPRESA 

 

Yo Juan Francisco Romero Aguilar acuerdo y reconozco que: La titularidad de 

los derechos patrimoniales de autor (derechos de autor) del proyecto de 

graduación corresponderá al autor, sin perjuicio de lo cual la ESPOL recibe en 

este acto una licencia gratuita de plazo indefinido para el uso no comercial y 

comercial de la obra con facultad de sublicenciar, incluyendo la autorización 

para su divulgación, así como para la creación y uso de obras derivadas. En 

el caso de usos comerciales se respetará el porcentaje de participación en 

beneficios que corresponda a favor del autor. El estudiante deberá procurar 

en cualquier caso de cesión de sus derechos patrimoniales incluir una cláusula 

en la cesión que proteja la vigencia de la licencia aquí concedida a la ESPOL. 

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de 

invención, modelo de utilidad, diseño industrial, secreto industrial, secreto 

empresarial, derechos patrimoniales de autor sobre software o información no 

divulgada que corresponda o pueda corresponder respecto de cualquier 

investigación, desarrollo tecnológico o invención realizada por mí durante el 

desarrollo del proyecto de graduación, pertenecerán de forma total, exclusiva 

e indivisible a la ESPOL, sin perjuicio del porcentaje que me corresponda de 

los beneficios económicos que la ESPOL reciba por la explotación de mi 

innovación, de ser el caso. 

En los casos donde la Oficina de Transferencia de Resultados de 

Investigación (OTRI) de la ESPOL comunique al autor que existe una 



v 

 

innovación potencialmente patentable sobre los resultados del proyecto de 

graduación, no se realizará publicación o divulgación alguna, sin la 

autorización expresa y previa de la ESPOL. 

Guayaquil, noviembre del 2024. 

 

 

 

 

_____________________________________ 

ING. JUAN FRANCISCO ROMERO AGUILAR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



vi 

 

 

 

 

EVALUADORES 

 

 

 

 

 

 

 

 

 

___________________________ 

Mgs. Lenin Eduardo Freire Cobo 

PROFESOR TUTOR 

___________________________ 

Mgs. Omar Maldonado 

PROFESOR EVALUADOR 

 

 

 

 

  



vii 

 

 

RESUMEN 

 

El diseño arquitectónico es un proceso crítico dentro del ciclo de vida del 

desarrollo de software, donde la precisión y la claridad en la representación 

de los componentes juegan un papel esencial para asegurar la calidad y 

mantenibilidad del sistema. No obstante, este proceso suele ser lento y 

demandante, lo que puede convertirlo en un cuello de botella en 

organizaciones donde la rapidez de respuesta es crucial. En este contexto, la 

automatización de la generación de diagramas de componentes de software 

se presenta como una solución innovadora que permite a los arquitectos 

optimizar su flujo de trabajo y enfocarse en actividades de mayor valor 

añadido. 

Este trabajo de investigación se centra en el diseño de una herramienta 

basada en inteligencia artificial, utilizando un Gran Modelo de Lenguaje (LLM) 

enriquecido con técnicas de Recuperación Aumentada por Generación (RAG), 

con el objetivo de generar automáticamente diagramas de componentes a 

partir de descripciones textuales proporcionadas por el usuario. El enfoque 

propuesto no solo automatiza una parte fundamental del diseño 

arquitectónico, sino que también asegura que los diagramas generados sean 

contextualmente relevantes, al integrar información existente en la 

organización. De esta forma, la herramienta busca reducir significativamente 

los tiempos de diseño y minimizar el riesgo de errores u omisiones humanos. 

El proceso metodológico de este trabajo incluye una fase de levantamiento de 

información con el equipo de arquitectura de una empresa del sector de 

telecomunicaciones, lo que permitió identificar los criterios clave para la 

generación de diagramas precisos y útiles. A partir de esta información, se 

diseñó e implementó un prototipo que combina el uso de herramientas como 

PlantUML para la visualización de diagramas y el procesamiento de datos con 

un LLM local para asegurar la confidencialidad de la información sensible de 

la organización. 

La evaluación del prototipo se realizó mediante pruebas con arquitectos de 

software, quienes proporcionaron retroalimentación positiva respecto a la 

usabilidad, eficiencia y precisión de la herramienta. Los resultados mostraron 



viii 

 

una reducción del tiempo de generación de diagramas mejorando la eficiencia 

del equipo de arquitectura. Sin embargo, también se identificaron algunas 

limitaciones, como la necesidad de mejorar la precisión en la generación de 

diagramas más complejos, como los de clases, y la integración con otros 

sistemas corporativos como los repositorios de control de versiones. 

Finalmente, el estudio concluye que el uso de tecnologías avanzadas como 

los LLMs, junto con técnicas de optimización de resultados como RAG, tiene 

un alto potencial para transformar el proceso de diseño arquitectónico en 

entornos empresariales. Las recomendaciones futuras incluyen la 

implementación de mejoras sugeridas por los usuarios, como la generación 

de diferentes tipos de diagramas UML y una mayor integración con sistemas 

existentes. Se espera que este prototipo pueda escalarse para cubrir otras 

áreas del ciclo de desarrollo de software y convertirse en una herramienta 

clave dentro de los procesos de ingeniería de software moderna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ix 

 

 

ÍNDICE GENERAL 

 

AGRADECIMIENTO ...................................................................................... II 

DEDICATORIA ..............................................................................................III 

DECLARACIÓN EXPRESA .......................................................................... IV 

EVALUADORES ........................................................................................... VI 

RESUMEN ................................................................................................... VII 

ÍNDICE GENERAL ........................................................................................ IX 

ABREVIATURAS ........................................................................................ XIV 

ÍNDICE DE FIGURAS .................................................................................. XV 

ÍNDICE DE TABLAS .................................................................................. XVII 

INTRODUCCIÓN ...................................................................................... XVIII 

CAPÍTULO I ................................................................................................... 1 

GENERALIDADES ..................................................................................... 1 

1.1 Antecedentes ................................................................................... 1 

1.2 Descripción del problema ................................................................ 2 

1.3 Solución propuesta .......................................................................... 3 

1.4 Objetivo general .............................................................................. 6 

1.5 Objetivos específicos ....................................................................... 6 

1.6 Metodología ..................................................................................... 7 

CAPÍTULO II .................................................................................................. 9 

MARCO TEÓRICO ..................................................................................... 9 

2.1 Lenguaje unificado de modelado (UML) .......................................... 9 

2.1.1 Introducción al lenguaje unificado de modelado ....................... 9 

2.1.2 Objetivos del modelado UML ..................................................10 

2.1.3 Tipos de diagramas UML ........................................................11 

2.1.4 Aplicaciones y usos del lenguaje UML ....................................15 



x 

 

2.1.5 Herramientas de modelado UML .............................................16 

2.2 Arquitectura de software .................................................................18 

2.2.1 Introducción a la arquitectura de software ...............................18 

2.2.2 Principios de diseño ................................................................19 

2.2.3 Patrones de diseño ..................................................................22 

2.2.4 Patrones de arquitectura .........................................................29 

2.2.5 Diseño y documentación de la arquitectura .............................32 

2.3 Prototipos de software ....................................................................37 

2.3.1 Introducción a los prototipos de software ................................37 

2.3.2 Importancia de prototipado en un proyecto de software ..........38 

2.3.3 Tipos de prototipos de software...............................................39 

2.3.4 Herramientas y tecnologías de desarrollo ...............................41 

2.4 Grandes modelos de lenguaje ........................................................47 

2.4.1 Introducción a los grandes modelos de lenguaje ....................47 

2.4.2 Arquitectura de los grandes modelos de lenguaje ...................48 

2.4.3 Valor de los grandes modelos de lenguaje ..............................51 

2.4.4 Aplicación de los grandes modelos de lenguaje en el diseño de 

software 52 

2.4.5 Aumentar la relevancia contextual de los resultados...............53 

2.4.6 Limitaciones y desafíos de los LLM en el diseño de software .56 

2.5 Trabajos similares...........................................................................58 

2.5.1 Revisión de trabajos similares .................................................58 

2.5.2 Identificación de vacíos en el conocimiento ............................60 

2.5.3 Conclusión de revisión de trabajos similares ...........................61 

CAPÍTULO III ................................................................................................63 

DEFINICIÓN DE LA SITUACIÓN ACTUAL ...............................................63 

3.1 Descripción del proceso actual de diseño de arquitectura de software

 63 



xi 

 

3.1.1 Flujo para el diseño de diagramas de componentes ...............63 

3.1.2 Modelo AS-IS ..........................................................................65 

3.1.3 Herramientas y técnicas ..........................................................67 

3.1.4 Roles involucrados ..................................................................69 

3.2 Encuestas y entrevistas ..................................................................72 

3.2.1 Encuestas ................................................................................72 

3.2.2 Entrevistas ...............................................................................77 

3.3 Métricas ..........................................................................................79 

3.4 Limitaciones del proceso actual ......................................................79 

3.5 Conclusiones ..................................................................................79 

CAPÍTULO IV ................................................................................................80 

ANÁLISIS Y DISEÑO DE LA HERRAMIENTA PROPUESTA ...................80 

4.1 Análisis de la solución ....................................................................80 

4.2 Herramientas y tecnologías ............................................................80 

4.2.1 Herramienta de modelado UML...............................................80 

4.2.2 Servicio de generación de diagrama .......................................81 

4.2.3 Large Language model ............................................................81 

4.2.4 Bases de datos ........................................................................82 

4.2.5 Lenguajes de programación ....................................................83 

4.2.6 Framework para FrontEnd .......................................................84 

4.2.7 Framework para Backend .......................................................85 

4.2.8 Tecnología de contenedorización ............................................85 

4.2.9 Herramienta de autenticación única ........................................86 

4.2.10 Herramienta para balanceo de carga ......................................86 

4.3 Arquitectura de la solución .............................................................87 

4.3.1 Nuevo flujo (TO-BE) para el diseño de diagramas de 

componentes .........................................................................................87 



xii 

 

4.3.2 Diagrama de contexto .............................................................89 

4.3.3 Casos de uso ..........................................................................90 

4.3.4 Diagrama de componentes .....................................................91 

4.3.5 Diagramas de secuencias .......................................................92 

4.3.6 Diagrama de clases .................................................................93 

4.4 Desarrollo del prototipo ...................................................................95 

4.4.1 Introducción .............................................................................95 

4.4.2 Generación de información de contexto ..................................96 

4.4.3 Generación de diagrama de componentes ..............................97 

CAPÍTULO V...............................................................................................101 

EVALUACIÓN Y ANÁLISIS DE RESULTADOS ......................................101 

5.1 Validación del prototipo con el usuario .........................................101 

5.2 Elaboración y toma de encuestas .................................................101 

5.3 Análisis de resultados ...................................................................113 

5.3.1 Respuesta a la pregunta de investigación .............................113 

5.4 Retos y limitaciones ......................................................................114 

5.4.1 Limitaciones Semánticas de los LLM ....................................115 

5.4.2 Limitaciones del Prototipo .....................................................115 

5.4.3 Conclusión .............................................................................117 

5.5 Propuestas de mejora ...................................................................117 

5.5.1 Generación de Diferentes Tipos de Diagramas UML ............117 

5.5.2 Gestión de Espacios de Trabajo y Proyectos ........................118 

5.5.3 Mejoras en la Relación de Aspecto de los Diagramas ..........118 

5.5.4 Exportación de Diagramas en Formatos Adicionales ............118 

5.5.5 Integración con Repositorios Corporativos ............................119 

5.5.6 Seguridad en el Consumo de Modelos de Lenguaje Grandes 

Externos 119 



xiii 

 

5.5.7 Importación de Diagramas Existentes ...................................119 

CONCLUSIONES Y RECOMENDACIONES ..............................................121 

CONCLUSIONES ....................................................................................121 

RECOMENDACIONES ...........................................................................122 

BIBLIOGRAFÍA ...........................................................................................123 

ANEXOS .....................................................................................................130 

Anexo 1: Formato de encuesta inicial. ....................................................130 

Anexo 2: Diccionario para estructura de contexto ...................................133 

Anexo 3: Contrato para generación de contexto .....................................134 

Anexo 4: Diagrama en formato PlantUml ................................................135 

Anexo 5: Diagrama en formato imagen ...................................................138 

Anexo 6: Formato de encuesta final ........................................................139 

  



xiv 

 

 

ABREVIATURAS 

 

 

SPA Single Page Application 

LLM Large Language Model 

RAG Retrieval-Augmented Generation 

JVM Java Virtual Machine 

IDE Integrated Development Environment 

API Application Programming Interface 

UML Unified Modeling Language 

DB Database 

TCP Transmission Control Protocol 

gRPC Google Remote Procedure Call 

AS-IS Representación de la situación actual 

TO-BE Representación de la situación futura 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xv 

 

 

 

 

ÍNDICE DE FIGURAS 

Figura  2.1: Partes de un diagrama de componentes ...................................14 

Figura  2.2: Arquitectura Transformer ...........................................................50 

Figura  3.1: Modelo AS-IS general del flujo de diseño ..................................66 

Figura  3.2: Detalle de la actividad “Diseño” del diagrama anterior ...............67 

Figura  3.3: Diagrama creado con Lucidchart ...............................................68 

Figura  3.4: Percepción del nivel de automatización del subproceso ............73 

Figura  3.5: Percepción sobre la validación de componentes reutilizables ...74 

Figura  3.6: Tiempo para elaboración de diagramas .....................................75 

Figura  3.7: Facilidad de realizar ajustes sobre diagramas terminados ........75 

Figura  3.8: Facilidad de versionamiento para los diseños ...........................76 

Figura  3.9: Grado de aceptación de la propuesta ........................................77 

Figura  4.1: Modelo TO-BE para diseño de diagrama de componentes .......89 

Figura  4.2: Diagrama de contexto de la solución .........................................90 

Figura  4.3: Diagrama de componentes de la solución .................................92 

Figura  4.4: Generación manual de contexto ................................................93 

Figura  4.5: Generación de diagrama de componentes ................................93 

Figura  4.6: Diagrama de clases ...................................................................94 

Figura  4.7: Interfaz de usuario .....................................................................95 

Figura  4.8: Consumo para generar contexto................................................97 

Figura  4.9: Resultado de generación de contexto........................................97 

Figura  4.10. Ejecución de solicitud de diagrama..........................................99 

Figura  4.11: Resultado de generación de diagrama ....................................99 

Figura  5.1: Percepción sobre la usabilidad del prototipo ...........................102 

Figura  5.2: Facilitar el diseño de diagramas ..............................................103 

Figura  5.3: Dificultades técnicas con el prototipo .......................................103 

Figura  5.4: Precisión de los diagramas ......................................................104 

Figura  5.5: Rapidez en la generación de diagramas ..................................105 

Figura  5.6: Utilidad en la asistencia de un LLM .........................................106 

Figura  5.7: Satisfacción con el uso del prototipo ........................................107 

Figura  5.8: Incidencia del prototipo en la eficiencia de los diseños............108 



xvi 

 

Figura  5.9: Aspectos destacados del prototipo ..........................................109 

Figura  5.10 : Sugerencias de mejora .........................................................111 

  



xvii 

 

 

 

 

ÍNDICE DE TABLAS 

Tabla 1: Variables de medición ...................................................................... 7 

Tabla 2: Terminología RACI .........................................................................69 

Tabla 3: Matriz RACI .....................................................................................72 

Tabla 4: Métricas del proceso .......................................................................79 

  



xviii 

 

 

INTRODUCCIÓN 

 

En el contexto actual del desarrollo de software, los arquitectos de software 

enfrentan grandes desafíos en la creación de diagramas que representen la 

estructura y los componentes de las soluciones informáticas. La creciente 

complejidad de los sistemas, junto con la necesidad de mantener la 

coherencia entre los diagramas y la evolución continua de los proyectos, exige 

herramientas que permitan a los arquitectos generar estos diagramas de 

manera eficiente y precisa. Tradicionalmente, estos diagramas se crean 

manualmente, lo que consume tiempo valioso y es propenso a errores u 

omisiones. 

El presente trabajo busca abordar esta problemática mediante el diseño de 

una herramienta que, utilizando un Gran Modelo de Lenguaje (LLM) y técnicas 

de Recuperación Aumentada por Generación (RAG), automatice el proceso 

de generación de diagramas de componentes de software. Este enfoque no 

solo reduce el tiempo necesario para producir los diagramas, sino que también 

mejora la relevancia contextual al basarse en datos ya existentes dentro de la 

organización. 

A lo largo del documento, se describen los pasos seguidos para diseñar, 

desarrollar y validar un prototipo funcional basado en la propuesta. Se 

analizan las ventajas de esta herramienta en comparación con los métodos 

tradicionales y se proponen mejoras para aumentar su funcionalidad en 

futuros desarrollos. Además, se destaca la importancia de esta solución en 

entornos corporativos, donde la agilidad y precisión son factores críticos para 

el éxito del desarrollo de software. 

 

 



 

 

 

 

 

 

 

CAPÍTULO I  

 

GENERALIDADES 

En el presente capítulo se abordará la oportunidad de mejora identificada en 

uno de los principales procesos de en una empresa del sector de las 

telecomunicaciones. Se hará una revisión de los antecedentes y el problema, 

así como el planteamiento de la solución a dicho problema y cuáles serán los 

objetivos perseguidos para poder cumplir con la solución propuesta, 

definiendo una metodología para dicho fin.  

 

1.1 Antecedentes 

En la ciudad de Guayaquil, lleva a cabo sus operaciones una empresa 

de Telecomunicaciones que brinda servicios basados en Internet en el 

sector corporativo, y como toda empresa vanguardista, tiene como uno 

de sus pilares fundamentales al departamento de Software Factory, en 

el cual se llevan a cabo los procesos de diseño, desarrollo y 

mantenimiento de los sistemas informáticos que soportan la operación. 

El departamento de Software Factory tiene a su vez una división de 

arquitectura, en la cual se lleva a cabo el diseño de las soluciones, con 

el objetivo de satisfacer los requisitos que forman parte de cada uno de 

los proyectos que le son asignados. 



2 

 

Para cumplir con este objetivo, el área de arquitectura realiza una serie 

de actividades, las cuales requieren tiempo y esfuerzo, entre las cuales 

destacan: 

• Análisis de requisitos de usuario. 

• Análisis de la solución. 

• Diseño de diagrama de componentes de software. 

• Diseño de diagramas de secuencia. 

• Diseño de diagramas de clases. 

• Construcción de repositorios base, con la arquitectura propuesta. 

• Documentación de diseños 

• Capacitación y entrega de diseños. 

 

 

1.2 Descripción del problema 

Actualmente, la división de arquitectura no cuenta con el personal 

suficiente para atender todos los proyectos en una ventana de tiempo 

apropiada, lo cual con frecuencia convierte a la etapa de diseño en un 

cuello de botella dentro del proceso global de desarrollo de sistemas. 

Esto incide negativamente en el tiempo de liberación de las soluciones, 

y a su vez, puede llevar a una disminución del nivel competitivo de la 

empresa. 

Estos hechos, sumados a la necesidad constante de buscar el máximo 

nivel de automatización posible en todo proceso en el cual sea viable 

hacerlo, ha originado la necesidad de contar con una alternativa que 

permita obtener de forma oportuna un diseño inicial de los diagramas de 

componentes de software para una solución. 

Este proyecto busca responder la siguiente pregunta de investigación: 

 



3 

 

¿Cuál es el grado de aceptación en la división de arquitectura, para una 

herramienta que genere automáticamente propuestas base de 

diagramas de componentes UML para una solución de software, a partir 

del ingreso de algunos requisitos? 

 

1.3 Solución propuesta 

El momento actual está marcado por el auge en el uso de la inteligencia 

artificial, concepto que fue acuñado hace ya más de medio siglo [1], pero 

que gracias a los avances en la tecnología del hardware [2], ha venido 

evolucionando en los últimos años, y actualmente nos brinda soporte en 

la realización de muchas de nuestras actividades diarias, no solo a nivel 

personal sino también a las empresas, las cuales en mayor o menor 

grado van descubriendo la necesidad de adaptar esta revolucionaria 

tecnología en los procesos que le generan más valor. Esta reciente 

revolución causada por la inteligencia artificial se debe en gran medida 

a la llegada a escena de los grandes modelos de lenguaje (LLM) [3]-[4],  

a los cuales podemos ver como complejos sistemas informáticos que 

son capaces de procesar y generar texto, basándose en datos de 

entrenamiento y generando respuestas tan coherentes que rivalizan con 

las respuestas proporcionadas por una persona [4]-[5]. 

La empresa objetivo de este proyecto, no solo que no escapa de esta 

tendencia, sino que sus propios objetivos empresariales le impulsan a 

estar siempre a la vanguardia en el uso de la tecnología y la aplicación 

de esta, en cada uno de sus procesos, en los cuales sea factible y viable 

hacerlo. Con base en lo expuesto, es evidente y mandatorio la necesidad 

de hacer uso de la inteligencia artificial con el fin de potenciar la eficiencia 

de los procedimientos de un departamento tan enfocado en la 

tecnología, como lo es el departamento de Software Factory y su división 

de arquitectura. Uno de estos procedimientos es el diseño de las 



4 

 

soluciones de software, y como un paso importante de este 

procedimiento se identifica la elaboración de los diagramas de 

componentes UML [6] para la propuesta de la solución de software. 

La asistencia de la inteligencia artificial en la arquitectura de software es 

un tema que recientemente ha tomado relevancia y está siendo objeto 

de muchos estudios [7], los cuales en su mayoría se han enfocado en la 

generación de diagramas de clases [8]. Sin embargo, a la fecha de este 

trabajo no se encontró estudios enfocados en la generación de 

diagramas de componentes mediante el uso de los LLM y las técnicas 

de optimización existentes; RAG [9] y Fine-Tuning [10], siendo la 

creación de diagramas de componentes, un paso fundamental en el 

proceso de diseño de una solución de software y por ende muy 

importante para la división de arquitectura de la empresa objeto de 

estudio. 

 

Con base en lo indicado anteriormente, y con la finalidad de lograr 

reducir los tiempos de entrega de las soluciones por parte de la división 

de arquitectura, se propone el diseño de una herramienta informática que 

permita generar diagramas base de componentes de software de forma 

ágil, mediante el ingreso de requisitos por parte de un usuario y haciendo 

uso de un gran modelo de lenguaje para la generación de dichos 

diagramas. Adicionalmente, para lograr resultados contextualmente 

relevantes, se propone aplicar alguna de las estrategias ya 

mencionadas. La finalidad de la propuesta es que un usuario técnico, ya 

sea un arquitecto de software o un líder de proyectos acceda a una 

herramienta web, en la cual pueda ingresar una serie de requisitos 

funcionales y/o no funcionales en lenguaje natural, para inmediatamente 

solicitar al sistema que genere un diagrama de componentes de software 

basado en dichos requisitos. Luego de la confirmación por parte del 

usuario, se esperaría que el sistema elabore la petición (considerando 



5 

 

los requisitos ingresados) en un formato entendible para un LLM local. 

Luego de esto se espera que el sistema envíe la petición hacia el LLM, 

el cual debería generar un diagrama de componentes de software 

bastante alineado a los requisitos y enmarcado en el contexto 

tecnológico de la empresa. 

