ESCUELA SUPERIOR POLITECNICA DEL LITORAL
Facultad de Ingenieria en Electricidad y Computacion
“DISENO DE DIAGRAMAS DE COMPONENTES DE SOFTWARE,
UTILIZANDO UN GRAN MODELO DE LENGUAJE Y APLICANDO

TECNICAS DE OPTIMIZACION PARA LOGRAR RESULTADOS
CONTEXTUALMENTE RELEVANTES”

TESIS DE GRADO

Previa a la obtencion del Titulo de:

MAGISTER EN SISTEMAS DE INFORMACION GERENCIAL

Presentada por:

JUAN FRANCISCO ROMERO AGUILAR

GUAYAQUIL — ECUADOR

ANO 2024

AGRADECIMIENTO

Expreso mi agradecimiento a Dios por
darme la salud y la fortaleza necesarias
para llevar a cabo este trabajo. A mi
empresa y a mis jefas, por su constante
apoyo en la consecucion de esta meta.
Y a la ESPOL, asi como al Mgs. Lenin
Freire, por brindarme la invaluable
oportunidad de cursar esta maestria en

su prestigiosa institucion.

Ing. Juan Romero Aguilar

DEDICATORIA

Dedico este trabajo a mis padres, pilares
fundamentales de lo que soy hoy; a mis
hermanas, ejemplo constante de
superacién; a mi esposa, mi apoyo
incondicional; y a mis hijas, el motor que

me impulsa a seguir cada dia.

Ing. Juan Romero Aguilar

DECLARACION EXPRESA

Yo Juan Francisco Romero Aguilar acuerdo y reconozco que: La titularidad de
los derechos patrimoniales de autor (derechos de autor) del proyecto de
graduacion corresponderd al autor, sin perjuicio de lo cual la ESPOL recibe en
este acto una licencia gratuita de plazo indefinido para el uso no comercial y
comercial de la obra con facultad de sublicenciar, incluyendo la autorizacion
para su divulgacion, asi como para la creacion y uso de obras derivadas. En
el caso de usos comerciales se respetara el porcentaje de participacion en
beneficios que corresponda a favor del autor. El estudiante debera procurar
en cualquier caso de cesion de sus derechos patrimoniales incluir una clausula

en la cesion que proteja la vigencia de la licencia aqui concedida a la ESPOL.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de
invencion, modelo de utilidad, disefio industrial, secreto industrial, secreto
empresarial, derechos patrimoniales de autor sobre software o informacién no
divulgada que corresponda o pueda corresponder respecto de cualquier
investigacion, desarrollo tecnolégico o invencion realizada por mi durante el
desarrollo del proyecto de graduacion, perteneceran de forma total, exclusiva
e indivisible a la ESPOL, sin perjuicio del porcentaje que me corresponda de
los beneficios econdmicos que la ESPOL reciba por la explotacion de mi

innovacion, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de

Investigacion (OTRI) de la ESPOL comunique al autor que existe una

innovacion potencialmente patentable sobre los resultados del proyecto de
graduacion, no se realizara publicacion o divulgacion alguna, sin la

autorizacion expresa y previa de la ESPOL.

Guayaquil, noviembre del 2024.

T EEARE S
tROMERO AGUI LAR

ING. JUAN FRANCISCO ROMERO AGUILAR

EVALUADORES

Vi

Mgs. Lenin Eduardo Freire Cobo
PROFESOR TUTOR

Mgs. Omar Maldonado
PROFESOR EVALUADOR

vii

RESUMEN

El disefio arquitectonico es un proceso critico dentro del ciclo de vida del
desarrollo de software, donde la precision y la claridad en la representacion
de los componentes juegan un papel esencial para asegurar la calidad y
mantenibilidad del sistema. No obstante, este proceso suele ser lento y
demandante, lo que puede convertilo en un cuello de botella en
organizaciones donde la rapidez de respuesta es crucial. En este contexto, la
automatizacion de la generacion de diagramas de componentes de software
se presenta como una solucién innovadora que permite a los arquitectos
optimizar su flujo de trabajo y enfocarse en actividades de mayor valor
afnadido.

Este trabajo de investigacion se centra en el disefio de una herramienta
basada en inteligencia artificial, utilizando un Gran Modelo de Lenguaje (LLM)
enriquecido con técnicas de Recuperacion Aumentada por Generacion (RAG),
con el objetivo de generar automaticamente diagramas de componentes a
partir de descripciones textuales proporcionadas por el usuario. El enfoque
propuesto no solo automatiza una parte fundamental del disefio
arquitectonico, sino que también asegura que los diagramas generados sean
contextualmente relevantes, al integrar informacién existente en la
organizacion. De esta forma, la herramienta busca reducir significativamente
los tiempos de disefio y minimizar el riesgo de errores u omisiones humanos.
El proceso metodoldgico de este trabajo incluye una fase de levantamiento de
informacion con el equipo de arquitectura de una empresa del sector de
telecomunicaciones, lo que permitio identificar los criterios clave para la
generacion de diagramas precisos y utiles. A partir de esta informacion, se
disefi6 e implement6 un prototipo que combina el uso de herramientas como
PlantUML para la visualizacion de diagramas y el procesamiento de datos con
un LLM local para asegurar la confidencialidad de la informacién sensible de
la organizacion.

La evaluacion del prototipo se realizO mediante pruebas con arquitectos de
software, quienes proporcionaron retroalimentacion positiva respecto a la

usabilidad, eficiencia y precisién de la herramienta. Los resultados mostraron

viii

una reduccion del tiempo de generacion de diagramas mejorando la eficiencia
del equipo de arquitectura. Sin embargo, también se identificaron algunas
limitaciones, como la necesidad de mejorar la precision en la generacion de
diagramas méas complejos, como los de clases, y la integracion con otros
sistemas corporativos como los repositorios de control de versiones.

Finalmente, el estudio concluye que el uso de tecnologias avanzadas como
los LLMs, junto con técnicas de optimizacidén de resultados como RAG, tiene
un alto potencial para transformar el proceso de disefio arquitectonico en
entornos empresariales. Las recomendaciones futuras incluyen la
implementacion de mejoras sugeridas por los usuarios, como la generacion
de diferentes tipos de diagramas UML y una mayor integracion con sistemas
existentes. Se espera que este prototipo pueda escalarse para cubrir otras
areas del ciclo de desarrollo de software y convertirse en una herramienta

clave dentro de los procesos de ingenieria de software moderna.

INDICE GENERAL

AGRADECIMIENTO ...t e Il
DEDICATORIA L e e e e e e eees [l
DECLARACION EXPRESAooviieeieeeeeeeeeeeee ettt v
EVALUADORES e VI
RESUMEN ... e VI
INDICE GENERAL ..ottt ettt IX
ABREVIATURAS ..o e e eaas XIV
INDICE DE FIGURAScooeittieecte ettt XV
INDICE DE TABLAS ...ttt ettt ettt XVII
INTRODUCCIONooviiiiiieeeeecee ettt XVII
(0 U N SRS 1
GENERALIDADES. e 1
1.1 ANtECERUBNIES. 1
1.2 Descripcion del problema ..., 2
1.3 SOlUCION PrOPUESTA.......evvviiiee e 3
1.4 ODJetivo geNEralcooovviiiiiii e 6
1.5 Objetivos eSPeCIfiCOS........uiiiiiiiiiiieeecee e 6
1.6 MetodolOgia......coiee e e 7
CAPITULO Il 9
MARCO TEORICO......cciiiieieiiiieeieieiee st 9
2.1 Lenguaje unificado de modelado (UML)coooeeiiiiiiiiiii, 9
211 Introduccion al lenguaje unificado de modelado....................... 9
2.1.2 Objetivos del modelado UMLccooevviiiiiiiiiiiiiiiiiiiiiiiiiieeee, 10
2.1.3 Tipos de diagramas UMLccccccvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 11

2.1.4 Aplicaciones y usos del lenguaje UMLccoooiiviiiiiiiiinnnnenn. 15

2.1.5 Herramientas de modelado UML............cccoociviviiieieeeiiiiiinne 16
2.2 Arquitectura de SOftWare............cuvviiiiiii e 18
2.2.1 Introduccion a la arquitectura de software...........cccccceeeeennn. 18
2.2.2 Principios de diSefioccevvuiiiiei i 19
2.2.3 Patrones de diSEM0..........ccceeriiiiiiiiiiiiiieee e 22
224 Patrones de arquUIteCturaoooeeeeeeiie i 29
2.2.5 Disefio y documentacion de la arquitectura...........c..cccoeeuueeee. 32
2.3 Prototipos de SOftWArecooeeeeie e 37
2.3.1 Introduccion a los prototipos de softwareccccceeeeeiiinnnnnee. 37
2.3.2 Importancia de prototipado en un proyecto de software.......... 38
2.3.3 Tipos de prototipos de software..........cccuvveiiieieeeeeeeiiiiiine e, 39
2.3.4 Herramientas y tecnologias de desarrollocccccccoeeinnnnee. 41
2.4 Grandes modelos de [enguaje........cccooeeeeiiiiiiiiiiiiii e 47
2.4.1 Introduccion a los grandes modelos de lenguaje 47
2.4.2 Arquitectura de los grandes modelos de lenguaje................... 48
2.4.3 Valor de los grandes modelos de lenguaje..........ccccccccceeeennnn.e. 51

2.4.4 Aplicacion de los grandes modelos de lenguaje en el disefio de

software 52
245 Aumentar la relevancia contextual de los resultados............... 53

2.4.6 Limitaciones y desafios de los LLM en el disefio de software .56

2.5 Trabajos Similares.........ooooiiiiii 58
251 Revision de trabajos similares...........ccooooeee 58
2.5.2 Identificacion de vacios en el conocimientoccccccvvvveeeenen. 60
2.5.3 Conclusién de revision de trabajos similares........................... 61

CAPTTULO Tttt 63

DEFINICION DE LA SITUACION ACTUALccoeoviieeeiecececeeeee e, 63

3.1 Descripcion del proceso actual de disefio de arquitectura de software
63

Xi

3.1.1 Flujo para el disefio de diagramas de componentes............... 63
3.1.2 MOdElo AS-IS ... 65
3.1.3 Herramientas ¥y tECNICASceviveeeiiiieeicie e 67
3.1.4 ROIES INVOIUCIAUOSoeviiiieeiiiiiiiieee e 69
3.2 ENcuestas y entrevistas........cccvvuuiiiiiiii e 72
3.21 ENCUESTAS......oiiiiii 72
3.2.2 ENreViStas. ... 77
R B |V = 4 ToF= SRR 79
3.4 Limitaciones del proceso actual.............cccooeeeiiiiii 79
3.5 CONCIUSIONES ... 79
CAPITULO V. iiieeie ettt 80
ANALISIS Y DISENO DE LA HERRAMIENTA PROPUESTA.......cccucu.... 80
4.1 Analisis de 1a SOIUCIONcooiiiiiiiiiiiii e 80
4.2 Herramientas y teCnolOgiasccooeeeeeeiiiiiiiiiiiie e, 80
4.2.1 Herramienta de modelado UML............ccccccoeiiiiiiiiiiiiiinneeeene 80
4.2.2 Servicio de generacion de diagramaccooeevvviiieiieeeeeeennnnn, 81
4.2.3 Large Language model...........cccooeeieiiiiiiiiiiiiiieeeeeeeeeee 81
4,24 BaSeS UE dalOS......ccoiiiuiiiiiiiiiiee e 82
4.2.5 Lenguajes de programacionccooeeuvvviiiiieeeeeeeeiiiece e 83
4.2.6 Framework para FrontEnd.............cccoooii, 84
4.2.7 Framework para Backendccco 85
4.2.8 Tecnologia de contenedorizacion..................eeeveeeeeeueieeeiennnnnnne 85
4.2.9 Herramienta de autenticacion UniCaccccceeeeeeeeeeeee e, 86
4.2.10 Herramienta para balanceo de cargacccccvvvvvvvviviennnnnnnnne 86
4.3 Arquitectura de 1a SOIUCIONccoevviiiiiiiiiiiiiee 87

4.3.1 Nuevo flujo (TO-BE) para el disefio de diagramas de
COMPONENTES ...ttt ettt et e e et e e e e e e e e e e e e e e e e e aa e e enanas 87

Xii

4.3.2 Diagrama de CONEXIOcccvvvviiieieeeieeeeeiiie e e 89
VARG TRC T O 1Yo L3 o [N T LS o R 90
4.3.4 Diagrama de COMPONENLEScceeeeeiiieiiiiiiiiieee e e 91
4.3.5 Diagramas de SECUENCIASuuuiieeeeeirieeiiiiiieeeeeeeeeeaeniinne e e e e 92
4.3.6 Diagrama de Clases.........coovvvviiiiiii e 93
4.4 Desarrollo del prototipo.........ccoevviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 95
4.4.1 INtrOAUCCION ... 95
4.4.2 Generacion de informacion de contextoccccuvvvvvvvnennennnns 96
4.43 Generacion de diagrama de COmMpoNentes..........cccueeeeeeeeeennnne 97
CAPITULO V.ot e e e s ee ettt 101
EVALUACION Y ANALISIS DE RESULTADOS........cccoviieeirieiereeieeaeenes 101
5.1 Validacion del prototipo con el Usuarioccceeeeeeeeeiiiiiiieeeeennn. 101
5.2 Elaboracion y toma de enCUestas.........cccovvvvvvriiiiiiceeeeeeiiiiee e 101
5.3 Analisis de resultados...........cccoeeeeeeiieii 113
5.3.1 Respuesta a la pregunta de investigacion...............cccceeee..... 113
5.4 Retos Y lIMitaCiONeS.......ccooeeeiiiiiiiiiiie e 114
54.1 Limitaciones Semanticas de [0S LLMcccoeeeeiein. 115
5.4.2 Limitaciones del Prototipoccccoeeviviviiiiiiiie e 115
ST e S @70 o Tox 11] o] o H P 117
5.5 Propuestas de MeJOra........ccooeeiiiiiiiiiiieee e 117
5.5.1 Generacion de Diferentes Tipos de Diagramas UML 117
5.5.2 Gestion de Espacios de Trabajo y Proyectos.........cccccceeeee.e. 118
5.5.3 Mejoras en la Relacion de Aspecto de los Diagramas 118
55.4 Exportacion de Diagramas en Formatos Adicionales............ 118
5.5.5 Integracion con Repositorios Corporativos..............eeeeeeeeennnn. 119

5.5.6 Seguridad en el Consumo de Modelos de Lenguaje Grandes
Externos119

Xiii

5.5.7 Importacién de Diagramas EXIiStentes............ccccevvevvviinneeennn. 119
CONCLUSIONES Y RECOMENDACIONES......ccoiiiiiiiiiceee e 121
CONCLUSIONES. ... e 121
RECOMENDACIONES ... 122
BIBLIOGRAFIA ...ttt ettt eae e 123
ANEX O S e e 130
Anexo 1: Formato de encuesta inicial.cevvvviiiiiiiiiiiiiiiiiiiiiiiiiiiieee, 130
Anexo 2: Diccionario para estructura de contexto...........couvvvviiiieeeereennnnns 133
Anexo 3: Contrato para generacion de contextocccevvvveevvveeeeeenennnn. 134
Anexo 4: Diagrama en formato PlantUmlcccoocviiiiiiiiiiiiiiiiiiiiienn, 135
Anexo 5: Diagrama en formato imageneevvveveeeiiiiiiiiiiieieiieeeeeeeeeeeen 138
Anexo 6: Formato de encuesta final...........ccccovvviiiiiiiiiiiiiiiiiiiee 139

SPA
LLM
RAG
JVM
IDE
API
UML
DB
TCP
gRPC
AS-IS
TO-BE

ABREVIATURAS

Single Page Application

Large Language Model
Retrieval-Augmented Generation
Java Virtual Machine

Integrated Development Environment
Application Programming Interface
Unified Modeling Language
Database

Transmission Control Protocol
Google Remote Procedure Call
Representacion de la situacion actual

Representacion de la situacion futura

Xiv

Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura
Figura

XV

INDICE DE FIGURAS

2.1: Partes de un diagrama de COmpoNentesccceeeeeeeeeeeeeevvnnnnnn. 14
2.2: Arquitectura TranSfOrmMer ... 50
3.1: Modelo AS-IS general del flujo de diSefi0..........cccoevveevveeeiiiinnnnnn. 66
3.2: Detalle de la actividad “Disefio” del diagrama anterior............... 67
3.3: Diagrama creado con Lucidchart............ccccccooiiiiiiiiiiiiicine, 68
3.4: Percepcion del nivel de automatizacion del subproceso............ 73
3.5: Percepcion sobre la validacion de componentes reutilizables ...74
3.6: Tiempo para elaboracion de diagramas.............ccceevvvvvvviineeeennn. 75
3.7: Facilidad de realizar ajustes sobre diagramas terminados 75
3.8: Facilidad de versionamiento para los diSefioscccccevvvveveeen. 76
3.9: Grado de aceptacion de la propuesta........ccccceeeveevvviveeeeneeennnnnns 77
4.1: Modelo TO-BE para disefio de diagrama de componentes 89
4.2: Diagrama de contexto de la solucidn...............ocooeeviviiiiiieinneee. 90
4.3: Diagrama de componentes de la solucCionccccvvvvvvvnnnnnnns 92
4.4: Generacion manual de CONtEXIOuuuvuvvrvrrrrrieiiiiiriiiieiininenanenns 93
4.5: Generacién de diagrama de componentes..........cccoeevvvvveeeeeennnn. 93
4.6: Diagrama de ClaSeScccovvvviiiiiiiie e 94
4.7: Interfaz de USUAIIOcoeeee et 95
4.8: Consumo para generar CONEXIO.covvrrrruiiiieeeeeieeeniiieee e 97
4.9: Resultado de generacion de contexto.........cccoeeeeeeeevveiiiiienieeennn. 97
4.10. Ejecucién de solicitud de diagrama...........cccooeeeeeeeiiiiiiiinneeeennn. 99
4.11: Resultado de generacion de diagramaeeeveveevevenneennnnns 99
5.1: Percepcion sobre la usabilidad del prototipoccccceevvveeeeee. 102
5.2: Facilitar el disefio de diagramasccccceeeeeieiiiiieeeiiiin e, 103
5.3: Dificultades técnicas con el prototipo..........ccccceeeeeeeeeeieveiiinnnnnn. 103
5.4: Precision de 10S diagramas..........cccceeeeeeeeeiiieiiiiiiie e, 104
5.5: Rapidez en la generacion de diagramas..............ccceeevevvvvvnnnnnn. 105
5.6: Utilidad en la asistencia de un LLMccccvvvviiiiiiiiiiiiiinnnnnn. 106
5.7: Satisfaccidon con el uso del prototipo..........cccvvvvveeeiiiiiiiiiieeeennn.. 107
5.8: Incidencia del prototipo en la eficiencia de los disefios............ 108

XVi

Figura 5.9: Aspectos destacados del prototipoccceeeeevevveiiiiiciiieeeeeeeeenns 109

Figura 5.10 : Sugerencias de MEJOracccevvverrruiiiieeeeeeeeeeiiiiiiseeeeeeeeeannns 111

XVii

INDICE DE TABLAS

Tabla 1: Variables de MediCiON.... ..o 7
Tabla 2: Terminologia RACHcooo e 69
Tabla 3: MAtrZ RACH. .. e 72

Tabla 4: Métricas del PrOCESOcviiiiiiieeeece e 79

Xviii

INTRODUCCION

En el contexto actual del desarrollo de software, los arquitectos de software
enfrentan grandes desafios en la creacion de diagramas que representen la
estructura y los componentes de las soluciones informaticas. La creciente
complejidad de los sistemas, junto con la necesidad de mantener la
coherencia entre los diagramas y la evolucion continua de los proyectos, exige
herramientas que permitan a los arquitectos generar estos diagramas de
manera eficiente y precisa. Tradicionalmente, estos diagramas se crean
manualmente, o que consume tiempo valioso y es propenso a errores u
omisiones.

El presente trabajo busca abordar esta problematica mediante el disefio de
una herramienta que, utilizando un Gran Modelo de Lenguaje (LLM) y técnicas
de Recuperacion Aumentada por Generacion (RAG), automatice el proceso
de generacion de diagramas de componentes de software. Este enfoque no
solo reduce el tiempo necesario para producir los diagramas, sino que también
mejora la relevancia contextual al basarse en datos ya existentes dentro de la
organizacion.

A lo largo del documento, se describen los pasos seguidos para disefiar,
desarrollar y validar un prototipo funcional basado en la propuesta. Se
analizan las ventajas de esta herramienta en comparacion con los métodos
tradicionales y se proponen mejoras para aumentar su funcionalidad en
futuros desarrollos. Ademas, se destaca la importancia de esta solucién en
entornos corporativos, donde la agilidad y precisién son factores criticos para

el éxito del desarrollo de software.

CAPITULO |

GENERALIDADES

En el presente capitulo se abordara la oportunidad de mejora identificada en
uno de los principales procesos de en una empresa del sector de las
telecomunicaciones. Se haré una revision de los antecedentes y el problema,
asi como el planteamiento de la solucién a dicho problema y cuéles seran los
objetivos perseguidos para poder cumplir con la solucién propuesta,

definiendo una metodologia para dicho fin.