Es importante resaltar el hecho de usar un LLM local, ya que esto 

garantiza que la información que se compartirá con el LLM no saldrá de 

la empresa, asegurando de esta manera la protección de la información. 

 

Para cumplir con esa finalidad se realizarán las actividades indicadas a 

continuación de forma general: 

 

➢ Se realizará levantamiento de información con el personal de 

arquitectura, mediante el uso de un instrumento definido en el 

apartado de metodología. Este levantamiento nos permitirá 

determinar:  

✓ Cuáles son los criterios que se debe considerar en la definición de 

un adecuado contexto para la generación de diagramas de 

componentes de software. 

✓ Cuáles son las consideraciones que se deben tener respecto a la 

seguridad de la información. 

✓  Qué características o funcionalidades aportarían más valor a una 

herramienta generadora de diagramas de componentes de 

software. 

✓ Que formato de respuesta sería más adecuado como resultado de 

una petición a la herramienta. 

➢ A continuación, se realizará el diseño de la herramienta, mediante la 

elaboración de diagramas de contexto, diagramas de componentes 

de software y diagramas de secuencia, basándonos un poco en la 

definición del framework C4 [11]. 



6 

 

➢ Luego de contar con el diseño inicial, se realizará la elección de 

tecnologías para el prototipo, esto incluye FrontEnd, Backend, LLM, 

base de datos, etc. 

➢ Finalmente se procederá con la elaboración de un prototipo funcional 

para poder realizar la presentación con los usuarios, con el objetivo 

de conseguir su aprobación para el diseño. 

 

Luego del diseño de esta herramienta y su presentación al usuario, se 

espera toda la retroalimentación posible y una acogida favorable de parte 

de este, al conocer todo el valor que le puede aportar una herramienta 

de este tipo. Se espera que luego de este trabajo, se priorice un proyecto 

para la implementación de la herramienta propuesta. 

 

1.4 Objetivo general 

Diseñar una herramienta informática, que genere diagramas base de 

componentes de software de forma automática, mediante el ingreso de 

requisitos de usuario, haciendo uso de un gran modelo de lenguaje 

(local) para la elaboración del diagrama y aplicando técnicas para la 

mejora contextual de los resultados. 

 

1.5 Objetivos específicos 

➢ Realizar levantamiento de la situación inicial. 

➢ Diseñar la arquitectura para la solución propuesta. 

➢ Elaborar prototipo funcional. 

➢ Realizar pruebas de generación de diagramas de componentes. 

➢ Validar resultados con la división de arquitectura. 

 

 



7 

 

1.6 Metodología  

Este proyecto será abordado con un enfoque cuantitativo, con un 

alcance descriptivo y un diseño no experimental transversal. Se adopta 

este diseño debido a que el proyecto no incluye el uso de experimentos. 

Lo que si se deberá realizar es la medición de la variable de interés al 

final del proyecto. 

 

No se realizarán muestreos debido a que la población objeto de estudio 

tiene un universo de 6 individuos que cuentan con las siguientes 

características: Población que comprende a los colaboradores de la 

división de arquitectura, en el departamento de Software Factory, de una 

empresa de Telecomunicaciones que lleva sus operaciones en 

Guayaquil-Ecuador y se enfoca en el sector corporativo. 

 

La variable de interés que se ha definido para el proyecto es el grado de 

aceptación que tiene el diseño de la herramienta propuesta, por parte 

del personal de la división de arquitectura del departamento de Software 

Factory. 

 

Variable Definición conceptual Definición operacional 

Grado de aceptación 

La aceptación es la facultad por 
la cual una persona admite a 
otra persona, animal, objeto o 
pensamiento o la acción por la 
cual las recibe de manera 
voluntaria. 

Se medirá luego de la 
presentación del diseño y se 
utilizará para su medición un 
instrumento de encuesta. La 
unidad de medida serán los 
puntos porcentuales. 

 

Tabla 1: Variables de medición 

                                        Fuente: El autor 
 



8 

 

Para la recopilación de datos ya se tiene definidas las unidades de 

análisis, y como instrumento de medición se utilizará una encuesta con 

escala de Likert, lo cual brindará confiabilidad, validez y objetividad a la 

recopilación. 

  



9 

 

 

 

 

 

 

 

 

CAPÍTULO II  

 

MARCO TEÓRICO  

El objetivo de este capítulo es brindar un conjunto de definiciones, 

convenciones e información relevante que sirva como guía para la 

consecución exitosa del proyecto. 

2.1 Lenguaje unificado de modelado (UML) 

2.1.1 Introducción al lenguaje unificado de modelado 

Un modelo es la representación de un objeto de la vida real, y 

dicho modelo es utilizado para entender y/o darle forma al objeto, 

explorar sus características y/o definirle nuevas características. 

En el caso de la ingeniería de software, estos modelos se 

gestionan mediante un lenguaje de modelado, como UML [6]. 

El lenguaje unificado de modelado o UML , como comúnmente se 

lo conoce,  es un lenguaje de modelado estándar y visual, 

ampliamente utilizado y cuyo propósito es entre otros varios, 

permitir la especificación, diseño y documentación de sistemas de 

software, de forma clara y estandarizada [6]. Podemos considerar 

a UML como una interfaz o lenguaje ubicuo para la comunicación 

o entendimiento entre un diseñador y un desarrollador respecto a 

la estructura, relaciones y comportamiento de cada uno de los 

artefactos que componen una solución de software, ya que 



10 

 

mediante la aplicación de UML se pueden definir, modelar o 

plasmar todas estas características tan importantes de una 

solución informática. 

Aunque los primeros esfuerzos por definir métodos para el 

desarrollo de software con lenguajes orientado a objetos se 

remontan a mediados de la década de 1980, no fue hasta 1997 

que el Object Management Group (OMG), un consorcio creado en 

1989 en Estados Unidos, con el objetivo de desarrollar estándares 

y especificaciones para la industria del software, presentó, luego 

de muchos meses de trabajo, la propuesta final de UML, gracias 

al trabajo en conjunto de expertos como Grady Booch, Ivar 

Jacobson y James Rumbaugh [6]  y otros muchos metodólogos y 

expertos de software de aquella época. Es gracias a estos 

personajes, que hoy en día podemos contar con este estándar tan 

útil y tan ampliamente utilizado en toda la industria del desarrollo 

de software. 

2.1.2 Objetivos del modelado UML 

• Definir, entender y manipular la representación digital de objetos 

o conjuntos de objetos del mundo real que componen un 

sistema, capturando sus detalles clave, características, 

comportamientos y las relaciones entre cada uno de ellos. 

• Ser un lenguaje abierto, de propósito general, no propietario, de 

tal forma que pueda ser utilizado por cualquier modelador. 

• Ser un lenguaje universalmente aceptado por la gran 

comunidad del software, ya que hereda atributos de varios de 

los métodos de modelado más utilizados en la década de 1980 

a 1990 como son los métodos OMT, Booch y Objectory, 

facilitando su adopción. 



11 

 

• Fomentar las buenas prácticas de diseño, como son la 

encapsulación y  la separación de responsabilidades [6], entre 

otros. 

• Ser un lenguaje altamente expresivo y universal para lograr 

manejar todos los conceptos posibles que surgen en los 

sistemas modernos, como por ejemplo la concurrencia [6]. 

2.1.3 Tipos de diagramas UML 

En UML se definen varios tipos de vistas para un sistema, cada 

una de las cuales cuenta con su propia notación y se enfoca en 

un aspecto específico de dicho sistema. Pero en conjunto, estas 

vistas proporcionan una descripción integral del mismo [6]. 

A continuación, repasaremos cada una de dichas vistas y se dará 

una descripción muy literal de acuerdo con la literatura [6]: 

2.1.3.1 Vista estática 

Describe los aspectos estáticos o estructurales del 

sistema, como las clases, objetos y sus relaciones. Los 

diagramas definidos en esta clasificación son: 

• Diagrama de clases 

 

2.1.3.2 Vista de casos de uso 

Representan el comportamiento funcional del sistema 

desde la perspectiva del usuario o actor. Los diagramas 

definidos en esta clasificación son: 

• Diagrama de casos de uso 

 

2.1.3.3 Vista de interacción 

Describe cómo los objetos en el sistema interactúan 

entre sí a través del envío de mensajes.  Los diagramas 

definidos en esta clasificación son: 



12 

 

• Diagramas de secuencia 

• Diagramas de interacción 

 

2.1.3.4  Vista de máquina de estados 

Modela los estados por los que pasan los objetos del 

sistema y las transiciones entre esos estados como 

respuesta a eventos. Los diagramas definidos en esta 

clasificación son: 

• Diagrama de estados 

 

2.1.3.5 Vista de actividad 

Describe los flujos de trabajo y procesos dentro del 

sistema, mostrando las actividades y las transiciones 

entre ellas. Los diagramas definidos en esta clasificación 

son: 

• Diagrama de actividades 

 

2.1.3.6 Vistas físicas 

Se utilizan para modelar los aspectos físicos del sistema, 

tales como la configuración de hardware y software en 

la implementación. Los diagramas definidos en esta 

clasificación son: 

• Diagrama de componentes 

• Diagrama de despliegue 

 

2.1.3.7 Vistas de gestión de modelos 

Ayuda a gestionar la estructura organizativa del modelo, 

dividiendo el sistema en paquetes manejables. Los 

diagramas definidos en esta clasificación son: 



13 

 

• Diagrama de paquetes 

 

A continuación, se abordará un poco más a detalle los diagramas 

de componentes, por tratarse de uno de los elementos clave del 

proyecto. 

  

2.1.3.8 Diagramas de componentes 

Los diagramas de componentes son un tipo de diagrama 

UML que describe cada uno de los elementos modulares 

que componen un sistema, y como estos componentes 

se relacionan entre sí. Cada componente del diagrama 

representa una unidad lógica que encapsula una 

funcionalidad particular del sistema. Los diagramas de 

componentes están formados por los siguientes 

elementos: 

• Componentes 

Son elementos físicos y reemplazables del sistema, 

los cuales pueden ser módulos de código, bibliotecas, 

ejecutables, o bases de datos. Estos componentes 

generalmente se representan con una forma 

rectangular. 

• Paquetes 

Se usan como contenedores de componentes. 

• Interfaces 

Representan los puntos de comunicación que expone 

un componente para que pueda ser consumido por 

otro componente. Generalmente se representa como 

un círculo o como una línea con el nombre de la 

interfaz. 



14 

 

• Puerto 

Punto de interacción independiente entre el 

componente y su entorno. 

• Artefactos 

Representan elementos físicos generados por el 

sistema, como por ejemplo archivos. 

• Relaciones de dependencia 

Representan las relaciones entre los componentes 

del sistema, indicando si un componte utiliza a otro 

componente o depende de él. Las relaciones se 

definen con líneas de trazo. 

Estos elementos de los diagramas de componentes se 

pueden apreciar en la siguiente imagen: 

 

Figura  II.1: Partes de un diagrama de componentes 



15 

 

Fuente: El autor 
 

2.1.4 Aplicaciones y usos del lenguaje UML 

El lenguaje de modelado unificado (UML) satisface un amplio 

espectro de necesidades en el contexto de la ingeniera y 

desarrollo de software, para conseguir una definición clara y 

precisa sobre la arquitectura, comportamiento y estructura de los 

sistemas, sobre todo cuando estos son complejos. Con base en 

lo expuesto en los numerales anteriores, algunas de las 

aplicaciones para UML son las siguientes [6]: 

2.1.4.1 Diseño de software 

El objetivo es poder representar de forma clara, la 

estructura interna de cada uno de los elementos que 

conforman un sistema, mediante el uso de 

componentes, módulos, clases e interfaces. 

2.1.4.2 Gestión de requerimientos 

El objetivo es, basado en los requerimientos levantados, 

poder representar los comportamientos o casos de uso 

de un sistema y como este interactúa con cada uno de 

sus principales actores, esto mediante el uso de 

diagramas de actividades y diagramas de casos de uso. 

2.1.4.3 Modelado de sistemas 

El objetivo es poder representar la estructura general de   

los sistemas y la interacción entre sus distintos 

elementos, para cada uno de los casos de uso definidos, 

esto mediante el uso de diagramas de componentes, 

diagramas de secuencia y diagramas de estados. 

2.1.4.4  Diseño de bases de datos 

El objetivo es poder representar las diferentes entidades 

de un modelo de datos para un sistema, incluyendo sus 



16 

 

atributos y la relación entre cada una de dichas 

entidades, además de sus cardinalidades y 

restricciones. 

2.1.4.5 Documentación 

El objetivo es hacer una recopilación de los   diagramas 

implementados para el sistema y armar una 

documentación clara de la estructura general de la 

solución, así como la estructura interna de cada uno de 

sus elementos y la relación en interacción entre cada 

uno de ellos, de manera que cualquiera que conozca 

UML pueda leer esa documentación y entender el 

funcionamiento de dicho sistema. 

 

2.1.5 Herramientas de modelado UML 

En la actualidad, existe un sin número de herramientas que 

facilitan la elaboración de diagramas UML, cada una de ellas 

brinda una funcionalidad particular según su enfoque. A 

continuación, listamos algunas de estas herramientas: 

2.1.5.1 Herramientas de generación gráfica 

Son herramientas que permiten al usuario generar 

diagramas en formato gráfico, simplemente 

seleccionando y arrastrando los elementos que desean 

que formen parte del diagrama, entre ellas podemos 

nombrar a Visual Paradigm [12], Power Designer [13], 

etc. 

2.1.5.2 Herramientas basadas en la nube 

Son aquellas herramientas que permiten la generación 

de diagramas de forma remota y colaborativa, brindando 

al usuario la posibilidad de gestionar sus diagramas 

desde cualquier ubicación con acceso a internet, 



17 

 

algunas de estas herramientas son: Lucidchart [14], 

Gliffy [15], etc. 

2.1.5.3 Herramientas con generación automática de código 

Son herramientas que, además de permitir el 

modelamiento de diagramas, también permiten generar 

código a partir de dichos diagramas. Entre ellas 

podemos nombrar a StarUml [16],   Modelio [17], etc. 

2.1.5.4 Herramientas de modelado de procesos de negocio 

Son herramientas enfocadas en el modelamiento de 

procesos de negocio. Entre ellas podemos nombrar a 

Camunda Modeler, Bizagi, Visual Paradigm [12], etc. 

2.1.5.5 Herramientas de validación y simulación 

Son herramientas que además de permitir el 

modelamiento de diagramas, también permiten simular 

y validar el comportamiento de estos modelos. En esa 

categoría podemos nombrar a USE (Uml-based 

Specification Environment) [18]. 

2.1.5.6 Herramientas de modelado basado en texto 

Son herramientas que permiten generar modelos UML 

mediante descripciones textuales utilizando una sintaxis 

específica. El usuario describe los elementos del modelo 

y sus relaciones mediante la sintaxis de la herramienta y 

esta, a su vez en tiempo real, va renderizando esa 

sintaxis en una representación gráfica del modelo con 

formato png, svg u otro. Algunas de estas herramientas 

son: PlantUml [19], Mermaid [20], etc. 

Un punto clave a resaltar en este tipo de herramientas 

es la facilidad que brindan para el versionamiento de los 

modelos, ya que al tratarse de texto es muy fácilmente 



18 

 

gestionable mediante una herramienta de control de 

versiones. 

  

 

2.2 Arquitectura de software 

2.2.1 Introducción a la arquitectura de software 

La arquitectura de software es una disciplina fundamental en el 

desarrollo de sistemas informáticos complejos. Se enfoca en el 

conjunto de decisiones estructurales que definen y coordinan los 

componentes del sistema, así como las relaciones entre ellos. En 

esencia, la arquitectura de software define como un sistema se 

descompone en sus partes fundamentales, cómo estas partes se 

comunican entre sí, y de qué manera interactúan con el entorno 

[21]. 

Una arquitectura sólida es clave para asegurar la calidad de un 

sistema en términos de mantenibilidad, escalabilidad, 

rendimiento y seguridad, entre otros aspectos. Esta arquitectura 

debe ser diseñada teniendo en cuenta tanto los requisitos 

funcionales (lo que el sistema debe hacer) como los no 

funcionales (cómo el sistema debe comportarse), los cuales 

incluyen restricciones técnicas, decisiones de diseño y la calidad 

general del software [22]. 

Dentro del contexto del desarrollo de software, una arquitectura 

bien definida actúa como una hoja de ruta que guía a los equipos 

de desarrollo durante todo el ciclo de vida del sistema. Además, 

proporciona una base sólida para la toma de decisiones futuras, 

facilita la comunicación entre los involucrados y reduce los riesgos 

asociados con la evolución del sistema, como la deuda técnica y 

la complejidad innecesaria. 



19 

 

A medida que se desarrollaba la industria del software, 

seguramente entre muchos casos de error, pero muchos más de 

éxito, los diseñadores más expertos comenzaron a notar ciertas 

similitudes en problemáticas particulares que se presentaban 

entre un proyecto y otro. Los expertos se dieron cuenta que ciertas 

implementaciones podían abstraerse de los detalles y volverse 

genéricas, de manera que pudiesen ser aplicadas en muchos 

casos de uso similares [23].  A partir de ahí, se desarrollaron los 

conceptos de principios y patrones de diseño. 

 

2.2.2 Principios de diseño 

El diseño de software es una disciplina fundamental dentro del 

desarrollo de sistemas de información, pues determina cómo los 

componentes individuales se organizan e interactúan entre sí para 

formar un sistema integral, coherente y funcional. Para guiar este 

proceso, se han establecido una serie de principios de diseño que 

permiten la creación de arquitecturas robustas, escalables y 

mantenibles. Estos principios no solo facilitan el trabajo de los 

desarrolladores, sino que también garantizan que el sistema sea 

capaz de evolucionar sin perder su integridad [24].  Es común 

plasmar estos principios de diseño en las arquitecturas de 

software mediante las herramientas de modelado antes vistas. A 

continuación, nombramos varios de los principales principios de 

diseño más utilizados en nuestro entorno: 

2.2.2.1 Principio de responsabilidad única 

Sostiene que cada clase o módulo debe tener una única 

razón para cambiar, es decir, debe estar enfocado en 

una única tarea o responsabilidad. Este principio está 

estrechamente relacionado con la separación de 

responsabilidades y es crucial para la creación de 



20 

 

software mantenible y fácilmente comprensible. La 

adherencia a este principio permite evitar el 

acoplamiento innecesario entre módulos y promueve el 

desarrollo de componentes reutilizables [24]. 

2.2.2.2 Principio abierto/cerrado 

Propuesto por Bertrand Meyer, establece que los 

módulos de software deben estar abiertos para la 

extensión, pero cerrados para la modificación. Esto 

significa que el comportamiento de un sistema puede 

ampliarse mediante la adición de nuevo código, sin 

alterar el código existente. El OCP es particularmente 

importante en sistemas que requieren mantenimiento 

continuo, ya que minimiza el riesgo de introducir errores 

en componentes ya funcionales cuando se incorporan 

nuevas características [24]. 

2.2.2.3 Principio de sustitución de Liskov 

Establece que los objetos de una clase derivada deben 

poder reemplazar a los objetos de la clase base sin 

alterar el comportamiento del programa. Este principio 

asegura la correcta herencia entre clases, promoviendo 

la creación de jerarquías coherentes y funcionales. En 

términos prácticos, el LSP previene errores que pueden 

surgir cuando las subclases no cumplen con las 

expectativas establecidas por la clase base, 

garantizando así la integridad del sistema [24]. 

2.2.2.4 Principio de segregación de interfaces 

Establece que ningún cliente debe estar obligado a 

depender de interfaces que no utiliza. En otras palabras, 

las interfaces grandes y generales deben dividirse en 

interfaces más pequeñas y específicas para que los 



21 

 

clientes solo necesiten conocer y utilizar los métodos 

que realmente les son útiles. Este principio ayuda a 

evitar la sobrecarga de responsabilidades en las 

interfaces y previene el denominado "code smell" que 

ocurre cuando un cambio en una interfaz afecta 

innecesariamente a muchas clases que dependen de 

ella. En la práctica, el ISP reduce la cantidad de 

dependencias innecesarias en un sistema, promoviendo 

un diseño más flexible y desacoplado. Cuando las 

interfaces son más específicas y cumplen con este 

principio, se facilita el mantenimiento y la evolución del 

código, ya que los cambios en una interfaz no afectarán 

a componentes que no tienen relación directa con ella 

[25]. 

2.2.2.5 Principio de inversión de dependencias 

Establece que los módulos de alto nivel no deben 

depender de módulos de bajo nivel; ambos deben 

depender de abstracciones. Además, las abstracciones 

no deben depender de detalles concretos, sino que los 

detalles deben depender de las abstracciones. Este 

principio es clave para garantizar la flexibilidad y 

escalabilidad de un sistema, ya que permite desacoplar 

las implementaciones concretas de sus abstracciones, 

facilitando cambios en las capas bajas del sistema sin 

afectar a las capas superiores [25]. 

2.2.2.6 Principio Don’t Repeat yourself 

Sugiere que cada pieza de conocimiento o lógica debe 

tener una representación única y no duplicada en el 

sistema. La repetición innecesaria de código aumenta la 

complejidad del mantenimiento y eleva el riesgo de 



22 

 

errores, ya que cualquier cambio en un componente 

duplicado debe realizarse en múltiples ubicaciones. 

Aplicar el DRY implica una organización eficiente del 

código y el uso adecuado de la abstracción para evitar 

duplicidades [24]. 

2.2.2.7 Principio KISS 

Aboga por la simplicidad en el diseño, sugiriendo que los 

sistemas y componentes deben mantenerse tan simples 

como sea posible. La complejidad innecesaria suele 

llevar a sistemas difíciles de entender, mantener y 

escalar. Mantener el diseño sencillo no significa 

sacrificar la funcionalidad, sino asegurarse de que el 

sistema se desarrolla de la forma más clara y directa 

posible. Este principio es esencial para sistemas en 

crecimiento, donde la complejidad tiende a aumentar 

con el tiempo si no se controla adecuadamente [24]. 

Los principios de diseño constituyen los pilares fundamentales 

para crear software que sea adaptable, mantenible y flexible a lo 

largo del tiempo.  Siguiendo estos principios, los desarrolladores 

logran una estructura clara y bien organizada, facilitando el 

crecimiento del sistema sin comprometer su estabilidad. Sin 

embargo, a medida que los sistemas crecen en complejidad, los 

principios de diseño pueden no ser suficientes para abordar 

ciertos problemas recurrentes de forma específica. Aquí es donde 

los patrones de diseño desempeñan un papel crucial. 

 

2.2.3 Patrones de diseño 

En el desarrollo de software, los patrones de diseño son 

soluciones repetibles a problemas comunes que surgen durante 

la fase de diseño y arquitectura de componentes. Estos patrones 



23 

 

encapsulan las mejores prácticas y lecciones aprendidas por 

expertos a lo largo del tiempo, ofreciendo a los diseñadores y 

desarrolladores una guía estructurada para enfrentar desafíos 

específicos sin reinventar la rueda en cada proyecto [23]. Los 

patrones de diseño no son implementaciones concretas, sino 

esquemas que pueden ser adaptados y personalizados según el 

contexto de cada sistema. Su objetivo principal es mejorar la 

eficiencia del diseño, la reutilización de soluciones y la 

comunicación entre los equipos de desarrollo al proporcionar un 

lenguaje común.  