1.1 Antecedentes
En la ciudad de Guayaquil, lleva a cabo sus operaciones una empresa
de Telecomunicaciones que brinda servicios basados en Internet en el
sector corporativo, y como toda empresa vanguardista, tiene como uno
de sus pilares fundamentales al departamento de Software Factory, en
el cual se llevan a cabo los procesos de disefio, desarrollo y
mantenimiento de los sistemas informaticos que soportan la operacion.
El departamento de Software Factory tiene a su vez una division de
arquitectura, en la cual se lleva a cabo el disefio de las soluciones, con
el objetivo de satisfacer los requisitos que forman parte de cada uno de

los proyectos que le son asignados.

Para cumplir con este objetivo, el area de arquitectura realiza una serie
de actividades, las cuales requieren tiempo y esfuerzo, entre las cuales
destacan:

e Andlisis de requisitos de usuario.

e Analisis de la solucion.

e Disefio de diagrama de componentes de software.

e Disefio de diagramas de secuencia.

e Disefio de diagramas de clases.

e Construccion de repositorios base, con la arquitectura propuesta.

e Documentacion de disefios

e Capacitacion y entrega de disefos.

1.2 Descripcion del problema

Actualmente, la divisibn de arquitectura no cuenta con el personal
suficiente para atender todos los proyectos en una ventana de tiempo
apropiada, lo cual con frecuencia convierte a la etapa de disefio en un
cuello de botella dentro del proceso global de desarrollo de sistemas.
Esto incide negativamente en el tiempo de liberacion de las soluciones,
y a su vez, puede llevar a una disminucién del nivel competitivo de la
empresa.

Estos hechos, sumados a la necesidad constante de buscar el maximo
nivel de automatizacion posible en todo proceso en el cual sea viable
hacerlo, ha originado la necesidad de contar con una alternativa que
permita obtener de forma oportuna un disefio inicial de los diagramas de
componentes de software para una solucion.

Este proyecto busca responder la siguiente pregunta de investigacion:

1.3

¢, Cual es el grado de aceptacion en la division de arquitectura, para una
herramienta que genere automaticamente propuestas base de
diagramas de componentes UML para una solucién de software, a partir
del ingreso de algunos requisitos?

Solucidn propuesta

El momento actual esta marcado por el auge en el uso de la inteligencia
artificial, concepto que fue acufiado hace ya mas de medio siglo [1], pero
que gracias a los avances en la tecnologia del hardware [2], ha venido
evolucionando en los Ultimos afos, y actualmente nos brinda soporte en
la realizacion de muchas de nuestras actividades diarias, no solo a nivel
personal sino también a las empresas, las cuales en mayor o menor
grado van descubriendo la necesidad de adaptar esta revolucionaria
tecnologia en los procesos que le generan mas valor. Esta reciente
revolucién causada por la inteligencia artificial se debe en gran medida
a la llegada a escena de los grandes modelos de lenguaje (LLM) [3]-[4],
a los cuales podemos ver como complejos sistemas informaticos que
son capaces de procesar y generar texto, basandose en datos de
entrenamiento y generando respuestas tan coherentes que rivalizan con
las respuestas proporcionadas por una persona [4]-[5].

La empresa objetivo de este proyecto, no solo que no escapa de esta
tendencia, sino que sus propios objetivos empresariales le impulsan a
estar siempre a la vanguardia en el uso de la tecnologia y la aplicacion
de esta, en cada uno de sus procesos, en los cuales sea factible y viable
hacerlo. Con base en lo expuesto, es evidente y mandatorio la necesidad
de hacer uso de la inteligencia artificial con el fin de potenciar la eficiencia
de los procedimientos de un departamento tan enfocado en la
tecnologia, como lo es el departamento de Software Factory y su division

de arquitectura. Uno de estos procedimientos es el disefio de las

soluciones de software, y como un paso importante de este
procedimiento se identifica la elaboracion de los diagramas de
componentes UML [6] para la propuesta de la solucion de software.

La asistencia de la inteligencia artificial en la arquitectura de software es
un tema que recientemente ha tomado relevancia y esta siendo objeto
de muchos estudios [7], los cuales en su mayoria se han enfocado en la
generacion de diagramas de clases [8]. Sin embargo, a la fecha de este
trabajo no se encontr6 estudios enfocados en la generacion de
diagramas de componentes mediante el uso de los LLM y las técnicas
de optimizacién existentes; RAG [9] y Fine-Tuning [10], siendo la
creacion de diagramas de componentes, un paso fundamental en el
proceso de disefio de una solucion de software y por ende muy
importante para la division de arquitectura de la empresa objeto de

estudio.

Con base en lo indicado anteriormente, y con la finalidad de lograr
reducir los tiempos de entrega de las soluciones por parte de la division
de arquitectura, se propone el disefio de una herramienta informatica que
permita generar diagramas base de componentes de software de forma
agil, mediante el ingreso de requisitos por parte de un usuario y haciendo
uso de un gran modelo de lenguaje para la generacién de dichos
diagramas. Adicionalmente, para lograr resultados contextualmente
relevantes, se propone aplicar alguna de las estrategias ya
mencionadas. La finalidad de la propuesta es que un usuario técnico, ya
sea un arquitecto de software o un lider de proyectos acceda a una
herramienta web, en la cual pueda ingresar una serie de requisitos
funcionales y/o no funcionales en lenguaje natural, para inmediatamente
solicitar al sistema que genere un diagrama de componentes de software
basado en dichos requisitos. Luego de la confirmacion por parte del

usuario, se esperaria que el sistema elabore la peticién (considerando

los requisitos ingresados) en un formato entendible para un LLM local.
Luego de esto se espera que el sistema envie la peticion hacia el LLM,
el cual deberia generar un diagrama de componentes de software
bastante alineado a los requisitos y enmarcado en el contexto
tecnolégico de la empresa.

Es importante resaltar el hecho de usar un LLM local, ya que esto
garantiza que la informacion que se compartira con el LLM no saldra de

la empresa, asegurando de esta manera la proteccion de la informacion.

Para cumplir con esa finalidad se realizaran las actividades indicadas a

continuacion de forma general:

» Se realizara levantamiento de informacién con el personal de
arquitectura, mediante el uso de un instrumento definido en el
apartado de metodologia. Este levantamiento nos permitira
determinar:

v' Cuales son los criterios que se debe considerar en la definicién de
un adecuado contexto para la generacion de diagramas de
componentes de software.

v Cuales son las consideraciones que se deben tener respecto a la
seguridad de la informacion.

v" Qué caracteristicas o funcionalidades aportarian mas valor a una
herramienta generadora de diagramas de componentes de
software.

v" Que formato de respuesta seria mas adecuado como resultado de
una peticién a la herramienta.

» A continuacion, se realizara el disefio de la herramienta, mediante la
elaboracion de diagramas de contexto, diagramas de componentes
de software y diagramas de secuencia, basandonos un poco en la

definicion del framework C4 [11].

14

15

Luego de contar con el disefio inicial, se realizara la eleccién de
tecnologias para el prototipo, esto incluye FrontEnd, Backend, LLM,
base de datos, etc.

Finalmente se procedera con la elaboracion de un prototipo funcional
para poder realizar la presentacion con los usuarios, con el objetivo

de conseguir su aprobacion para el disefio.

Luego del disefio de esta herramienta y su presentacion al usuario, se

esperatoda la retroalimentacion posible y una acogida favorable de parte

de este, al conocer todo el valor que le puede aportar una herramienta

de este tipo. Se espera que luego de este trabajo, se priorice un proyecto

para la implementacion de la herramienta propuesta.

Objetivo general

Disefiar una herramienta informética, que genere diagramas base de

componentes de software de forma automética, mediante el ingreso de

requisitos de usuario, haciendo uso de un gran modelo de lenguaje

(local) para la elaboracién del diagrama y aplicando técnicas para la

mejora contextual de los resultados.

Objetivos especificos

>

YV V VYV V

Realizar levantamiento de la situacion inicial.

Disefiar la arquitectura para la solucién propuesta.

Elaborar prototipo funcional.

Realizar pruebas de generacion de diagramas de componentes.

Validar resultados con la division de arquitectura.

1.6 Metodologia
Este proyecto serd abordado con un enfoque cuantitativo, con un
alcance descriptivo y un disefio no experimental transversal. Se adopta
este disefio debido a que el proyecto no incluye el uso de experimentos.
Lo que si se debera realizar es la medicién de la variable de interés al

final del proyecto.

No se realizardn muestreos debido a que la poblacién objeto de estudio
tiene un universo de 6 individuos que cuentan con las siguientes
caracteristicas: Poblacion que comprende a los colaboradores de la
division de arquitectura, en el departamento de Software Factory, de una
empresa de Telecomunicaciones que lleva sus operaciones en

Guayaquil-Ecuador y se enfoca en el sector corporativo.

La variable de interés que se ha definido para el proyecto es el grado de
aceptacion que tiene el disefio de la herramienta propuesta, por parte
del personal de la divisién de arquitectura del departamento de Software

Factory.

Variable Definicion conceptual Definicion operacional

La aceptacion es la facultad por | Se medira luego de la

la cual una persona admite a presentacion del disefio y se
otra persona, animal, objeto o | utilizara para su medicion un
pensamiento o la accién por la |instrumento de encuesta. La
cual las recibe de manera unidad de medida seran los
voluntaria. puntos porcentuales.

Grado de aceptacion

Tabla 1: Variables de medicion

Fuente: El autor

Para la recopilacion de datos ya se tiene definidas las unidades de
analisis, y como instrumento de medicidn se utilizara una encuesta con
escala de Likert, lo cual brindara confiabilidad, validez y objetividad a la

recopilacion.

CAPITULO Il

MARCO TEORICO

El objetivo de este capitulo es brindar un conjunto de definiciones,

convenciones e informacién relevante que sirva como guia para la

consecucion exitosa del proyecto.

2.1 Lenguaje unificado de modelado (UML)

211

Introduccion al lenguaje unificado de modelado

Un modelo es la representacion de un objeto de la vida real, y
dicho modelo es utilizado para entender y/o darle forma al objeto,
explorar sus caracteristicas y/o definirle nuevas caracteristicas.
En el caso de la ingenieria de software, estos modelos se
gestionan mediante un lenguaje de modelado, como UML [6].

El lenguaje unificado de modelado o UML , como comUnmente se
lo conoce, es un lenguaje de modelado estandar y visual,
ampliamente utilizado y cuyo proposito es entre otros varios,
permitir la especificacion, disefio y documentacion de sistemas de
software, de forma clara y estandarizada [6]. Podemos considerar
a UML como una interfaz o lenguaje ubicuo para la comunicacién
o entendimiento entre un disefiador y un desarrollador respecto a
la estructura, relaciones y comportamiento de cada uno de los

artefactos que componen una solucion de software, ya que

2.1.2

10

mediante la aplicacion de UML se pueden definir, modelar o
plasmar todas estas caracteristicas tan importantes de una
solucién informatica.

Aunque los primeros esfuerzos por definir métodos para el

desarrollo de software con lenguajes orientado a objetos se

remontan a mediados de la década de 1980, no fue hasta 1997

gue el Object Management Group (OMG), un consorcio creado en

1989 en Estados Unidos, con el objetivo de desarrollar estandares

y especificaciones para la industria del software, presentd, luego

de muchos meses de trabajo, la propuesta final de UML, gracias

al trabajo en conjunto de expertos como Grady Booch, Ivar

Jacobson y James Rumbaugh [6] y otros muchos metoddlogos y

expertos de software de aquella época. Es gracias a estos

personajes, que hoy en dia podemos contar con este estandar tan
atil y tan ampliamente utilizado en toda la industria del desarrollo
de software.

Objetivos del modelado UML

¢ Definir, entender y manipular la representacion digital de objetos
0 conjuntos de objetos del mundo real que componen un
sistema, capturando sus detalles clave, caracteristicas,
comportamientos y las relaciones entre cada uno de ellos.

e Ser un lenguaje abierto, de propdsito general, no propietario, de
tal forma que pueda ser utilizado por cualquier modelador.

e Ser un lenguaje universalmente aceptado por la gran
comunidad del software, ya que hereda atributos de varios de
los métodos de modelado més utilizados en la década de 1980
a 1990 como son los métodos OMT, Booch y Objectory,
facilitando su adopcion.

2.1.3

11

e Fomentar las buenas practicas de disefio, como son la
encapsulacién y la separacion de responsabilidades [6], entre
otros.

e Ser un lenguaje altamente expresivo y universal para lograr
manejar todos los conceptos posibles que surgen en los
sistemas modernos, como por ejemplo la concurrencia [6].

Tipos de diagramas UML

En UML se definen varios tipos de vistas para un sistema, cada

una de las cuales cuenta con su propia notacion y se enfoca en

un aspecto especifico de dicho sistema. Pero en conjunto, estas

vistas proporcionan una descripcion integral del mismo [6].

A continuacién, repasaremos cada una de dichas vistas y se dara

una descripcion muy literal de acuerdo con la literatura [6]:

2.1.3.1 Vistaestatica

Describe los aspectos estaticos o estructurales del
sistema, como las clases, objetos y sus relaciones. Los
diagramas definidos en esta clasificacion son:

e Diagrama de clases

2.1.3.2 Vistade casos de uso
Representan el comportamiento funcional del sistema
desde la perspectiva del usuario o actor. Los diagramas
definidos en esta clasificacion son:

e Diagrama de casos de uso

2.1.3.3 Vistade interaccion
Describe como los objetos en el sistema interactian
entre si a través del envio de mensajes. Los diagramas

definidos en esta clasificacion son:

12

e Diagramas de secuencia

e Diagramas de interaccion

2.1.3.4 Vistade maquina de estados
Modela los estados por los que pasan los objetos del
sistema y las transiciones entre esos estados como
respuesta a eventos. Los diagramas definidos en esta
clasificacion son:

e Diagrama de estados

2.1.3.5 Vistade actividad
Describe los flujos de trabajo y procesos dentro del
sistema, mostrando las actividades y las transiciones
entre ellas. Los diagramas definidos en esta clasificacion
son:

e Diagrama de actividades

2.1.3.6 Vistas fisicas
Se utilizan para modelar los aspectos fisicos del sistema,
tales como la configuracion de hardware y software en
la implementacion. Los diagramas definidos en esta
clasificacion son:
e Diagrama de componentes

e Diagrama de despliegue

2.1.3.7 Vistas de gestion de modelos
Ayuda a gestionar la estructura organizativa del modelo,
dividiendo el sistema en paquetes manejables. Los

diagramas definidos en esta clasificacion son:

13

e Diagrama de paquetes

A continuacioén, se abordara un poco mas a detalle los diagramas
de componentes, por tratarse de uno de los elementos clave del

proyecto.

2.1.3.8 Diagramas de componentes
Los diagramas de componentes son un tipo de diagrama
UML que describe cada uno de los elementos modulares
gue componen un sistema, y como estos componentes
se relacionan entre si. Cada componente del diagrama
representa una unidad légica que encapsula una
funcionalidad particular del sistema. Los diagramas de
componentes estan formados por los siguientes
elementos:
e Componentes
Son elementos fisicos y reemplazables del sistema,
los cuales pueden ser médulos de codigo, bibliotecas,
ejecutables, o bases de datos. Estos componentes
generalmente se representan con una forma
rectangular.
e Paquetes
Se usan como contenedores de componentes.
e Interfaces
Representan los puntos de comunicacion que expone
un componente para que pueda ser consumido por
otro componente. Generalmente se representa como
un circulo o como una linea con el nombre de la

interfaz.

14

Puerto

Punto de interaccion independiente entre el
componente y su entorno.

Artefactos

Representan elementos fisicos generados por el
sistema, como por ejemplo archivos.

Relaciones de dependencia

Representan las relaciones entre los componentes
del sistema, indicando si un componte utiliza a otro
componente o depende de él. Las relaciones se

definen con lineas de trazo.

Estos elementos de los diagramas de componentes se

pueden apreciar en la siguiente imagen:

componente

\

Paquete

=
-O)- Interfaces = _
relaciones

artefacto puerto

Figura II.1: Partes de un diagrama de componentes

15

Fuente: El autor

2.1.4 Aplicaciones y usos del lenguaje UML

El lenguaje de modelado unificado (UML) satisface un amplio

espectro de necesidades en el contexto de la ingeniera y

desarrollo de software, para conseguir una definicion clara y

precisa sobre la arquitectura, comportamiento y estructura de los

sistemas, sobre todo cuando estos son complejos. Con base en

lo expuesto en los numerales anteriores, algunas de las

aplicaciones para UML son las siguientes [6]:

2141

2.1.4.2

2.1.4.3

2144

Disefio de software

El objetivo es poder representar de forma clara, la
estructura interna de cada uno de los elementos que
conforman un sistema, mediante el wuso de
componentes, modulos, clases e interfaces.

Gestion de requerimientos

El objetivo es, basado en los requerimientos levantados,
poder representar los comportamientos o casos de uso
de un sistema y como este interactla con cada uno de
sus principales actores, esto mediante el uso de
diagramas de actividades y diagramas de casos de uso.
Modelado de sistemas

El objetivo es poder representar la estructura general de
los sistemas y la interaccion entre sus distintos
elementos, para cada uno de los casos de uso definidos,
esto mediante el uso de diagramas de componentes,
diagramas de secuencia y diagramas de estados.
Disefio de bases de datos

El objetivo es poder representar las diferentes entidades

de un modelo de datos para un sistema, incluyendo sus

2145

16

atributos y la relacion entre cada una de dichas
entidades, ademas de sus cardinalidades vy
restricciones.

Documentacion

El objetivo es hacer una recopilacion de los diagramas
implementados para el sistema y armar una
documentacion clara de la estructura general de la
solucion, asi como la estructura interna de cada uno de
sus elementos y la relacion en interaccién entre cada
uno de ellos, de manera que cualquiera que conozca
UML pueda leer esa documentacion y entender el

funcionamiento de dicho sistema.

2.1.5 Herramientas de modelado UML

En la actualidad, existe un sin niamero de herramientas que

facilitan la elaboraciéon de diagramas UML, cada una de ellas

brinda una funcionalidad particular segun su enfoque. A

continuacion, listamos algunas de estas herramientas:

2151

2.15.2

Herramientas de generacién grafica

Son herramientas que permiten al usuario generar
diagramas en formato gréfico, simplemente
seleccionando y arrastrando los elementos que desean
gue formen parte del diagrama, entre ellas podemos
nombrar a Visual Paradigm [12], Power Designer [13],
etc.

Herramientas basadas en la nube

Son aquellas herramientas que permiten la generacion
de diagramas de forma remota y colaborativa, brindando
al usuario la posibilidad de gestionar sus diagramas

desde cualquier ubicacidbn con acceso a internet,

2.15.3

2154

2155

2.1.5.6

17

algunas de estas herramientas son: Lucidchart [14],
Gliffy [15], etc.

Herramientas con generacion automatica de codigo
Son herramientas que, ademéas de permitir el
modelamiento de diagramas, también permiten generar
cédigo a partir de dichos diagramas. Entre ellas
podemos nombrar a StarUml [16], Modelio [17], etc.
Herramientas de modelado de procesos de negocio
Son herramientas enfocadas en el modelamiento de
procesos de negocio. Entre ellas podemos nombrar a
Camunda Modeler, Bizagi, Visual Paradigm [12], etc.
Herramientas de validacién y simulacion

Son herramientas que ademas de permitir el
modelamiento de diagramas, también permiten simular
y validar el comportamiento de estos modelos. En esa
categoria podemos nombrar a USE (Uml-based
Specification Environment) [18].

Herramientas de modelado basado en texto

Son herramientas que permiten generar modelos UML
mediante descripciones textuales utilizando una sintaxis
especifica. El usuario describe los elementos del modelo
y sus relaciones mediante la sintaxis de la herramienta 'y
esta, a su vez en tiempo real, va renderizando esa
sintaxis en una representacion grafica del modelo con
formato png, svg u otro. Algunas de estas herramientas
son: PlantUml [19], Mermaid [20], etc.

Un punto clave a resaltar en este tipo de herramientas
es la facilidad que brindan para el versionamiento de los

modelos, ya que al tratarse de texto es muy facilmente

18

gestionable mediante una herramienta de control de

versiones.

2.2 Arquitectura de software

221

Introduccion a la arquitectura de software

La arquitectura de software es una disciplina fundamental en el
desarrollo de sistemas informaticos complejos. Se enfoca en el
conjunto de decisiones estructurales que definen y coordinan los
componentes del sistema, asi como las relaciones entre ellos. En
esencia, la arquitectura de software define como un sistema se
descompone en sus partes fundamentales, como estas partes se
comunican entre si, y de qué manera interactian con el entorno
[21].

Una arquitectura sélida es clave para asegurar la calidad de un
sistema en términos de mantenibilidad, escalabilidad,
rendimiento y seguridad, entre otros aspectos. Esta arquitectura
debe ser disefiada teniendo en cuenta tanto los requisitos
funcionales (lo que el sistema debe hacer) como los no
funcionales (cémo el sistema debe comportarse), los cuales
incluyen restricciones técnicas, decisiones de disefio y la calidad
general del software [22].

Dentro del contexto del desarrollo de software, una arquitectura
bien definida actia como una hoja de ruta que guia a los equipos
de desarrollo durante todo el ciclo de vida del sistema. Ademas,
proporciona una base sélida para la toma de decisiones futuras,
facilita la comunicacion entre los involucrados y reduce los riesgos
asociados con la evolucion del sistema, como la deuda técnica y

la complejidad innecesaria.