El uso de los patrones de diseño es especialmente valioso cuando 

se trata de abordar problemas de diseño recurrentes, como la 

administración de dependencias, la flexibilidad en la creación de 

objetos o la gestión de interacciones complejas entre 

componentes. Los patrones de diseño normalmente se plasman 

en una arquitectura de software en los diagramas de clase, 

mediante alguna de las herramientas de modelado ya revisadas. 

Aunque los patrones de diseño proporcionan soluciones valiosas, 

es fundamental entender que no son recetas universales. La 

correcta aplicación de un patrón depende del contexto y las 

necesidades específicas del sistema en desarrollo [26]. Un uso 

inapropiado o forzado de patrones puede introducir complejidad 

innecesaria y generar más problemas que beneficios. Por lo tanto, 

su implementación debe ser cuidadosa y reflexiva, alineándose 

con los principios de diseño que rigen la arquitectura del sistema. 

Cada patrón de diseño responde a un tipo específico de problema 

y se clasifica según la naturaleza de la solución que ofrece. A 

continuación, se da una breve descripción de los patrones que 

son más utilizados en nuestro día a día, agrupados según su 

clasificación. Se deja fuera de este listado a aquellos patrones 



24 

 

para los cuales, las herramientas de desarrollo actuales ya 

brindan implementaciones rápidas, como por ejemplo los 

patrones builder, singleton, etc.: 

2.2.3.1 Patrones creacionales 

Tratan sobre la forma en que los objetos son creados y 

gestionados. A continuación, nombramos algunos de 

ellos: 

2.2.3.1.1 Factory Method 
Este patrón define una interfaz para crear 

objetos en una clase base, pero permite que 

las subclases alteren el tipo de objeto que se 

creará. En lugar de instanciar directamente 

los objetos, el patrón delega la 

responsabilidad de la creación a las 

subclases, promoviendo el principio de 

responsabilidad única y la separación de la 

lógica de creación de la lógica de negocio. 

Este enfoque permite que las clases base no 

estén acopladas a clases específicas de 

productos, facilitando la adición de nuevas 

variantes de productos sin cambiar el código 

que utiliza esas clases [23].  

2.2.3.1.2 Abstract Factory 
Este patrón va un paso más allá del Factory 

Method y se utiliza cuando es necesario crear 

familias de objetos relacionados o 

dependientes sin especificar sus clases 

concretas. A través de una interfaz común, el 

patrón permite que un conjunto de objetos (o 

productos) se creen de manera conjunta, 



25 

 

asegurando que todos pertenezcan a la 

misma familia o contexto de creación. El 

objetivo es proporcionar una solución que 

permita crear varios objetos que deben ser 

compatibles entre sí, sin que el código que los 

utiliza tenga conocimiento de sus clases 

concretas [23]. 

2.2.3.2 Patrones estructurales 

Se centran en la composición y relación entre objetos y 

clases. A continuación, se nombra algunos de ellos: 

2.2.3.2.1 Adapter 
Este patrón actúa como un intermediario que 

permite que clases con interfaces 

incompatibles trabajen juntas. Su principal 

función es traducir la interfaz de una clase 

existente para que otra clase pueda utilizarla 

sin necesidad de modificar su código. Es 

comúnmente utilizado cuando se quiere 

integrar una nueva clase en un sistema 

existente sin alterar la estructura de este 

último. El adaptador convierte las llamadas de 

métodos esperadas por el cliente en las 

llamadas equivalentes a los métodos de la 

clase que necesita ser adaptada, 

garantizando que ambas partes puedan 

interactuar de manera armoniosa [23]. 

2.2.3.2.2 Bridge 
Este patrón separa la abstracción de la 

implementación, permitiendo que ambas 

evolucionen de manera independiente. En 



26 

 

lugar de acoplar fuertemente la abstracción a 

su implementación, el patrón Bridge utiliza 

una composición para mantener la 

independencia entre estas dos capas. Esto es 

útil cuando se espera que un sistema crezca 

con múltiples variantes de abstracción e 

implementación, ya que cada una puede 

modificarse sin afectar la otra [23]. 

2.2.3.2.3 Decorator 
Este patrón permite añadir responsabilidades 

adicionales a un objeto de manera dinámica, 

sin alterar su estructura original. A diferencia 

de la herencia, que añade funcionalidad en 

tiempo de diseño, el Decorador lo hace en 

tiempo de ejecución. Cada decorador 

"envuelve" al objeto original y extiende su 

comportamiento, proporcionando una 

alternativa flexible a la subclasificación para 

añadir funcionalidades incrementales [23]. 

2.2.3.2.4 Facade 
Este patrón proporciona una interfaz 

simplificada y unificada para un conjunto de 

interfaces en un subsistema complejo. El 

objetivo de la fachada es ocultar la 

complejidad del subsistema, proporcionando 

un punto de acceso único que es fácil de usar 

y entender. Aunque el sistema subyacente 

puede tener muchas funcionalidades, el 

patrón Facade expone solo las más 



27 

 

relevantes para el usuario final, facilitando su 

uso [23]. 

2.2.3.2.5 Proxy 
Este patrón actúa como un sustituto o 

intermediario de otro objeto, controlando el 

acceso a este. El proxy puede proporcionar 

funcionalidad adicional, como control de 

acceso, carga diferida o gestión de recursos, 

sin modificar el objeto original. Existen varios 

tipos de proxy, como el proxy remoto, que 

representa a un objeto ubicado en otra 

máquina, o el proxy virtual, que retrasa la 

creación de un objeto pesado hasta que 

realmente sea necesario [23]. 

2.2.3.3 Patrones de comportamiento 

Abordan la interacción y responsabilidad entre los 

objetos. Estas categorías permiten organizar y aplicar 

los patrones de manera sistemática, ayudando a los 

arquitectos de software a identificar rápidamente el 

enfoque adecuado para un problema concreto. A 

continuación, se nombra algunos de ellos: 

2.2.3.3.1 Strategy 
Este patrón permite definir una familia de 

algoritmos, encapsular cada uno de ellos y 

hacer que sean intercambiables. A través de 

este patrón, el comportamiento de un objeto 

puede variar según el algoritmo que se utilice, 

sin modificar su estructura. El patrón Strategy 

se aplica cuando existen varias formas de 

realizar una tarea y el cliente necesita 



28 

 

seleccionar entre ellas de manera dinámica 

[23]. Este patrón normalmente trabaja de la 

mano con algún patrón de factoría para 

obtener la estrategia a utilizar. 

2.2.3.3.2 Template Method 
Este patrón define la estructura básica de un 

algoritmo en una clase abstracta, permitiendo 

que las subclases implementen o modifiquen 

ciertos pasos específicos del proceso sin 

cambiar la estructura general del algoritmo. 

Este patrón permite reutilizar el código común 

para todos los algoritmos, dejando que las 

subclases personalicen las partes que varían 

[23]. 

2.2.3.3.3 Mediator 
Este patrón centraliza la comunicación entre 

los objetos en un sistema, evitando que los 

objetos se comuniquen directamente entre sí. 

En lugar de tener interacciones complejas y 

dependencias entre varios componentes, 

cada uno de ellos se comunica a través de un 

mediador. Esto reduce el acoplamiento entre 

las clases y simplifica el mantenimiento y la 

evolución del sistema. El mediador conoce 

las interacciones que deben ocurrir entre los 

objetos y coordina esas interacciones de 

manera eficiente [23]. 

2.2.3.3.4 Chain of Responsability   
Este patrón permite pasar una solicitud a 

través de una cadena de manejadores 

potenciales hasta que uno de ellos se haga 



29 

 

cargo de procesarla. Cada manejador en la 

cadena decide si puede procesar la solicitud 

o si la pasa al siguiente manejador. Este 

patrón desacopla al remitente de la solicitud 

de su receptor, permitiendo que más de un 

objeto tenga la oportunidad de procesarla. 

También facilita la adición o modificación de 

los manejadores sin afectar a los demás [23]. 

 

2.2.4 Patrones de arquitectura 

Los patrones de arquitectura son soluciones generales y 

repetibles para problemas comunes que surgen al diseñar la 

estructura global de un sistema de software. A diferencia de los 

patrones de diseño, que abordan problemas más específicos a 

nivel de clase o componente, los patrones de arquitectura 

proporcionan un marco para la organización de sistemas 

completos. Su objetivo es garantizar que el software sea 

escalable, mantenible y flexible frente a los cambios y que pueda 

cumplir con los requisitos técnicos y de negocio de manera 

eficiente. 

Estos patrones establecen una guía clara sobre cómo deben 

organizarse y relacionarse los diferentes componentes de un 

sistema, facilitando la toma de decisiones arquitectónicas que 

conduzcan al éxito del proyecto. A continuación, se describen 

algunos de los patrones de arquitectura más utilizados y 

relevantes en el desarrollo de sistemas de software modernos: 

2.2.4.1 Arquitectura en capas 

Es uno de los patrones más tradicionales y utilizados. En 

este patrón, el sistema se divide en capas jerárquicas, 

donde cada una de ellas tiene una responsabilidad 



30 

 

claramente definida. Las capas más comunes incluyen 

la capa de presentación (interfaz de usuario), la capa de 

negocio (lógica de la aplicación), la capa de acceso a 

datos y la capa de almacenamiento de datos. Cada capa 

interactúa únicamente con la capa inmediatamente 

inferior, lo que permite una mayor modularidad y 

separación de responsabilidades [27].      

2.2.4.2  Arquitectura hexagonal 

Este patrón de arquitectura, propuesto por Alistair 

Cockburn, busca resolver algunos de los problemas de 

acoplamiento que existen en patrones más 

tradicionales, como la arquitectura en capas. En lugar de 

depender fuertemente de las capas internas y externas, 

la arquitectura hexagonal organiza el sistema en torno a 

una unidad central (el dominio de la aplicación) rodeada 

de puertos y adaptadores. Los puertos son interfaces 

que definen cómo interactuar con la aplicación, mientras 

que los adaptadores son implementaciones concretas 

que se conectan a estos puertos. Este enfoque 

desacopla completamente el núcleo del negocio de las 

capas externas, como la base de datos o las interfaces 

de usuario, lo que hace que el sistema sea más flexible 

y adaptable. 

Uno de los beneficios clave de la arquitectura hexagonal 

es que facilita las pruebas y la evolución del sistema. 

Dado que las dependencias de la aplicación (como la 

infraestructura o las interfaces de usuario) están 

aisladas a través de adaptadores, es mucho más 

sencillo reemplazar o modificar partes del sistema sin 

afectar al núcleo de la aplicación [28]. 



31 

 

2.2.4.3 Arquitectura de tuberías y filtros 

En este tipo de arquitectura, el procesamiento de datos 

se descompone en una secuencia de pasos 

independientes (filtros), cada uno de los cuales realiza 

una transformación sobre los datos. Los filtros están 

conectados mediante canales (tuberías) que transportan 

los datos de un paso a otro. Este patrón es 

especialmente útil en sistemas que requieren un 

procesamiento de datos continuo, como en los flujos de 

datos en tiempo real o los sistemas de compilación [29].             

2.2.4.4 Arquitectura orientada a eventos 

Este es un patrón de arquitectura en el que los 

componentes del sistema se comunican entre sí 

mediante la emisión y recepción de eventos. En lugar de 

estar directamente acoplados, los componentes 

reaccionan a eventos emitidos por otros sin depender de 

su estado o ejecución. Este enfoque es útil para 

sistemas que requieren un alto grado de 

desacoplamiento y reactividad, como aplicaciones de 

tiempo real, comercio electrónico o sistemas de 

monitoreo [30].             

2.2.4.5 Arquitectura de microservicios 

Este patrón es un enfoque moderno que promueve la 

construcción de aplicaciones a partir de servicios 

pequeños y autónomos, cada uno centrado en una 

funcionalidad específica del negocio. Estos servicios 

están desacoplados y pueden desarrollarse, 

implementarse y escalarse de manera independiente. 

Cada microservicio se comunica con los demás a través 

de interfaces bien definidas, como Apis REST o 



32 

 

mensajería, lo que permite una mayor flexibilidad y 

escalabilidad horizontal. Como pueden observar este 

patrón hace uso de varias de las bondades de los 

anteriores patrones [31]. 

2.2.4.6 Arquitectura monolítica modular 

Esta arquitectura es un enfoque en el que un sistema se 

desarrolla como una única aplicación, pero internamente 

está organizado en módulos independientes que 

encapsulan diferentes funcionalidades. A diferencia del 

monolito tradicional, donde todos los componentes 

están estrechamente acoplados y cualquier cambio en 

una parte del sistema puede afectar a otras, en el 

monolito modular los módulos están bien delimitados y 

se comunican entre sí a través de interfaces claras y 

desacopladas, como si fueran pequeños servicios 

dentro de un mismo monolito. 

Este enfoque permite organizar el sistema de forma 

modular sin la complejidad inherente a los 

microservicios, donde cada módulo es independiente 

pero no necesita desplegarse ni gestionarse como un 

servicio separado. Pero al mismo tiempo su estructura 

brinda la posibilidad de migrar con relativa facilidad, 

cada módulo a un microservicio si fuese necesario [32]-

[33].       

              

2.2.5 Diseño y documentación de la arquitectura 

El diseño y la documentación de la arquitectura de software son 

aspectos fundamentales en la construcción de sistemas 

complejos. Un buen diseño arquitectónico garantiza que el 

sistema sea escalable, mantenible y adaptable a los cambios 



33 

 

futuros, mientras que la documentación proporciona una guía 

clara para los desarrolladores y otros stakeholders sobre cómo 

está estructurado el sistema, sus componentes y cómo 

interactúan entre sí [21]. 

Uno de los principales desafíos en la documentación 

arquitectónica es encontrar un equilibrio entre la complejidad y la 

claridad. Si la documentación es demasiado abstracta, podría 

resultar poco útil para los desarrolladores; por otro lado, si es 

demasiado detallada, puede ser difícil de mantener y navegar. En 

este contexto, el modelo C4 se ha convertido en una herramienta 

poderosa y ampliamente adoptada para abordar estos problemas, 

proporcionando un enfoque estructurado y claro para la 

documentación de la arquitectura. 

 

2.2.5.1 Modelo C4 

El modelo C4, creado por Simon Brown, es una técnica 

para describir la arquitectura de software utilizando 

diferentes niveles de abstracción. Su nombre hace 

referencia a las cuatro capas o vistas que utiliza para 

representar el sistema de forma progresivamente más 

detallada: Contexto, Contenedores, Componentes y 

Código (Clases). El propósito principal de C4 es 

proporcionar un enfoque escalonado que facilite la 

comprensión tanto del panorama general del sistema 

como de los detalles técnicos específicos cuando sea 

necesario [34]. El modelo C4 está constituido por 4 

vistas principales, las cuales se detallan a continuación: 

• Diagrama de contexto 

Es la vista más alta de la arquitectura. Muestra el 

sistema en su conjunto y cómo interactúa con su 



34 

 

entorno, como otros sistemas o actores externos 

(usuarios, clientes, etc.). Esta vista es útil para 

comunicar a los stakeholders no técnicos, la 

funcionalidad del sistema y cómo se conecta con 

otras partes del ecosistema tecnológico. 

Por ejemplo, en una aplicación web, el diagrama de 

contexto podría mostrar cómo interactúan los 

usuarios con el sistema, los sistemas de 

autenticación de terceros y los servicios de datos 

externos [11]. 

• Diagrama de contenedores 

Descompone el sistema en diferentes contenedores 

de software, como aplicaciones web, bases de datos, 

servicios Backend, etc. Este nivel permite ver los 

componentes principales del sistema y cómo 

interactúan entre sí a través de protocolos o Apis. 

Esta vista es particularmente útil para arquitectos y 

desarrolladores que necesitan entender la estructura 

del sistema y cómo se distribuyen las 

responsabilidades entre diferentes contenedores de 

software [11]. 

• Diagrama de componentes 

Se adentra en un nivel más profundo, mostrando los 

componentes individuales dentro de cada 

contenedor. Los componentes representan unidades 

funcionales más pequeñas dentro del sistema, como 

módulos o servicios que cumplen con una tarea 

específica dentro del contenedor [11]. 

Este nivel es crucial para los equipos de desarrollo, 

ya que describe cómo están organizadas las 



35 

 

funcionalidades internas y cómo los componentes 

interactúan entre sí dentro de un contenedor. 

• Diagrama de código (o clases) 

Es el más detallado y muestra la implementación de 

un componente específico en términos de clases o 

estructuras de código. Aunque no siempre es 

necesario documentar a este nivel, puede ser útil 

para describir las interacciones dentro de 

componentes críticos o altamente complejos [11]. 

Este nivel suele ser más dinámico, ya que el código 

cambia con más frecuencia que el diseño de alto 

nivel. Es importante mantener esta vista sincronizada 

con el estado actual del código base si se decide 

utilizarla. 

 

2.2.5.2 Ventajas del Modelo C4 

El modelo C4 presenta varias ventajas que lo hacen 

particularmente útil en el diseño y documentación de 

arquitecturas [34]: 

• Claridad y Simplicidad 

Cada nivel del modelo C4 está diseñado para ser lo 

suficientemente claro como para que cualquier 

stakeholder pueda entender el sistema desde su 

respectiva perspectiva. Los niveles de abstracción 

aseguran que tanto los desarrolladores como los 

stakeholders no técnicos tengan la información que 

necesitan. 

• Flexibilidad y Escalabilidad 

C4 permite comenzar desde una vista general y 

luego profundizar en detalles técnicos específicos 



36 

 

cuando sea necesario. Esto facilita la escalabilidad 

del diseño, ya que los arquitectos pueden añadir 

nuevos componentes o contenedores sin perder de 

vista el panorama general del sistema. 

• Documentación Evolutiva 

A medida que el sistema evoluciona, el modelo C4 

facilita la actualización de la documentación sin 

necesidad de rediseñar todo el sistema. Los cambios 

se pueden reflejar solo en el nivel correspondiente, lo 

que hace que la documentación sea más fácil de 

mantener. 

• Comunicación Efectiva 

Al proporcionar diferentes vistas de la arquitectura, el 

modelo C4 facilita la comunicación entre equipos 

multifuncionales. Los ejecutivos pueden comprender 

el contexto general del sistema, mientras que los 

desarrolladores tienen acceso a detalles más 

profundos sobre los componentes y el código. 

 

2.2.5.3 Consideraciones en la Aplicación del Modelo C4 

Si bien el modelo C4 proporciona una estructura clara 

para la documentación de la arquitectura, su aplicación 

efectiva requiere ciertas consideraciones [34]: 

• Mantener la Documentación Actualizada 

Dado que la documentación arquitectónica tiende a 

volverse obsoleta si no se actualiza regularmente, es 

importante integrar la actualización de los diagramas 

C4 en el ciclo de vida del proyecto, especialmente 

cuando hay cambios importantes en el diseño o la 

implementación. 



37 

 

• Adaptación al Contexto 

El modelo C4 es flexible, pero es importante adaptar 

el nivel de detalle según el tamaño y la complejidad 

del sistema. En sistemas pequeños, puede que no 

sea necesario llegar hasta el nivel de clases, 

mientras que, en sistemas grandes y complejos, este 

nivel puede ser crucial. 

 

2.3 Prototipos de software 

2.3.1 Introducción a los prototipos de software 

El prototipado de software es una técnica que permite el desarrollo 

de modelos preliminares o versiones simplificadas de un sistema 

antes de su implementación completa. Estos prototipos ayudan a 

los equipos de desarrollo a obtener una visión clara y 

comprensible del producto final, al tiempo que permiten la 

interacción con los usuarios desde etapas tempranas. Mediante 

la creación de versiones que reflejan características clave o flujos 

de trabajo esenciales, los prototipos facilitan la validación de 

requisitos y la identificación de mejoras o ajustes necesarios, 

antes de incurrir en los costos y esfuerzos asociados a la 

implementación total del sistema [35]. 

El uso del prototipado en software ha ganado relevancia en 

metodologías ágiles y en entornos donde la adaptabilidad y la 

retroalimentación continua son esenciales para el éxito del 

proyecto. Los prototipos no solo ayudan a los desarrolladores y 

diseñadores a visualizar la funcionalidad propuesta, sino que 

también permiten a los usuarios y stakeholders participar 

activamente en la validación y refinamiento de las funcionalidades 

y la experiencia de usuario [36]. 



38 

 

 

2.3.2 Importancia de prototipado en un proyecto de software 

El prototipado es una fase crucial en el ciclo de vida del desarrollo 

de software, ya que proporciona una forma tangible de 

representar una solución antes de que se realice la 

implementación completa. Este enfoque permite que los 

desarrolladores, clientes y usuarios finales interactúen con una 

versión preliminar del producto, lo que facilita la validación 

temprana de requisitos y expectativas. De esta manera, los 

prototipos actúan como un puente entre la conceptualización 

abstracta y la ejecución práctica del sistema, ofreciendo una 

visión más clara de cómo funcionará el software una vez finalizado 

[35]. 

Uno de los principales beneficios del prototipado es que reduce el 

riesgo de malentendidos o interpretaciones erróneas entre los 

diferentes actores involucrados en el proyecto. Al ofrecer una 

representación visual y, en algunos casos, interactiva de las 

funcionalidades principales, los usuarios pueden identificar 

problemas o discrepancias antes de que el software esté 

completamente desarrollado. Esto contribuye a que se realicen 

ajustes y mejoras en las primeras fases, lo que disminuye el costo 

de rectificar errores en etapas avanzadas del desarrollo [35]. 

Además, el prototipado permite una retroalimentación continua 

por parte de los usuarios y clientes, lo que es especialmente 

valioso en entornos donde los requisitos pueden cambiar o 

evolucionar rápidamente.  

El valor del prototipado también radica en su capacidad para 

facilitar una mejor planificación del proyecto. Al identificar las 

posibles dificultades técnicas, de diseño o de experiencia de 

usuario a través de la creación de prototipos, los equipos de 



39 

 

desarrollo pueden anticiparse a problemas y ajustar la 

planificación del proyecto en consecuencia. Esto reduce los 

riesgos y mejora la estimación de tiempos y recursos [35]. 

Por último, el prototipado promueve la creatividad y la innovación. 

Dado que los equipos tienen la libertad de explorar diferentes 

enfoques y soluciones sin el compromiso inmediato de 

implementar un producto final, pueden probar ideas nuevas y 

realizar cambios iterativos sin consecuencias significativas en el 

presupuesto o en el cronograma [37]. 

 

2.3.3 Tipos de prototipos de software 

En el desarrollo de software, existen diferentes tipos de prototipos 

que pueden ser utilizados en función de los objetivos del proyecto, 

el presupuesto y el nivel de detalle necesario. Los prototipos de 

software se clasifican en varias categorías, que van desde 

representaciones básicas hasta simulaciones funcionales 

avanzadas, cada una con sus propios beneficios y aplicaciones. 

A continuación, detallamos tres de los tipos de prototipo más 

utilizados en nuestro contexto: 

 

2.3.3.1 Prototipos de Baja Fidelidad: 

Los prototipos de baja fidelidad son representaciones 

simplificadas y rápidas del sistema, a menudo en forma 

de bocetos o wireframes. Estos prototipos no suelen 

incluir funcionalidad interactiva ni detalles de diseño, 

pero permiten una visualización inicial de la estructura y 

el flujo de trabajo del software. Son muy útiles para 

obtener retroalimentación temprana de los usuarios 

sobre la interfaz y la disposición de los elementos, sin 

invertir grandes recursos en su creación [37]. 