2.2.2

19

A medida que se desarrollaba la industria del software,
seguramente entre muchos casos de error, pero muchos mas de
éxito, los disefiadores mas expertos comenzaron a notar ciertas
similitudes en problematicas particulares que se presentaban
entre un proyecto y otro. Los expertos se dieron cuenta que ciertas
implementaciones podian abstraerse de los detalles y volverse
genéricas, de manera que pudiesen ser aplicadas en muchos
casos de uso similares [23]. A partir de ahi, se desarrollaron los

conceptos de principios y patrones de disefio.

Principios de disefio
El disefio de software es una disciplina fundamental dentro del
desarrollo de sistemas de informacion, pues determina como los
componentes individuales se organizan e interactlan entre si para
formar un sistema integral, coherente y funcional. Para guiar este
proceso, se han establecido una serie de principios de disefio que
permiten la creacion de arquitecturas robustas, escalables y
mantenibles. Estos principios no solo facilitan el trabajo de los
desarrolladores, sino que también garantizan que el sistema sea
capaz de evolucionar sin perder su integridad [24]. Es comudn
plasmar estos principios de disefio en las arquitecturas de
software mediante las herramientas de modelado antes vistas. A
continuacién, nombramos varios de los principales principios de
disefio mas utilizados en nuestro entorno:
2.2.2.1 Principio de responsabilidad unica
Sostiene que cada clase o modulo debe tener una Unica
razon para cambiar, es decir, debe estar enfocado en
una Unica tarea o responsabilidad. Este principio esta
estrechamente relacionado con la separacion de

responsabilidades y es crucial para la creaciéon de

2.2.2.2

2.2.2.3

2224

20

software mantenible y facilmente comprensible. La
adherencia a este principio permite evitar el
acoplamiento innecesario entre modulos y promueve el
desarrollo de componentes reutilizables [24].

Principio abierto/cerrado

Propuesto por Bertrand Meyer, establece que los
modulos de software deben estar abiertos para la
extension, pero cerrados para la modificacion. Esto
significa que el comportamiento de un sistema puede
ampliarse mediante la adicion de nuevo cdédigo, sin
alterar el cadigo existente. EI OCP es particularmente
importante en sistemas que requieren mantenimiento
continuo, ya que minimiza el riesgo de introducir errores
en componentes ya funcionales cuando se incorporan
nuevas caracteristicas [24].

Principio de sustitucion de Liskov

Establece que los objetos de una clase derivada deben
poder reemplazar a los objetos de la clase base sin
alterar el comportamiento del programa. Este principio
asegura la correcta herencia entre clases, promoviendo
la creacidon de jerarquias coherentes y funcionales. En
términos practicos, el LSP previene errores que pueden
surgir cuando las subclases no cumplen con las
expectativas establecidas por la clase base,
garantizando asi la integridad del sistema [24].
Principio de segregacion de interfaces

Establece que ningun cliente debe estar obligado a
depender de interfaces que no utiliza. En otras palabras,
las interfaces grandes y generales deben dividirse en

interfaces mas pequefias y especificas para que los

2225

2.2.2.6

21

clientes solo necesiten conocer y utilizar los métodos
gue realmente les son utiles. Este principio ayuda a
evitar la sobrecarga de responsabilidades en las
interfaces y previene el denominado "code smell" que
ocurre cuando un cambio en una interfaz afecta
innecesariamente a muchas clases que dependen de
ella. En la practica, el ISP reduce la cantidad de
dependencias innecesarias en un sistema, promoviendo
un disefio mas flexible y desacoplado. Cuando las
interfaces son mas especificas y cumplen con este
principio, se facilita el mantenimiento y la evolucion del
cédigo, ya que los cambios en una interfaz no afectaran
a componentes que no tienen relacién directa con ella
[25].

Principio de inversion de dependencias

Establece que los mddulos de alto nivel no deben
depender de médulos de bajo nivel;, ambos deben
depender de abstracciones. Ademas, las abstracciones
no deben depender de detalles concretos, sino que los
detalles deben depender de las abstracciones. Este
principio es clave para garantizar la flexibilidad y
escalabilidad de un sistema, ya que permite desacoplar
las implementaciones concretas de sus abstracciones,
facilitando cambios en las capas bajas del sistema sin
afectar a las capas superiores [25].

Principio Don’t Repeat yourself

Sugiere que cada pieza de conocimiento o l6gica debe
tener una representacion unica y no duplicada en el
sistema. La repeticion innecesaria de cédigo aumenta la

complejidad del mantenimiento y eleva el riesgo de

2.2.3

22

errores, ya que cualquier cambio en un componente
duplicado debe realizarse en multiples ubicaciones.
Aplicar el DRY implica una organizacion eficiente del
codigo y el uso adecuado de la abstraccion para evitar
duplicidades [24].
2.2.2.7 Principio KISS
Aboga por la simplicidad en el disefio, sugiriendo que los
sistemas y componentes deben mantenerse tan simples
como sea posible. La complejidad innecesaria suele
llevar a sistemas dificiles de entender, mantener y
escalar. Mantener el disefio sencillo no significa
sacrificar la funcionalidad, sino asegurarse de que el
sistema se desarrolla de la forma mas clara y directa
posible. Este principio es esencial para sistemas en
crecimiento, donde la complejidad tiende a aumentar
con el tiempo si no se controla adecuadamente [24].
Los principios de disefio constituyen los pilares fundamentales
para crear software que sea adaptable, mantenible y flexible a lo
largo del tiempo. Siguiendo estos principios, los desarrolladores
logran una estructura clara y bien organizada, facilitando el
crecimiento del sistema sin comprometer su estabilidad. Sin
embargo, a medida que los sistemas crecen en complejidad, los
principios de disefilo pueden no ser suficientes para abordar
ciertos problemas recurrentes de forma especifica. Aqui es donde

los patrones de disefio desempefan un papel crucial.

Patrones de disefio
En el desarrollo de software, los patrones de disefio son
soluciones repetibles a problemas comunes que surgen durante

la fase de disefio y arquitectura de componentes. Estos patrones

23

encapsulan las mejores practicas y lecciones aprendidas por
expertos a lo largo del tiempo, ofreciendo a los disefiadores y
desarrolladores una guia estructurada para enfrentar desafios
especificos sin reinventar la rueda en cada proyecto [23]. Los
patrones de disefio no son implementaciones concretas, sino
esquemas que pueden ser adaptados y personalizados segun el
contexto de cada sistema. Su objetivo principal es mejorar la
eficiencia del disefio, la reutilizacion de soluciones y la
comunicaciéon entre los equipos de desarrollo al proporcionar un
lenguaje comun.

El uso de los patrones de disefio es especialmente valioso cuando
se trata de abordar problemas de disefio recurrentes, como la
administracion de dependencias, la flexibilidad en la creacién de
objetos o la gestion de interacciones complejas entre
componentes. Los patrones de disefio normalmente se plasman
en una arquitectura de software en los diagramas de clase,
mediante alguna de las herramientas de modelado ya revisadas.
Aunqgue los patrones de disefio proporcionan soluciones valiosas,
es fundamental entender que no son recetas universales. La
correcta aplicacién de un patrén depende del contexto y las
necesidades especificas del sistema en desarrollo [26]. Un uso
inapropiado o forzado de patrones puede introducir complejidad
innecesaria y generar mas problemas que beneficios. Por lo tanto,
su implementacion debe ser cuidadosa y reflexiva, alineandose
con los principios de disefio que rigen la arquitectura del sistema.
Cada patrén de disefio responde a un tipo especifico de problema
y se clasifica segun la naturaleza de la solucion que ofrece. A
continuacion, se da una breve descripcion de los patrones que
son mas utilizados en nuestro dia a dia, agrupados segun su

clasificacion. Se deja fuera de este listado a aquellos patrones

24

para los cuales, las herramientas de desarrollo actuales ya

brindan implementaciones rapidas, como por ejemplo los

patrones builder, singleton, etc.:

2.2.3.1 Patrones creacionales

Tratan sobre la forma en que los objetos son creados y

gestionados. A continuacion, nombramos algunos de

ellos:
22311

22312

Factory Method
Este patron define una interfaz para crear

objetos en una clase base, pero permite que
las subclases alteren el tipo de objeto que se
crearad. En lugar de instanciar directamente
los objetos, el patron delega la
responsabilidad de la creacibn a las
subclases, promoviendo el principio de
responsabilidad Unica y la separaciéon de la
l6gica de creaciéon de la l6gica de negocio.
Este enfoque permite que las clases base no
estén acopladas a clases especificas de
productos, facilitando la adicion de nuevas
variantes de productos sin cambiar el cédigo
que utiliza esas clases [23].

Abstract Factory
Este patron va un paso mas alla del Factory

Method y se utiliza cuando es necesario crear
familias de objetos relacionados o
dependientes sin especificar sus clases
concretas. A través de una interfaz comun, el
patron permite que un conjunto de objetos (0

productos) se creen de manera conjunta,

25

asegurando que todos pertenezcan a la
misma familia o contexto de creacion. El
objetivo es proporcionar una solucion que
permita crear varios objetos que deben ser
compatibles entre si, sin que el cédigo que los
utiliza tenga conocimiento de sus clases

concretas [23].

2.2.3.2 Patrones estructurales

Se centran en la composicion y relacién entre objetos y

clases. A continuacién, se nombra algunos de ellos:

22321

2.2.3.2.2

Adapter
Este patrén actiia como un intermediario que

permite que clases con interfaces
incompatibles trabajen juntas. Su principal
funcion es traducir la interfaz de una clase
existente para que otra clase pueda utilizarla
sin necesidad de modificar su codigo. Es
comunmente utilizado cuando se quiere
integrar una nueva clase en un sistema
existente sin alterar la estructura de este
altimo. El adaptador convierte las llamadas de
métodos esperadas por el cliente en las
llamadas equivalentes a los métodos de la
clase que necesita ser adaptada,
garantizando que ambas partes puedan
interactuar de manera armoniosa [23].

Bridge
Este patron separa la abstraccion de la

implementacion, permitiendo que ambas

evolucionen de manera independiente. En

2.23.2.3

22324

26

lugar de acoplar fuertemente la abstraccion a
su implementacion, el patron Bridge utiliza
una composicion para mantener la
independencia entre estas dos capas. Esto es
atil cuando se espera que un sistema crezca
con multiples variantes de abstraccion e
implementacion, ya que cada una puede
modificarse sin afectar la otra [23].

Decorator
Este patrén permite afiadir responsabilidades

adicionales a un objeto de manera dinamica,
sin alterar su estructura original. A diferencia
de la herencia, que afiade funcionalidad en
tiempo de disefio, el Decorador lo hace en
tiempo de ejecucion. Cada decorador
"envuelve" al objeto original y extiende su
comportamiento, proporcionando una
alternativa flexible a la subclasificacién para
afnadir funcionalidades incrementales [23].

Facade
Este patron proporciona una interfaz

simplificada y unificada para un conjunto de
interfaces en un subsistema complejo. El
objetivo de la fachada es ocultar la
complejidad del subsistema, proporcionando
un punto de acceso unico que es facil de usar
y entender. Aunque el sistema subyacente
puede tener muchas funcionalidades, el

patron Facade expone solo las mas

27

relevantes para el usuario final, facilitando su
uso [23].

2.2.3.2.5 Proxy
Este patron actia como un sustituto o

intermediario de otro objeto, controlando el
acceso a este. El proxy puede proporcionar
funcionalidad adicional, como control de
acceso, carga diferida o gestion de recursos,
sin modificar el objeto original. Existen varios
tipos de proxy, como el proxy remoto, que
representa a un objeto ubicado en otra
maquina, o el proxy virtual, que retrasa la
creacion de un objeto pesado hasta que
realmente sea necesario [23].
2.2.3.3 Patrones de comportamiento

Abordan la interaccién y responsabilidad entre los

objetos. Estas categorias permiten organizar y aplicar

los patrones de manera sistematica, ayudando a los

arquitectos de software a identificar rapidamente el

enfoque adecuado para un problema concreto. A

continuacién, se nombra algunos de ellos:

2.2.3.3.1 Strategy
Este patron permite definir una familia de

algoritmos, encapsular cada uno de ellos y
hacer que sean intercambiables. A través de
este patron, el comportamiento de un objeto
puede variar segun el algoritmo que se utilice,
sin modificar su estructura. El patrén Strategy
se aplica cuando existen varias formas de

realizar una tarea y el cliente necesita

2.2.3.3.2

2.2.3.3.3

22334

28

seleccionar entre ellas de manera dinamica
[23]. Este patron normalmente trabaja de la
mano con algun patron de factoria para
obtener la estrategia a utilizar.

Template Method
Este patron define la estructura basica de un

algoritmo en una clase abstracta, permitiendo
gue las subclases implementen o modifiquen
ciertos pasos especificos del proceso sin
cambiar la estructura general del algoritmo.
Este patron permite reutilizar el cédigo comun
para todos los algoritmos, dejando que las
subclases personalicen las partes que varian
[23].

Mediator
Este patron centraliza la comunicacion entre

los objetos en un sistema, evitando que los
objetos se comuniquen directamente entre si.
En lugar de tener interacciones complejas y
dependencias entre varios componentes,
cada uno de ellos se comunica a traves de un
mediador. Esto reduce el acoplamiento entre
las clases y simplifica el mantenimiento y la
evolucion del sistema. El mediador conoce
las interacciones que deben ocurrir entre los
objetos y coordina esas interacciones de
manera eficiente [23].

Chain of Responsability
Este patron permite pasar una solicitud a

través de una cadena de manejadores

potenciales hasta que uno de ellos se haga

29

cargo de procesarla. Cada manejador en la
cadena decide si puede procesar la solicitud
0 si la pasa al siguiente manejador. Este
patron desacopla al remitente de la solicitud
de su receptor, permitiendo que mas de un
objeto tenga la oportunidad de procesarla.
También facilita la adicion o modificacion de
los manejadores sin afectar a los demés [23].

2.2.4 Patrones de arquitectura

Los patrones de arquitectura son soluciones generales y
repetibles para problemas comunes que surgen al disefiar la
estructura global de un sistema de software. A diferencia de los
patrones de disefio, que abordan problemas mas especificos a
nivel de clase o componente, los patrones de arquitectura
proporcionan un marco para la organizacion de sistemas
completos. Su objetivo es garantizar que el software sea
escalable, mantenible y flexible frente a los cambios y que pueda
cumplir con los requisitos técnicos y de negocio de manera
eficiente.
Estos patrones establecen una guia clara sobre cémo deben
organizarse y relacionarse los diferentes componentes de un
sistema, facilitando la toma de decisiones arquitectonicas que
conduzcan al éxito del proyecto. A continuacion, se describen
algunos de los patrones de arquitectura mas utilizados vy
relevantes en el desarrollo de sistemas de software modernos:
2.2.4.1 Arquitectura en capas

Es uno de los patrones mas tradicionales y utilizados. En

este patrén, el sistema se divide en capas jerarquicas,

donde cada una de ellas tiene una responsabilidad

2.24.2

30

claramente definida. Las capas mas comunes incluyen
la capa de presentacion (interfaz de usuario), la capa de
negocio (I6gica de la aplicacion), la capa de acceso a
datos y la capa de almacenamiento de datos. Cada capa
interactia Unicamente con la capa inmediatamente
inferior, lo que permite una mayor modularidad y
separacion de responsabilidades [27].

Arquitectura hexagonal

Este patron de arquitectura, propuesto por Alistair
Cockburn, busca resolver algunos de los problemas de
acoplamiento que existen en patrones mas
tradicionales, como la arquitectura en capas. En lugar de
depender fuertemente de las capas internas y externas,
la arquitectura hexagonal organiza el sistema en torno a
una unidad central (el dominio de la aplicacién) rodeada
de puertos y adaptadores. Los puertos son interfaces
gue definen como interactuar con la aplicacion, mientras
gue los adaptadores son implementaciones concretas
que se conectan a estos puertos. Este enfoque
desacopla completamente el ndcleo del negocio de las
capas externas, como la base de datos o las interfaces
de usuario, lo que hace que el sistema sea mas flexible
y adaptable.

Uno de los beneficios clave de la arquitectura hexagonal
es que facilita las pruebas y la evolucion del sistema.
Dado que las dependencias de la aplicacion (como la
infraestructura o las interfaces de usuario) estan
aisladas a través de adaptadores, es mucho mas
sencillo reemplazar o modificar partes del sistema sin

afectar al nucleo de la aplicacion [28].

2.24.3

2244

2245

31

Arquitectura de tuberias y filtros

En este tipo de arquitectura, el procesamiento de datos
se descompone en wuna secuencia de pasos
independientes (filtros), cada uno de los cuales realiza
una transformacion sobre los datos. Los filtros estan
conectados mediante canales (tuberias) que transportan
los datos de un paso a otro. Este patron es
especialmente Util en sistemas que requieren un
procesamiento de datos continuo, como en los flujos de
datos en tiempo real o los sistemas de compilacion [29].
Arquitectura orientada a eventos

Este es un patron de arquitectura en el que los
componentes del sistema se comunican entre si
mediante la emision y recepcion de eventos. En lugar de
estar directamente acoplados, los componentes
reaccionan a eventos emitidos por otros sin depender de
su estado o ejecucion. Este enfoque es util para
sistemas que requieren un alto grado de
desacoplamiento y reactividad, como aplicaciones de
tiempo real, comercio electronico o sistemas de
monitoreo [30].

Arquitectura de microservicios

Este patron es un enfoque moderno que promueve la
construccion de aplicaciones a partir de servicios
pequefios y autébnomos, cada uno centrado en una
funcionalidad especifica del negocio. Estos servicios
estan desacoplados y pueden desarrollarse,
implementarse y escalarse de manera independiente.
Cada microservicio se comunica con los demas a traves

de interfaces bien definidas, como Apis REST o

32

mensajeria, lo que permite una mayor flexibilidad y
escalabilidad horizontal. Como pueden observar este
patrén hace uso de varias de las bondades de los
anteriores patrones [31].

2.2.4.6 Arquitectura monolitica modular
Esta arquitectura es un enfoque en el que un sistema se
desarrolla como una Unica aplicacion, pero internamente
esta organizado en modulos independientes que
encapsulan diferentes funcionalidades. A diferencia del
monolito tradicional, donde todos los componentes
estan estrechamente acoplados y cualquier cambio en
una parte del sistema puede afectar a otras, en el
monolito modular los modulos estan bien delimitados y
se comunican entre si a través de interfaces claras y
desacopladas, como si fueran pequefos servicios
dentro de un mismo monolito.
Este enfoque permite organizar el sistema de forma
modular sin la complejidad inherente a los
microservicios, donde cada moédulo es independiente
pero no necesita desplegarse ni gestionarse como un
servicio separado. Pero al mismo tiempo su estructura
brinda la posibilidad de migrar con relativa facilidad,
cada moédulo a un microservicio si fuese necesario [32]-
[33].

2.2.5 Disefio y documentacion de la arquitectura
El disefio y la documentacion de la arquitectura de software son
aspectos fundamentales en la construccion de sistemas
complejos. Un buen disefio arquitectonico garantiza que el

sistema sea escalable, mantenible y adaptable a los cambios

33

futuros, mientras que la documentacion proporciona una guia
clara para los desarrolladores y otros stakeholders sobre como
esta estructurado el sistema, sus componentes y cOmo
interactuan entre si [21].

Uno de los principales desafios en la documentacion
arquitectonica es encontrar un equilibrio entre la complejidad y la
claridad. Si la documentacion es demasiado abstracta, podria
resultar poco util para los desarrolladores; por otro lado, si es
demasiado detallada, puede ser dificil de mantener y navegar. En
este contexto, el modelo C4 se ha convertido en una herramienta
poderosa y ampliamente adoptada para abordar estos problemas,
proporcionando un enfoque estructurado y claro para la

documentacion de la arquitectura.

2.25.1 Modelo C4

El modelo C4, creado por Simon Brown, es una técnica
para describir la arquitectura de software utilizando
diferentes niveles de abstraccion. Su nombre hace
referencia a las cuatro capas o vistas que utiliza para
representar el sistema de forma progresivamente mas
detallada: Contexto, Contenedores, Componentes y
Cddigo (Clases). El propdésito principal de C4 es
proporcionar un enfoque escalonado que facilite la
comprension tanto del panorama general del sistema
como de los detalles técnicos especificos cuando sea
necesario [34]. EI modelo C4 esta constituido por 4
vistas principales, las cuales se detallan a continuacion:
« Diagrama de contexto

Es la vista mas alta de la arquitectura. Muestra el

sistema en su conjunto y como interactia con su

34

entorno, como otros sistemas o0 actores externos
(usuarios, clientes, etc.). Esta vista es util para
comunicar a los stakeholders no técnicos, la
funcionalidad del sistema y cOmo se conecta con
otras partes del ecosistema tecnolégico.

Por ejemplo, en una aplicacién web, el diagrama de
contexto podria mostrar cémo interactian los
usuarios con el sistema, los sistemas de
autenticacion de terceros y los servicios de datos
externos [11].

Diagrama de contenedores

Descompone el sistema en diferentes contenedores
de software, como aplicaciones web, bases de datos,
servicios Backend, etc. Este nivel permite ver los
componentes principales del sistema y cdémo
interacttan entre si a través de protocolos o Apis.
Esta vista es particularmente Gtil para arquitectos y
desarrolladores que necesitan entender la estructura
del sistema y como se distribuyen las
responsabilidades entre diferentes contenedores de
software [11].