40 

 

Herramientas como Balsamiq y Figma permiten crear 

rápidamente estos prototipos. 

 

2.3.3.2 Prototipos de Alta Fidelidad: 

A diferencia de los de baja fidelidad, los prototipos de 

alta fidelidad se asemejan más al producto final tanto en 

funcionalidad como en diseño. Estos modelos pueden 

incluir interacciones, navegabilidad y elementos gráficos 

detallados, lo que facilita una comprensión más precisa 

del comportamiento del sistema. Se utilizan 

principalmente cuando es necesario validar aspectos 

específicos como la experiencia de usuario o el diseño 

visual [37]. Herramientas como Adobe XD, InVision, y 

Axure son frecuentemente empleadas para este tipo de 

prototipos. 

 

2.3.3.3 Prototipos Funcionales: 

En este tipo de prototipo, se desarrollan versiones que 

no solo incluyen el diseño, sino también partes del 

código funcional del software. Estos prototipos permiten 

a los equipos de desarrollo y a los usuarios probar 

características clave del sistema en un entorno realista, 

incluyendo interacciones, conectividad y desempeño. 

Son particularmente útiles cuando es necesario validar 

requisitos técnicos o de rendimiento antes de pasar a 

una implementación completa [38]. 

 

Cada uno de estos tipos de prototipos tiene un propósito 

específico en el ciclo de desarrollo del software, y la elección del 

tipo adecuado depende de las necesidades del proyecto, el grado 



41 

 

de incertidumbre en los requisitos, y el nivel de detalle requerido 

por los stakeholders. 

 

 

2.3.4 Herramientas y tecnologías de desarrollo 

En el proceso de desarrollo de software, las herramientas 

utilizadas son fundamentales para facilitar el trabajo de los 

equipos, mejorar la productividad y garantizar la calidad del 

producto final. Estas herramientas abarcan una amplia gama de 

funciones, desde la gestión de versiones del código hasta el 

diseño de interfaces y la automatización de pruebas. A 

continuación, se describen las herramientas seleccionadas para 

la elaboración del prototipo funcional de este proyecto: 

 

2.3.4.1 Java 

Es un lenguaje de programación versátil y orientado a 

objetos, desarrollado por Sun Microsystems en 1995 y 

actualmente mantenido por Oracle. Su principal ventaja 

es el concepto de "escribir una vez, ejecutar en cualquier 

lugar", lo que permite que el código escrito en Java 

funcione en cualquier plataforma que tenga una 

Máquina Virtual de Java (JVM). Su manejo automático 

de memoria y estructura modular lo hacen adecuado 

para una amplia variedad de aplicaciones, desde 

sistemas empresariales y servidores Backend hasta 

aplicaciones móviles [39]. 

Java también cuenta con un extenso ecosistema de 

bibliotecas y frameworks, como Spring e Hibernate, que 

simplifican el desarrollo de aplicaciones robustas y 

escalables. Su popularidad se debe no solo a su 



42 

 

rendimiento en entornos empresariales, sino también a 

su gran comunidad de desarrolladores y la abundancia 

de recursos literarios. 

 

2.3.4.2 Springboot 

Es un marco de trabajo basado en Spring que facilita el 

desarrollo de aplicaciones Java mediante la 

simplificación de la configuración y la infraestructura. 

Diseñado para crear aplicaciones listas para producción 

de manera rápida, Spring Boot elimina la necesidad de 

configuraciones manuales complejas al ofrecer 

configuraciones automáticas y una amplia gama de 

dependencias preconfiguradas. Esto permite a los 

desarrolladores centrarse en la lógica de negocio en 

lugar de en la configuración del entorno. Además, Spring 

Boot incluye un servidor embebido (como Tomcat), lo 

que permite ejecutar aplicaciones directamente sin 

necesidad de configuraciones adicionales [40]. 

Gracias a su capacidad de integración con otros 

proyectos de Spring, como Spring Data, Spring Security, 

y Spring Modulith, SpringBoot es ideal para crear 

aplicaciones empresariales escalables, microservicios y 

hasta monolitos modulares. Su popularidad radica en su 

enfoque pragmático y su extensa documentación oficial 

[40]. 

 

2.3.4.3 Intellij Idea Comunity Edition 

Es una versión gratuita y de código abierto del entorno 

de desarrollo integrado (IDE) IntelliJ IDEA, desarrollado 

por JetBrains. Está diseñado para facilitar el desarrollo 



43 

 

de aplicaciones en varios lenguajes, especialmente Java 

y Kotlin, y proporciona un conjunto completo de 

herramientas que incluyen soporte para sistemas de 

control de versiones como Git, integración con Maven y 

Gradle, y funcionalidades de depuración avanzadas. 

Aunque no incluye características empresariales 

avanzadas disponibles en la versión Ultimate, la 

Community Edition es una excelente opción para 

desarrolladores que trabajan en proyectos de código 

abierto o desarrollo de aplicaciones estándar. Este IDE 

destaca por su interfaz intuitiva y sus potentes 

capacidades de autocompletado y refactorización de 

código, que aceleran significativamente el flujo de 

trabajo de los programadores [41]. 

 

2.3.4.4 Angular 

Es un marco de trabajo de código abierto desarrollado 

por Google, diseñado para la creación de aplicaciones 

web de una sola página (SPA, por sus siglas en inglés) 

de alta calidad. Está construido sobre TypeScript, un 

superconjunto de JavaScript que añade tipado estático 

y otras características avanzadas, lo que mejora la 

escalabilidad y el mantenimiento de las aplicaciones. 

Gracias a TypeScript, los desarrolladores pueden 

detectar errores en tiempo de compilación, lo que mejora 

la calidad del código y reduce problemas en etapas 

posteriores. 

Angular permite a los desarrolladores construir 

interfaces de usuario dinámicas y ricas en 

funcionalidades al proporcionar herramientas para la 



44 

 

vinculación de datos bidireccional, inyección de 

dependencias y gestión eficiente de componentes. Una 

de sus características más destacadas es su enfoque en 

el desarrollo modular, lo que permite dividir las 

aplicaciones en piezas reutilizables, facilitando su 

mantenimiento y escalabilidad. 

Este framework es ampliamente utilizado por su 

capacidad para integrar funciones avanzadas como 

enrutamiento, formularios reactivos y manejo de 

estados. Además, Angular cuenta con una comunidad 

activa y una extensa documentación oficial que facilita el 

aprendizaje y la implementación [42]. 

 

2.3.4.5 Visual Studio Code 

Es un editor de código fuente, gratuito y de código 

abierto, desarrollado por Microsoft. Popular por su 

ligereza y versatilidad, está diseñado para soportar una 

amplia variedad de lenguajes de programación como 

JavaScript, Python, Java, C++, y muchos más. VS Code 

se destaca por su entorno altamente personalizable, 

gracias a su vasta biblioteca de extensiones que 

permiten agregar características adicionales como 

depuración, control de versiones con Git, y soporte para 

frameworks específicos como Node.js o React. 

Su interfaz amigable y la integración de herramientas 

avanzadas, como IntelliSense (autocompletado 

inteligente de código) y el terminal integrado, hacen que 

sea una excelente opción para los desarrolladores. 

Además, su comunidad activa y la abundancia de 

recursos lo hacen accesible para todos [43]. 



45 

 

 

2.3.4.6 Python 

Es un lenguaje de programación conocido por su 

simplicidad y legibilidad, lo que lo convierte en una 

opción ideal tanto para principiantes como para 

desarrolladores experimentados. Creado por Guido van 

Rossum en 1991, Python se caracteriza por una sintaxis 

clara y fácil de aprender, que permite a los 

programadores enfocarse más en resolver problemas 

que en la complejidad del lenguaje en sí. Gracias a su 

versatilidad, Python es utilizado en una amplia gama de 

aplicaciones, desde desarrollo web hasta análisis de 

datos, inteligencia artificial y automatización de tareas. 

Una de las mayores fortalezas de Python es su 

comunidad activa y el extenso ecosistema de bibliotecas 

y herramientas disponibles. Esto facilita el desarrollo 

rápido de soluciones en campos como la ciencia de 

datos o el aprendizaje automático [44]. 

 

2.3.4.7 PyCharm Community Edition 

Es una versión gratuita y de código abierto del entorno 

de desarrollo integrado (IDE) PyCharm, creado por 

JetBrains. Esta edición está diseñada especialmente 

para programadores que trabajan con Python y ofrece 

muchas de las características esenciales que hacen que 

PyCharm sea tan popular, como la edición inteligente de 

código, autocompletado, depuración y soporte para 

pruebas unitarias. Aunque carece de algunas de las 

herramientas avanzadas de la versión profesional, sigue 



46 

 

siendo una opción potente para aquellos que buscan un 

IDE confiable para proyectos en Python. 

Lo que hace a PyCharm Community Edition tan atractivo 

es su facilidad de uso y su integración con herramientas 

como Git para el control de versiones, así como con 

entornos virtuales para gestionar dependencias. Para la 

elaboración de un prototipo esta edición gratuita cubre la 

mayoría de las necesidades del desarrollo Python. La 

documentación oficial y una comunidad activa hacen 

que sea fácil encontrar soluciones a problemas comunes 

[45]. 

 

2.3.4.8 Milvus DB  

Es una base de datos de código abierto diseñada 

específicamente para la gestión y búsqueda de datos 

vectoriales, lo que la convierte en una herramienta clave 

en proyectos de inteligencia artificial y machine learning. 

Desarrollada por Zilliz, Milvus se destaca por su 

capacidad para manejar grandes volúmenes de datos no 

estructurados, como imágenes, videos y textos 

convertidos en representaciones vectoriales. Esta base 

de datos está optimizada para búsquedas rápidas y 

eficientes en datos de alta dimensionalidad, lo que la 

hace ideal para aplicaciones como el reconocimiento 

facial, la búsqueda de similitudes o el análisis de datos 

complejos. 

Uno de los puntos fuertes de Milvus es su escalabilidad 

y su capacidad para integrarse con otras herramientas y 

frameworks de aprendizaje automático. Esto permite a 

los desarrolladores crear aplicaciones que involucren 



47 

 

búsqueda vectorial y procesamiento de grandes 

cantidades de datos sin preocuparse por el rendimiento. 

Milvus cuenta con una comunidad activa y una 

documentación detallada que facilita su implementación 

[46]. 

 

2.4 Grandes modelos de lenguaje 

2.4.1 Introducción a los grandes modelos de lenguaje 

Los Grandes Modelos de Lenguaje (LLMs) han revolucionado el 

campo de la inteligencia artificial al permitir la comprensión y 

generación de texto de manera natural y fluida. Estos modelos, 

como el GPT desarrollado por OpenAI, se basan en arquitecturas 

de redes neuronales profundas y se entrenan con enormes 

volúmenes de datos textuales [47]. Esto les permite captar 

patrones lingüísticos complejos, lo que los hace útiles en tareas 

como la traducción, la redacción de contenido y la generación de 

código. Uno de los avances clave que ha hecho posible el 

desarrollo de LLMs es la arquitectura de transformadores, 

presentada por Vaswani en 2017, que optimiza el procesamiento 

del lenguaje natural al manejar dependencias contextuales en 

secuencias largas de texto [48]. 

Los transformers son una arquitectura de redes neuronales que 

emplea un mecanismo de atención, lo que les permite enfocarse 

en diferentes partes de una oración o texto según la necesidad 

contextual. Este mecanismo de "autoatención" es fundamental 

para que los LLMs comprendan relaciones complejas entre 

palabras, frases y oraciones completas, lo que incrementa la 

capacidad del modelo para generar respuestas coherentes y 

contextualmente relevantes [48]. Antes de los transformers, las 



48 

 

arquitecturas de redes neuronales tradicionales presentaban 

limitaciones para procesar grandes secuencias de texto de 

manera eficiente. Gracias a los transformers, los modelos como 

GPT-3 y GPT-4 pueden procesar cantidades masivas de datos en 

paralelo, acelerando el aprendizaje y mejorando la calidad de las 

predicciones [49]. 

El entrenamiento de los LLMs sigue un enfoque de 

preentrenamiento y ajuste fino. Inicialmente, los modelos son 

expuestos a grandes corpus de datos no supervisados, donde 

aprenden patrones generales del lenguaje. Luego, se ajustan con 

tareas específicas para mejorar su rendimiento en actividades 

concretas, como la clasificación de texto o la respuesta a 

preguntas. Esta combinación de preentrenamiento y ajuste fino 

convierte a los LLMs en herramientas versátiles en áreas como la 

automatización de tareas, los asistentes virtuales y el análisis 

avanzado de datos, permitiendo aplicaciones que antes requerían 

mucha intervención humana [47]. 

Los LLMs, impulsados por la arquitectura de transformers, están 

siendo adoptados en muchos sectores, incluyendo salud, 

educación y software, y su impacto sigue en expansión. 

 

2.4.2 Arquitectura de los grandes modelos de lenguaje 

La arquitectura de los Grandes Modelos de Lenguaje (LLMs) se 

basa principalmente en los transformers, una innovación clave 

que ha permitido a estos modelos manejar grandes cantidades de 

texto y producir resultados coherentes.  Los transformers utilizan 

un mecanismo llamado "autoatención", que permite al modelo 

enfocarse en distintas partes de una secuencia de texto según el 

contexto. A diferencia de los modelos previos, como las redes 

neuronales recurrentes (RNN) o convolucionales (CNN), los 



49 

 

transformers pueden procesar grandes secuencias de datos de 

forma paralela, lo que aumenta su eficiencia y rendimiento, 

especialmente cuando se trabaja con cantidades masivas de 

datos [48]. 

El mecanismo de autoatención es el corazón de los transformers. 

Este proceso permite que el modelo asigne un peso diferente a 

cada palabra de la secuencia, dependiendo de su relevancia con 

respecto a otras palabras. Así, el modelo no solo "recuerda" las 

palabras recientes, sino que también puede relacionar términos 

que están distantes en una oración o un párrafo [48]. Esta 

capacidad de capturar dependencias a largo plazo es esencial 

para generar texto que sea coherente y relevante en contextos 

complejos, lo que le da a los LLMs una ventaja significativa en 

tareas como la traducción automática, la generación de 

resúmenes y la creación de respuestas a preguntas. 

En la práctica, la arquitectura de los transformers se compone de 

capas de codificadores y decodificadores, donde el codificador 

procesa la entrada inicial y el decodificador genera la salida [48]. 

Estos modelos se entrenan a través de técnicas como el 

preentrenamiento, que los expone a grandes corpus de texto sin 

necesidad de etiquetas, seguido del ajuste fino para tareas 

específicas. Durante este proceso, los transformers aprenden a 

predecir la siguiente palabra en una secuencia basándose en el 

contexto, lo que les permite adaptarse a una variedad de 

aplicaciones del lenguaje natural. 



50 

 

 

Figura  II.2: Arquitectura Transformer 

Fuente: [48] 
 



51 

 

En la figura 2.2, se puede apreciar la arquitectura Transformer 

propuesta por Vaswani en su publicación “Attention is all you 

need” en 2017.  

 

2.4.3 Valor de los grandes modelos de lenguaje 

El valor de los Grandes Modelos de Lenguaje (LLMs) radica en su 

capacidad para transformar la manera en que interactuamos con 

la información, facilitando procesos complejos que antes 

requerían una considerable intervención humana. Uno de sus 

principales aportes es la habilidad de generar y comprender 

lenguaje natural de manera fluida, lo que permite automatizar 

tareas como la redacción de textos, la traducción entre idiomas y 

la generación de resúmenes. Esto ha permitido a las 

organizaciones y empresas aumentar su eficiencia al reducir el 

tiempo y los recursos necesarios para producir contenido y 

procesar grandes volúmenes de información. 

Los LLMs también aportan un valor significativo en áreas como la 

atención al cliente, la creación de contenido personalizado y la 

investigación científica. En servicios de atención al cliente, los 

modelos como GPT pueden proporcionar respuestas inmediatas 

y precisas a las consultas de los usuarios, mejorando la 

experiencia del cliente y liberando recursos humanos para tareas 

más complejas. En el ámbito científico y académico, su capacidad 

para analizar y generar información a partir de grandes corpus de 

datos facilita el descubrimiento de nuevas tendencias y 

conexiones que podrían pasar desapercibidas. Esto está 

impactando disciplinas como la biología, la medicina y las ciencias 

sociales, donde se utilizan para la extracción de información clave 

y la generación de hipótesis basadas en datos. 



52 

 

El valor de estos modelos no solo reside en sus aplicaciones 

actuales, sino también en su potencial para seguir mejorando a 

medida que se entrenan con más datos y se ajustan a nuevas 

necesidades. A medida que la tecnología avanza, se espera que 

los LLMs jueguen un papel aún más importante en áreas como la 

educación personalizada, la generación automatizada de código 

y la toma de decisiones empresariales. Además, plataformas 

como Hugging Face [50], han democratizado el acceso a estos 

modelos, permitiendo a desarrolladores y empresas de cualquier 

tamaño aprovechar sus capacidades sin la necesidad de 

infraestructuras complejas. 

 

2.4.4 Aplicación de los grandes modelos de lenguaje en el diseño 

de software 

Los Grandes Modelos de Lenguaje (LLMs) están teniendo un 

impacto cada vez mayor en el diseño y desarrollo de software, 

brindando herramientas potentes para automatizar y optimizar 

diversos aspectos del proceso de desarrollo. Una de las 

aplicaciones más notables es la generación automática de código, 

donde los LLMs pueden interpretar descripciones textuales y 

convertirlas en fragmentos de código funcional. Modelos como 

Codex de OpenAI, integrado en plataformas como GitHub Copilot, 

permiten a los desarrolladores escribir menos código 

manualmente y concentrarse en la lógica del negocio, ya que el 

modelo puede sugerir o incluso completar funciones completas 

basadas en la descripción de lo que se quiere lograr [51]. Esto ha 

mejorado tanto la productividad como la precisión en la creación 

de software. 

Otra aplicación clave está en la documentación automática y 

mantenimiento de sistemas. Los LLMs pueden generar o 



53 

 

actualizar la documentación técnica de un sistema basándose en 

el código existente, haciendo que el proceso sea menos tedioso 

para los desarrolladores [52]. Además, en la fase de 

mantenimiento, los LLMs pueden ayudar a identificar errores en 

el código o sugerir mejoras basadas en patrones aprendidos 

durante su entrenamiento. Esto no solo reduce el tiempo que los 

equipos dedican a depurar software, sino que también mejora la 

calidad del producto final al hacer recomendaciones basadas en 

buenas prácticas y soluciones probadas [53]. 

En cuanto al diseño arquitectónico de software, los LLMs también 

están empezando a desempeñar un papel significativo. Algunas 

aplicaciones que utilizan estos modelos, pueden analizar código 

existente y generar diagramas de arquitectura de software 

automáticamente [54], lo que es útil para documentar aplicaciones 

complejas o sistemas heredados. Además, pueden ayudar a los 

arquitectos de software a explorar diferentes opciones de diseño, 

sugiriendo alternativas basadas en el análisis de grandes 

volúmenes de datos de software previamente diseñados. 

Herramientas como PlantUml, cuando se integran con LLMs, 

permiten a los desarrolladores y arquitectos visualizar 

componentes clave y sus relaciones de manera automática a 

partir de descripciones textuales o código fuente. 

 

2.4.5 Aumentar la relevancia contextual de los resultados 

En algunas ocasiones, los resultados que proporciona un LLM no 

son tan exactos como se esperaría, debido a la generalidad de los 

datos con los cuales fue entrenado. En estos escenarios suele ser 

muy útil aplicar ciertas técnicas con las cuales se puede lograr una 

mejora sustancial en la calidad contextual de los resultados del 

LLM. Para conseguir esta mejora en la relevancia contextual en 



54 

 

los resultados generados por un Gran Modelo de Lenguaje (LLM), 

es fundamental optimizar el proceso de recuperación y filtrado de 

información. A continuación, se indican dos técnicas comúnmente 

empleadas para el mejoramiento de los resultados de un LLM: 

 

2.4.5.1 Generación Aumentada por Recuperación (RAG) 

En esta técnica, el LLM se combina con una base de 

datos estructurada que proporciona información 

adicional basada en las consultas del usuario. Este 

enfoque permite al modelo trabajar con datos precisos y 

específicos en lugar de depender únicamente de su 

preentrenamiento, mejorando la calidad de las 

respuestas generadas [55]. Por ejemplo, el LLM puede 

acceder a documentos relevantes o a bases de datos 

internas en tiempo real, enriqueciendo así la respuesta 

con contexto específico. 

• Ventajas: 

o Actualización dinámica: Permite acceder a 

información actualizada en tiempo real. 

o Mayor precisión: Combina respuestas 

generativas con información exacta de bases de 

datos. 

o Reducción de alucinaciones: Minimiza 

respuestas incorrectas al tener fuentes de datos 

directas. 

• Desventajas: 

o Dependencia de fuentes: Requiere bases de 

datos bien estructuradas. 



55 

 

o Costos computacionales: El acceso y 

procesamiento de datos externos puede 

impactar en el rendimiento. 

 

2.4.5.2 Ajuste fino del modelo (Fine-Tuning) 

Al re-entrenar el modelo con ejemplos que reflejen los 

contextos y temas más comunes dentro de un área 

particular, como  el diseño de software y el ecosistema 

tecnológico propio de una organización, el LLM puede 

generar respuestas más alineadas con las necesidades 

del usuario [56]. Además, el uso de memorias de 

contexto a largo plazo permite que el modelo retenga y 

reutilice información relevante de interacciones 

anteriores, mejorando la coherencia en conversaciones 

prolongadas. 

• Ventajas: 

o Adaptación específica: Ajusta el modelo a 

dominios particulares, mejorando la relevancia en 

áreas específicas. 

o Mejora la coherencia: Genera respuestas más 

alineadas con el campo de aplicación. 

• Desventajas: 

o Requiere datos etiquetados: Necesita conjuntos 

de datos bien preparados y etiquetados. 

o Actualización limitada: El modelo no se adapta en 

tiempo real a nueva información. 

o La creación de nuevos modelos cada vez que 

realiza un ajuste fino implica un alto consumo de 

recursos. 



56 

 

 

En estudios recientes [10]-[57]-[58] sobre fine-tuning y 

RAG en los Grandes Modelos de Lenguaje (LLMs), se 

han encontrado resultados mixtos. Aunque el fine-tuning 

puede mejorar el rendimiento en ciertos dominios, su 

eficacia no siempre es consistente, especialmente 

cuando se utiliza en combinación con RAG con pocas 

muestras de datos (menos de 1000). En lugar de mejorar 

la calidad de las respuestas, el fine-tuning puede tener 

un impacto negativo en estos casos. Esto ocurre porque 

la cantidad limitada de datos no es suficiente para 

entrenar el modelo adecuadamente, reduciendo la 

precisión de las respuestas generadas. Las 

evaluaciones humanas muestran que no existe una 

técnica universalmente superior, y la efectividad 

depende tanto del modelo base como de la precisión de 

los datos externos utilizados. 

 

2.4.6 Limitaciones y desafíos de los LLM en el diseño de software 

A pesar de los avances logrados por los Grandes Modelos de 

Lenguaje (LLMs) en el diseño de software, existen limitaciones y 

desafíos importantes. Una de las principales barreras es la falta 

de comprensión profunda del contexto. Los LLMs, aunque buenos 

para generar fragmentos de código, no siempre captan la 

arquitectura completa o la lógica subyacente de un sistema, lo que 

puede resultar en soluciones parciales o incorrectas. Además, 

estos modelos son propensos a generar respuestas erróneas o 

"alucinaciones" cuando los datos de entrenamiento no son 

suficientes o adecuados para la tarea. 



57 

 

Otra limitación significativa es que los LLMs dependen de datos 

de entrenamiento estáticos, lo que significa que pueden quedarse 

desactualizados rápidamente en entornos de desarrollo de 

software que evolucionan constantemente. Sin la capacidad de 

aprender en tiempo real, los LLMs requieren reentrenamientos 

periódicos, lo que puede ser costoso tanto en términos de tiempo 

como de recursos computacionales. Además, el fine-tuning, 

aunque útil en ciertos escenarios, no garantiza mejoras en todas 

las situaciones, y su implementación conlleva un alto costo inicial 

y una alta dependencia de conjuntos de datos etiquetados con 

precisión. 

En cuanto a los desafíos operacionales, los modelos a gran escala 

requieren una infraestructura robusta para ser desplegados y 

gestionados, lo cual es especialmente problemático cuando se 

integran con técnicas como RAG, que implican el uso constante 

de bases de datos externas. Esta integración puede afectar la 

eficiencia del sistema y complicar el proceso de generación de 

respuestas precisas. 

A partir de los estudios recientes [8], se ha comprobado que 

aunque los LLMs pueden generar diagramas, como los de clases 

UML de manera comparable a los diagramas creados 

manualmente, presentan limitaciones en la precisión semántica. 

Esta dificultad para captar relaciones semánticas complejas 

resalta la necesidad de avanzar en el desarrollo de tecnologías de 

IA más sofisticadas que puedan ofrecer una comprensión más 

profunda de los vínculos semánticos. Los LLMs pueden ser útiles 

para el prototipado rápido de diagramas, pero requieren mejoras 

para llegar a automatizar completamente el proceso de diseño 

arquitectónico. 

 



58 

 

2.5 Trabajos similares 

2.5.1 Revisión de trabajos similares 

• Uno de los trabajos relevantes en la automatización de la 

generación de diagramas UML es el propuesto por 

Abdelkareem M. Alashqar, titulado "Automatic Generation of 

UML Diagrams from Scenario-based User Requirements" [59]. 

Este estudio aborda el uso de procesamiento de lenguaje 

natural (NLP) para la generación automática de diagramas 

UML, en particular diagramas de clases y de secuencia, a partir 

de requisitos de usuario escritos en lenguaje natural. Alashqar 

propone un algoritmo que utiliza técnicas de NLP para 

identificar actores, objetos y las interacciones entre ellos, 

permitiendo así la creación automática de estos diagramas a 

partir de escenarios de usuario. El estudio concluye que el 

sistema desarrollado, llamado AGUML, es capaz de mejorar la 

eficiencia en las fases de análisis y diseño de sistemas, 

reduciendo el tiempo necesario para la documentación visual. 

Sin embargo, el autor también señala mejoras, como la 

posibilidad de permitir el ingreso de texto más estructurado 

para obtener resultados óptimos y la necesidad de considerar 

otros tipos de diagramas. 

• Otro trabajo reciente en este campo es la tesis de Daniele De 

Bari, titulada "Evaluating Large Language Models in Software 

Design: A Comparative Analysis of UML Class Diagram 

Generation" [8]. En este estudio, se evaluó la capacidad de los 

LLMs para generar diagramas de clases UML, comparándolos 

con los creados manualmente por las personas. Se concluye 

que los LLMs generan diagramas precisos en lo sintáctico y 

pragmático, pero tienen dificultades en la precisión semántica. 



59 

 

Desde una perspectiva práctica, los LLMs son útiles para el 

diseño iterativo y prototipado rápido, aunque todavía se 

necesitan avances para automatizar completamente el 

proceso. Se propone investigar más sobre cómo integrar LLMs 

en herramientas de desarrollo de software para mejorar la 

comprensión de enlaces semánticos y la automatización del 

diseño de software . 

• Otro trabajo reciente, relacionado al campo de la generación de 

diagramas UML  mediante el uso de LLM es "From Image to 

UML: First Results of Image-Based UML Diagram Generation 

using LLMs" de Aaron Conrardy y Jordi Cabot [60]. Este estudio 

explora el uso de LLMs multimodales, como GPT-4V, para 

convertir imágenes de diagramas de clases UML en modelos 

formales utilizando la notación PlantUml. Aunque los resultados 

son prometedores, el estudio destaca la necesidad de 

intervención humana debido a errores sintácticos y semánticos 

en los resultados generados. 

• Otro trabajo importante en este ámbito es "Generating UML 

Class Diagram from Natural Language Requirements: A Survey 

of Approaches and Techniques" [61]. Este estudio proporciona 

un análisis exhaustivo de los enfoques y técnicas utilizados 

para la generación automática de diagramas de clases UML a 

partir de requisitos escritos en lenguaje natural. Se exploran 

diferentes metodologías, como el procesamiento de lenguaje 

natural y las técnicas de recuperación de información, para 

convertir los requisitos en estructuras formales. El estudio 

destaca los avances en la automatización del diseño de 

software, pero también subraya las limitaciones actuales en la 

comprensión semántica completa y la necesidad de 



60 

 

intervención humana para corregir ambigüedades y errores en 

los diagramas generados. 

• El siguiente trabajo relacionado es "How LLMs Aid in UML 

Modeling: An Exploratory Study with Novice Analysts" [62]. 

Este estudio examina cómo los modelos de lenguaje grande, 

como GPT-3, pueden ayudar a los analistas novatos en la 

creación de modelos UML, como diagramas de casos de uso, 

diagramas de clases y diagramas de secuencia. Los resultados 

sugieren que, si bien los LLMs son útiles para generar estos 

diagramas, existen limitaciones, las cuales no son del todo 

claras en dicho artículo. 

• El último trabajo relacionado que se analizó es "Large 

Language Models for Software Engineering: A Systematic 

Literature Review" de Xinyi Hou y sus colaboradores [7]. Este 

estudio realiza una revisión sistemática del uso de los LLMs en 

tareas de ingeniería de software, identificando sus aplicaciones 

más efectivas, como la generación de código y la 

documentación. A través de 229 estudios revisados entre 2017 

y 2023, el trabajo destaca los principales desafíos y 

oportunidades que los LLMs presentan en este campo, 

incluyendo la optimización del procesamiento de datos y la 

evaluación de rendimiento. 

 

2.5.2 Identificación de vacíos en el conocimiento 

A partir de la revisión de trabajos similares, se identifican varios 

vacíos en el conocimiento. Uno de los principales es la falta de 

precisión semántica en la generación automática de diagramas 

UML, donde los LLMs aún no capturan con total exactitud las 

relaciones complejas entre entidades. Además, la integración de 



61 

 

técnicas multimodales, como la conversión de imágenes a 

diagramas UML, todavía requiere intervención humana 

significativa. Otra área insuficientemente explorada es el impacto 

a largo plazo de las mejoras en LLMs mediante fine-tuning y su 

capacidad para adaptarse a dominios específicos sin incurrir en 

altos costos computacionales. 

Otro vacío adicional identificado es la falta de estudios que 

exploren la generación automática de diagramas de componentes 

utilizando LLMs. Aunque los trabajos actuales abordan 

mayormente la creación de diagramas de clases, la 

automatización de diagramas de componentes no ha recibido 

suficiente atención. Dada la naturaleza textual de las respuestas 

generadas por LLMs, herramientas como PlantUml ofrecen una 

oportunidad para transformar esas descripciones en diagramas 

visuales, pero este enfoque aún no ha sido plenamente abordado 

en la literatura actual. La falta de investigaciones sobre esta 

integración abre espacio para futuras investigaciones que 

optimicen este proceso. 

 

2.5.3 Conclusión de revisión de trabajos similares 

La revisión de trabajos similares destaca importantes avances en 

la aplicación de LLMs para la generación de diagramas UML y 

tareas de ingeniería de software, pero también revela limitaciones 

clave. Aunque los modelos actuales pueden automatizar partes 

del proceso de diseño, aún enfrentan desafíos en cuanto a 

precisión semántica y manejo de datos complejos. La necesidad 

de intervención humana y la dependencia de grandes conjuntos 

de datos para el fine-tuning son obstáculos que requieren más 

investigación. Estas limitaciones abren la puerta a futuras 



62 

 

investigaciones que busquen expandir y mejorar la eficiencia y 

precisión de los LLMs en este campo. 

  



63 

 

 

 

 

 

 

 

 

CAPÍTULO III  

 

DEFINICIÓN DE LA SITUACIÓN ACTUAL 

El objetivo de este capítulo es determinar la situación actual del proceso de 

diseño de diagramas de componentes de software, mediante el modelado AS-

IS, la descripción de sus componentes, herramientas utilizadas y limitaciones 

identificadas, así como la definición de criterios de aceptación y alcance de 

este. 

3.1 Descripción del proceso actual de diseño de arquitectura de 

software 

3.1.1 Flujo para el diseño de diagramas de componentes 

El flujo para el diseño del diagrama de componentes de software 

se desarrolla en varias etapas clave: 

3.1.1.1 Levantamiento 

Inicialmente, se lleva a cabo, en conjunto con el equipo 

de desarrollo, analistas de sistemas y stakeholders, un 

levantamiento exhaustivo de los requisitos, en donde se 

identifican las necesidades de los usuarios, el alcance y 

visión del proyecto, así como restricciones operativas 

que pudiesen ser definidas. 

3.1.1.2 Análisis 



64 

 

A continuación, se realiza un análisis detallado, en el que 

se examinan cada uno de los requisitos levantados, con 

la finalidad de: 

• Validar y equilibrar las necesidades del negocio 

frente a la factibilidad técnica y operacional. 

• Identificar componentes clave que formarán parte de 

la solución. Estos componentes pueden ser 

componentes ya existentes en el ecosistema 

tecnológico de la empresa o compontes nuevos que 

deban ser creados para la solución. 

• Especificar cómo los diferentes componentes del 

sistema interactúan entre sí, definiendo claramente 

las interfaces, dependencias y flujos de datos 

necesarios. 

• Identificar posibles desafíos técnicos que podrían 

surgir en la implementación y definir estrategias para 

reducir su impacto. Esto incluye definir si es 

necesario realizar alguna prueba de concepto 

debido a la implementación de alguna nueva 

tecnología. 

• Asegurarse de que la solución propuesta no solo 

cumpla con los requisitos actuales, sino que también 

sea capaz de manejar un crecimiento futuro en 

términos de usuarios, datos o funcionalidades. 

• Asegurarse que la solución cumpla al menos con los 

estándares mínimos de seguridad establecidos por 

el departamento de seguridad lógica. 

• Tratar de detectar posibles amenazas que podrían 

afectar el éxito del proyecto, como problemas 



65 

 

técnicos, cambios en los requisitos, limitaciones de 

recursos o problemas de integración. 

• Asegurar la resiliencia del sistema, tratando de que 

el diseño contemple posibles fallos y esté preparado 

para manejar eventualidades, mejorando así la 

estabilidad y continuidad del sistema. 

3.1.1.3 Diseño 

Posteriormente, se procede a la elaboración y 

documentación del diagrama, que proyecta 

gráficamente la estructura interna del sistema, mediante 

un conjunto de componentes y sus conexiones.  

3.1.1.4 Socialización 

Finalmente, el resultado es socializado con los equipos 

de desarrollo, calidad, DBA y operaciones, en una 

sesión de trabajo que permite a todos los equipos 

compartir sus dudas u observaciones de mejora para la 

arquitectura propuesta. 

3.1.2 Modelo AS-IS 



66 

 

 

Figura  III.1: Modelo AS-IS general del flujo de diseño 

Fuente: El autor 

 

 

 

 

 



67 

 

 

Figura  III.2: Detalle de la actividad “Diseño” del diagrama 
anterior 

Fuente: El autor 

 

 

En las imágenes 3.1 y 3.2, se puede apreciar de forma visual, el 

procedimiento o flujo que se detalló en la sección anterior. 

 

3.1.3 Herramientas y técnicas 

Lucidchart es le herramienta que actualmente se utiliza para la 

elaboración de los diagramas de arquitectura. Como ya se indicó 

en el respectivo capítulo, Lucid es una plataforma ampliamente 

adoptada para la creación de diagramas visuales, ya que permite 

una representación clara y organizada de los diferentes 

componentes de software, proporcionando un entorno 

colaborativo que facilita la actualización y revisión en tiempo real 

por parte de los equipos de desarrollo y arquitectura. 



68 

 

 

 

Figura  III.3: Diagrama creado con Lucidchart 

Fuente: El autor 

 

En cuanto a las técnicas empleadas en el diseño, como se puede 

apreciar en la figura 3.3, se sigue un enfoque modular y 

estructurado por capas, donde cada componente está agrupado 

según su funcionalidad dentro de una capa específica, como la 

Capa “FrontEnd”, “API”, “Core”, entre otras, lo que permite una 

separación lógica y una mayor claridad en la visualización de 

responsabilidades y dependencias. El uso de relaciones bien 

definidas entre los módulos, como “Rest”, “Grpc” y “Tcp”, ayuda a 



69 

 

ilustrar cómo los componentes interactúan entre sí y cuáles son 

los protocolos utilizados para su comunicación. 

Además, se aplica principios como la descomposición jerárquica 

de los componentes, donde se identifican dependencias claras y 

flujos de datos bien establecidos, minimizando la complejidad. 

Este enfoque permite que el diagrama refleje tanto la arquitectura 

técnica como el flujo funcional de la solución. La implementación 

de módulos comunes, como generadores de diseño y utilidades 

compartidas, también sigue un enfoque de reutilización de 

componentes, asegurando la escalabilidad y mantenibilidad de la 

arquitectura a largo plazo. 

 

3.1.4 Roles involucrados 

El proceso de diseño de diagramas de componentes de software 

involucra diferentes fases en las que varios actores desempeñan 

roles clave. Estos roles establecen quiénes son responsables, 

quiénes deben ser consultados o informados, y quiénes tienen la 

autoridad final en cada etapa, lo cual resulta muy útil con miras a 

definir una matriz RACI, cuya terminología se describe en la 

siguiente tabla: 

 

Término Descripción 

R Letra asignada a la persona que realiza la actividad. 

A Letra asignada a la persona con la responsabilidad final sobre la tarea. 

C Letra asignada a la persona que debe ser consultada. 

I Letra asignada a la persona que solo deber ser informada. 

 

Tabla 2: Terminología RACI 

                                         Fuente: El autor 
 



70 

 

Una vez que se ha definido la terminología de una matriz RACI, 

se describen los roles involucrados en cada etapa del diseño de 

diagramas de componentes de software: 

  

3.1.4.1 Levantamiento 

• Responsables (R): Los analistas de sistemas y en 

menor grado los arquitectos son los encargados de 

llevar a cabo el levantamiento de requisitos y 

asegurar que las necesidades del usuario sean 

correctamente entendidas y documentadas. 

• Aprueban (A): Los stakeholders proporcionan la 

visión estratégica del proyecto y definen las 

restricciones operativas. 

• Consultados (C): El equipo de desarrollo colabora 

en la revisión técnica de los requisitos y en la 

identificación de limitaciones. 

• Informados (I): El equipo de calidad es informado 

sobre los resultados del levantamiento para 

utilizarlos en las fases siguientes. 

3.1.4.2 Análisis 

• Responsables (R): El arquitecto de software lidera 

el análisis de los requisitos levantados, validando la 

factibilidad técnica y organizando los componentes 

clave. 

• Aprueban (A): El arquitecto de software tiene la 

responsabilidad final del resultado del análisis de la 

solución. 

• Consultados (C): Los equipos de desarrollo, DBA y 

operaciones son consultados para revisar la 



71 

 

escalabilidad y viabilidad técnica y operativa. 

También es consultado el analista en caso de ser 

necesario aterrizar algún requerimiento, y en 

algunos casos suele ser necesario consultar con el 

stakeholder para validar temas no contemplados en 

la etapa de levantamiento. 

• Informados (I): El equipo de desarrollo es 

informado sobre los avances en el análisis de la 

solución. 

3.1.4.3 Diseño 

• Responsables (R): El arquitecto de software es 

responsable de la elaboración y documentación del 

diagrama de componentes, asegurando que esté 

alineado con los resultados del análisis. 

• Aprueban (A): El arquitecto de software es el 

responsable final del resultado de la etapa de 

diseño. 

• Consultados (C): Los equipos de desarrollo, DBA y 

de operaciones son consultados para revisar las 

dependencias de la base de datos y la viabilidad 

técnica del diseño, así como la identificación de 

alguna limitante técnica. 

• Informados (I): Los equipos de desarrollo, DBA y de 

operaciones son informados sobre la finalización del 

diseño. 

3.1.4.4  Socialización 

• Responsables (R): El arquitecto de software y los 

líderes técnicos son responsables de presentar el 

diagrama a los equipos clave. 



72 

 

• Aprueban (A): El arquitecto de software es el 

responsable final de la culminación exitosa de esta 

etapa. 

• Consultados (C): Los equipos de DBA y 

operaciones son consultados para confirmar la 

viabilidad técnica del diseño. 

• Informados (I):  Los analistas, así como los equipos 

de calidad, DBA y operaciones son informados en la 

etapa de socialización. 

 

Roles 
Actividades 

 Levantamiento Análisis Diseño Socialización 

StakeHolder A C     

Analista R C   I 

Arquitecto R R, A R, A R, A 

Equipo Dev C C, I C, I R 

Calidad I     I 

DBA   C C, I C, I 

Operaciones   C C, I C, I 

 

Tabla 3: Matriz RACI 

Fuente: El autor 
 

3.2 Encuestas y entrevistas 

3.2.1 Encuestas 

Respecto a la estrategia de encuesta, el formato puede ser 

revisado en la sección de anexos, y los temas que se evaluaron 

son los siguientes: 

1. Perspectiva del arquitecto, respecto al grado de 

automatización que tiene actualmente el procedimiento para 

el diseño de diagramas de componentes para una solución de 

software. 



73 

 

 

Figura  III.4: Percepción del nivel de automatización del 
subproceso 

Fuente: El autor 
 

En la figura 3.4, se puede evidenciar que el usuario confirma 

la falta de automatización en el subproceso 

 

2. Perspectiva del arquitecto, respecto a que tan dificultoso le 

resulta revisar, validar y analizar si una funcionalidad 

necesaria para el diseño de la solución ya existe en el sistema 

o debe ser definida como nueva.  



74 

 

 

Figura  III.5: Percepción sobre la validación de componentes 
reutilizables 

Fuente: El autor 
 
 

En la figura 3.5, se puede apreciar una ligera percepción hacia 

la dificultad en la validación de los componentes existentes 

 

3. Perspectiva del arquitecto, respecto a cuánto tiempo en 

horas, le toma diseñar un diagrama de componentes para una 

solución de software en la cual se requiere la definición 

arquitectónica integral para la solución.  



75 

 

 

Figura  III.6: Tiempo para elaboración de diagramas 

Fuente: El autor 
 

En la figura 3.6, se puede evidenciar que el tiempo medio para 

la elaboración de un diagrama de componentes es de 

alrededor de 19 horas. 

 

4. Perspectiva del arquitecto, respecto a que tan fácil le resulta 

realizar ajustes en el diagrama de componentes una vez 

terminado. 

 

Figura  III.7: Facilidad de realizar ajustes sobre diagramas 
terminados 



76 

 

Fuente: El autor 
 

En la figura 3.7, se puede evidenciar una ligera percepción de 

facilidad al realizar ajustes sobre un diseño ya terminado 

 
 

5. Perspectiva del arquitecto, respecto a que tan fácil es realizar 

el versionamiento de los diagramas de arquitectura. 

 

Figura  III.8: Facilidad de versionamiento para los diseños 

Fuente: El autor 
 

En la figura 3.8, se puede evidenciar la dificultad en el 

versionamiento de los diseños 

 

6. La última pregunta de la encuesta gira en torno a la variable 

de interés definida en el capítulo 1 de este proyecto, la cual 

intenta determinar el grado de aceptación por parte de los 

arquitectos, para una herramienta que genere diagramas 

base de componentes de software de forma automática, 

mediante el ingreso de los requisitos de la solución. 



77 

 

 

Figura  III.9: Grado de aceptación de la propuesta 

Fuente: El autor 
 

En la figura 3.9, se puede evidenciar la aceptación favorable 

por parte de los arquitectos respecto a esta propuesta. 

 

3.2.2 Entrevistas 

Respecto a la entrevista realizada, se indagó sobre los siguientes 

puntos: 

3.2.2.1 Identificación de las necesidades actuales 

Se trataron varias necesidades actuales, entre las 

cuales destacan: 

• El tiempo que toma diseñar los diagramas de 

componentes. 

• El riesgo de incurrir en omisiones al analizar la 

existencia de soluciones actuales que suplan alguna 

necesidad en el nuevo diseño. 

• La dificultad de realizar versionamiento de los 

diseños con las herramientas actuales. 



78 

 

•  El riesgo latente en la seguridad de la información 

al utilizar herramientas en la nube. 

3.2.2.2 Características de la solución propuesta 

Se explicó y revisó las características principales de la 

solución propuesta, tales como: 

• El hecho de ser un desarrollo propio y funcionar de 

forma local. 

• El uso de una herramienta de modelado basado en 

texto como PlantUml. 

• El uso de Inteligencia artificial para la generación de 

los diagramas. 

3.2.2.3 Integración con herramientas existentes 

Los arquitectos indicaron la necesidad de que esta 

propuesta de solución considere la integración con 

alguna de sus herramientas actualmente utilizadas, tales 

como: gitlab, para el versionamiento de los diseños. 

3.2.2.4 Seguridad y privacidad 

Los arquitectos resaltaron la importancia de la 

seguridad, sobre todo la importancia de proteger la 

información al momento de compartir datos sensibles 

con un LLM, como por ejemplo la base de componentes 

existentes. 

3.2.2.5 Escalabilidad y capacidad de evolución 

Se conversó y se acordó que la solución propuesta 

debería considerar a futuro poder generar todos los tipos 

de diagramas utilizados por los arquitectos al diseñar 

sus soluciones, así como poder integrarse con Gitlab 

para el versionamiento de los diseños. 

 



79 

 

3.3 Métricas 

Debido a que el alcance del proyecto se enfoca en la etapa de diseño, 

no se podrá confirmar métricas objetivo, sin embargo, se pueden 

determinar ahora y ser validadas en una siguiente etapa de 

implementación del proyecto. Estas métricas se detallan a continuación 

en la tabla 4: 

Indicador Unidad Actual Objetivo 

Tiempo necesario para generar un diagrama de 
componentes para una solución completa de 
arquitectura 

Horas 19 2 

 

Tabla 4: Métricas del proceso 

Fuente: El autor 
 

3.4 Limitaciones del proceso actual 

Según la encuesta y la entrevista realizadas, se evidencias las siguientes 

limitaciones: 

• Tiempo y esfuerzo manual 

• Omisiones involuntarias 

• Limitaciones en el versionamiento 

 

3.5 Conclusiones 

Es necesario que la propuesta de solución considere y brinde una 

alternativa de valor que mejore de forma significativa las limitaciones 

actuales del proceso. 