Diagrama de componentes

Se adentra en un nivel mas profundo, mostrando los
componentes individuales dentro de cada
contenedor. Los componentes representan unidades
funcionales mas pequefas dentro del sistema, como
modulos o0 servicios que cumplen con una tarea
especifica dentro del contenedor [11].

Este nivel es crucial para los equipos de desarrollo,

ya que describe como estan organizadas las

35

funcionalidades internas y como los componentes
interactuan entre si dentro de un contenedor.
Diagrama de codigo (o clases)

Es el mas detallado y muestra la implementacion de
un componente especifico en términos de clases o
estructuras de codigo. Aunque no siempre es
necesario documentar a este nivel, puede ser util
para describir las interacciones dentro de
componentes criticos o altamente complejos [11].
Este nivel suele ser mas dinamico, ya que el codigo
cambia con mas frecuencia que el disefio de alto
nivel. Es importante mantener esta vista sincronizada
con el estado actual del cédigo base si se decide

utilizarla.

2.2.5.2 Ventajas del Modelo C4

El modelo C4 presenta varias ventajas que lo hacen

particularmente util en el disefio y documentacion de

arquitecturas [34]:

Claridad y Simplicidad

Cada nivel del modelo C4 estéa disefiado para ser lo
suficientemente claro como para que cualquier
stakeholder pueda entender el sistema desde su
respectiva perspectiva. Los niveles de abstraccion
aseguran que tanto los desarrolladores como los
stakeholders no técnicos tengan la informacion que
necesitan.

Flexibilidad y Escalabilidad

C4 permite comenzar desde una vista general y

luego profundizar en detalles técnicos especificos

36

cuando sea necesario. Esto facilita la escalabilidad
del disefio, ya que los arquitectos pueden afiadir
nuevos componentes o contenedores sin perder de
vista el panorama general del sistema.
Documentacion Evolutiva

A medida que el sistema evoluciona, el modelo C4
facilita la actualizacion de la documentacion sin
necesidad de redisefiar todo el sistema. Los cambios
se pueden reflejar solo en el nivel correspondiente, lo
gue hace que la documentacién sea mas facil de
mantener.

Comunicacién Efectiva

Al proporcionar diferentes vistas de la arquitectura, el
modelo C4 facilita la comunicacion entre equipos
multifuncionales. Los ejecutivos pueden comprender
el contexto general del sistema, mientras que los
desarrolladores tienen acceso a detalles mas

profundos sobre los componentes y el cédigo.

2.2.5.3 Consideraciones en la Aplicacion del Modelo C4

Si bien el modelo C4 proporciona una estructura clara

para la documentacion de la arquitectura, su aplicacion

efectiva requiere ciertas consideraciones [34]:

Mantener la Documentacion Actualizada

Dado que la documentacion arquitectonica tiende a
volverse obsoleta si no se actualiza regularmente, es
importante integrar la actualizacion de los diagramas
C4 en el ciclo de vida del proyecto, especialmente
cuando hay cambios importantes en el disefio o la

implementacion.

37

e Adaptacién al Contexto
El modelo C4 es flexible, pero es importante adaptar
el nivel de detalle segun el tamafio y la complejidad
del sistema. En sistemas pequefos, puede que no
sea necesario llegar hasta el nivel de clases,
mientras que, en sistemas grandes y complejos, este

nivel puede ser crucial.

2.3 Prototipos de software

231

Introduccion a los prototipos de software

El prototipado de software es una técnica que permite el desarrollo
de modelos preliminares o versiones simplificadas de un sistema
antes de su implementacion completa. Estos prototipos ayudan a
los equipos de desarrollo a obtener una visibn clara y
comprensible del producto final, al tiempo que permiten la
interaccidon con los usuarios desde etapas tempranas. Mediante
la creacion de versiones que reflejan caracteristicas clave o flujos
de trabajo esenciales, los prototipos facilitan la validacion de
requisitos y la identificacion de mejoras o ajustes necesarios,
antes de incurrir en los costos y esfuerzos asociados a la
implementacion total del sistema [35].

El uso del prototipado en software ha ganado relevancia en
metodologias &giles y en entornos donde la adaptabilidad y la
retroalimentacion continua son esenciales para el éxito del
proyecto. Los prototipos no solo ayudan a los desarrolladores y
disefiadores a visualizar la funcionalidad propuesta, sino que
también permiten a los usuarios y stakeholders participar
activamente en la validacion y refinamiento de las funcionalidades

y la experiencia de usuario [36].

2.3.2

38

Importancia de prototipado en un proyecto de software

El prototipado es una fase crucial en el ciclo de vida del desarrollo
de software, ya que proporciona una forma tangible de
representar una solucion antes de que se realice la
implementacion completa. Este enfoque permite que los
desarrolladores, clientes y usuarios finales interactien con una
version preliminar del producto, lo que facilita la validacion
temprana de requisitos y expectativas. De esta manera, los
prototipos actlan como un puente entre la conceptualizacion
abstracta y la ejecucién practica del sistema, ofreciendo una
visidn mas clara de cémo funcionaré el software una vez finalizado
[35].

Uno de los principales beneficios del prototipado es que reduce el
riesgo de malentendidos o interpretaciones erroneas entre los
diferentes actores involucrados en el proyecto. Al ofrecer una
representacion visual y, en algunos casos, interactiva de las
funcionalidades principales, los usuarios pueden identificar
problemas o discrepancias antes de que el software esté
completamente desarrollado. Esto contribuye a que se realicen
ajustes y mejoras en las primeras fases, lo que disminuye el costo
de rectificar errores en etapas avanzadas del desarrollo [35].
Ademas, el prototipado permite una retroalimentacion continua
por parte de los usuarios y clientes, lo que es especialmente
valioso en entornos donde los requisitos pueden cambiar o
evolucionar rapidamente.

El valor del prototipado también radica en su capacidad para
facilitar una mejor planificacion del proyecto. Al identificar las
posibles dificultades técnicas, de disefio o de experiencia de

usuario a través de la creacién de prototipos, los equipos de

2.3.3

39

desarrollo pueden anticiparse a problemas y ajustar la
planificacion del proyecto en consecuencia. Esto reduce los
riesgos y mejora la estimacion de tiempos y recursos [35].

Por ultimo, el prototipado promueve la creatividad y la innovacion.
Dado que los equipos tienen la libertad de explorar diferentes
enfoques y soluciones sin el compromiso inmediato de
implementar un producto final, pueden probar ideas nuevas y
realizar cambios iterativos sin consecuencias significativas en el

presupuesto o en el cronograma [37].

Tipos de prototipos de software

En el desarrollo de software, existen diferentes tipos de prototipos
gue pueden ser utilizados en funcién de los objetivos del proyecto,
el presupuesto y el nivel de detalle necesario. Los prototipos de
software se clasifican en varias categorias, que van desde
representaciones basicas hasta simulaciones funcionales
avanzadas, cada una con sus propios beneficios y aplicaciones.
A continuacion, detallamos tres de los tipos de prototipo mas

utilizados en nuestro contexto:

2.3.3.1 Prototipos de Baja Fidelidad:
Los prototipos de baja fidelidad son representaciones
simplificadas y rapidas del sistema, a menudo en forma
de bocetos o wireframes. Estos prototipos no suelen
incluir funcionalidad interactiva ni detalles de disefio,
pero permiten una visualizacion inicial de la estructura y
el flujo de trabajo del software. Son muy Uutiles para
obtener retroalimentacion temprana de los usuarios
sobre la interfaz y la disposicién de los elementos, sin

invertir grandes recursos en su creacion [37].

2.3.3.2

2.3.3.3

40

Herramientas como Balsamiq y Figma permiten crear

rapidamente estos prototipos.

Prototipos de Alta Fidelidad:

A diferencia de los de baja fidelidad, los prototipos de
alta fidelidad se asemejan mas al producto final tanto en
funcionalidad como en disefio. Estos modelos pueden
incluir interacciones, navegabilidad y elementos graficos
detallados, lo que facilita una comprension mas precisa
del comportamiento del sistema. Se utilizan
principalmente cuando es necesario validar aspectos
especificos como la experiencia de usuario o el disefio
visual [37]. Herramientas como Adobe XD, InVision, y
Axure son frecuentemente empleadas para este tipo de

prototipos.

Prototipos Funcionales:

En este tipo de prototipo, se desarrollan versiones que
no solo incluyen el disefio, sino también partes del
cadigo funcional del software. Estos prototipos permiten
a los equipos de desarrollo y a los usuarios probar
caracteristicas clave del sistema en un entorno realista,
incluyendo interacciones, conectividad y desemperfio.
Son particularmente utiles cuando es necesario validar
requisitos técnicos o de rendimiento antes de pasar a

una implementacién completa [38].

Cada uno de estos tipos de prototipos tiene un propasito

especifico en el ciclo de desarrollo del software, y la eleccién del

tipo adecuado depende de las necesidades del proyecto, el grado

234

41

de incertidumbre en los requisitos, y el nivel de detalle requerido

por los stakeholders.

Herramientas y tecnologias de desarrollo

En el proceso de desarrollo de software, las herramientas
utilizadas son fundamentales para facilitar el trabajo de los
equipos, mejorar la productividad y garantizar la calidad del
producto final. Estas herramientas abarcan una amplia gama de
funciones, desde la gestion de versiones del cédigo hasta el
disefio de interfaces y la automatizacion de pruebas. A
continuacion, se describen las herramientas seleccionadas para

la elaboracién del prototipo funcional de este proyecto:

2.3.4.1 Java

Es un lenguaje de programacion verséatil y orientado a
objetos, desarrollado por Sun Microsystems en 1995 y
actualmente mantenido por Oracle. Su principal ventaja
es el concepto de "escribir una vez, ejecutar en cualquier
lugar”, lo que permite que el cédigo escrito en Java
funcione en cualquier plataforma que tenga una
Maquina Virtual de Java (JVM). Su manejo automatico
de memoria y estructura modular lo hacen adecuado
para una amplia variedad de aplicaciones, desde
sistemas empresariales y servidores Backend hasta
aplicaciones maviles [39].

Java también cuenta con un extenso ecosistema de
bibliotecas y frameworks, como Spring e Hibernate, que
simplifican el desarrollo de aplicaciones robustas y

escalables. Su popularidad se debe no solo a su

2.3.4.2

2.3.4.3

42

rendimiento en entornos empresariales, sino también a
su gran comunidad de desarrolladores y la abundancia

de recursos literarios.

Springboot

Es un marco de trabajo basado en Spring que facilita el
desarrollo de aplicaciones Java mediante Ia
simplificacion de la configuracion y la infraestructura.
Disefiado para crear aplicaciones listas para produccion
de manera rapida, Spring Boot elimina la necesidad de
configuraciones manuales complejas al ofrecer
configuraciones automaticas y una amplia gama de
dependencias preconfiguradas. Esto permite a los
desarrolladores centrarse en la légica de negocio en
lugar de en la configuracion del entorno. Ademas, Spring
Boot incluye un servidor embebido (como Tomcat), lo
gue permite ejecutar aplicaciones directamente sin
necesidad de configuraciones adicionales [40].

Gracias a su capacidad de integracion con otros
proyectos de Spring, como Spring Data, Spring Security,
y Spring Modulith, SpringBoot es ideal para crear
aplicaciones empresariales escalables, microservicios y
hasta monolitos modulares. Su popularidad radica en su
enfoque pragmatico y su extensa documentacion oficial
[40].

Intellij Idea Comunity Edition
Es una version gratuita y de codigo abierto del entorno
de desarrollo integrado (IDE) IntelliJ IDEA, desarrollado

por JetBrains. Esta diseflado para facilitar el desarrollo

2344

43

de aplicaciones en varios lenguajes, especialmente Java
y Kaotlin, y proporciona un conjunto completo de
herramientas que incluyen soporte para sistemas de
control de versiones como Git, integracion con Maven y
Gradle, y funcionalidades de depuracion avanzadas.
Aunque no incluye caracteristicas empresariales
avanzadas disponibles en la version Ultimate, la
Community Edition es una excelente opcién para
desarrolladores que trabajan en proyectos de codigo
abierto o desarrollo de aplicaciones estandar. Este IDE
destaca por su interfaz intuitiva y sus potentes
capacidades de autocompletado y refactorizacién de
cbédigo, que aceleran significativamente el flujo de

trabajo de los programadores [41].

Angular

Es un marco de trabajo de codigo abierto desarrollado
por Google, disefiado para la creacion de aplicaciones
web de una sola pagina (SPA, por sus siglas en inglés)
de alta calidad. Esta construido sobre TypeScript, un
superconjunto de JavaScript que afiade tipado estético
y otras caracteristicas avanzadas, lo que mejora la
escalabilidad y el mantenimiento de las aplicaciones.
Gracias a TypeScript, los desarrolladores pueden
detectar errores en tiempo de compilacién, lo que mejora
la calidad del codigo y reduce problemas en etapas
posteriores.

Angular permite a los desarrolladores construir
interfaces de usuario dinamicas y ricas en

funcionalidades al proporcionar herramientas para la

2.3.4.5

44

vinculacion de datos bidireccional, inyeccion de
dependencias y gestion eficiente de componentes. Una
de sus caracteristicas mas destacadas es su enfoque en
el desarrollo modular, lo que permite dividir las
aplicaciones en piezas reutilizables, facilitando su
mantenimiento y escalabilidad.

Este framework es ampliamente utilizado por su
capacidad para integrar funciones avanzadas como
enrutamiento, formularios reactivos y manejo de
estados. Ademas, Angular cuenta con una comunidad
activa y una extensa documentacion oficial que facilita el

aprendizaje y la implementacion [42].

Visual Studio Code

Es un editor de codigo fuente, gratuito y de codigo
abierto, desarrollado por Microsoft. Popular por su
ligereza y versatilidad, esta diseflado para soportar una
amplia variedad de lenguajes de programacién como
JavaScript, Python, Java, C++, y muchos mas. VS Code
se destaca por su entorno altamente personalizable,
gracias a su vasta biblioteca de extensiones que
permiten agregar caracteristicas adicionales como
depuracion, control de versiones con Git, y soporte para
frameworks especificos como Node.js o React.

Su interfaz amigable y la integracion de herramientas
avanzadas, como IntelliSense (autocompletado
inteligente de codigo) y el terminal integrado, hacen que
sea una excelente opcién para los desarrolladores.
Ademas, su comunidad activa y la abundancia de

recursos lo hacen accesible para todos [43].

2.3.4.6

2.3.4.7

45

Python

Es un lenguaje de programacion conocido por su
simplicidad y legibilidad, lo que lo convierte en una
opcion ideal tanto para principiantes como para
desarrolladores experimentados. Creado por Guido van
Rossum en 1991, Python se caracteriza por una sintaxis
clara y facil de aprender, que permite a los
programadores enfocarse mas en resolver problemas
gue en la complejidad del lenguaje en si. Gracias a su
versatilidad, Python es utilizado en una amplia gama de
aplicaciones, desde desarrollo web hasta andlisis de
datos, inteligencia artificial y automatizacion de tareas.
Una de las mayores fortalezas de Python es su
comunidad activa y el extenso ecosistema de bibliotecas
y herramientas disponibles. Esto facilita el desarrollo
rapido de soluciones en campos como la ciencia de

datos o el aprendizaje automatico [44].

PyCharm Community Edition

Es una version gratuita y de cédigo abierto del entorno
de desarrollo integrado (IDE) PyCharm, creado por
JetBrains. Esta edicion esta disefiada especialmente
para programadores que trabajan con Python y ofrece
muchas de las caracteristicas esenciales que hacen que
PyCharm sea tan popular, como la edicion inteligente de
codigo, autocompletado, depuracién y soporte para
pruebas unitarias. Aunque carece de algunas de las

herramientas avanzadas de la version profesional, sigue

2.3.4.8

46

siendo una opcidén potente para aquellos que buscan un
IDE confiable para proyectos en Python.

Lo que hace a PyCharm Community Edition tan atractivo
es su facilidad de uso y su integracién con herramientas
como Git para el control de versiones, asi como con
entornos virtuales para gestionar dependencias. Para la
elaboracién de un prototipo esta edicion gratuita cubre la
mayoria de las necesidades del desarrollo Python. La
documentacion oficial y una comunidad activa hacen
gue sea facil encontrar soluciones a problemas comunes
[45].

Milvus DB

Es una base de datos de codigo abierto disefiada
especificamente para la gestién y blsqueda de datos
vectoriales, lo que la convierte en una herramienta clave
en proyectos de inteligencia artificial y machine learning.
Desarrollada por Zilliz, Milvus se destaca por su
capacidad para manejar grandes voliumenes de datos no
estructurados, como imagenes, videos Yy textos
convertidos en representaciones vectoriales. Esta base
de datos esta optimizada para busquedas rapidas y
eficientes en datos de alta dimensionalidad, lo que la
hace ideal para aplicaciones como el reconocimiento
facial, la basqueda de similitudes o el analisis de datos
complejos.

Uno de los puntos fuertes de Milvus es su escalabilidad
y su capacidad para integrarse con otras herramientas y
frameworks de aprendizaje automatico. Esto permite a

los desarrolladores crear aplicaciones que involucren

47

busqueda vectorial y procesamiento de grandes
cantidades de datos sin preocuparse por el rendimiento.
Milvus cuenta con una comunidad activa y una
documentacion detallada que facilita su implementacion
[46].

2.4 Grandes modelos de lenguaje

241

Introduccion a los grandes modelos de lenguaje

Los Grandes Modelos de Lenguaje (LLMs) han revolucionado el
campo de la inteligencia artificial al permitir la comprension y
generacion de texto de manera natural y fluida. Estos modelos,
como el GPT desarrollado por OpenAl, se basan en arquitecturas
de redes neuronales profundas y se entrenan con enormes
volumenes de datos textuales [47]. Esto les permite captar
patrones linglisticos complejos, lo que los hace Utiles en tareas
como la traduccion, la redaccion de contenido y la generacion de
coédigo. Uno de los avances clave que ha hecho posible el
desarrollo de LLMs es la arquitectura de transformadores,
presentada por Vaswani en 2017, que optimiza el procesamiento
del lenguaje natural al manejar dependencias contextuales en
secuencias largas de texto [48].

Los transformers son una arquitectura de redes neuronales que
emplea un mecanismo de atencién, lo que les permite enfocarse
en diferentes partes de una oracion o texto segun la necesidad
contextual. Este mecanismo de "autoatencion" es fundamental
para que los LLMs comprendan relaciones complejas entre
palabras, frases y oraciones completas, lo que incrementa la
capacidad del modelo para generar respuestas coherentes y

contextualmente relevantes [48]. Antes de los transformers, las

24.2

48

arquitecturas de redes neuronales tradicionales presentaban
limitaciones para procesar grandes secuencias de texto de
manera eficiente. Gracias a los transformers, los modelos como
GPT-3y GPT-4 pueden procesar cantidades masivas de datos en
paralelo, acelerando el aprendizaje y mejorando la calidad de las
predicciones [49].

El entrenamiento de los LLMs sigue un enfoque de
preentrenamiento y ajuste fino. Inicialmente, los modelos son
expuestos a grandes corpus de datos no supervisados, donde
aprenden patrones generales del lenguaje. Luego, se ajustan con
tareas especificas para mejorar su rendimiento en actividades
concretas, como la clasificacibon de texto o la respuesta a
preguntas. Esta combinacion de preentrenamiento y ajuste fino
convierte a los LLMs en herramientas versatiles en areas como la
automatizacion de tareas, los asistentes virtuales y el analisis
avanzado de datos, permitiendo aplicaciones que antes requerian
mucha intervencion humana [47].

Los LLMs, impulsados por la arquitectura de transformers, estan
siendo adoptados en muchos sectores, incluyendo salud,

educacion y software, y su impacto sigue en expansion.

Arquitectura de los grandes modelos de lenguaje

La arquitectura de los Grandes Modelos de Lenguaje (LLMs) se
basa principalmente en los transformers, una innovacion clave
gue ha permitido a estos modelos manejar grandes cantidades de
texto y producir resultados coherentes. Los transformers utilizan
un mecanismo llamado "autoatencion”, que permite al modelo
enfocarse en distintas partes de una secuencia de texto segun el
contexto. A diferencia de los modelos previos, como las redes

neuronales recurrentes (RNN) o convolucionales (CNN), los

49

transformers pueden procesar grandes secuencias de datos de
forma paralela, lo que aumenta su eficiencia y rendimiento,
especialmente cuando se trabaja con cantidades masivas de
datos [48].

El mecanismo de autoatencion es el corazon de los transformers.
Este proceso permite que el modelo asigne un peso diferente a
cada palabra de la secuencia, dependiendo de su relevancia con
respecto a otras palabras. Asi, el modelo no solo "recuerda” las
palabras recientes, sino que también puede relacionar términos
gue estan distantes en una oracion o un parrafo [48]. Esta
capacidad de capturar dependencias a largo plazo es esencial
para generar texto que sea coherente y relevante en contextos
complejos, lo que le da a los LLMs una ventaja significativa en
tareas como la traduccibn automatica, la generacion de
resimenes y la creacion de respuestas a preguntas.