  



80 

 

 

 

 

 

 

 

 

CAPÍTULO IV  

 

ANÁLISIS Y DISEÑO DE LA HERRAMIENTA PROPUESTA 

El objetivo de este capítulo es realizar un análisis con base en la información 

obtenida en el capítulo anterior y elaborar el diseño de la solución cuyo 

alcance se enfocará en el diseño de los diagramas de componentes, para lo 

cual se desarrollará un prototipo funcional. Este prototipo permitirá visualizar 

de manera más tangible el valor que dicha solución puede aportar a la 

empresa objetivo del proyecto. 

 

4.1  Análisis de la solución 

Después de analizar el estado actual del proceso de diseño software que 

realiza la división de arquitectura de la empresa objetivo, tras llevar a cabo 

un minucioso levantamiento de información con los arquitectos y, tomando 

como base todo el conocimiento adquirido durante la investigación para 

la elaboración del marco teórico de este proyecto, se propone llevar a 

cabo el diseño de la solución con apoyo de las siguientes herramientas y 

tecnologías: 

 

4.2 Herramientas y tecnologías 

4.2.1 Herramienta de modelado UML 



81 

 

Se propone PlantUml como herramienta de modelado UML para 

este proyecto por su enfoque basado en texto, que facilita la 

integración con sistemas de control de versiones y fomenta una 

colaboración eficiente entre el equipo. Su capacidad para 

integrarse con modelos de lenguaje grandes (LLM) permite 

generar automáticamente descripciones y diagramas a partir de 

texto natural, optimizando la documentación. PlantUml soporta 

una amplia variedad de diagramas UML, agilizando el diseño y la 

documentación del sistema de manera rápida y sencilla. Además, 

al ser de código abierto, ofrece flexibilidad y personalización para 

adaptarse a las necesidades específicas del proyecto sin costos 

adicionales. Estas características hacen de PlantUml una opción 

robusta y eficiente, mejorando la calidad y cohesión en el 

desarrollo del proyecto. 

 

4.2.2 Servicio de generación de diagrama  

Se propone PlantUml Server como herramienta de generación 

de diagramas UML para este proyecto debido a su capacidad de 

operar de manera on premise, lo que garantiza un control total 

sobre los datos y la seguridad de la información sensible del 

proyecto. Al implementar PlantUml Server localmente, se puede 

integrar de forma eficiente la generación de diagramas UML 

dentro de la infraestructura existente, facilitando la 

automatización y la consistencia en la documentación técnica. 

4.2.3 Large Language model 

Se propone LLAMA 3.1 70b por ser un modelo open-source y 

altamente optimizable, que permite personalización completa y 

acceso a tecnologías avanzadas como cuantización para mejorar 

el rendimiento. Su capacidad para procesar hasta 128,000 tokens 

en múltiples idiomas, lo hace ideal para aplicaciones que 



82 

 

requieren manejo de texto extenso, mientras que su eficiencia en 

el uso de recursos lo convierte en una opción poderosa y flexible 

para este proyecto. 

4.2.3.1 Técnica para mejorar la precisión de las respuestas 

Se propone RAG para potenciar el modelo de lenguaje 

debido a su capacidad única de combinar generación de 

texto con recuperación de información relevante, 

enriqueciendo la comprensión contextual al integrar 

información específica, lo que resulta en respuestas más 

coherentes y fundamentadas. Al reducir las 

alucinaciones del modelo, se garantiza mayor fiabilidad 

en los resultados. 

4.2.3.2 Hardware para procesamiento del LLM 

El gran modelo de lenguaje seleccionado se ejecutará 

sobre servidores DGX con GPUs H100. Estos servidores 

ya existen en el ecosistema tecnológico de la empresa 

objetivo de este proyecto. 

4.2.4 Bases de datos 

4.2.4.1 Milvus Db 

Se propone Milvus como base de datos para gestionar 

embeddings en este proyecto por su diseño 

especializado en almacenar y buscar vectores de alta 

dimensión de manera eficiente. Ofrece un rendimiento 

sobresaliente en búsquedas de similitud. Además, al ser 

de código abierto, Milvus proporciona flexibilidad y 

personalización para adaptarse a las necesidades 

futuras del proyecto sin costos adicionales. Estas 

características hacen de Milvus una opción robusta y 

eficiente para la gestión de embeddings, asegurando un 

rendimiento óptimo y una escalabilidad sostenida. 



83 

 

4.2.4.2 Mongo Db 

Se propone MongoDB como la base de datos para 

gestionar la metadata de la aplicación debido a su 

flexibilidad en el manejo de esquemas dinámicos, lo que 

permite almacenar datos estructurados y semi-

estructurados de manera eficiente. Esta característica 

es especialmente útil para la metadata, que a menudo 

varía en estructura y puede evolucionar con el tiempo. 

Otro aspecto fundamental que respalda la elección de 

MongoDB es su capacidad de escalabilidad horizontal y 

su alto rendimiento en operaciones de lectura y 

escritura. Esto asegura que la gestión de metadata 

pueda manejar grandes volúmenes de datos y crecer 

junto con las necesidades de la aplicación sin 

comprometer la eficiencia. 

 

4.2.5 Lenguajes de programación 

4.2.5.1 Java 

Se propone Java debido a su robustez, escalabilidad y 

amplio soporte en la industria. Java es reconocido por 

su capacidad para manejar aplicaciones de gran escala 

con eficiencia, lo que garantiza que el Backend pueda 

crecer y adaptarse a las demandas crecientes de los 

sistemas sin comprometer el rendimiento. Además, su 

ecosistema maduro, que incluye frameworks como 

Spring Boot, facilita el desarrollo rápido y estructurado, 

permitiendo implementar funcionalidades complejas de 

manera eficiente y mantenible. 

4.2.5.2 Python 



84 

 

Se propone Python como el lenguaje para la lógica de 

RAG (Retrieval-Augmented Generation) en este 

proyecto debido a sus excepcionales capacidades para 

el desarrollo de aplicaciones de inteligencia artificial y 

aprendizaje automático. Python cuenta con un 

ecosistema robusto de bibliotecas y frameworks 

especializados, como TensorFlow, PyTorch y Hugging 

Face, que simplifican la implementación, entrenamiento 

y despliegue de modelos avanzados de IA. Su sintaxis 

clara y concisa permite un desarrollo ágil y eficiente, 

facilitando la experimentación y optimización de 

algoritmos complejos necesarios para la lógica de RAG. 

 

4.2.5.3 TypeScript 

Se propone TypeScript debido a su capacidad para 

mejorar la calidad y la mantenibilidad del código en 

proyectos de gran escala. TypeScript, al ser un 

superconjunto tipado de JavaScript, ofrece ventajas 

significativas en términos de detección temprana de 

errores y autocompletado inteligente, lo que reduce 

significativamente los bugs y mejora la eficiencia del 

desarrollo. Además, TypeScript se integra 

perfectamente con modernos frameworks de FrontEnd 

como Angular, permitiendo construir interfaces de 

usuario dinámicas y responsivas con mayor facilidad y 

seguridad. 

 

4.2.6 Framework para FrontEnd 

Se propone Angular como el framework de FrontEnd para este 

proyecto debido a su sólida integración con TypeScript, lo que 



85 

 

garantiza un desarrollo más estructurado y tipado, reduciendo 

errores y mejorando la mantenibilidad del código. Angular ofrece 

una arquitectura robusta basada en componentes, lo que facilita 

la creación de interfaces de usuario escalables y reutilizables. 

Además, su sistema de inyección de dependencias y su enrutador 

avanzado permiten gestionar de manera eficiente la complejidad 

de aplicaciones de gran envergadura, asegurando una 

experiencia de desarrollo fluida y organizada. 

 

4.2.7 Framework para Backend 

Se propone Spring Boot como el framework para este proyecto, 

debido a su capacidad para simplificar y acelerar el desarrollo de 

aplicaciones Java robustas y escalables. Su enfoque de 

convenciones sobre configuraciones reduce el tiempo de 

desarrollo y minimiza errores, mejorando la eficiencia. La amplia 

comunidad y el soporte continuo garantizan actualizaciones 

constantes y acceso a numerosos recursos, asegurando un 

Backend sólido, mantenible y preparado para futuras 

expansiones del proyecto. 

 

4.2.8 Tecnología de contenedorización 

Se propone Docker como la herramienta de contenedorización 

para este proyecto, debido a su capacidad para crear entornos 

consistentes y portables, asegurando un funcionamiento uniforme 

en desarrollo, prueba y producción. Docker simplifica la gestión 

de dependencias y el despliegue, reduciendo conflictos y 

mejorando la eficiencia de recursos gracias a su arquitectura 

ligera. Además, es compatible con Kubernetes, lo que facilita la 

orquestación y escalabilidad de los contenedores en entornos de 

producción. Su robusto ecosistema, que incluye herramientas 



86 

 

como Docker Compose y Swarm, optimiza la automatización de 

contenedores. 

 

4.2.9 Herramienta de autenticación única 

Se propone CAS (Central Authentication Service) por su 

capacidad para centralizar la autenticación, mejorando la 

seguridad y la gestión de usuarios en toda la aplicación. CAS 

soporta múltiples protocolos, lo que facilita su integración con 

diversas aplicaciones y servicios existentes. Además, al ser una 

solución de código abierto, ofrece flexibilidad y personalización 

sin costos adicionales, adaptándose a las necesidades futuras del 

proyecto. Su arquitectura escalable y el respaldo de una 

comunidad activa aseguran un rendimiento óptimo y 

actualizaciones constantes, haciendo de CAS una opción 

confiable para proporcionar una experiencia de usuario fluida y 

segura. 

 

4.2.10 Herramienta para balanceo de carga 

Se propone Traefik como herramienta para el balanceo de carga 

debido a su diseño moderno y su excelente compatibilidad con 

entornos de microservicios. Traefik se integra fácilmente con 

Docker, lo que facilita la gestión dinámica de las rutas y la 

detección automática de servicios. Su capacidad para manejar 

configuraciones en tiempo real permite una escalabilidad eficiente 

y una respuesta rápida a los cambios en la infraestructura. Al ser 

una solución de código abierto respaldada por una comunidad 

activa, Traefik proporciona flexibilidad y soporte continuo, 

adaptándose perfectamente a las necesidades futuras del 

proyecto. 

 



87 

 

4.3 Arquitectura de la solución 

4.3.1 Nuevo flujo (TO-BE) para el diseño de diagramas de 

componentes 

Dado que el objetivo de este proyecto es automatizar la creación 

de diagramas de componentes, que constituye solo una parte del 

proceso de diseño de una solución de software, a continuación, 

se describe el nuevo flujo establecido para esta fase del diseño: 

1. El usuario accede a la aplicación, en la cual deberá ingresar 

los criterios o requisitos para la generación del diagrama de 

componentes, así como el nombre para dicho diagrama. 

2. Una vez definidos los criterios de creación, se presiona el 

botón de procesamiento y se dispara la petición hacia el 

Backend de la aplicación. 

3. La aplicación recibe la petición y obtiene información de 

contexto a partir de los requisitos de creación. 

4. Con la información de contexto y los requisitos de creación se 

elabora un prompt que será el insumo para el LLM. 

5. Se realiza la petición al LLM para la generación del diagrama. 

6. El LLM procesa la solicitud y devuelve el resultado. 

7. La aplicación recibe la respuesta del LLM y la devuelve a la 

capa FrontEnd. 

8. La capa FrontEnd vuelve a enviar una petición al Backend 

para solicitar el renderizado del diagrama. 

9. El Backend solicitad el renderizado al servidor PlantUml. 

10.  PlantUml Server realiza el renderizado y devuelve el 

resultado a la aplicación. 

11.  La aplicación devuelve a la capa FrontEnd el diagrama 

renderizado. 

12.  El usuario recibe el resultado y analiza si es que este cumple 

con sus expectativas. 



88 

 

13.  Si el usuario está conforme con el resultado, finaliza el 

proceso y no se cumplen los pasos 14 y 15. 

14.  Si el usuario no está conforme con el resultado, tiene dos 

alternativas: 

a. Puede realizar los ajustes el mismo en la pantalla de la 

aplicación. 

b. Puede ingresar de forma iterativa, requisitos de ajuste y 

solicitar a la aplicación que se modifique el diagrama 

según esos nuevos requisitos y tomando como base el 

diagrama actual 

15.  Retoma el flujo desde el paso 8. 

 

En la Figura 4.1 se puede apreciar el nuevo flujo correspondiente 

al diseño de diagramas de compontes. 



89 

 

 

Figura  IV.1: Modelo TO-BE para diseño de diagrama de 
componentes 

Fuente: El autor 

 

4.3.2 Diagrama de contexto 



90 

 

 

Figura  IV.2: Diagrama de contexto de la solución 

Fuente: El autor 

 

4.3.3 Casos de uso 

Basándose en el diagrama de contexto y de acuerdo con el 

alcance definido, se identifican los dos siguientes casos de uso:  

4.3.3.1 Generación manual de información de contexto 

1 Un usuario admin, accede a un cliente Rest, por 

ejemplo “Postman”. 

2 El usuario realiza una petición a la aplicación, 

enviando un listado de diccionarios de datos para 

generar información de contexto. 



91 

 

3 La aplicación redirecciona esta solicitud al módulo 

de RAG. 

4 El módulo de RAG realiza las siguientes acciones 

para cada uno de los ítems del listado de 

diccionarios. 

a. Genera un vector para dicha información. 

b. Almacena el vector en la base Milvus. 

5 El módulo de RAG devuelve el resultado. 

6 La aplicación devuelve el resultado 

4.3.3.2 Generación de diagrama de componentes 

Este caso de uso se detalla en la sección 4.3.1 

 

4.3.4 Diagrama de componentes 



92 

 

 

Figura  IV.3: Diagrama de componentes de la solución 

Fuente: El autor 

 

 

4.3.5 Diagramas de secuencias 

4.3.5.1 Generación manual de información de contexto 



93 

 

 

Figura  IV.4: Generación manual de contexto 

Fuente: El autor 

 

4.3.5.2 Generación de diagrama de componentes 

 

Figura  IV.5: Generación de diagrama de componentes 

Fuente: El autor 

 

4.3.6 Diagrama de clases 



94 

 

 

 

Figura  IV.6: Diagrama de clases 

Fuente: El autor 



95 

 

En la figura 4.6 correspondiente al diagrama de clases del 

componente SpringBoot, se puede apreciar el uso de principios y 

patrones para lograr un diseño robusto y extensible. Se puede 

apreciar la aplicación de los principios SOLID, así como el uso de 

varios patrones tales como: Abstract Factory, Strategy, Bridge, 

Mediator, Facade, etc. 

 

4.4 Desarrollo del prototipo 

4.4.1 Introducción 

Se desarrolló un prototipo funcional para que el usuario pueda 

validar de manera tangible los beneficios que esta herramienta 

ofrece. El prototipo intenta cumplir en la mayor medida posible con 

todo el stack tecnológico definido en la sección 4.2; sin embargo, 

es importante considerar que su alcance es limitado al ser solo un 

prototipo. Bajo esa premisa, a continuación, se presenta la 

interfaz de usuario del prototipo desarrollado: 

 

Figura  IV.7: Interfaz de usuario 

Fuente: El autor 



96 

 

 

En la figura 4.7 se puede validar las diferentes secciones con las 

que cuenta la interfaz de usuario, tales como: 

1. Sección para el ingreso de requisitos. 

2. Sección para visualización y gestión de requisitos 

ingresados. 

3. Sección de historial de requisitos ingresados. 

4. Sección de visualización y edición de código PlantUml. 

5. Sección de visualización de diagrama renderizado. 

6. Botón para solicitar la generación del diagrama. 

7. Botón para limpiar el formulario. 

8. Opciones para copiar, descargar y ver descripción del código. 

9. Opción para copiar, descargar y refrescar el diagrama según 

el contenido del código. 

 

4.4.2 Generación de información de contexto 

4.4.2.1 Descripción de la prueba 

Para esta prueba se construyó un diccionario de 

componentes ficticio para poder alimentar la base de 

datos vectorial y que dicha información sirva como de 

contexto para la prueba de generación de los diagramas 

de componentes.  La estructura del diccionario puede 

ser revisada en la sección de anexos: 

4.4.2.2 Contrato 

El detalle de los contratos se puede ver en la sección de 

anexos. 

4.4.2.3 Consumo 



97 

 

 

Figura  IV.8: Consumo para generar contexto 

Fuente: El autor 

 

 

4.4.2.4 Respuesta 

 

Figura  IV.9: Resultado de generación de contexto 

Fuente: El autor 

 

4.4.3 Generación de diagrama de componentes 

4.4.3.1 Descripción de la prueba 



98 

 

Para la generación del diagrama de componentes se 

consideró una solución ficticia basada en los requisitos 

que se detallan a continuación: 

4.4.3.2 Requisitos de prueba 

• El objetivo de esta solución es el procesamiento de 

pagos de clientes. 

• Los pagos deben ser ingresados desde la aplicación 

que utilizan los clientes. 

• Se debe hacer uso de reglas de negocio con camunda 

para validar acciones necesarias según el saldo 

pendiente. 

• Se debe enviar por correo una notificación de 

confirmación al cliente, al recibir un pago. 

• Luego de cada pago recibido se debe realizar la 

actualización del del saldo del cliente. 

• Se debe realizar el registro de log de errores de forma 

asíncrona. 

 

4.4.3.3 Ejecución de la prueba 



99 

 

 

Figura  IV.10. Ejecución de solicitud de diagrama 

Fuente: El autor 

 

4.4.3.4 Resultado 

 

Figura  IV.11: Resultado de generación de diagrama 

Fuente: El autor 

 



100 

 

Luego de la ejecución se obtuvo los siguientes 

resultados: 

• Diagrama en formato PlantUml 
El diagrama en formato PlantUml se puede apreciar 

en la sección de anexos. 

• Diagrama en formato png 
El diagrama en formato Imagen se puede apreciar 

en la sección de anexos. 

  



101 

 

 

 

 

 

 

 

 

CAPÍTULO V  

 

EVALUACIÓN Y ANÁLISIS DE RESULTADOS 

En este capítulo se lleva a cabo la revisión de los resultados de la validación 

del prototipo con los usuarios. El objetivo principal es interpretar dichos 

resultados y determinar su relevancia en el contexto del proyecto. Este 

capítulo servirá como base para las conclusiones finales y las 

recomendaciones futuras, destacando cómo los resultados contribuyen al 

avance del conocimiento en este tema. 

 

5.1 Validación del prototipo con el usuario 

Se realizó la revisión del prototipo con los arquitectos en dos sesiones, 

en las cuales se revisó la interfaz, sus funcionalidades y se hicieron 

pruebas de generación de diagramas. 

5.2 Elaboración y toma de encuestas 

Posteriormente se preparó una nueva encuesta, con la finalidad de 

validar el grado de aceptación de los arquitectos respecto al prototipo 

evaluado. El formato completo de la encuesta se puede revisar en la 

sección de anexos, y los temas que se consultaron son los siguientes: 

1. Se solicita al usuario, que califique en una escala del 1 al 5, que tan 

intuitiva le pareció la interfaz del prototipo. Siendo 1 muy poco 

intuitiva y 5 muy intuitiva. 



102 

 

 

Figura  V.1: Percepción sobre la usabilidad del prototipo 

Fuente: El autor 

 

En la figura 5.1, correspondiente a la primera pregunta de la 

encuesta, los resultados evidencian respuestas mayormente 

favorables acerca de que tan intuitivo es el prototipo desarrollado. 

 

2. Se solicita al usuario que indique, calificando en una escala del 1 al 

5, que tanto el prototipo le facilitó la generación de los diagramas de 

componentes, respecto a su metodología actual.  Siendo 1 nada fácil 

y 5 muy fácil. 



103 

 

 

Figura  V.2: Facilitar el diseño de diagramas 

Fuente: El autor 
 

En la figura 5.2 correspondiente a la segunda pregunta de la 

encuesta, se evidencia una alta aprobación, respecto a que tanto el 

prototipo facilita la generación de diagramas de componentes. 

 

3. Se solicita al usuario que indique algún problema técnico que haya 

notado durante las pruebas con el prototipo. 

 

Figura  V.3: Dificultades técnicas con el prototipo 



104 

 

Fuente: El autor 
 

En la figura 5.3 correspondiente a la tercera pregunta de la encuesta 

se verifica que los usuarios no encontraron observaciones técnicas 

respecto al uso del prototipo desarrollado. 

 

4. Se solicita al usuario que califique en una escala del 1 al 5, la 

precisión de los diagramas de componentes generados con el 

prototipo. Siendo 1 nada preciso y 5 muy preciso. 

 

Figura  V.4: Precisión de los diagramas 

Fuente: El autor 
 

En la figura 5.4, correspondiente a la cuarta pregunta de la encuesta, 

se evidencia una calificación ligeramente por encima de la media, lo 

cual es comprensible, ya que se trata de diagramas base, los cuales 

pueden ser mejorados con base en iteraciones con la misa 

herramienta o con ajustes manuales del usuario. Adicionalmente la 

precisión de los diagramas puede mejorarse conforme se enriquezca 

más la base de contexto y se realicen ajustes sobre el prompt 

utilizado. 



105 

 

 

5. Se solicita al usuario que califique en una escala del 1 al 5, que tan 

rápido le pareció la generación de diagramas de componentes 

utilizando el prototipo. Siendo 1 nada rápido y 5 muy rápido. 

 

Figura  V.5: Rapidez en la generación de diagramas 

Fuente: El autor 
 

En la figura 5.5, correspondiente a la quinta pregunta de la encuesta, 

se evidencia mayormente una buena percepción del usuario respecto 

a la rapidez del prototipo para generar los diagramas de 

componentes. 

 

6. Se solicita al usuario que califique en una escala del 1 al 5, que tan 

útil le pareció la asistencia de un LLM en la generación de diagramas 

de componentes. Siendo 1 nada útil y 5 muy útil. 



106 

 

 

Figura  V.6: Utilidad en la asistencia de un LLM 

Fuente: El Autor 

 

En la figura 5.6, correspondiente a la sexta pregunta de la encuesta, 

se evidencia que la mayoría de los arquitectos consideran de mucha 

utilidad la asistencia de un LLM en la generación de diagramas de 

componentes. 

 

7. Se solicita al usuario que califique en una escala del 1 al 5, cuál es 

su grado de satisfacción con el uso del prototipo. Siendo 1 nada 

satisfecho y 5 muy satisfecho. 



107 

 

 

Figura  V.7: Satisfacción con el uso del prototipo 

Fuente: El autor 
 

En la figura 5.7, correspondiente a la séptima pregunta de la 

encuesta, se evidencia un aceptable nivel de satisfacción de los 

arquitectos, respecto al uso del prototipo. 

 

8. Se solicita al usuario que califique con SI o NO, si considera que el 

uso de la herramienta podría mejorar la eficiencia en sus proyectos.  