En la préactica, la arquitectura de los transformers se compone de
capas de codificadores y decodificadores, donde el codificador
procesa la entrada inicial y el decodificador genera la salida [48].
Estos modelos se entrenan a través de técnicas como el
preentrenamiento, que los expone a grandes corpus de texto sin
necesidad de etiquetas, seguido del ajuste fino para tareas
especificas. Durante este proceso, los transformers aprenden a
predecir la siguiente palabra en una secuencia basandose en el
contexto, lo que les permite adaptarse a una variedad de

aplicaciones del lenguaje natural.

.

50

2ositional
-ncoding

(shifted right)

Output
Probabilities
| Softmax |
| Linear |
.
f
| Add & Norm]4-\\
Feed
Forward
— |
N | Add & Norm J<~
A O | Multi-Head
Feed Attention
Forward) N x
A
[Add & Norm Je=
Add & Norm] I
Multi-Head Multi-Head
Attention Attention
_t At)
J . ——
Positiona
+ +
®_? S Encoding
Input Output
Embedding Embedding
Inputs Outputs

Figura 11.2: Arquitectura Transformer
Fuente: [48]

2.4.3

51

En la figura 2.2, se puede apreciar la arquitectura Transformer
propuesta por Vaswani en su publicacién “Attention is all you
need” en 2017.

Valor de los grandes modelos de lenguaje

El valor de los Grandes Modelos de Lenguaje (LLMs) radica en su
capacidad para transformar la manera en que interactuamos con
la informacién, facilitando procesos complejos que antes
requerian una considerable intervencion humana. Uno de sus
principales aportes es la habilidad de generar y comprender
lenguaje natural de manera fluida, lo que permite automatizar
tareas como la redaccién de textos, la traduccion entre idiomas y
la generacion de resumenes. Esto ha permitido a las
organizaciones y empresas aumentar su eficiencia al reducir el
tiempo y los recursos necesarios para producir contenido y
procesar grandes volumenes de informacion.

Los LLMs también aportan un valor significativo en areas como la
atencion al cliente, la creacion de contenido personalizado y la
investigacion cientifica. En servicios de atencion al cliente, los
modelos como GPT pueden proporcionar respuestas inmediatas
y precisas a las consultas de los usuarios, mejorando la
experiencia del cliente y liberando recursos humanos para tareas
mas complejas. En el &mbito cientifico y académico, su capacidad
para analizar y generar informacion a partir de grandes corpus de
datos facilita el descubrimiento de nuevas tendencias vy
conexiones que podrian pasar desapercibidas. Esto esta
impactando disciplinas como la biologia, la medicina y las ciencias
sociales, donde se utilizan para la extraccion de informacion clave

y la generacién de hipétesis basadas en datos.

52

El valor de estos modelos no solo reside en sus aplicaciones
actuales, sino también en su potencial para seguir mejorando a
medida que se entrenan con mas datos y se ajustan a nuevas
necesidades. A medida que la tecnologia avanza, se espera que
los LLMs jueguen un papel ain mas importante en areas como la
educacién personalizada, la generacion automatizada de cédigo
y la toma de decisiones empresariales. Ademas, plataformas
como Hugging Face [50], han democratizado el acceso a estos
modelos, permitiendo a desarrolladores y empresas de cualquier
tamafio aprovechar sus capacidades sin la necesidad de

infraestructuras complejas.

2.4.4 Aplicaciéon de los grandes modelos de lenguaje en el disefio

de software
Los Grandes Modelos de Lenguaje (LLMs) estan teniendo un
impacto cada vez mayor en el disefio y desarrollo de software,
brindando herramientas potentes para automatizar y optimizar
diversos aspectos del proceso de desarrollo. Una de las
aplicaciones mas notables es la generacion automatica de cédigo,
donde los LLMs pueden interpretar descripciones textuales y
convertirlas en fragmentos de cdédigo funcional. Modelos como
Codex de OpenAl, integrado en plataformas como GitHub Copilot,
permiten a los desarrolladores escribir menos cdédigo
manualmente y concentrarse en la logica del negocio, ya que el
modelo puede sugerir o incluso completar funciones completas
basadas en la descripcion de lo que se quiere lograr [51]. Esto ha
mejorado tanto la productividad como la precision en la creacion
de software.
Otra aplicacién clave esta en la documentacion automatica y

mantenimiento de sistemas. Los LLMs pueden generar o

2.4.5

53

actualizar la documentacion técnica de un sistema basandose en
el cédigo existente, haciendo que el proceso sea menos tedioso
para los desarrolladores [52]. Ademéas, en la fase de
mantenimiento, los LLMs pueden ayudar a identificar errores en
el codigo o sugerir mejoras basadas en patrones aprendidos
durante su entrenamiento. Esto no solo reduce el tiempo que los
equipos dedican a depurar software, sino que también mejora la
calidad del producto final al hacer recomendaciones basadas en
buenas practicas y soluciones probadas [53].

En cuanto al disefio arquitectonico de software, los LLMs también
estan empezando a desempefiar un papel significativo. Algunas
aplicaciones que utilizan estos modelos, pueden analizar cédigo
existente y generar diagramas de arquitectura de software
automaticamente [54], lo que es util para documentar aplicaciones
complejas o sistemas heredados. Ademas, pueden ayudar a los
arquitectos de software a explorar diferentes opciones de disefio,
sugiriendo alternativas basadas en el andlisis de grandes
volimenes de datos de software previamente disefiados.
Herramientas como PlantUml, cuando se integran con LLMs,
permiten a los desarrolladores y arquitectos visualizar
componentes clave y sus relaciones de manera automatica a

partir de descripciones textuales o cédigo fuente.

Aumentar la relevancia contextual de los resultados

En algunas ocasiones, los resultados que proporciona un LLM no
son tan exactos como se esperaria, debido a la generalidad de los
datos con los cuales fue entrenado. En estos escenarios suele ser
muy util aplicar ciertas técnicas con las cuales se puede lograr una
mejora sustancial en la calidad contextual de los resultados del

LLM. Para conseguir esta mejora en la relevancia contextual en

54

los resultados generados por un Gran Modelo de Lenguaje (LLM),
es fundamental optimizar el proceso de recuperacion y filtrado de
informacion. A continuacion, se indican dos técnicas comunmente

empleadas para el mejoramiento de los resultados de un LLM:

2.45.1 Generacion Aumentada por Recuperacion (RAG)

En esta técnica, el LLM se combina con una base de
datos estructurada que proporciona informacién
adicional basada en las consultas del usuario. Este
enfoque permite al modelo trabajar con datos precisos y
especificos en lugar de depender Unicamente de su
preentrenamiento, mejorando la calidad de las
respuestas generadas [55]. Por ejemplo, el LLM puede
acceder a documentos relevantes o a bases de datos
internas en tiempo real, enriqueciendo asi la respuesta
con contexto especifico.

e Ventajas:

o Actualizacion dindmica: Permite acceder a
informacion actualizada en tiempo real.

o Mayor precision: Combina respuestas
generativas con informacién exacta de bases de
datos.

o Reduccibn de alucinaciones: Minimiza
respuestas incorrectas al tener fuentes de datos
directas.

e Desventajas:
o Dependencia de fuentes: Requiere bases de

datos bien estructuradas.

55

o Costos computacionales: ElI acceso vy
procesamiento de datos externos puede

impactar en el rendimiento.

2.4.5.2 Ajuste fino del modelo (Fine-Tuning)

Al re-entrenar el modelo con ejemplos que reflejen los
contextos y temas mas comunes dentro de un area
particular, como el disefio de software y el ecosistema
tecnoldgico propio de una organizacion, el LLM puede
generar respuestas mas alineadas con las necesidades
del usuario [56]. Ademds, el uso de memorias de
contexto a largo plazo permite que el modelo retenga y
reutilice informacion relevante de interacciones
anteriores, mejorando la coherencia en conversaciones
prolongadas.

e Ventajas:

o Adaptacién especifica: Ajusta el modelo a
dominios particulares, mejorando la relevancia en
areas especificas.

o Mejora la coherencia: Genera respuestas mas
alineadas con el campo de aplicacion.

e Desventajas:

o Requiere datos etiquetados: Necesita conjuntos
de datos bien preparados y etiquetados.

o Actualizacion limitada: El modelo no se adapta en
tiempo real a nueva informacion.

o La creacion de nuevos modelos cada vez que
realiza un ajuste fino implica un alto consumo de

recursos.

56

En estudios recientes [10]-[57]-[58] sobre fine-tuning y
RAG en los Grandes Modelos de Lenguaje (LLMs), se
han encontrado resultados mixtos. Aunque el fine-tuning
puede mejorar el rendimiento en ciertos dominios, su
eficacia no siempre es consistente, especialmente
cuando se utiliza en combinacion con RAG con pocas
muestras de datos (menos de 1000). En lugar de mejorar
la calidad de las respuestas, el fine-tuning puede tener
un impacto negativo en estos casos. Esto ocurre porque
la cantidad limitada de datos no es suficiente para
entrenar el modelo adecuadamente, reduciendo la
precision de las respuestas generadas. Las
evaluaciones humanas muestran que no existe una
técnica universalmente superior, y la efectividad
depende tanto del modelo base como de la precision de

los datos externos utilizados.

2.4.6 Limitaciones y desafios de los LLM en el disefio de software
A pesar de los avances logrados por los Grandes Modelos de
Lenguaje (LLMs) en el disefio de software, existen limitaciones y
desafios importantes. Una de las principales barreras es la falta
de comprension profunda del contexto. Los LLMs, aunque buenos
para generar fragmentos de coédigo, no siempre captan la
arquitectura completa o la l6gica subyacente de un sistema, lo que
puede resultar en soluciones parciales o incorrectas. Ademas,
estos modelos son propensos a generar respuestas erroneas o
"alucinaciones” cuando los datos de entrenamiento no son

suficientes o adecuados para la tarea.

57

Otra limitacion significativa es que los LLMs dependen de datos
de entrenamiento estéticos, lo que significa que pueden quedarse
desactualizados rapidamente en entornos de desarrollo de
software que evolucionan constantemente. Sin la capacidad de
aprender en tiempo real, los LLMs requieren reentrenamientos
periodicos, lo que puede ser costoso tanto en términos de tiempo
como de recursos computacionales. Ademas, el fine-tuning,
aunque Util en ciertos escenarios, no garantiza mejoras en todas
las situaciones, y su implementacion conlleva un alto costo inicial
y una alta dependencia de conjuntos de datos etiquetados con
precision.

En cuanto a los desafios operacionales, los modelos a gran escala
requieren una infraestructura robusta para ser desplegados y
gestionados, lo cual es especialmente problematico cuando se
integran con técnicas como RAG, que implican el uso constante
de bases de datos externas. Esta integracion puede afectar la
eficiencia del sistema y complicar el proceso de generacién de
respuestas precisas.

A partir de los estudios recientes [8], se ha comprobado que
aunque los LLMs pueden generar diagramas, como los de clases
UML de manera comparable a los diagramas creados
manualmente, presentan limitaciones en la precision semantica.
Esta dificultad para captar relaciones semanticas complejas
resalta la necesidad de avanzar en el desarrollo de tecnologias de
IA méas sofisticadas que puedan ofrecer una comprensién mas
profunda de los vinculos semanticos. Los LLMs pueden ser Utiles
para el prototipado rapido de diagramas, pero requieren mejoras
para llegar a automatizar completamente el proceso de disefio

arquitectonico.

58

2.5 Trabajos similares
2.5.1 Revision de trabajos similares

e Uno de los trabajos relevantes en la automatizacion de la
generacion de diagramas UML es el propuesto por
Abdelkareem M. Alashqgar, titulado "Automatic Generation of
UML Diagrams from Scenario-based User Requirements” [59].
Este estudio aborda el uso de procesamiento de lenguaje
natural (NLP) para la generacion automatica de diagramas
UML, en particular diagramas de clases y de secuencia, a partir
de requisitos de usuario escritos en lenguaje natural. Alashqar
propone un algoritmo que utiliza técnicas de NLP para
identificar actores, objetos y las interacciones entre ellos,
permitiendo asi la creacion automéatica de estos diagramas a
partir de escenarios de usuario. El estudio concluye que el
sistema desarrollado, llamado AGUML, es capaz de mejorar la
eficiencia en las fases de andlisis y disefio de sistemas,
reduciendo el tiempo necesario para la documentacion visual.
Sin embargo, el autor también sefiala mejoras, como la
posibilidad de permitir el ingreso de texto mas estructurado
para obtener resultados éptimos y la necesidad de considerar
otros tipos de diagramas.

e Otro trabajo reciente en este campo es la tesis de Daniele De
Bari, titulada "Evaluating Large Language Models in Software
Design: A Comparative Analysis of UML Class Diagram
Generation" [8]. En este estudio, se evaluo la capacidad de los
LLMs para generar diagramas de clases UML, comparandolos
con los creados manualmente por las personas. Se concluye
qgue los LLMs generan diagramas precisos en lo sintactico y

pragmatico, pero tienen dificultades en la precision semantica.

59

Desde una perspectiva practica, los LLMs son utiles para el
disefio iterativo y prototipado rapido, aunque todavia se
necesitan avances para automatizar completamente el
proceso. Se propone investigar mas sobre como integrar LLMs
en herramientas de desarrollo de software para mejorar la
comprension de enlaces semanticos y la automatizacion del
disefio de software .

Otro trabajo reciente, relacionado al campo de la generacion de
diagramas UML mediante el uso de LLM es "From Image to
UML: First Results of Image-Based UML Diagram Generation
using LLMs" de Aaron Conrardy y Jordi Cabot [60]. Este estudio
explora el uso de LLMs multimodales, como GPT-4V, para
convertir imagenes de diagramas de clases UML en modelos
formales utilizando la notaciéon PlantUml. Aunque los resultados
son prometedores, el estudio destaca la necesidad de
intervencidn humana debido a errores sintacticos y semanticos
en los resultados generados.

Otro trabajo importante en este ambito es "Generating UML
Class Diagram from Natural Language Requirements: A Survey
of Approaches and Techniques" [61]. Este estudio proporciona
un andlisis exhaustivo de los enfoques y técnicas utilizados
para la generacién automatica de diagramas de clases UML a
partir de requisitos escritos en lenguaje natural. Se exploran
diferentes metodologias, como el procesamiento de lenguaje
natural y las técnicas de recuperacion de informacion, para
convertir los requisitos en estructuras formales. El estudio
destaca los avances en la automatizacion del disefio de
software, pero también subraya las limitaciones actuales en la

comprension semantica completa y la necesidad de

252

60

intervencién humana para corregir ambigledades y errores en
los diagramas generados.

e EI siguiente trabajo relacionado es "How LLMs Aid in UML
Modeling: An Exploratory Study with Novice Analysts" [62].
Este estudio examina como los modelos de lenguaje grande,
como GPT-3, pueden ayudar a los analistas novatos en la
creacion de modelos UML, como diagramas de casos de uso,
diagramas de clases y diagramas de secuencia. Los resultados
sugieren que, si bien los LLMs son utiles para generar estos
diagramas, existen limitaciones, las cuales no son del todo
claras en dicho articulo.

e El Ultimo trabajo relacionado que se analiz6 es "Large
Language Models for Software Engineering: A Systematic
Literature Review" de Xinyi Hou y sus colaboradores [7]. Este
estudio realiza una revision sistematica del uso de los LLMs en
tareas de ingenieria de software, identificando sus aplicaciones
méas efectivas, como la generacion de codigo y la
documentacion. A través de 229 estudios revisados entre 2017
y 2023, el trabajo destaca los principales desafios y
oportunidades que los LLMs presentan en este campo,
incluyendo la optimizacion del procesamiento de datos y la

evaluacion de rendimiento.

Identificacion de vacios en el conocimiento

A partir de la revision de trabajos similares, se identifican varios
vacios en el conocimiento. Uno de los principales es la falta de
precision semantica en la generacién automatica de diagramas
UML, donde los LLMs alun no capturan con total exactitud las

relaciones complejas entre entidades. Ademas, la integracion de

2.5.3

61

técnicas multimodales, como la conversion de imagenes a
diagramas UML, todavia requiere intervencion humana
significativa. Otra &rea insuficientemente explorada es el impacto
a largo plazo de las mejoras en LLMs mediante fine-tuning y su
capacidad para adaptarse a dominios especificos sin incurrir en
altos costos computacionales.

Otro vacio adicional identificado es la falta de estudios que
exploren la generacion automatica de diagramas de componentes
utiizando LLMs. Aunque los trabajos actuales abordan
mayormente la creacion de diagramas de clases, la
automatizacion de diagramas de componentes no ha recibido
suficiente atencién. Dada la naturaleza textual de las respuestas
generadas por LLMs, herramientas como PlantUml ofrecen una
oportunidad para transformar esas descripciones en diagramas
visuales, pero este enfoque aun no ha sido plenamente abordado
en la literatura actual. La falta de investigaciones sobre esta
integracion abre espacio para futuras investigaciones que

optimicen este proceso.

Conclusion de revision de trabajos similares

La revision de trabajos similares destaca importantes avances en
la aplicacion de LLMs para la generacion de diagramas UML y
tareas de ingenieria de software, pero también revela limitaciones
clave. Aunque los modelos actuales pueden automatizar partes
del proceso de disefio, aun enfrentan desafios en cuanto a
precision semantica y manejo de datos complejos. La necesidad
de intervenciéon humana y la dependencia de grandes conjuntos
de datos para el fine-tuning son obstaculos que requieren mas

investigacion. Estas limitaciones abren la puerta a futuras

62

investigaciones que busquen expandir y mejorar la eficiencia y

precision de los LLMs en este campo.

63

CAPITULO Il

DEFINICION DE LA SITUACION ACTUAL
El objetivo de este capitulo es determinar la situacion actual del proceso de
disefio de diagramas de componentes de software, mediante el modelado AS-
IS, la descripcidn de sus componentes, herramientas utilizadas y limitaciones
identificadas, asi como la definicion de criterios de aceptacion y alcance de
este.
3.1 Descripcion del proceso actual de disefio de arquitectura de
software
3.1.1 Flujo para el disefio de diagramas de componentes
El flujo para el disefio del diagrama de componentes de software
se desarrolla en varias etapas clave:
3.1.1.1 Levantamiento
Inicialmente, se lleva a cabo, en conjunto con el equipo
de desarrollo, analistas de sistemas y stakeholders, un
levantamiento exhaustivo de los requisitos, en donde se
identifican las necesidades de los usuarios, el alcance y
vision del proyecto, asi como restricciones operativas
gue pudiesen ser definidas.
3.1.1.2 Andlisis

64

A continuacion, se realiza un analisis detallado, en el que

se examinan cada uno de los requisitos levantados, con

la finalidad de:

Validar y equilibrar las necesidades del negocio
frente a la factibilidad técnica y operacional.
Identificar componentes clave que formaran parte de
la solucién. Estos componentes pueden ser
componentes ya existentes en el ecosistema
tecnologico de la empresa 0 compontes nuevos que
deban ser creados para la solucién.

Especificar como los diferentes componentes del
sistema interactian entre si, definiendo claramente
las interfaces, dependencias y flujos de datos
necesarios.

Identificar posibles desafios técnicos que podrian
surgir en la implementacién y definir estrategias para
reducir su impacto. Esto incluye definir si es
necesario realizar alguna prueba de concepto
debido a la implementacion de alguna nueva
tecnologia.

Asegurarse de que la solucién propuesta no solo
cumpla con los requisitos actuales, sino que también
sea capaz de manejar un crecimiento futuro en
términos de usuarios, datos o funcionalidades.
Asegurarse que la solucién cumpla al menos con los
estandares minimos de seguridad establecidos por
el departamento de seguridad l6gica.

Tratar de detectar posibles amenazas que podrian
afectar el éxito del proyecto, como problemas

65

técnicos, cambios en los requisitos, limitaciones de
recursos o problemas de integracion.

e Asegurar la resiliencia del sistema, tratando de que
el disefio contemple posibles fallos y esté preparado
para manejar eventualidades, mejorando asi la
estabilidad y continuidad del sistema.

3.1.1.3 Disefio

Posteriormente, se procede a la elaboracién vy

documentacion del diagrama, que proyecta

graficamente la estructura interna del sistema, mediante
un conjunto de componentes y sus conexiones.
3.1.1.4 Socializacion

Finalmente, el resultado es socializado con los equipos

de desarrollo, calidad, DBA y operaciones, en una

sesidn de trabajo que permite a todos los equipos
compartir sus dudas u observaciones de mejora para la
arquitectura propuesta.

3.1.2 Modelo AS-IS

66

S S

Requiere

ajuste? Socializacion

Levantamiento

& &

Analisis Diseno Documentacion

+

Figura Ill.1: Modelo AS-IS general del flujo de disefio

Fuente: El autor

67

) -~) 3\
Ll — “—Definir rol del
. Ajustar
Analisis integral componente en
diagrama ..
la solucién

Agregar
componente

Definir nuevo
cumpmname

Requiere
ajuste?

Seleccionar
tipo diagrama

|
Otro Agregar Existe?

diagrama? componente?

Figura I11.2: Detalle de la actividad “Disefio” del diagrama
anterior

Fuente: El autor

En las imagenes 3.1y 3.2, se puede apreciar de forma visual, el

procedimiento o flujo que se detall6 en la seccién anterior.