108 

 

 

Figura  V.8: Incidencia del prototipo en la eficiencia de los 
diseños 

Fuente: El autor 
 

En la figura 5.8, correspondiente a la octava pregunta de la encuesta, 

se evidencia un rotundo acuerdo por parte de los arquitectos, 

respecto al aumento de la eficiencia en sus procesos de diseño, al 

contar con una herramienta de este tipo.  

 

9. Se solicita el usuario que indique que aspectos de la herramienta le 

parecieron más valiosos. 



109 

 

 

Figura  V.9: Aspectos destacados del prototipo 

Fuente: El autor 
 

En la figura 5.9, correspondiente a la novena pregunta de la 

encuesta, se visualiza los aspectos, que, a criterio de los arquitectos, 

son los más valiosos o destacados. A continuación de se detalla cada 

uno de ellos: 

• Uno de los arquitectos resalta el hecho de que el prototipo 

permite tanto la visualización del diagrama en formato imagen, 

así como el diagrama en formato editable PlantUml y los 

criterios de entrada que permitieron la generación de este. 

• Otro arquitecto destaca como tal la funcionalidad de generar 

de forma totalmente automática un diagrama de componentes 

completo, solo mediante el ingreso de algunos requisitos. 

• Otro arquitecto señala como valioso, el hecho de que el 

diagrama generado, considere componentes ya existentes en 

el ecosistema tecnológico de la empresa, agregando un alto 

valor contextual al resultado. 



110 

 

• Aunque el objetivo del proyecto es consumir un LLM local, el 

prototipo cuenta con la capacidad de poder implementar el 

consumo al cualquier proveedor de LLM y hacer switch a 

cualquiera de ellos en tiempo de ejecución. Esta es la 

capacidad que resalta uno de los arquitectos. Sin embargo, el 

también hace énfasis en la importancia de la seguridad que se 

implemente en caso de utilizar dicha funcionalidad. 

• Otro arquitecto destaca la calidad que presenta el diagrama 

de componentes generado con el prototipo a partir de unos 

cuantos requisitos ingresados. 

• Finalmente, otro arquitecto señala la importancia de contar 

rápidamente con un diagrama base, a partir del cual se pueda 

iterar para mejorarlo, o tomarlo directamente como diagrama 

final, dependiendo de su exactitud. 

 

10.  Se solicita al usuario que indique, que funcionalidades adicionales 

considera que el prototipo debería incorporar. 



111 

 

 

Figura  V.10 : Sugerencias de mejora 

Fuente: El autor 
 

En la figura 5.10, correspondiente a la décima pregunta de la 

encuesta, se visualiza varios ítems de mejora basados en el criterio 

y experiencia de cada uno de los arquitectos. A continuación, se 

detalla cada uno de ellos: 

• Uno de los arquitectos, señala como punto de mejora, la 

posibilidad de que la herramienta permita seleccionar el tipo 

de diagrama que se desea generar. Esto implica que la 

herramienta implemente la gestión para otros tipos de 

diagramas UML con ayuda del LLM, lo cual no está 

contemplado en el alcance de este proyecto, pero es un 

excelente ítem a considerar para futuras fases. 



112 

 

• Si bien es cierto, el anterior arquitecto señala solo la necesidad 

de poder escoger el tipo de diagrama, otro arquitecto hace 

énfasis en contar con la implementación concreta para poder 

generar varios tipos de diagramas, lo cual ya fue indicado en 

el ítem anterior. 

• Otra sugerencia se centra en la necesidad de contar con 

espacios de trabajo específicos por cada proyecto, de manera 

que no se solicite el ingreso del nombre del diagrama cada vez 

que se realiza una nueva iteración de mejora. Se aclaró con el 

arquitecto que al tratarse de un prototipo no cuenta con todas 

las optimizaciones que debería tener un aplicativo final, sin 

embargo, se considerará su propuesta como punto de mejora 

en futuras fases. 

• Otra sugerencia recalca la importancia de la relación de 

aspecto de la imagen, de modo que, no se distorsione en caso 

de que sus dimensiones no coincidan con la forma del 

visualizador. 

• Otra sugerencia enfatiza la necesidad de poder descargar la 

imagen como pdf, dado que el prototipo actualmente solo 

permite descargar la imagen en formato png. 

• Otra sugerencia resalta la necesidad de que la herramienta 

pueda integrarse con el repositorio corporativo, de manera que 

pueda haber esta comunicación bidireccional y sea más ágil la 

replicación de los diseños en el repositorio corporativo. 

• Otra sugerencia hace énfasis en el tema de seguridad, 

específicamente en el caso de uso en el cual se realice 

comunicación con un LLM distinto al local. Recalca que es 

fundamental resguardar la información sensible mediante la 



113 

 

implementación de ciertas estrategias como reglas de 

enrutamiento, monitoreo de solicitudes, auditorías, etc. 

• Otra sugerencia señala la necesidad de poder importar 

diagramas ya existentes. Lo cual permitiría continuar con 

iteraciones de diagramas anteriores generados por la misma 

herramienta, o incluso con diagramas generados con otras 

herramientas, siempre y cuando el formato sea compatible. 

 

5.3 Análisis de resultados 

El análisis de los resultados obtenidos a partir de las revisiones del 

prototipo con los arquitectos y las encuestas realizadas demuestra que 

la herramienta evaluada cumple con las expectativas iniciales en 

términos de usabilidad, eficiencia y utilidad en la generación de 

diagramas de componentes. La interfaz intuitiva y la rapidez en la 

creación de diagramas fueron aspectos destacados por los usuarios, lo 

que sugiere que la herramienta facilita y optimiza significativamente su 

flujo de trabajo en el diseño arquitectónico de diagramas de 

componentes. 

A pesar de algunos comentarios respecto a la precisión de los 

diagramas, los usuarios reconocieron que estos pueden ser mejorados 

a través de iteraciones adicionales, lo que abre la puerta a futuras 

optimizaciones del sistema. La incorporación de un LLM se percibió 

como un valor agregado significativo, brindando asistencia relevante y 

contextualizada en el proceso de diseño. 

5.3.1 Respuesta a la pregunta de investigación 

Para responder la pregunta de investigación, respecto al grado de 

aceptación de la herramienta por parte de los usuarios, hay que 

enfocarse en las respuestas de la encuesta, particularmente en 

las preguntas que evalúan aspectos clave relacionados con la 



114 

 

aceptación del prototipo, tales como usabilidad, facilidad, 

precisión, rapidez, utilidad, satisfacción, y eficiencia percibida. 

Estas preguntas son la 1, 2, 4, 5, 6, 7 y 8. Basándose en la escala 

del 1 al 5 utilizada en la encuesta, se considera el total de puntos 

recibidos en la respuesta de la pregunta, el máximo de puntos 

posibles y se aplicará la siguiente fórmula: 

 

𝑝𝑜𝑟𝑐𝑒𝑛𝑡𝑎𝑗𝑒 =
Puntos obtenidos

Puntos posibles
 𝑋 100 

 

• Pregunta 1: (24/30) X 100 = 80.0  

• Pregunta 2: (27/30) X 100 = 90.0 

• Pregunta 4: (22/30) X 100 = 73.3 

• Pregunta 5: (25/30) X 100 = 83.3 

• Pregunta 6: (27/30) X 100 = 90.0 

• Pregunta 7: (26/30) X 100 = 86.6 

• Pregunta 8:  Dado que las respuestas fueron un rotundo “SI”, 

se asume 100%  

Finalmente se obtiene un promedio de los porcentajes por 

respuesta. Eso da un total de 86.17%, el cual sería el porcentaje 

de aceptación de la herramienta por parte de los usuarios y es la 

respuesta a la pregunta de investigación. 

 

5.4 Retos y limitaciones 

Durante el proceso de validación del prototipo, se han identificado varios 

retos y limitaciones que impactan tanto la funcionalidad actual como las 

posibles futuras aplicaciones de la herramienta. Estos desafíos pueden 

dividirse en dos categorías principales: las limitaciones inherentes a los 



115 

 

Modelos de Lenguaje Grande (LLM) y las limitaciones específicas del 

prototipo en su implementación actual. 

 

5.4.1 Limitaciones Semánticas de los LLM 

Aunque los LLM han demostrado ser herramientas poderosas 

para la interpretación del lenguaje natural y la generación de 

contenido basado en texto, presentan varias limitaciones 

semánticas cuando se trata de tareas altamente estructuradas, 

como la generación de diagramas de clases. Uno de los 

principales problemas es la capacidad de los LLM para 

comprender y mantener relaciones complejas entre entidades 

dentro de un diagrama, especialmente cuando las reglas y 

dependencias inherentes no están explícitamente definidas en el 

input textual. 

La generación de diagramas de clases, por ejemplo, requiere que 

el LLM entienda de manera precisa las relaciones entre clases, 

interfaces, herencias y asociaciones, lo cual va más allá de 

simplemente generar una representación gráfica basada en texto. 

Las limitaciones semánticas actuales dificultan la interpretación 

correcta de los componentes más abstractos y las relaciones 

jerárquicas, lo que puede dar lugar a diagramas incompletos o 

incorrectos. A pesar de que el prototipo ha mostrado buenos 

resultados en la generación de diagramas de componentes, este 

desafío sigue siendo una barrera para extender su uso a otros 

tipos de diagramas más complejos, como los de clases o 

secuencias. 

5.4.2 Limitaciones del Prototipo 

El prototipo en su forma actual presenta una serie de limitaciones 

técnicas y funcionales que han sido identificadas durante las 

pruebas con los arquitectos. 



116 

 

• Una de las principales es la falta de capacidad de la 

herramienta para generar distintos tipos de diagramas UML, 

más allá de los diagramas de componentes. Los arquitectos 

señalaron que sería valioso contar con opciones para generar 

diagramas de clases, secuencias y otros tipos UML, lo cual no 

está contemplado dentro del alcance del proyecto. 

• Otra limitación importante es la integración del prototipo con 

los sistemas corporativos de almacenamiento y gestión de 

proyectos. El prototipo de la herramienta no permite la 

comunicación bidireccional con repositorios corporativos, lo 

que ralentizaría el proceso de replicación de los diseños en 

entornos colaborativos. Esta limitación afectaría directamente 

la eficiencia con la que los arquitectos pueden iterar sobre los 

diagramas generados. 

• Un reto adicional mencionado por los arquitectos es la 

necesidad de asegurar las comunicaciones en caso de utilizar 

un proveedor de LLM externo en lugar de un modelo local. 

Dado que el prototipo contempla la posibilidad de cambiar 

entre distintos proveedores de LLM en tiempo de ejecución, es 

fundamental implementar estrategias robustas de seguridad 

que protejan la información sensible manejada durante la 

generación de diagramas, estrategias tales como reglas de 

enrutamiento, monitoreo de solicitudes, etc. 

• El hecho de que el prototipo solo permita generar diagramas a 

partir de entradas textuales y no de diagramas previos limita 

su potencial para iterar sobre diseños ya existentes. Aunque 

esta funcionalidad no está incluida en la versión actual del 

prototipo, se sugirió que poder importar diagramas generados 



117 

 

previamente o con otras herramientas permitiría una mejor 

optimización y adaptación a diferentes flujos de trabajo. 

5.4.3 Conclusión 

A pesar de los avances logrados con el prototipo, los retos y 

limitaciones presentados deben ser abordados para asegurar su 

adopción generalizada y mejorar su funcionalidad. Las 

limitaciones semánticas de los LLM, en particular, representan un 

área de investigación clave para mejorar la precisión y utilidad de 

las herramientas de generación de diagramas. Por otro lado, los 

desafíos técnicos del prototipo, como la ampliación de su 

capacidad para generar diversos tipos de diagramas y su 

integración con sistemas corporativos, ofrecerán nuevas 

oportunidades de mejora en futuras versiones. 

 

5.5 Propuestas de mejora 

Durante el proceso de validación del prototipo, los arquitectos que 

participaron en las pruebas no solo destacaron las funcionalidades más 

valiosas de la herramienta, sino que también aportaron sugerencias 

clave para mejorarla en futuras versiones. Estas propuestas de mejora 

abordan aspectos tanto técnicos como funcionales, orientados a 

optimizar la experiencia de usuario y aumentar la versatilidad del 

prototipo. A continuación, se listan cada una de ellas: 

5.5.1 Generación de Diferentes Tipos de Diagramas UML 

Una de las propuestas más obvias y esperadas fue la posibilidad 

de extender las capacidades del prototipo para generar no solo 

diagramas de componentes, sino también otros tipos de 

diagramas UML, como diagramas de clases, de secuencia o de 

actividad. Este avance permitiría a los arquitectos cubrir una gama 

más amplia de necesidades dentro del ciclo de diseño y 



118 

 

planificación arquitectónica. Aunque esta funcionalidad no está 

contemplada en el alcance actual del prototipo, la implementación 

de esta capacidad sería un paso importante para aumentar su 

aplicabilidad en diferentes fases de desarrollo. 

5.5.2 Gestión de Espacios de Trabajo y Proyectos 

Los usuarios también señalaron la importancia de contar con un 

módulo de gestión de proyectos que permita organizar los 

diagramas generados dentro de espacios de trabajo específicos. 

Actualmente, el prototipo solicita ingresar el nombre del diagrama 

en cada iteración, lo que resulta tedioso en proyectos con 

múltiples versiones o cuando es necesario ajustar el diagrama 

inicial. Implementar espacios de trabajo donde los usuarios 

puedan organizar y gestionar sus proyectos y sus respectivas 

iteraciones facilitaría el flujo de trabajo y mejoraría la eficiencia en 

la gestión de los diagramas generados. 

5.5.3 Mejoras en la Relación de Aspecto de los Diagramas 

Otra propuesta de mejora está relacionada con la visualización de 

los diagramas. Se sugirió que el prototipo debería mejorar la 

relación de aspecto en la presentación de las imágenes 

generadas, para evitar distorsiones cuando las dimensiones del 

visualizador no coinciden con las proporciones originales del 

diagrama. Asegurar que los diagramas mantengan su integridad 

visual independientemente del formato de visualización o 

exportación es fundamental para garantizar su claridad y 

comprensión. 

5.5.4 Exportación de Diagramas en Formatos Adicionales 

Actualmente, el prototipo permite la descarga de diagramas en 

formato .png, sin embargo, algunos usuarios expresaron la 

necesidad de poder exportar los diagramas en otros formatos, 

como pdf. Esta funcionalidad mejoraría la compatibilidad de los 



119 

 

diagramas con diversas plataformas de trabajo, además de 

facilitar su incorporación en reportes técnicos, documentación o 

presentaciones sin necesidad de realizar conversiones externas. 

5.5.5 Integración con Repositorios Corporativos 

Otra mejora sugerida por los arquitectos fue la integración del 

prototipo con repositorios corporativos. Esta funcionalidad 

permitiría una comunicación bidireccional entre la herramienta y 

los sistemas de gestión de proyectos empresariales, facilitando la 

replicación, almacenamiento y actualización de los diagramas en 

entornos colaborativos. Además, esta integración agilizaría el 

proceso de diseño, permitiendo que los arquitectos trabajen 

directamente con la infraestructura tecnológica de su 

organización, optimizando así el flujo de trabajo y la coherencia 

en los proyectos. 

5.5.6 Seguridad en el Consumo de Modelos de Lenguaje Grandes 

Externos 

Dado que el prototipo permite la opción de utilizar un proveedor 

de LLM externo en lugar de un modelo local, varios usuarios 

hicieron hincapié en la importancia de implementar medidas de 

seguridad robustas para proteger la información sensible. Se 

sugirió la implementación de estrategias como reglas de 

enrutamiento, auditoría de solicitudes y monitoreo de tráfico, 

especialmente en los casos donde se realicen comunicaciones 

con un LLM externo. Esto aseguraría la integridad de los datos 

manejados y garantizaría la confidencialidad en los procesos de 

diseño. 

5.5.7 Importación de Diagramas Existentes 

Por último, se destacó la necesidad de que el prototipo pueda 

importar diagramas ya existentes. Esta funcionalidad permitiría a 

los usuarios continuar con iteraciones sobre diagramas 



120 

 

previamente generados, ya sea por el mismo prototipo o por otras 

herramientas, siempre que el formato sea compatible. La 

capacidad de importar y modificar diagramas antiguos no solo 

incrementaría la flexibilidad de la herramienta, sino que también 

mejoraría su capacidad para adaptarse a los flujos de trabajo 

actuales sin necesidad de partir siempre desde cero. 

 

  



121 

 

CONCLUSIONES Y RECOMENDACIONES 

 

CONCLUSIONES 

1 Durante el desarrollo de este proyecto, se ha desarrollado un prototipo 

orientado a la generación automática de diagramas de componentes, 

integrando un Gran Modelo de Lenguaje (LLM) enriquecido con 

Recuperación Aumentada por Generación (RAG). Este enfoque ha 

demostrado ser una solución innovadora para abordar los retos 

tradicionales que enfrentan los arquitectos de software en el diseño 

manual de diagramas. 

2 Los resultados de la validación del prototipo muestran una alta 

aceptación por parte de los arquitectos de software involucrados en las 

pruebas, quienes valoraron especialmente la usabilidad y la capacidad 

de automatización de la herramienta. La reducción significativa en el 

tiempo necesario para generar diagramas de componentes, pasando 

de horas a minutos, es un logro destacado que subraya la eficiencia del 

sistema propuesto. Además, el uso de RAG ha mejorado la precisión 

contextual de los diagramas, adaptándolos a la realidad de la 

organización. 

3 Aunque el prototipo ha cumplido su objetivo en el ámbito de los 

diagramas de componentes, su extensión a otros tipos de diagramas 

UML requerirá investigación y mejoras futuras. 

4 En conclusión, este proyecto ha demostrado la viabilidad de utilizar 

tecnologías avanzadas de IA en el campo del diseño arquitectónico de 

software. Los resultados obtenidos indican que el prototipo tiene un 

gran potencial para mejorar la eficiencia en la creación de diagramas, 

pero también existen áreas clave que deberán abordarse en futuras 

fases para maximizar su aplicabilidad y robustez. 

 



122 

 

RECOMENDACIONES 

1 Se recomienda establecer un proyecto formal, con sus respectivas fases, 

para llevar a cabo la implementación de las sugerencias más fácilmente 

aplicables a corto y mediano plazo, tal como las mejoras en la relación de 

aspecto de los diagramas, la exportación en múltiples formatos, la 

integración con sistemas de versionamiento corporativo y la 

implementación de workspaces. Estas mejoras incrementarán la 

usabilidad del prototipo y asegurarán que se integre sin problemas en el 

flujo de trabajo existente de la división de arquitectura. 

2 Es esencial garantizar que la herramienta sea lo suficientemente eficiente 

para su uso diario. Esto implica priorizar mejoras técnicas como la 

optimización del rendimiento, reduciendo los tiempos de respuesta y 

aumentando la precisión en la generación de diagramas. El refinamiento 

continuo de las interfaces y la simplificación del proceso de iteración de 

diagramas contribuirá a una adopción más fluida por parte de los 

arquitectos. 

a) Como parte de la estrategia a corto plazo, se recomienda que el 

prototipo sea utilizado en proyectos piloto reales dentro de la 

empresa, donde se puedan identificar rápidamente beneficios 

prácticos y áreas adicionales de mejora. Estos pilotos permitirán 

medir con mayor precisión la eficacia de la herramienta y su 

impacto en la productividad, facilitando la toma de decisiones 

sobre su escalabilidad futura. 

b) Dado el éxito inicial en la generación de diagramas de 

componentes, se recomienda investigar la viabilidad de aplicar 

técnicas similares para automatizar la creación de otros tipos de 

diagramas UML, como diagramas de secuencias y de clases, lo 

que ampliaría considerablemente el alcance de la herramienta 

en los procesos de diseño arquitectónico. 

  



123 

 

BIBLIOGRAFÍA 

[1] A. Tariq, M. J. Awan, J. Alshudukhi, T. M. Alam, K. T. Alhamazani, y Z. 

Meraf, “Software Measurement by Using Artificial Intelligence”, J. 

Nanomater., vol. 2022, núm. 1, p. 7283171, 2022, doi: 

10.1155/2022/7283171. 

[2] B. Kim et al., “The Breakthrough Memory Solutions for Improved 

Performance on LLM Inference”, IEEE Micro, vol. 44, núm. 3, pp. 40–48, 

may 2024, doi: 10.1109/MM.2024.3375352. 

[3] Y. Chang et al., “A Survey on Evaluation of Large Language Models”, 

ACM Trans Intell Syst Technol, vol. 15, núm. 3, p. 39:1-39:45, mar. 2024, 

doi: 10.1145/3641289. 

[4] H. Naveed et al., “A Comprehensive Overview of Large Language 

Models”, el 9 de abril de 2024, arXiv: arXiv:2307.06435. doi: 

10.48550/arXiv.2307.06435. 

[5] E. Y. Zhang, A. D. Cheok, Z. Pan, J. Cai, y Y. Yan, “From Turing to 

Transformers: A Comprehensive Review and Tutorial on the Evolution 

and Applications of Generative Transformer Models”, Sci, vol. 5, núm. 4, 

Art. núm. 4, dic. 2023, doi: 10.3390/sci5040046. 

[6] J. Rumbaugh, I. Jacobson, y G. Booch, The unified modeling language 

reference manual: the definitive reference to the UML from the original 

designers, 5. print. en The Addison-Wesley object technology series. 

Reading, Mass.: Addison-Wesley, 2003. 

[7] X. Hou et al., “Large Language Models for Software Engineering: A 

Systematic Literature Review”, el 10 de abril de 2024, arXiv: 

arXiv:2308.10620. doi: 10.48550/arXiv.2308.10620. 

[8] D. De Bari, “Evaluating Large Language Models in Software Design: A 

Comparative Analysis of UML Class Diagram Generation”, laurea, 

Politecnico di Torino, 2024. Consultado: el 15 de mayo de 2024. [En 

línea]. Disponible en: https://webthesis.biblio.polito.it/31177/ 



124 

 

[9] R. Lakatos, P. Pollner, A. Hajdu, y T. Joo, “Investigating the performance 

of Retrieval-Augmented Generation and fine-tuning for the development 

of AI-driven knowledge-based systems”, el 12 de marzo de 2024, arXiv: 

arXiv:2403.09727. doi: 10.48550/arXiv.2403.09727. 

[10] S. Barnett, Z. Brannelly, S. Kurniawan, y S. Wong, “Fine-Tuning or Fine-

Failing? Debunking Performance Myths in Large Language Models”, el 

17 de junio de 2024, arXiv: arXiv:2406.11201. doi: 

10.48550/arXiv.2406.11201. 

[11] “The C4 model for visualising software architecture”. Consultado: el 2 de 

septiembre de 2024. [En línea]. Disponible en: https://c4model.com/ 

[12] “Free UML, BPMN and Agile Tutorials - Learn Step-by-Step”. 

Consultado: el 6 de septiembre de 2024. [En línea]. Disponible en: 

https://www.visual-paradigm.com/tutorials/ 

[13] “Funcionalidades Principales de PowerDesigner”. Consultado: el 6 de 

septiembre de 2024. [En línea]. Disponible en: 

https://www.powerdesigner.biz/ES/powerdesigner/powerdesigner-

features.html 

[14] “Diagramming, Data Visualization and Real-Time Collaboration | 

Lucidchart”. Consultado: el 6 de septiembre de 2024. [En línea]. 