3.1.3 Herramientas y técnicas
Lucidchart es le herramienta que actualmente se utiliza para la
elaboracion de los diagramas de arquitectura. Como ya se indico
en el respectivo capitulo, Lucid es una plataforma ampliamente
adoptada para la creacion de diagramas visuales, ya que permite
una representacion clara y organizada de los diferentes
componentes de software, proporcionando un entorno
colaborativo que facilita la actualizacion y revision en tiempo real

por parte de los equipos de desarrollo y arquitectura.

68

Any Solution :: Component Diagram

1
1
1
1
1 Front
1
1
1
1

Dependencies -\l rApi Layer [Api Galeway r I :-Panners Layer -}
N | < 1 1
1 SSO Gateway -
1 Redirect Rest 1 1
| 1 1
] 1 1
1 1 2] 1
1) composite 1| partner service 1
: 1 1 1
1 1 1
G
: I "Pe 1 1
main dependency : S — R .
: rCare Layer
1 1
1! core
1 1
1 1
1 1 dependency
'\ SCIIZIIZIIss
I 'pB Layer
1 ! 1
1 ! [repository 7] I
1 1 Tgp I
1! I
11 * 1
1l 1
1 DB I
(| 1
___________ S ——

Figura 111.3: Diagrama creado con Lucidchart

Fuente: El autor

En cuanto a las técnicas empleadas en el disefio, como se puede
apreciar en la figura 3.3, se sigue un enfoque modular y
estructurado por capas, donde cada componente esta agrupado
segun su funcionalidad dentro de una capa especifica, como la
Capa “FrontEnd”, “API”, “Core”, entre otras, lo que permite una
separacion logica y una mayor claridad en la visualizacion de
responsabilidades y dependencias. El uso de relaciones bien

definidas entre los médulos, como “Rest”, “Grpc” y “Tcp”, ayuda a

3.14

Termino \ Descripcion

69

ilustrar como los componentes interactan entre si y cuales son
los protocolos utilizados para su comunicacion.

Ademas, se aplica principios como la descomposicion jerarquica
de los componentes, donde se identifican dependencias claras y
flujos de datos bien establecidos, minimizando la complejidad.
Este enfoque permite que el diagrama refleje tanto la arquitectura
técnica como el flujo funcional de la solucién. La implementacion
de médulos comunes, como generadores de disefio y utilidades
compartidas, también sigue un enfoque de reutilizacion de
componentes, asegurando la escalabilidad y mantenibilidad de la

arquitectura a largo plazo.

Roles involucrados

El proceso de disefio de diagramas de componentes de software
involucra diferentes fases en las que varios actores desempefian
roles clave. Estos roles establecen quiénes son responsables,
quiénes deben ser consultados o informados, y quiénes tienen la
autoridad final en cada etapa, lo cual resulta muy Gtil con miras a

definir una matriz RACI, cuya terminologia se describe en la

siguiente tabla:

R ‘ Letra asignada a la persona que realiza la actividad.

‘ Letra asignada a la persona con la responsabilidad final sobre la tarea.
‘ Letra asignada a la persona que debe ser consultada.
‘ Letra asignada a la persona que solo deber ser informada.

A
C
[

Tabla 2: Terminologia RACI

Fuente: El autor

70

Una vez que se ha definido la terminologia de una matriz RACI,

se describen los roles involucrados en cada etapa del disefio de

diagramas de componentes de software:

3.1.4.1 Levantamiento

Responsables (R): Los analistas de sistemas y en
menor grado los arquitectos son los encargados de
llevar a cabo el levantamiento de requisitos y
asegurar que las necesidades del usuario sean
correctamente entendidas y documentadas.
Aprueban (A): Los stakeholders proporcionan la
vision estratégica del proyecto y definen las
restricciones operativas.

Consultados (C): El equipo de desarrollo colabora
en la revision técnica de los requisitos y en la
identificacion de limitaciones.

Informados (I): El equipo de calidad es informado
sobre los resultados del levantamiento para

utilizarlos en las fases siguientes.

3.1.4.2 Andlisis

Responsables (R): El arquitecto de software lidera
el andlisis de los requisitos levantados, validando la
factibilidad técnica y organizando los componentes
clave.

Aprueban (A): EIl arquitecto de software tiene la
responsabilidad final del resultado del analisis de la
solucion.

Consultados (C): Los equipos de desarrollo, DBA 'y

operaciones son consultados para revisar la

71

escalabilidad y viabilidad técnica y operativa.
También es consultado el analista en caso de ser
necesario aterrizar algun requerimiento, y en
algunos casos suele ser necesario consultar con el
stakeholder para validar temas no contemplados en
la etapa de levantamiento.

Informados (I): ElI equipo de desarrollo es
informado sobre los avances en el andlisis de la

solucién.

3.1.4.3 Disefio

Responsables (R): El arquitecto de software es
responsable de la elaboracion y documentacion del
diagrama de componentes, asegurando que esté
alineado con los resultados del analisis.

Aprueban (A): El arquitecto de software es el
responsable final del resultado de la etapa de
disefio.

Consultados (C): Los equipos de desarrollo, DBA'y
de operaciones son consultados para revisar las
dependencias de la base de datos y la viabilidad
técnica del disefio, asi como la identificacion de
alguna limitante técnica.

Informados (1): Los equipos de desarrollo, DBAy de
operaciones son informados sobre la finalizacion del

diseno.

3.1.4.4 Socializacion

Responsables (R): El arquitecto de software y los
lideres técnicos son responsables de presentar el

diagrama a los equipos clave.

12

e Aprueban (A): El arquitecto de software es el
responsable final de la culminacién exitosa de esta
etapa.

e Consultados (C): Los equipos de DBA y
operaciones son consultados para confirmar la
viabilidad técnica del disefio.

e Informados (l): Los analistas, asi como los equipos

de calidad, DBA y operaciones son informados en la

etapa de socializacion.

Actividades
Levantamiento Analisis

Roles

Disefio Socializacion

StakeHolder
Analista
Arquitecto R, A
Equipo Dev (o C | R
Calidad I
DBA C C Gl
Operaciones C (o8] (of]

Tabla 3: Matriz RACI

Fuente: El autor

3.2 Encuestas y entrevistas
3.2.1 Encuestas

Respecto a la estrategia de encuesta, el formato puede ser
revisado en la seccion de anexos, y los temas que se evaluaron

son los siguientes:
1. Perspectiva del arquitecto, respecto al grado de
automatizacién que tiene actualmente el procedimiento para
el disefio de diagramas de componentes para una solucion de

software.

73

¢Cual es el nivel de automatizacion actual en el subproceso que corresponde al |0 copiar
disefo del diagrama de componentes para una solucion de software?

6 respuestas

3

2 (33.3%)

1(16.7%)

0(0%) 0(0%)

4 5

Figura lll.4: Percepcion del nivel de automatizacion del
subproceso

Fuente: El autor

En la figura 3.4, se puede evidenciar que el usuario confirma

la falta de automatizacién en el subproceso

2. Perspectiva del arquitecto, respecto a que tan dificultoso le
resulta revisar, validar y analizar si una funcionalidad
necesaria para el disefio de la solucion ya existe en el sistema

o debe ser definida como nueva.

74

Con la metodologia actual, ¢que tan rapido resulta validar la existencia en el I_D Copiar
sistema, de una funcionalidad (componente) necesaria para un disefio?

6 respuestas

3

2 (33.3%)

! 1 (16.7%)

0(0%) 0(0%)

1 5

Figura l11.5: Percepcion sobre la validacion de componentes
reutilizables

Fuente: El autor

En lafigura 3.5, se puede apreciar una ligera percepcion hacia

la dificultad en la validacién de los componentes existentes

3. Perspectiva del arquitecto, respecto a cuanto tiempo en
horas, le toma disefiar un diagrama de componentes para una
solucion de software en la cual se requiere la definicion

arquitectonica integral para la solucion.

75

Con la metodologia actual, ;cuantas horas aproximadamente le toma disefiar un IO Copiar

diagrama de componentes para una nueva solucién con arquitectura completa?

@ Menor o igual a 2 horas
@ Menor o igual a 4 horas
@ Menor o igual a 8 horas
@ Menor o igual a 16 horas
@ Menor o igual a 24 horas

@ Menor o igual a 32 horas
@ Menor o igual a 40 horas
@ Mas de 40 horas

6 respuestas

Figura I11.6: Tiempo para elaboracién de diagramas

Fuente: El autor

En la figura 3.6, se puede evidenciar que el tiempo medio para
la elaboracion de un diagrama de componentes es de

alrededor de 19 horas.

Perspectiva del arquitecto, respecto a que tan facil le resulta
realizar ajustes en el diagrama de componentes una vez

terminado.

Con la metodologia actual, una vez disefiado el diagra de componentes, ;qué tan ID Copiar

rapido resulta ajustarlo en caso de requerir cambios?

6 respuestas

3

2(33.3%)

1 (16.7%)

0 (0%) 0 (0%)

1 2 3 4 5

Figura I111.7: Facilidad de realizar ajustes sobre diagramas
terminados

76

Fuente: El autor

En la figura 3.7, se puede evidenciar una ligera percepcion de

facilidad al realizar ajustes sobre un disefio ya terminado

5. Perspectiva del arquitecto, respecto a que tan facil es realizar

el versionamiento de los diagramas de arquitectura.

Con la metodologia actual, ;que tan facil resulta versionar los disefios de las I_D Copiar
soluciones?

6 respuestas

6

5 (83.3%)

0(0%) 1(16.7%) 0 (0%) 0 (0%)

1 2 3 4 5

Figura 111.8: Facilidad de versionamiento para los disefios

Fuente: El autor

En la figura 3.8, se puede evidenciar la dificultad en el

versionamiento de los disefios

6. La ultima pregunta de la encuesta gira en torno a la variable
de interés definida en el capitulo 1 de este proyecto, la cual
intenta determinar el grado de aceptacion por parte de los
arquitectos, para una herramienta que genere diagramas
base de componentes de software de forma automatica,

mediante el ingreso de los requisitos de la solucién.

77

¢Cree usted que le resultaria util contar con una herramienta que le proporcione de I_D Copiar
forma automatica, un diagrama de componentes base, en formato plantUml,
mediante el ingreso de los requisitos de la solucién?

6 respuestas

6

5 (83.3%)

0 (0%) 0 (0%) 0 (0%) 1(16.7%)

1 2 3 4 5

Figura 111.9: Grado de aceptacion de la propuesta

Fuente: El autor

En la figura 3.9, se puede evidenciar la aceptacion favorable

por parte de los arquitectos respecto a esta propuesta.

3.2.2 Entrevistas
Respecto a la entrevista realizada, se indagé sobre los siguientes
puntos:
3.2.2.1 Identificacion de las necesidades actuales

Se trataron varias necesidades actuales, entre las

cuales destacan:

e El tiempo que toma disefar los diagramas de
componentes.

e El riesgo de incurrir en omisiones al analizar la
existencia de soluciones actuales que suplan alguna
necesidad en el nuevo disefo.

e La dificultad de realizar versionamiento de los

disefios con las herramientas actuales.

3.2.2.2

3.2.2.3

3.224

3.2.25

78

e Elriesgo latente en la seguridad de la informacion
al utilizar herramientas en la nube.

Caracteristicas de la soluciéon propuesta

Se explico y revisé las caracteristicas principales de la

solucién propuesta, tales como:

e El hecho de ser un desarrollo propio y funcionar de
forma local.

e El uso de una herramienta de modelado basado en
texto como PlantUml.

¢ El uso de Inteligencia artificial para la generacién de
los diagramas.

Integracion con herramientas existentes

Los arquitectos indicaron la necesidad de que esta

propuesta de solucion considere la integracion con

alguna de sus herramientas actualmente utilizadas, tales

como: gitlab, para el versionamiento de los disefios.

Seguridad y privacidad

Los arquitectos resaltaron la importancia de la

seguridad, sobre todo la importancia de proteger la

informacion al momento de compartir datos sensibles

con un LLM, como por ejemplo la base de componentes

existentes.

Escalabilidad y capacidad de evolucion

Se conversé y se acordé que la soluciéon propuesta

deberia considerar a futuro poder generar todos los tipos

de diagramas utilizados por los arquitectos al disefar

sus soluciones, asi como poder integrarse con Gitlab

para el versionamiento de los disefios.

79

3.3 Meétricas
Debido a que el alcance del proyecto se enfoca en la etapa de disefio,
no se podra confirmar métricas objetivo, sin embargo, se pueden
determinar ahora y ser validadas en una siguiente etapa de
implementacion del proyecto. Estas métricas se detallan a continuacion

en la tabla 4:

Indicador Unidad Actual Objetivo

Tiempo necesario para generar un diagrama de
componentes para una solucion completa de Horas 19 2
arquitectura

Tabla 4: Métricas del proceso

Fuente: El autor

3.4 Limitaciones del proceso actual
Segun la encuesta y la entrevista realizadas, se evidencias las siguientes
limitaciones:
e Tiempo y esfuerzo manual
e Omisiones involuntarias

e Limitaciones en el versionamiento

3.5 Conclusiones
Es necesario que la propuesta de solucién considere y brinde una
alternativa de valor que mejore de forma significativa las limitaciones

actuales del proceso.

80

CAPITULO IV

ANALISIS Y DISENO DE LA HERRAMIENTA PROPUESTA

El objetivo de este capitulo es realizar un andlisis con base en la informacion
obtenida en el capitulo anterior y elaborar el disefio de la soluciéon cuyo
alcance se enfocara en el disefio de los diagramas de componentes, para lo
cual se desarrollara un prototipo funcional. Este prototipo permitira visualizar
de manera mas tangible el valor que dicha solucién puede aportar a la

empresa objetivo del proyecto.

4.1 Andlisis de la solucién
Después de analizar el estado actual del proceso de disefio software que
realiza la division de arquitectura de la empresa objetivo, tras llevar a cabo
un minucioso levantamiento de informacién con los arquitectos y, tomando
como base todo el conocimiento adquirido durante la investigacion para
la elaboracion del marco tedrico de este proyecto, se propone llevar a
cabo el disefio de la solucién con apoyo de las siguientes herramientas y

tecnologias:

4.2 Herramientas y tecnologias
4.2.1 Herramienta de modelado UML

4.2.2

4.2.3

81

Se propone PlantUmI como herramienta de modelado UML para
este proyecto por su enfoque basado en texto, que facilita la
integracion con sistemas de control de versiones y fomenta una
colaboracion eficiente entre el equipo. Su capacidad para
integrarse con modelos de lenguaje grandes (LLM) permite
generar automaticamente descripciones y diagramas a partir de
texto natural, optimizando la documentacién. PlantUml soporta
una amplia variedad de diagramas UML, agilizando el disefio y la
documentacion del sistema de manera rapida y sencilla. Ademas,
al ser de codigo abierto, ofrece flexibilidad y personalizacion para
adaptarse a las necesidades especificas del proyecto sin costos
adicionales. Estas caracteristicas hacen de PlantUml| una opcion
robusta y eficiente, mejorando la calidad y cohesion en el

desarrollo del proyecto.

Servicio de generacion de diagrama
Se propone PlantUml Server como herramienta de generacion
de diagramas UML para este proyecto debido a su capacidad de
operar de manera on premise, lo que garantiza un control total
sobre los datos y la seguridad de la informacién sensible del
proyecto. Al implementar PlantUml Server localmente, se puede
integrar de forma eficiente la generacién de diagramas UML
dentro de la infraestructura existente, facilitando la
automatizacion y la consistencia en la documentacion técnica.
Large Language model

Se propone LLAMA 3.1 70b por ser un modelo open-source y

altamente optimizable, que permite personalizacion completa y

acceso a tecnologias avanzadas como cuantizacion para mejorar

el rendimiento. Su capacidad para procesar hasta 128,000 tokens

en multiples idiomas, lo hace ideal para aplicaciones que

82

requieren manejo de texto extenso, mientras que su eficiencia en

el uso de recursos lo convierte en una opcion poderosa y flexible

para este proyecto.

4.2.3.1 Técnica para mejorar la precisiéon de las respuestas
Se propone RAG para potenciar el modelo de lenguaje
debido a su capacidad Unica de combinar generacién de
texto con recuperacion de informacion relevante,
enriqueciendo la comprension contextual al integrar
informacion especifica, o que resulta en respuestas mas
coherentes y fundamentadas. Al reducir las
alucinaciones del modelo, se garantiza mayor fiabilidad
en los resultados.

4.2.3.2 Hardware para procesamiento del LLM
El gran modelo de lenguaje seleccionado se ejecutara
sobre servidores DGX con GPUs H100. Estos servidores
ya existen en el ecosistema tecnoldgico de la empresa
objetivo de este proyecto.

4.2.4 Bases de datos

4.2.4.1 Milvus Db
Se propone Milvus como base de datos para gestionar
embeddings en este proyecto por su disefio
especializado en almacenar y buscar vectores de alta
dimension de manera eficiente. Ofrece un rendimiento
sobresaliente en busquedas de similitud. Ademas, al ser
de cdédigo abierto, Milvus proporciona flexibilidad vy
personalizacibn para adaptarse a las necesidades
futuras del proyecto sin costos adicionales. Estas
caracteristicas hacen de Milvus una opcién robusta y
eficiente para la gestion de embeddings, asegurando un

rendimiento 6ptimo y una escalabilidad sostenida.

83

4.2.4.2 Mongo Db
Se propone MongoDB como la base de datos para
gestionar la metadata de la aplicacion debido a su
flexibilidad en el manejo de esquemas dinamicos, lo que
permite almacenar datos estructurados y semi-
estructurados de manera eficiente. Esta caracteristica
es especialmente util para la metadata, que a menudo
varia en estructura y puede evolucionar con el tiempo.
Otro aspecto fundamental que respalda la eleccion de
MongoDB es su capacidad de escalabilidad horizontal y
su alto rendimiento en operaciones de lectura y
escritura. Esto asegura que la gestibn de metadata
pueda manejar grandes voliumenes de datos y crecer
junto con las necesidades de la aplicacion sin

comprometer la eficiencia.

4.2.5 Lenguajes de programacion

4251 Java
Se propone Java debido a su robustez, escalabilidad y
amplio soporte en la industria. Java es reconocido por
su capacidad para manejar aplicaciones de gran escala
con eficiencia, lo que garantiza que el Backend pueda
crecer y adaptarse a las demandas crecientes de los
sistemas sin comprometer el rendimiento. Ademas, su
ecosistema maduro, que incluye frameworks como
Spring Boot, facilita el desarrollo rapido y estructurado,
permitiendo implementar funcionalidades complejas de
manera eficiente y mantenible.

4.2.5.2 Python

84

Se propone Python como el lenguaje para la l6gica de
RAG (Retrieval-Augmented Generation) en este
proyecto debido a sus excepcionales capacidades para
el desarrollo de aplicaciones de inteligencia artificial y
aprendizaje automatico. Python cuenta con un
ecosistema robusto de bibliotecas y frameworks
especializados, como TensorFlow, PyTorch y Hugging
Face, que simplifican la implementacion, entrenamiento
y despliegue de modelos avanzados de IA. Su sintaxis
clara y concisa permite un desarrollo agil y eficiente,
facilitando la experimentacion y optimizacion de
algoritmos complejos necesarios para la l6gica de RAG.

4.2.5.3 TypeScript
Se propone TypeScript debido a su capacidad para
mejorar la calidad y la mantenibilidad del codigo en
proyectos de gran escala. TypeScript, al ser un
superconjunto tipado de JavaScript, ofrece ventajas
significativas en términos de deteccion temprana de
errores y autocompletado inteligente, lo que reduce
significativamente los bugs y mejora la eficiencia del
desarrollo. Ademas, TypeScript se integra
perfectamente con modernos frameworks de FrontEnd
como Angular, permitiendo construir interfaces de
usuario dinamicas y responsivas con mayor facilidad y

seguridad.

4.2.6 Framework para FrontEnd
Se propone Angular como el framework de FrontEnd para este

proyecto debido a su sélida integracién con TypeScript, o que

4.2.7

4.2.8

85

garantiza un desarrollo mas estructurado y tipado, reduciendo
errores y mejorando la mantenibilidad del codigo. Angular ofrece
una arquitectura robusta basada en componentes, lo que facilita
la creacion de interfaces de usuario escalables y reutilizables.
Ademas, su sistema de inyeccion de dependencias y su enrutador
avanzado permiten gestionar de manera eficiente la complejidad
de aplicaciones de gran envergadura, asegurando una
experiencia de desarrollo fluida y organizada.

Framework para Backend

Se propone Spring Boot como el framework para este proyecto,
debido a su capacidad para simplificar y acelerar el desarrollo de
aplicaciones Java robustas y escalables. Su enfoque de
convenciones sobre configuraciones reduce el tiempo de
desarrollo y minimiza errores, mejorando la eficiencia. La amplia
comunidad y el soporte continuo garantizan actualizaciones
constantes y acceso a numerosos recursos, asegurando un
Backend sélido, mantenible y preparado para futuras

expansiones del proyecto.

Tecnologia de contenedorizacion

Se propone Docker como la herramienta de contenedorizacion
para este proyecto, debido a su capacidad para crear entornos
consistentes y portables, asegurando un funcionamiento uniforme
en desarrollo, prueba y produccion. Docker simplifica la gestion
de dependencias y el despliegue, reduciendo conflictos y
mejorando la eficiencia de recursos gracias a su arquitectura
ligera. Ademas, es compatible con Kubernetes, lo que facilita la
orquestacion y escalabilidad de los contenedores en entornos de

produccion. Su robusto ecosistema, que incluye herramientas

4.2.9

86

como Docker Compose y Swarm, optimiza la automatizacion de

contenedores.

Herramienta de autenticacion Unica

Se propone CAS (Central Authentication Service) por su
capacidad para centralizar la autenticacion, mejorando la
seguridad y la gestién de usuarios en toda la aplicacion. CAS
soporta multiples protocolos, lo que facilita su integracién con
diversas aplicaciones y servicios existentes. Ademas, al ser una
solucion de cédigo abierto, ofrece flexibilidad y personalizacion
sin costos adicionales, adaptandose a las necesidades futuras del
proyecto. Su arquitectura escalable y el respaldo de una
comunidad activa aseguran un rendimiento Optimo 'y
actualizaciones constantes, haciendo de CAS una opcién
confiable para proporcionar una experiencia de usuario fluida y

segura.

4.2.10 Herramienta para balanceo de carga

Se propone Traefik como herramienta para el balanceo de carga
debido a su disefilo moderno y su excelente compatibilidad con
entornos de microservicios. Traefik se integra facilmente con
Docker, lo que facilita la gestion dinamica de las rutas y la
deteccion automatica de servicios. Su capacidad para manejar
configuraciones en tiempo real permite una escalabilidad eficiente
y una respuesta rapida a los cambios en la infraestructura. Al ser
una solucién de codigo abierto respaldada por una comunidad
activa, Traefik proporciona flexibilidad y soporte continuo,
adaptandose perfectamente a las necesidades futuras del

proyecto.

87

4.3 Arquitectura de la solucion
4.3.1 Nuevo flujo (TO-BE) para el disefio de diagramas de
componentes

Dado que el objetivo de este proyecto es automatizar la creacién

de diagramas de componentes, que constituye solo una parte del

proceso de disefio de una solucién de software, a continuacion,

se describe el nuevo flujo establecido para esta fase del disefio:

1. El usuario accede a la aplicacién, en la cual deber& ingresar
los criterios o requisitos para la generacion del diagrama de
componentes, asi como el nombre para dicho diagrama.

2. Una vez definidos los criterios de creacién, se presiona el
boton de procesamiento y se dispara la peticibn hacia el
Backend de la aplicacion.

3. La aplicacion recibe la peticion y obtiene informacion de
contexto a partir de los requisitos de creacion.

4. Con la informacion de contexto y los requisitos de creacién se
elabora un prompt que sera el insumo para el LLM.
Se realiza la peticion al LLM para la generacién del diagrama.
El LLM procesa la solicitud y devuelve el resultado.

7. La aplicacion recibe la respuesta del LLM y la devuelve a la
capa FrontEnd.

8. La capa FrontEnd vuelve a enviar una peticion al Backend
para solicitar el renderizado del diagrama.

9. EIl Backend solicitad el renderizado al servidor PlantUml.

10. PlantUml Server realiza el renderizado y devuelve el
resultado a la aplicacién.

11. La aplicacion devuelve a la capa FrontEnd el diagrama
renderizado.

12. El usuario recibe el resultado y analiza si es que este cumple

con sus expectativas.

88

13. Si el usuario esta conforme con el resultado, finaliza el
proceso y no se cumplen los pasos 14 y 15.

14. Si el usuario no esta conforme con el resultado, tiene dos
alternativas:

a. Puede realizar los ajustes el mismo en la pantalla de la
aplicacion.

b. Puede ingresar de forma iterativa, requisitos de ajuste y
solicitar a la aplicacion que se modifique el diagrama
segln esos nuevos requisitos y tomando como base el
diagrama actual

15. Retoma el flujo desde el paso 8.

En la Figura 4.1 se puede apreciar el nuevo flujo correspondiente

al disefio de diagramas de compontes.

PlantUm| Server

@
Genera Imagen

3

@

Procesa prompt l

3

LLM

Solicil Obt Recepl Racagta
[el Hw mJ-—[o] [o Hs«m} b \

Disefio Diagrama De Componentes
Saftware Architecture Design Assistant

" Recepta
resultado

~ ~
(-] Ingresa (=3
requisitos y Solicita
nombre del diagrama
diagrama
i Satistocho?
il
4 ingresa
criterios de
sjuste

~
(e]

Usuario

Realiza ajustos

Figura IV.1: Modelo TO-BE para disefio de diagrama de
componentes

Fuente: El autor

4.3.2 Diagrama de contexto

Software Architecture Design Assistant :: Context Diagram

| Provider LLM
| API
(11) (12)
Realizar Consulta Devolver
Incluyendo Contexto R!:plu:lln
e ettt Tt S iyl diiut eyl b
.r SoftwareArchitecture Design Assistant)
1 ' 1
1] 1
: @ |
1 I Generar — (3] 1“) 1
Contexto j Conerar |
: Vectores 1
i @
1 (5) [Guardar—]
1 - Devolver --- RAG Vectorss
m Respuesta | AP| Modul -
Solicitar ——- odule 1
Diagrama | X) (8) [l
ay L | Application | —oben— '
Con
N ST Module ° .
N ! (10) simiiares !
! - Devolver ==~ !
[} I 1
X H [
1 (14) [
1 Generar '
[} Imagen 1
15
77777 e t N . MU
o |
1 API [
1) [
I H 1
T P p— i i o e o
(1) (6)
Generar Devolver
Contexto espue

Inicial

Y
N

Vectorial
Data Base

90

Figura IV.2: Diagrama de contexto de la solucion

Fuente: El autor

4.3.3 Casos de uso

Basandose en el diagrama de contexto y de acuerdo con el

alcance definido, se identifican los dos siguientes casos de uso:

4.3.3.1 Generaciéon manual de informacién de contexto

1 Un usuario admin, accede a un cliente Rest, por

ejemplo “Postman’.

2 EIl usuario realiza una peticibn a la aplicacion,

enviando un listado de diccionarios de datos para

generar informacion de contexto.

91

3 La aplicacion redirecciona esta solicitud al médulo
de RAG.

4 El médulo de RAG realiza las siguientes acciones
para cada uno de los items del listado de
diccionarios.

a. Genera un vector para dicha informacion.
b. Almacena el vector en la base Milvus.
5 El médulo de RAG devuelve el resultado.
6 La aplicacion devuelve el resultado
4.3.3.2 Generacion de diagrama de componentes

Este caso de uso se detalla en la seccién 4.3.1

4.3.4 Diagrama de componentes

Software Architecture Design Assistant :: Component Diagram

lFronlEnd Layer -‘I

1 1

] 1

1 = 1

[] design assistant Web 1

1 I

] 1

1 1

1 1

[----d
'Dependencies -\I :-Api Layer Api Gateway 3| -‘I rPartners Layer
: ! | L S50 Gatewa gt
! N Redirect Rest v (]
1 1) 11
1 1y i 1
! Iy £ 1! 3
1 1y design assistant bft Rest. ' | LM
1 1 1

1 1
: . : ! £] | — ! :

&] design assistant RAG ~— | |
fantUmi St -—] T

: main dependency : 1 plantlmi Server — Grpe Rest module _I:_ fa—

1 1
1 1 I
1 ! 1y
1 L L L L L L L T T T <

L = T e e e e e -]

. designassisant | | Core Layer HH
1 dependency ' 1 £] 1 1
1 1! metadata service 1y
1 1! "
1 1! "
[1 ! dependency | 1

] 1
i ::::::::::::::::: :::::::::::::::::
: : | DB Layer . :
1 11 [meladata repository i] (]
1 1l T I
1 i e 1
i 1 ¥ 1
1 i N
1 'Rl | Mongo DB 1 Milvus DB
) [| (N
Ol e [-

92

Figura 1V.3: Diagrama de componentes de la solucién

Fuente: El autor

4.3.5 Diagramas de secuencias

4.35.1 Generacion manual de informacién de contexto

93

re Archi re Design Assistant :: Manual ner ntext D.
. . . design assistant "
‘ admin ’ Rest client ’ design assistant bff RAG module Milvus DB
prepareContextData ;
generateContext =
[context/generate
Loop] '
v ;
[areThereContext?) - gunerateEmbedding |
saveEmbeddings :
| T -
T Repanse D
response
I I response L response

Figura IV.4: Generacién manual de contexto

Fuente: El autor

4.3.5.2 Generacion de diagrama de componentes

re Archi re Design Assistant :; Generate Diagram
design assistant " design assistant
User design assistant bff| Plantumi Server
Web ig i RAG module provider LLM
- g :
o) enterRequiremens :
tdiagram/generate |) :
T esponse D ‘
response :
() buitderoms
Icompletions :
S i
I retumnResuits response, :
Jcomponent/diagram/render :
lumiipng :
generatelmage
e S response

B i Prr T response T
- showResuits ™ |_ :

Figura IV.5: Generacién de diagrama de componentes

4.3.6

Fuente: El autor

Diagrama de clases

Comunication Layer
main-dependency
DesgnAssistantGenericProducer
impiemerss (>l enercomadoeere, >]
loverndeMethods L= J
<<intertace>>
[E——
T
ComponentDiagramControlier !
AnythingDispalcher GenencApiconsumer
loverrideMethods.
=g
anderiethoder, >
Application Layer e
DesignAssistantApplication
+_main{args: String(])
+ run(args: AppACatONAIGUMENTS) theows Exception
- registerHandlers()
aonn
Handler Layer
liovermdeMethods
Eactory Layer
[e |
(Serld J
GenerateBOFactory UmBOFactory
BO Layer
[eS80 1> |
|+ erereteiremumst P) R wows GenercException]
i
‘GenerateComponentDiagramBO
lioverndeMethods %
} T
] '
[memmpeone | | s
L L J (G]
e -
RagDefaultProcessor8O UamaSuategyBO
loverndeMethods H lloverndeMethods ﬂ
8 C
T T
[

94

Figura 1V.6: Diagrama de clases

Fuente: El autor

95

En la figura 4.6 correspondiente al diagrama de clases del
componente SpringBoot, se puede apreciar el uso de principios y
patrones para lograr un disefio robusto y extensible. Se puede
apreciar la aplicacion de los principios SOLID, asi como el uso de
varios patrones tales como: Abstract Factory, Strategy, Bridge,

Mediator, Facade, etc.

4.4 Desarrollo del prototipo

441

Introduccion

Se desarrollé un prototipo funcional para que el usuario pueda
validar de manera tangible los beneficios que esta herramienta
ofrece. El prototipo intenta cumplir en la mayor medida posible con
todo el stack tecnologico definido en la seccion 4.2; sin embargo,
es importante considerar que su alcance es limitado al ser solo un
prototipo. Bajo esa premisa, a continuacién, se presenta la

interfaz de usuario del prototipo desarrollado:

localhost: + g W ™ a W o 1en0n

SOFTWARE ARCHITECTURE DESIGN ASSISTANT

®

©) @ ®

NO IMAGE
AVAILABLE

®

(6) (7

T T

Figura IV.7: Interfaz de usuario

Fuente: El autor

4.4.2

96

En la figura 4.7 se puede validar las diferentes secciones con las

qgue cuenta la interfaz de usuario, tales como:

1.
2.

© 00 N o 0 b~ W

Seccion para el ingreso de requisitos.

Seccion para visualizacion y gestion de requisitos
ingresados.

Seccion de historial de requisitos ingresados.

Seccion de visualizacion y edicion de codigo PlantUml.
Seccion de visualizacién de diagrama renderizado.

Boton para solicitar la generacion del diagrama.

Botdn para limpiar el formulario.

Opciones para copiar, descargar y ver descripcion del cédigo.
Opcidn para copiar, descargar y refrescar el diagrama segun

el contenido del codigo.

Generacién de informacién de contexto

4.4.2.1 Descripciéon de la prueba

Para esta prueba se construyé un diccionario de
componentes ficticio para poder alimentar la base de
datos vectorial y que dicha informacién sirva como de
contexto para la prueba de generacion de los diagramas
de componentes. La estructura del diccionario puede

ser revisada en la seccion de anexos:

4.4.2.2 Contrato

El detalle de los contratos se puede ver en la seccion de

anexos.

4.4.2.3 Consumo

97

Figura IV.8: Consumo para generar contexto

Fuente: El autor

4.4.2.4 Respuesta

Figura 1V.9: Resultado de generacion de contexto

Fuente: El autor

4.4.3 Generaciéon de diagrama de componentes

4.43.1 Descripcion de la prueba

98

Para la generacion del diagrama de componentes se

considerd una solucion ficticia basada en los requisitos

gue se detallan a continuacion:

4.4.3.2 Requisitos de prueba

El objetivo de esta solucion es el procesamiento de
pagos de clientes.

Los pagos deben ser ingresados desde la aplicaciéon
gue utilizan los clientes.

Se debe hacer uso de reglas de negocio con camunda
para validar acciones necesarias segun el saldo
pendiente.

Se debe enviar por correo una notificacion de
confirmacion al cliente, al recibir un pago.

Luego de cada pago recibido se debe realizar la
actualizacion del del saldo del cliente.

Se debe realizar el registro de log de errores de forma

asincrona.

4.4.3.3 Ejecucién de la prueba

U W U st

Ingrese nombre del diagrama

Aplicacion Pagos

99

W@ g | e e gy -

Figura 1V.10. Ejecucién de solicitud de diagrama

4.4.3.4 Resultado

€« @ (0 localhostinn

Fuente: El autor

‘SOFTWARE ARCHITECTURE DESIGN ASSISTANT

G o ¢« @

R niior sesiin)

Ingrese un requisito y presione Enter

* S0 debe reallzar el registro de log de errores de
forna asincrona

* Lucgo de cada pago recibido se debe realizar la
actualizacion del del saldo del cliente

56 dobe enviar par correo una natificacién de
confirmacién al cliente al recibir un pago

- s do reglas de ncgocio con comnds
para validar accciones necesarias segun el saldo
pendicnte
* Los pagos deben ser ingresades desde la aplicacién que
utilizan los clientes

« EL objetivo de esta solucitn es el procesamiento de
pages de clientes

]

Wi Bl

Trace TApLLZMEiCn Pages” |

Framo *Parcmers Loyor® |
[*aiddleware”] &3 7

Avikcion Pages

iy

" o
Pordercoloz<cryiavers Hed

5 "
w3 oop motdfizacicnea®] as ¢

Figura 1V.11: Resultado de generacion de diagrama

Fuente: El autor

100

Luego de la ejecucion se obtuvo los siguientes

resultados:

Diagrama en formato PlantUml
El diagrama en formato PlantUml se puede apreciar

en la seccion de anexos.

Diagrama en formato png
El diagrama en formato Imagen se puede apreciar

en la seccidon de anexos.

101

CAPITULO V

EVALUACION Y ANALISIS DE RESULTADOS

En este capitulo se lleva a cabo la revision de los resultados de la validacion
del prototipo con los usuarios. El objetivo principal es interpretar dichos
resultados y determinar su relevancia en el contexto del proyecto. Este
capitulo servira como base para las conclusiones finales y las
recomendaciones futuras, destacando cémo los resultados contribuyen al

avance del conocimiento en este tema.

5.1 Validacién del prototipo con el usuario
Se realiz6 la revision del prototipo con los arquitectos en dos sesiones,
en las cuales se reviso la interfaz, sus funcionalidades y se hicieron

pruebas de generacion de diagramas.

5.2 Elaboracién y toma de encuestas
Posteriormente se prepar0 una nueva encuesta, con la finalidad de
validar el grado de aceptacién de los arquitectos respecto al prototipo
evaluado. El formato completo de la encuesta se puede revisar en la
seccion de anexos, y los temas que se consultaron son los siguientes:
1. Se solicita al usuario, que califique en una escala del 1 al 5, que tan
intuitiva le parecié la interfaz del prototipo. Siendo 1 muy poco

intuitiva y 5 muy intuitiva.

102

Direccion de
correo electronico

¢Qué tan intuitiva te parecio la interfaz del prototipo?

dlino@telconet.ec 4
cocedeno@gmail.com 4
arsuarez@telconet.ec 4
jlung@telconet.ec 3
jdvinueza@telconet.ec 4
cxcastro@telconet.ec 5

Figura V.1: Percepcion sobre la usabilidad del prototipo

Fuente: El autor

En la figura 5.1, correspondiente a la primera pregunta de la
encuesta, los resultados evidencian respuestas mayormente

favorables acerca de que tan intuitivo es el prototipo desarrollado.

Se solicita al usuario que indique, calificando en una escala del 1 al
5, que tanto el prototipo le facilito la generacién de los diagramas de
componentes, respecto a su metodologia actual. Siendo 1 nada facil

y 5 muy facil.

103

¢El prototipo facilité la generacion de diagramas de
componentes en comparacion con tus métodos

Direccion de
correo electronico

habituales?
dlino@telconet.ec 5
cocedeno@gmail.com 5
arsuarez@telconet.ec 5
jlung@telconet.ec 4
jdvinueza@telconet.ec 4
cxcastro@telconet.ec 2

Figura V.2: Facilitar el disefio de diagramas

Fuente: El autor

En la figura 5.2 correspondiente a la segunda pregunta de la
encuesta, se evidencia una alta aprobacion, respecto a que tanto el

prototipo facilita la generacién de diagramas de componentes.

Se solicita al usuario que indique algun problema técnico que haya

notado durante las pruebas con el prototipo.

Direccion de ¢Encontraste algin obstaculo técnico al utilizar el

correo electrénico prototipo? Si es asi, por favor indicalo.

dlino@telconet.ec Ninguno
cocedeno@gmail.com No por el momento
arsuarez@telconet.ec Ninguna
jlung@telconet.ec Ninguno
jdvinueza@telconet.ec Ninguno
cxcastro@telconet.ec Ninguno

Figura V.3: Dificultades técnicas con el prototipo

104

Fuente: El autor

En la figura 5.3 correspondiente a la tercera pregunta de la encuesta
se verifica que los usuarios no encontraron observaciones técnicas

respecto al uso del prototipo desarrollado.

Se solicita al usuario que califique en una escala del 1 al 5, la
precision de los diagramas de componentes generados con el
prototipo. Siendo 1 nada preciso y 5 muy preciso.

Direccion de o | &Como calificarias la precision de los diagramas
correo electrénico generados por el prototipo?

dlino@telconet.ec 4
cocedeno@gmail.com 4
arsuarez@telconet.ec 3
jlung@telconet.ec 4
jdvinueza@telconet.ec 3
cxcastro@telconet.ec 4

Figura V.4: Precision de los diagramas

Fuente: El autor

En la figura 5.4, correspondiente a la cuarta pregunta de la encuesta,
se evidencia una calificacion ligeramente por encima de la media, lo
cual es comprensible, ya que se trata de diagramas base, los cuales
pueden ser mejorados con base en iteraciones con la misa
herramienta o con ajustes manuales del usuario. Adicionalmente la
precision de los diagramas puede mejorarse conforme se enriquezca
mas la base de contexto y se realicen ajustes sobre el prompt

utilizado.

105

5. Se solicita al usuario que califique en una escala del 1 al 5, que tan

rapido le parecié la generacion de diagramas de componentes

utilizando el prototipo. Siendo 1 nada r4pido y 5 muy rapido.

Direccion de ¢Qué tan rapido es el proceso de generacion de

correo electrénico diagramas con el prototipo?

dlino@telconet.ec 5
cocedeno@gmail.com 5
arsuarez(@telconet.ec -
jlung@telconet.ec e
jdvinueza@telconet.ec 3
cxcastro@telconet.ec 4

Figura V.5: Rapidez en la generacion de diagramas

Fuente: El autor

En la figura 5.5, correspondiente a la quinta pregunta de la encuesta,
se evidencia mayormente una buena percepcion del usuario respecto
a la rapidez del prototipo para generar los diagramas de

componentes.

6. Se solicita al usuario que califique en una escala del 1 al 5, que tan
atil le parecié la asistencia de un LLM en la generacién de diagramas

de componentes. Siendo 1 nada util y 5 muy util.

106

Direccion de o ¢ Te resulté dtil la asistencia del LLM en la generacion
correo electrénico de diagramas?

dlino@telconet.ec 5
cocedeno@gmail.com 5
arsuarez@telconet.ec 5
jlung@telconet.ec 3
jdvinueza@telconet.ec -
cxcastro@telconet.ec 5

Figura V.6: Utilidad en la asistencia de un LLM

Fuente: El Autor

En la figura 5.6, correspondiente a la sexta pregunta de la encuesta,
se evidencia que la mayoria de los arquitectos consideran de mucha
utilidad la asistencia de un LLM en la generacion de diagramas de

componentes.

Se solicita al usuario que califique en una escala del 1 al 5, cual es
su grado de satisfaccién con el uso del prototipo. Siendo 1 nada

satisfecho y 5 muy satisfecho.

107

Direccion de : . . o . o
.. v | ¢Como evaluas tu satisfaccion general con el prototipo? v
correo electrénico

dlino@telconet.ec 5
cocedeno@gmail.com 4
arsuarez@telconet.ec 4
jlung@telconet.ec 4
jdvinueza@telconet.ec 4
cxcastro@telconet.ec 5

Figura V.7: Satisfaccion con el uso del prototipo

Fuente: El autor

En la figura 5.7, correspondiente a la séptima pregunta de la
encuesta, se evidencia un aceptable nivel de satisfaccion de los

arquitectos, respecto al uso del prototipo.