Disponible en: https://www.lucidchart.com/pages/product 

[15] “Draw Diagrams Online | Gliffy”. Consultado: el 6 de septiembre de 2024. 

[En línea]. Disponible en: https://www.gliffy.com/products/gliffy-online 

[16] “StarUML”. Consultado: el 6 de septiembre de 2024. [En línea]. 

Disponible en: https://staruml.io/ 

[17] “Quick Start Guide · ModelioOpenSource/Modelio Wiki · GitHub”. 

Consultado: el 6 de septiembre de 2024. [En línea]. Disponible en: 

https://github.com/ModelioOpenSource/Modelio/wiki/Quick-Start-Guide 

[18] “USE: UML-based Specification Environment”, SourceForge. 

Consultado: el 6 de septiembre de 2024. [En línea]. Disponible en: 

https://sourceforge.net/projects/useocl/ 



125 

 

[19] “herramienta de código abierto que utiliza descripciones textuales 

simples para dibujar hermosos diagramas UML.” Consultado: el 6 de 

septiembre de 2024. [En línea]. Disponible en: https://plantuml.com/es/ 

[20] “Class diagrams | Mermaid”. Consultado: el 6 de septiembre de 2024. 

[En línea]. Disponible en: 

https://mermaid.js.org/syntax/classDiagram.html 

[21] M. Richards y N. Ford, Fundamentals of Software Architecture: An 

Engineering Approach. O’Reilly Media, Inc., 2020. 

[22] G. Márquez, H. Astudillo, y R. Kazman, “Architectural tactics in software 

architecture: A systematic mapping study”, J. Syst. Softw., vol. 197, p. 

111558, mar. 2023, doi: 10.1016/j.jss.2022.111558. 

[23] E. Gamma, Ed., Design patterns: elements of reusable object-oriented 

software, 39. printing. en Addison-Wesley professional computing series. 

Boston, Mass. Munich: Addison-Wesley, 2011. 

[24] G. Suryanarayana, G. Samarthyam, y T. Sharma, Eds., “Appendix A - 

Software Design Principles”, en Refactoring for Software Design Smells, 

Boston: Morgan Kaufmann, 2015, pp. 213–215. doi: 10.1016/B978-0-12-

801397-7.15001-5. 

[25] R. C. Martin, J. Grenning, S. Brown, y K. Henney, Clean Architecture: a 

craftsman’s guide to software structure and design. en Robert C. Martin 

series. Boston Columbus Indianapolis New York San Francisco 

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris 

Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul 

Singapore Taipei Tokyo: Prentice Hall, 2018. 

[26] L. Mehra, Software Design Patterns for Java Developers: Expert-led 

Approaches to Build Re-usable Software and Enterprise Applications 

(English Edition). BPB Publications, 2021. 

[27] “Software Architecture Patterns, 2nd Edition[Book]”. Consultado: el 10 de 

septiembre de 2024. [En línea]. Disponible en: 



126 

 

https://www.oreilly.com/library/view/software-architecture-

patterns/9781098134280/ 

[28] A. Cockburn, “Hexagonal architecture”, Alistair Cockburn. Consultado: el 

10 de septiembre de 2024. [En línea]. Disponible en: 

https://alistair.cockburn.us/hexagonal-architecture/ 

[29] D. Garlan, “Software Architecture”, Wiley Encycl. Comput. Sci. Eng., ene. 

2007, Consultado: el 10 de septiembre de 2024. [En línea]. Disponible 

en: https://www.academia.edu/99223468/Software_Architecture 

[30] A. Bellemare, Building event-driven microservices: leveraging 

organizational data at scale, First edition. Sebastopol, CA: O’Reilly 

Media, 2020. 

[31] S. Newman, “Monolith to Microservices”. 

[32] M. Jovanović, “What Is a Modular Monolith?” Consultado: el 10 de 

septiembre de 2024. [En línea]. Disponible en: 

https://www.milanjovanovic.tech/blog/what-is-a-modular-monolith 

[33] M. Ozkaya, “Microservices Killer: Modular Monolithic Architecture”, 

Design Microservices Architecture with Patterns & Principles. 

Consultado: el 10 de septiembre de 2024. [En línea]. Disponible en: 

https://medium.com/design-microservices-architecture-with-

patterns/microservices-killer-modular-monolithic-architecture-

ac83814f6862 

[34] “Reading ‘The C4 model for visualising software architecture’”, Leanpub. 

Consultado: el 10 de septiembre de 2024. [En línea]. Disponible en: 

https://leanpub.com/visualising-software-architecture/read_sample 

[35] I. Sommerville, “Ingenieria de Software”. 

[36] R. S. Pressman, “Ingenieria del Software. Un Enfoque Practico”. 

[37] J. Arnowitz, M. Arent, y N. Berger, Effective Prototyping for Software 

Makers (Interactive Technologies). 2006. 



127 

 

[38] D. Benyon, Designing interactive systems: a comprehensive guide to 

HCI, UX and interaction design, 3. ed. Harlow; Munich: Pearson 

Education, 2014. 

[39] J. Bloch, Effective Java, Third edition. Boston Columbus Indianapolis 

New York San Francisco Amsterdam Cape Town Dubai London Madrid 

Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo 

Sydney Hong Kong Seoul Singapore Taipei Tokyo: Addison-Wesley, 

2018. 

[40] “Spring Boot”, Spring Boot. Consultado: el 11 de septiembre de 2024. 

[En línea]. Disponible en: https://spring.io/projects/spring-boot 

[41] “IntelliJ IDEA – the Leading Java and Kotlin IDE”, JetBrains. Consultado: 

el 11 de septiembre de 2024. [En línea]. Disponible en: 

https://www.jetbrains.com/idea/ 

[42] “Angular”. Consultado: el 11 de septiembre de 2024. [En línea]. 

Disponible en: https://angular.dev/ 

[43] “Visual Studio Code - Code Editing. Redefined”. Consultado: el 11 de 

septiembre de 2024. [En línea]. Disponible en: 

https://code.visualstudio.com/ 

[44] “Welcome to Python.org”, Python.org. Consultado: el 11 de septiembre 

de 2024. [En línea]. Disponible en: https://www.python.org/doc/ 

[45] “Download PyCharm: The Python IDE for data science and web 

development by JetBrains”, JetBrains. Consultado: el 11 de septiembre 

de 2024. [En línea]. Disponible en: 

https://www.jetbrains.com/pycharm/download/ 

[46] “Milvus vector database documentation”. Consultado: el 11 de 

septiembre de 2024. [En línea]. Disponible en: https://milvus.io/docs 

[47] T. B. Brown et al., “Language Models are Few-Shot Learners”, el 22 de 

julio de 2020, arXiv: arXiv:2005.14165. doi: 10.48550/arXiv.2005.14165. 

[48] A. Vaswani et al., “Attention Is All You Need”, el 1 de agosto de 2023, 

arXiv: arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762. 



128 

 

[49] “GPT-4”. Consultado: el 11 de septiembre de 2024. [En línea]. Disponible 

en: https://openai.com/index/gpt-4-research/ 

[50] “Hugging Face – The AI community building the future.” Consultado: el 

11 de septiembre de 2024. [En línea]. Disponible en: 

https://huggingface.co/ 

[51] M. Chen et al., “Evaluating Large Language Models Trained on Code”, 

arXiv.org. Consultado: el 11 de septiembre de 2024. [En línea]. 

Disponible en: https://arxiv.org/abs/2107.03374v2 

[52] “LLM Fine-tuning Use Case: Generate Code Documentation”. 

Consultado: el 11 de septiembre de 2024. [En línea]. Disponible en: 

https://predibase.com/documentation-generation 

[53] “GitHub Copilot · Your AI pair programmer”, GitHub. Consultado: el 11 

de septiembre de 2024. [En línea]. Disponible en: 

https://github.com/features/copilot 

[54] “Eraser – Docs and Diagrams for Engineering Teams”. Consultado: el 11 

de septiembre de 2024. [En línea]. Disponible en: https://www.eraser.io/ 

[55] J. Li, Y. Yuan, y Z. Zhang, “Enhancing LLM Factual Accuracy with RAG 

to Counter Hallucinations: A Case Study on Domain-Specific Queries in 

Private Knowledge-Bases”, el 15 de marzo de 2024, arXiv: 

arXiv:2403.10446. doi: 10.48550/arXiv.2403.10446. 

[56] M. R. J, K. VM, H. Warrier, y Y. Gupta, “Fine Tuning LLM for Enterprise: 

Practical Guidelines and Recommendations”, el 23 de marzo de 2024, 

arXiv: arXiv:2404.10779. doi: 10.48550/arXiv.2404.10779. 

[57] A. Balaguer et al., “RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case 

Study on Agriculture”, el 30 de enero de 2024, arXiv: arXiv:2401.08406. 

doi: 10.48550/arXiv.2401.08406. 

[58] S. Alghisi, M. Rizzoli, G. Roccabruna, S. M. Mousavi, y G. Riccardi, 

“Should We Fine-Tune or RAG? Evaluating Different Techniques to 

Adapt LLMs for Dialogue”, el 10 de junio de 2024, arXiv: 

arXiv:2406.06399. doi: 10.48550/arXiv.2406.06399. 



129 

 

[59] A. M. Alashqar, “Automatic Generation of Uml Diagrams from Scenario-

Based User Requirements”, Jordanian J. Comput. Inf. Technol., vol. 7, 

núm. 2, 2021, Consultado: el 6 de septiembre de 2024. [En línea]. 

Disponible en: 

https://www.proquest.com/docview/2672361426/abstract/2FE1A673EF

C44E2EPQ/1 

[60] A. Conrardy y J. Cabot, “From Image to UML: First Results of Image 

Based UML Diagram Generation Using LLMs”, el 17 de abril de 2024, 

arXiv: arXiv:2404.11376. doi: 10.48550/arXiv.2404.11376. 

[61] E. A. Abdelnabi, A. M. Maatuk, y M. Hagal, “Generating UML Class 

Diagram from Natural Language Requirements: A Survey of Approaches 

and Techniques”, en 2021 IEEE 1st International Maghreb Meeting of the 

Conference on Sciences and Techniques of Automatic Control and 

Computer Engineering MI-STA, may 2021, pp. 288–293. doi: 

10.1109/MI-STA52233.2021.9464433. 

[62] B. Wang, C. Wang, P. Liang, B. Li, y C. Zeng, “How LLMs Aid in UML 

Modeling: An Exploratory Study with Novice Analysts”, el 26 de abril de 

2024, arXiv: arXiv:2404.17739. doi: 10.48550/arXiv.2404.17739.  



130 

 

ANEXOS 

Anexo 1: Formato de encuesta inicial. 

 



131 

 

 

 



132 

 

 

 

  



133 

 

Anexo 2: Diccionario para estructura de contexto 

 

  { 

    "nombre": "nombre del componente", 

    "tipo": "Composite / Core / DB /  etc", 

    "capa": "Api Layer / FrontEnd Layer / etc", 

    "Regla: clave": "valor", 

    "Regla: clave": "valor", 

    "funcionalidad": "la funcionalidad del componente" 

  } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



134 

 

Anexo 3: Contrato para generación de contexto 

 

{ 

    "prefix": "component_dictionary", 

    "lengSupportedText": 1000, 

    "strings": [ 

        { 

            "toEmbed": "La funcionalidad del componente, que forma parte del 

diccionario", 

            "text": "contenido completo del diccionario en formato string" 

        } 

    ] 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



135 

 

Anexo 4: Diagrama en formato PlantUml 

@startuml 

 

top to bottom direction 

skinparam linetype ortho 

skinparam shadowing true 

skinparam componentStyle rectangle 

skinparam backgroundColor transparent 

skinparam frame{ 

  BorderColor black 

  BorderThickness "1" 

} 

skinparam { 

  padding 5 

  roundcorner "20" 

} 

skinparam component { 

  BorderThickness 1 

  BorderColor Blue 

  BorderColor<<nuevo>> Red 

} 

skinparam database { 

  BorderThickness 1 

  BorderColor Blue 

  BorderColor<<nuevo>> Red 

} 

 

hide stereotype 

 



136 

 

frame "Aplicacion Pagos" { 

  frame "FrontEnd Layer" { 

    ["Extranet"] as 1 

  } 

  frame "Api Layer" { 

    ["apiGateway"] as 2 

    ["ms comp payment"] as 3 

    ["ms comp perfil cliente"] as 4 

    ["Camunda Api"] as 5 

    ["ms comp notificaciones"] as 6 

     

  frame "Partners Layer" { 

    ["middleware"] as 7 

  } 

  frame "Core Layer" { 

    ["ms core logs"] as 8 

  } 

  frame "Repository Layer" { 

    ["repository oracle billing"] as 9 

    database "oracle" as 10 

    ["repository mongo logs"] as 11 

    database "mongo" as 12 

  } 

  1 --> 2: Rest 

  2 --> 3: Rest 

  3 --> 5: Grpc 

  3 --> 6: Grpc 

  3 --> 8: Kafka 

  3 --> 9: Grpc 



137 

 

  5 --> 7 : Rest 

  8 --> 11: Dependency 

  9 --> 10: Tcp 

  11 --> 12: Tcp 

  3 --> 4: Grpc 

} 

@enduml 

  



138 

 

Anexo 5: Diagrama en formato imagen 

 

 

 

 

 

 

 

 

 

  



139 

 

Anexo 6: Formato de encuesta final 

 

 



140 

 

 

 

 



141 

 

 

 

 


	AGRADECIMIENTO
	DEDICATORIA
	DECLARACIÓN EXPRESA
	EVALUADORES
	RESUMEN
	ÍNDICE GENERAL
	ABREVIATURAS
	ÍNDICE DE FIGURAS
	ÍNDICE DE TABLAS
	INTRODUCCIÓN
	Capítulo I
	GENERALIDADES
	1.1 Antecedentes
	1.2 Descripción del problema
	1.3 Solución propuesta
	1.4 Objetivo general
	1.5 Objetivos específicos
	1.6 Metodología

	Capítulo II
	MARCO TEÓRICO
	1.

	2.1 Lenguaje unificado de modelado (UML)
	2.1.1 Introducción al lenguaje unificado de modelado
	2.1.2 Objetivos del modelado UML
	2.1.3 Tipos de diagramas UML
	2.1.3.1 Vista estática
	2.1.3.2 Vista de casos de uso
	2.1.3.3 Vista de interacción
	2.1.3.4  Vista de máquina de estados
	2.1.3.5 Vista de actividad
	2.1.3.6 Vistas físicas
	2.1.3.7 Vistas de gestión de modelos
	2.1.3.8 Diagramas de componentes

	2.1.4 Aplicaciones y usos del lenguaje UML
	2.1.4.1 Diseño de software
	2.1.4.2 Gestión de requerimientos
	2.1.4.3 Modelado de sistemas
	2.1.4.4  Diseño de bases de datos
	2.1.4.5 Documentación

	2.1.5 Herramientas de modelado UML
	2.1.5.1 Herramientas de generación gráfica
	2.1.5.2 Herramientas basadas en la nube
	2.1.5.3 Herramientas con generación automática de código
	2.1.5.4 Herramientas de modelado de procesos de negocio
	2.1.5.5 Herramientas de validación y simulación
	2.1.5.6 Herramientas de modelado basado en texto


	2.2 Arquitectura de software
	2.2.1 Introducción a la arquitectura de software
	2.2.2 Principios de diseño
	2.2.2.1 Principio de responsabilidad única
	2.2.2.2 Principio abierto/cerrado
	2.2.2.3 Principio de sustitución de Liskov
	2.2.2.4 Principio de segregación de interfaces
	2.2.2.5 Principio de inversión de dependencias
	2.2.2.6 Principio Don’t Repeat yourself
	2.2.2.7 Principio KISS

	2.2.3 Patrones de diseño
	2.2.3.1 Patrones creacionales
	2.2.3.1.1 Factory Method
	2.2.3.1.2 Abstract Factory

	2.2.3.2 Patrones estructurales
	2.2.3.2.1 Adapter
	2.2.3.2.2 Bridge
	2.2.3.2.3 Decorator
	2.2.3.2.4 Facade
	2.2.3.2.5 Proxy

	2.2.3.3 Patrones de comportamiento
	2.2.3.3.1 Strategy
	2.2.3.3.2 Template Method
	2.2.3.3.3 Mediator
	2.2.3.3.4 Chain of Responsability


	2.2.4 Patrones de arquitectura
	2.2.4.1 Arquitectura en capas
	2.2.4.2  Arquitectura hexagonal
	2.2.4.3 Arquitectura de tuberías y filtros
	2.2.4.4 Arquitectura orientada a eventos
	2.2.4.5 Arquitectura de microservicios
	2.2.4.6 Arquitectura monolítica modular

	2.2.5 Diseño y documentación de la arquitectura
	2.2.5.1 Modelo C4
	2.2.5.2 Ventajas del Modelo C4
	2.2.5.3 Consideraciones en la Aplicación del Modelo C4


	2.3 Prototipos de software
	2.3.1 Introducción a los prototipos de software
	2.3.2 Importancia de prototipado en un proyecto de software
	2.3.3 Tipos de prototipos de software
	2.3.3.1 Prototipos de Baja Fidelidad:
	2.3.3.2 Prototipos de Alta Fidelidad:
	2.3.3.3 Prototipos Funcionales:

	2.3.4 Herramientas y tecnologías de desarrollo
	2.3.4.1 Java
	2.3.4.2 Springboot
	2.3.4.3 Intellij Idea Comunity Edition
	2.3.4.4 Angular
	2.3.4.5 Visual Studio Code
	2.3.4.6 Python
	2.3.4.7 PyCharm Community Edition
	2.3.4.8 Milvus DB


	2.4 Grandes modelos de lenguaje
	2.4.1 Introducción a los grandes modelos de lenguaje
	2.4.2 Arquitectura de los grandes modelos de lenguaje
	2.4.3 Valor de los grandes modelos de lenguaje
	2.4.4 Aplicación de los grandes modelos de lenguaje en el diseño de software
	2.4.5 Aumentar la relevancia contextual de los resultados
	2.4.5.1 Generación Aumentada por Recuperación (RAG)
	2.4.5.2 Ajuste fino del modelo (Fine-Tuning)

	2.4.6 Limitaciones y desafíos de los LLM en el diseño de software

	2.5 Trabajos similares
	2.5.1 Revisión de trabajos similares
	2.5.2 Identificación de vacíos en el conocimiento
	2.5.3 Conclusión de revisión de trabajos similares


	Capítulo III
	DEFINICIÓN DE LA SITUACIÓN ACTUAL
	3.1 Descripción del proceso actual de diseño de arquitectura de software
	3.1.1 Flujo para el diseño de diagramas de componentes
	3.1.1.1 Levantamiento
	3.1.1.2 Análisis
	3.1.1.3 Diseño
	3.1.1.4 Socialización

	3.1.2 Modelo AS-IS
	3.1.3 Herramientas y técnicas
	3.1.4 Roles involucrados
	3.1.4.1 Levantamiento
	3.1.4.2 Análisis
	3.1.4.3 Diseño
	3.1.4.4  Socialización


	3.2 Encuestas y entrevistas
	3.2.1 Encuestas
	3.2.2 Entrevistas
	3.2.2.1 Identificación de las necesidades actuales
	3.2.2.2 Características de la solución propuesta
	3.2.2.3 Integración con herramientas existentes
	3.2.2.4 Seguridad y privacidad
	3.2.2.5 Escalabilidad y capacidad de evolución


	3.3 Métricas
	3.4 Limitaciones del proceso actual
	3.5 Conclusiones

	Capítulo IV
	ANÁLISIS Y DISEÑO DE LA HERRAMIENTA PROPUESTA
	2.

	4.1  Análisis de la solución
	4.2 Herramientas y tecnologías
	4.2.1 Herramienta de modelado UML
	4.2.2 Servicio de generación de diagrama
	4.2.3 Large Language model
	4.2.3.1 Técnica para mejorar la precisión de las respuestas
	4.2.3.2 Hardware para procesamiento del LLM

	4.2.4 Bases de datos
	4.2.4.1 Milvus Db
	4.2.4.2 Mongo Db

	4.2.5 Lenguajes de programación
	4.2.5.1 Java
	4.2.5.2 Python
	4.2.5.3 TypeScript

	4.2.6 Framework para FrontEnd
	4.2.7 Framework para Backend
	4.2.8 Tecnología de contenedorización
	4.2.9 Herramienta de autenticación única
	4.2.10 Herramienta para balanceo de carga

	4.3 Arquitectura de la solución
	4.3.1 Nuevo flujo (TO-BE) para el diseño de diagramas de componentes
	4.3.2 Diagrama de contexto
	4.3.3 Casos de uso
	4.3.3.1 Generación manual de información de contexto
	4.3.3.2 Generación de diagrama de componentes

	4.3.4 Diagrama de componentes
	4.3.5 Diagramas de secuencias
	4.3.5.1 Generación manual de información de contexto
	4.3.5.2 Generación de diagrama de componentes

	4.3.6 Diagrama de clases

	4.4 Desarrollo del prototipo
	4.4.1 Introducción
	4.4.2 Generación de información de contexto
	4.4.2.1 Descripción de la prueba
	4.4.2.2 Contrato
	4.4.2.3 Consumo
	4.4.2.4 Respuesta

	4.4.3 Generación de diagrama de componentes
	4.4.3.1 Descripción de la prueba
	4.4.3.2 Requisitos de prueba
	4.4.3.3 Ejecución de la prueba
	4.4.3.4 Resultado
	• Diagrama en formato PlantUml
	• Diagrama en formato png




	Capítulo V
	EVALUACIÓN Y ANÁLISIS DE RESULTADOS
	5.1 Validación del prototipo con el usuario
	5.2 Elaboración y toma de encuestas
	5.3 Análisis de resultados
	5.3.1 Respuesta a la pregunta de investigación

	5.4 Retos y limitaciones
	5.4.1 Limitaciones Semánticas de los LLM
	5.4.2 Limitaciones del Prototipo
	5.4.3 Conclusión

	5.5 Propuestas de mejora
	5.5.1 Generación de Diferentes Tipos de Diagramas UML
	5.5.2 Gestión de Espacios de Trabajo y Proyectos
	5.5.3 Mejoras en la Relación de Aspecto de los Diagramas
	5.5.4 Exportación de Diagramas en Formatos Adicionales
	5.5.5 Integración con Repositorios Corporativos
	5.5.6 Seguridad en el Consumo de Modelos de Lenguaje Grandes Externos
	5.5.7 Importación de Diagramas Existentes


	CONCLUSIONES Y RECOMENDACIONES
	CONCLUSIONES
	RECOMENDACIONES

	BIBLIOGRAFÍA
	ANEXOS
	Anexo 1: Formato de encuesta inicial.
	Anexo 2: Diccionario para estructura de contexto
	Anexo 3: Contrato para generación de contexto
	Anexo 4: Diagrama en formato PlantUml
	Anexo 5: Diagrama en formato imagen
	Anexo 6: Formato de encuesta final


		2024-12-09T20:30:54-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/


		2024-12-09T21:35:49-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/


		2024-12-10T15:13:42-0500