8. Se solicita al usuario que califique con Sl o NO, si considera que el

uso de la herramienta podria mejorar la eficiencia en sus proyectos.

108

Direccion de o ¢Consideras que el prototipo podria aumentar la

correo electrénico eficiencia en tus proyectos?

dlino@telconet.ec Si
cocedeno@gmail.com Si
arsuarez@telconet.ec Si
jlung@telconet.ec Si
jdvinueza@telconet.ec Si
cxcastro@telconet.ec Si

Figura V.8: Incidencia del prototipo en la eficiencia de los
disefios

Fuente: El autor

En la figura 5.8, correspondiente a la octava pregunta de la encuesta,
se evidencia un rotundo acuerdo por parte de los arquitectos,
respecto al aumento de la eficiencia en sus procesos de disefio, al

contar con una herramienta de este tipo.

Se solicita el usuario que indique que aspectos de la herramienta le

parecieron mas valiosos.

109

Direccion de 2 " - . . "
. . v | ¢Qué aspectos del prototipo te parecieron mas valiosos? v
correo electronico

al momento de visualizar el diagrama con los datos de
entrada

dlino@telconet.ec
cocedeno@gmail.com | La generacion automatica de diagramas

arsuarez@telconet.ec = El uso del contexto relacionado a nuestro trabajo

La integracion con diferentes servidores de modelos LLM,
jlung@telconet.ec internos y de terceros, aunque hay temas de seguridad que
resolver

entrega un diagrama en base a os requeriientos entrgados

jdvinueza@telconet.ec fiastaste basnn.

La generacion de diagramas con una arquitectura basado en
cxcastro@telconet.ec el requerimiento, permite partir con una idea que ayuda con
el desarrollo.

Figura V.9: Aspectos destacados del prototipo

Fuente: El autor

En la figura 5.9, correspondiente a la novena pregunta de la
encuesta, se visualiza los aspectos, que, a criterio de los arquitectos,
son los mas valiosos o destacados. A continuacion de se detalla cada
uno de ellos:

e Uno de los arquitectos resalta el hecho de que el prototipo
permite tanto la visualizacion del diagrama en formato imagen,
asi como el diagrama en formato editable PlantUml y los
criterios de entrada que permitieron la generacion de este.

e Otro arquitecto destaca como tal la funcionalidad de generar
de forma totalmente automatica un diagrama de componentes
completo, solo mediante el ingreso de algunos requisitos.

e Otro arquitecto sefiala como valioso, el hecho de que el
diagrama generado, considere componentes ya existentes en
el ecosistema tecnoldgico de la empresa, agregando un alto

valor contextual al resultado.

110

e Aunque el objetivo del proyecto es consumir un LLM local, el
prototipo cuenta con la capacidad de poder implementar el
consumo al cualquier proveedor de LLM y hacer switch a
cualquiera de ellos en tiempo de ejecucién. Esta es la
capacidad que resalta uno de los arquitectos. Sin embargo, el
también hace énfasis en la importancia de la seguridad que se
implemente en caso de utilizar dicha funcionalidad.

e Otro arquitecto destaca la calidad que presenta el diagrama
de componentes generado con el prototipo a partir de unos
cuantos requisitos ingresados.

e Finalmente, otro arquitecto sefala la importancia de contar
rapidamente con un diagrama base, a partir del cual se pueda
iterar para mejorarlo, o tomarlo directamente como diagrama

final, dependiendo de su exactitud.

10. Se solicita al usuario que indique, que funcionalidades adicionales

considera que el prototipo deberia incorporar.

111

¢Qué funcionalidades adicionales te gustaria que el

Direccion de .. . : S
prototipo incorporara para mejorar su integracion?.

correo electronico 2 :
Redactalo por items

dlino@telconet.ec seleccion de tipos de diagrama

cocedeno@gmail.com = otros tipos de diagramas UML

1. Deberia poder generarse una especie de Workspace inicial

y en ese trabajar por cada proyecto asignado y no estar

pidiendo ingresar le nombre para descargar, la creacion del

nombre deberia ser una funcionalidad del workspace.
arsuarez@telconet.ec 2 .Tener cuidado con el renderizado de la imagen, asi sea un

preview, debe ser consistente.

3. La descarga de la imagen que sea en PDF o jpg, , la

transparencia del png no ayuda si se abre la imagen pura.

4. Que en un futuro se integre con el repositorio corporativo.

- Basicamente la capa de seguridad, necesitaria ser
jlung@telconet.ec mejorada para gestionar reglas o enrutamiento de las
solicitudes a los diferentes proveedores LLM

jdvinueza@telconet.ec = que haga commit del diagrama a un repositorio gitlab

cxcastro@telconet.ec Permita importar e interpretar diagramas

Figura V.10 : Sugerencias de mejora

Fuente: El autor

En la figura 5.10, correspondiente a la décima pregunta de la
encuesta, se visualiza varios items de mejora basados en el criterio
y experiencia de cada uno de los arquitectos. A continuacion, se
detalla cada uno de ellos:

e Uno de los arquitectos, sefiala como punto de mejora, la
posibilidad de que la herramienta permita seleccionar el tipo
de diagrama que se desea generar. Esto implica que la
herramienta implemente la gestion para otros tipos de
diagramas UML con ayuda del LLM, lo cual no esta
contemplado en el alcance de este proyecto, pero es un
excelente item a considerar para futuras fases.

112

Sibien es cierto, el anterior arquitecto sefala solo la necesidad
de poder escoger el tipo de diagrama, otro arquitecto hace
énfasis en contar con la implementacién concreta para poder
generar varios tipos de diagramas, lo cual ya fue indicado en
el item anterior.

Otra sugerencia se centra en la necesidad de contar con
espacios de trabajo especificos por cada proyecto, de manera
gue no se solicite el ingreso del nombre del diagrama cada vez
que se realiza una nueva iteraciéon de mejora. Se aclaré con el
arquitecto que al tratarse de un prototipo no cuenta con todas
las optimizaciones que deberia tener un aplicativo final, sin
embargo, se considerara su propuesta como punto de mejora
en futuras fases.

Otra sugerencia recalca la importancia de la relacion de
aspecto de la imagen, de modo que, no se distorsione en caso
de que sus dimensiones no coincidan con la forma del
visualizador.

Otra sugerencia enfatiza la necesidad de poder descargar la
imagen como pdf, dado que el prototipo actualmente solo
permite descargar la imagen en formato png.

Otra sugerencia resalta la necesidad de que la herramienta
pueda integrarse con el repositorio corporativo, de manera que
pueda haber esta comunicacion bidireccional y sea mas agil la
replicacion de los disefios en el repositorio corporativo.

Otra sugerencia hace énfasis en el tema de seguridad,
especificamente en el caso de uso en el cual se realice
comunicacién con un LLM distinto al local. Recalca que es

fundamental resguardar la informacion sensible mediante la

113

implementacion de ciertas estrategias como reglas de
enrutamiento, monitoreo de solicitudes, auditorias, etc.

e Oftra sugerencia sefala la necesidad de poder importar
diagramas ya existentes. Lo cual permitiria continuar con
iteraciones de diagramas anteriores generados por la misma
herramienta, o incluso con diagramas generados con otras

herramientas, siempre y cuando el formato sea compatible.

5.3 Analisis de resultados
El andlisis de los resultados obtenidos a partir de las revisiones del
prototipo con los arquitectos y las encuestas realizadas demuestra que
la herramienta evaluada cumple con las expectativas iniciales en
términos de usabilidad, eficiencia y utilidad en la generacion de
diagramas de componentes. La interfaz intuitiva y la rapidez en la
creacion de diagramas fueron aspectos destacados por los usuarios, lo
gue sugiere que la herramienta facilita y optimiza significativamente su
flujo de trabajo en el disefilo arquitectonico de diagramas de
componentes.
A pesar de algunos comentarios respecto a la precision de los
diagramas, los usuarios reconocieron que estos pueden ser mejorados
a través de iteraciones adicionales, lo que abre la puerta a futuras
optimizaciones del sistema. La incorporacion de un LLM se percibié
como un valor agregado significativo, brindando asistencia relevante y
contextualizada en el proceso de disefio.
5.3.1 Respuesta ala pregunta de investigacion
Para responder la pregunta de investigacion, respecto al grado de
aceptacion de la herramienta por parte de los usuarios, hay que
enfocarse en las respuestas de la encuesta, particularmente en

las preguntas que evalian aspectos clave relacionados con la

114

aceptacion del prototipo, tales como usabilidad, facilidad,
precision, rapidez, utilidad, satisfaccion, y eficiencia percibida.
Estas preguntas sonlal, 2, 4,5, 6, 7y 8. Basandose en la escala
del 1 al 5 utilizada en la encuesta, se considera el total de puntos
recibidos en la respuesta de la pregunta, el maximo de puntos

posibles y se aplicara la siguiente férmula:

faie = Puntos obtenidos X 100
porcentaje = Puntos posibles

e Pregunta 1: (24/30) X 100 = 80.0

e Pregunta 2: (27/30) X 100 = 90.0

e Pregunta 4: (22/30) X 100 =73.3

e Pregunta 5: (25/30) X 100 = 83.3

e Pregunta 6: (27/30) X 100 = 90.0

e Pregunta 7: (26/30) X 100 = 86.6

e Pregunta 8: Dado que las respuestas fueron un rotundo “SI”,

se asume 100%

Finalmente se obtiene un promedio de los porcentajes por
respuesta. Eso da un total de 86.17%, el cual seria el porcentaje
de aceptacion de la herramienta por parte de los usuarios y es la
respuesta a la pregunta de investigacion.

5.4 Retosy limitaciones
Durante el proceso de validacion del prototipo, se han identificado varios
retos y limitaciones que impactan tanto la funcionalidad actual como las
posibles futuras aplicaciones de la herramienta. Estos desafios pueden

dividirse en dos categorias principales: las limitaciones inherentes a los

115

Modelos de Lenguaje Grande (LLM) y las limitaciones especificas del

prototipo en su implementacion actual.

5.4.1 Limitaciones Semanticas de los LLM

54.2

Aunque los LLM han demostrado ser herramientas poderosas
para la interpretacion del lenguaje natural y la generacién de
contenido basado en texto, presentan varias limitaciones
semanticas cuando se trata de tareas altamente estructuradas,
como la generacion de diagramas de clases. Uno de los
principales problemas es la capacidad de los LLM para
comprender y mantener relaciones complejas entre entidades
dentro de un diagrama, especialmente cuando las reglas y
dependencias inherentes no estan explicitamente definidas en el
input textual.

La generacion de diagramas de clases, por ejemplo, requiere que
el LLM entienda de manera precisa las relaciones entre clases,
interfaces, herencias y asociaciones, lo cual va mas alla de
simplemente generar una representacion grafica basada en texto.
Las limitaciones semanticas actuales dificultan la interpretacién
correcta de los componentes mas abstractos y las relaciones
jerarquicas, lo que puede dar lugar a diagramas incompletos o
incorrectos. A pesar de que el prototipo ha mostrado buenos
resultados en la generacion de diagramas de componentes, este
desafio sigue siendo una barrera para extender su uso a otros
tipos de diagramas mas complejos, como los de clases o
secuencias.

Limitaciones del Prototipo

El prototipo en su forma actual presenta una serie de limitaciones
técnicas y funcionales que han sido identificadas durante las

pruebas con los arquitectos.

116

Una de las principales es la falta de capacidad de la
herramienta para generar distintos tipos de diagramas UML,
mas alla de los diagramas de componentes. Los arquitectos
sefalaron que seria valioso contar con opciones para generar
diagramas de clases, secuencias y otros tipos UML, lo cual no
esta contemplado dentro del alcance del proyecto.

Otra limitacién importante es la integracion del prototipo con
los sistemas corporativos de almacenamiento y gestion de
proyectos. El prototipo de la herramienta no permite la
comunicaciéon bidireccional con repositorios corporativos, lo
gue ralentizaria el proceso de replicacion de los disefios en
entornos colaborativos. Esta limitacion afectaria directamente
la eficiencia con la que los arquitectos pueden iterar sobre los
diagramas generados.

Un reto adicional mencionado por los arquitectos es la
necesidad de asegurar las comunicaciones en caso de utilizar
un proveedor de LLM externo en lugar de un modelo local.
Dado que el prototipo contempla la posibilidad de cambiar
entre distintos proveedores de LLM en tiempo de ejecucion, es
fundamental implementar estrategias robustas de seguridad
gue protejan la informacién sensible manejada durante la
generacion de diagramas, estrategias tales como reglas de
enrutamiento, monitoreo de solicitudes, etc.

El hecho de que el prototipo solo permita generar diagramas a
partir de entradas textuales y no de diagramas previos limita
su potencial para iterar sobre disefios ya existentes. Aunque
esta funcionalidad no esta incluida en la version actual del

prototipo, se sugirié que poder importar diagramas generados

117

previamente o con otras herramientas permitiria una mejor
optimizacién y adaptacion a diferentes flujos de trabajo.
5.4.3 Conclusion
A pesar de los avances logrados con el prototipo, los retos y
limitaciones presentados deben ser abordados para asegurar su
adopcion generalizada y mejorar su funcionalidad. Las
limitaciones semanticas de los LLM, en particular, representan un
area de investigacion clave para mejorar la precision y utilidad de
las herramientas de generacion de diagramas. Por otro lado, los
desafios técnicos del prototipo, como la ampliacion de su
capacidad para generar diversos tipos de diagramas y su
integracion con sistemas corporativos, ofreceran nuevas

oportunidades de mejora en futuras versiones.

5.5 Propuestas de mejora
Durante el proceso de validacion del prototipo, los arquitectos que
participaron en las pruebas no solo destacaron las funcionalidades mas
valiosas de la herramienta, sino que también aportaron sugerencias
clave para mejorarla en futuras versiones. Estas propuestas de mejora
abordan aspectos tanto técnicos como funcionales, orientados a
optimizar la experiencia de usuario y aumentar la versatilidad del
prototipo. A continuacion, se listan cada una de ellas:
5.5.1 Generacion de Diferentes Tipos de Diagramas UML
Una de las propuestas mas obvias y esperadas fue la posibilidad
de extender las capacidades del prototipo para generar no solo
diagramas de componentes, sino también otros tipos de
diagramas UML, como diagramas de clases, de secuencia o de
actividad. Este avance permitiria a los arquitectos cubrir una gama

mas amplia de necesidades dentro del ciclo de disefio y

5.5.2

5.5.3

5.5.4

118

planificacion arquitectonica. Aunque esta funcionalidad no esta
contemplada en el alcance actual del prototipo, la implementacion
de esta capacidad seria un paso importante para aumentar su
aplicabilidad en diferentes fases de desarrollo.

Gestion de Espacios de Trabajo y Proyectos

Los usuarios también sefialaron la importancia de contar con un
moddulo de gestion de proyectos que permita organizar los
diagramas generados dentro de espacios de trabajo especificos.
Actualmente, el prototipo solicita ingresar el nombre del diagrama
en cada iteracion, lo que resulta tedioso en proyectos con
multiples versiones o cuando es necesario ajustar el diagrama
inicial. Implementar espacios de trabajo donde los usuarios
puedan organizar y gestionar sus proyectos y sus respectivas
iteraciones facilitaria el flujo de trabajo y mejoraria la eficiencia en
la gestiéon de los diagramas generados.

Mejoras en la Relacion de Aspecto de los Diagramas

Otra propuesta de mejora esta relacionada con la visualizacion de
los diagramas. Se sugirid que el prototipo deberia mejorar la
relacion de aspecto en la presentacibn de las imagenes
generadas, para evitar distorsiones cuando las dimensiones del
visualizador no coinciden con las proporciones originales del
diagrama. Asegurar que los diagramas mantengan su integridad
visual independientemente del formato de visualizacion o
exportacion es fundamental para garantizar su claridad y
comprension.

Exportacién de Diagramas en Formatos Adicionales
Actualmente, el prototipo permite la descarga de diagramas en
formato .png, sin embargo, algunos usuarios expresaron la
necesidad de poder exportar los diagramas en otros formatos,

como pdf. Esta funcionalidad mejoraria la compatibilidad de los

5.5.5

5.5.6

119

diagramas con diversas plataformas de trabajo, ademas de
facilitar su incorporacion en reportes técnicos, documentacion o
presentaciones sin necesidad de realizar conversiones externas.
Integracion con Repositorios Corporativos

Otra mejora sugerida por los arquitectos fue la integracion del
prototipo con repositorios corporativos. Esta funcionalidad
permitiria una comunicacion bidireccional entre la herramienta y
los sistemas de gestidn de proyectos empresariales, facilitando la
replicacion, almacenamiento y actualizacion de los diagramas en
entornos colaborativos. Ademas, esta integracién agilizaria el
proceso de disefio, permitiendo que los arquitectos trabajen
directamente con la infraestructura tecnoldgica de su
organizacién, optimizando asi el flujo de trabajo y la coherencia
en los proyectos.

Seguridad en el Consumo de Modelos de Lenguaje Grandes

Externos

5.5.7

Dado que el prototipo permite la opcidn de utilizar un proveedor
de LLM externo en lugar de un modelo local, varios usuarios
hicieron hincapié en la importancia de implementar medidas de
seguridad robustas para proteger la informacién sensible. Se
sugiri6 la implementacidon de estrategias como reglas de
enrutamiento, auditoria de solicitudes y monitoreo de trafico,
especialmente en los casos donde se realicen comunicaciones
con un LLM externo. Esto aseguraria la integridad de los datos
manejados y garantizaria la confidencialidad en los procesos de
disefio.

Importacion de Diagramas Existentes

Por ultimo, se destaco la necesidad de que el prototipo pueda
importar diagramas ya existentes. Esta funcionalidad permitiria a

los usuarios continuar con iteraciones sobre diagramas

120

previamente generados, ya sea por el mismo prototipo o por otras
herramientas, siempre que el formato sea compatible. La
capacidad de importar y modificar diagramas antiguos no solo
incrementaria la flexibilidad de la herramienta, sino que también
mejoraria su capacidad para adaptarse a los flujos de trabajo

actuales sin necesidad de partir siempre desde cero.

121

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

1 Durante el desarrollo de este proyecto, se ha desarrollado un prototipo
orientado a la generacion automatica de diagramas de componentes,
integrando un Gran Modelo de Lenguaje (LLM) enriquecido con
Recuperacion Aumentada por Generacion (RAG). Este enfoque ha
demostrado ser una solucidon innovadora para abordar los retos
tradicionales que enfrentan los arquitectos de software en el disefio
manual de diagramas.

2 Los resultados de la validacion del prototipo muestran una alta
aceptacion por parte de los arquitectos de software involucrados en las
pruebas, quienes valoraron especialmente la usabilidad y la capacidad
de automatizacién de la herramienta. La reduccion significativa en el
tiempo necesario para generar diagramas de componentes, pasando
de horas a minutos, es un logro destacado que subraya la eficiencia del
sistema propuesto. Ademas, el uso de RAG ha mejorado la precision
contextual de los diagramas, adaptandolos a la realidad de la
organizacion.

3 Aunque el prototipo ha cumplido su objetivo en el d&mbito de los
diagramas de componentes, su extensién a otros tipos de diagramas
UML requerira investigacion y mejoras futuras.

4 En conclusion, este proyecto ha demostrado la viabilidad de utilizar
tecnologias avanzadas de IA en el campo del disefio arquitectonico de
software. Los resultados obtenidos indican que el prototipo tiene un
gran potencial para mejorar la eficiencia en la creacion de diagramas,
pero también existen areas clave que deberan abordarse en futuras

fases para maximizar su aplicabilidad y robustez.

122

RECOMENDACIONES

1 Se recomienda establecer un proyecto formal, con sus respectivas fases,
para llevar a cabo la implementacién de las sugerencias mas facilmente
aplicables a corto y mediano plazo, tal como las mejoras en la relacion de
aspecto de los diagramas, la exportacion en multiples formatos, la
integracion con sistemas de versionamiento corporativo y la
implementacion de workspaces. Estas mejoras incrementaran la
usabilidad del prototipo y aseguraran que se integre sin problemas en el
flujo de trabajo existente de la division de arquitectura.

2 Es esencial garantizar que la herramienta sea lo suficientemente eficiente
para su uso diario. Esto implica priorizar mejoras técnicas como la
optimizacién del rendimiento, reduciendo los tiempos de respuesta y
aumentando la precision en la generacion de diagramas. El refinamiento
continuo de las interfaces y la simplificacion del proceso de iteracion de
diagramas contribuird a una adopcion mas fluida por parte de los
arquitectos.

a) Como parte de la estrategia a corto plazo, se recomienda que el
prototipo sea utilizado en proyectos piloto reales dentro de la
empresa, donde se puedan identificar rapidamente beneficios
practicos y areas adicionales de mejora. Estos pilotos permitiran
medir con mayor precision la eficacia de la herramienta y su
impacto en la productividad, facilitando la toma de decisiones
sobre su escalabilidad futura.

b) Dado el éxito inicial en la generacion de diagramas de
componentes, se recomienda investigar la viabilidad de aplicar
técnicas similares para automatizar la creacion de otros tipos de
diagramas UML, como diagramas de secuencias y de clases, lo
gue ampliaria considerablemente el alcance de la herramienta

en los procesos de disefio arquitecténico.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

123

BIBLIOGRAFIA
A. Tarig, M. J. Awan, J. Alshudukhi, T. M. Alam, K. T. Alhamazani, y Z.

Meraf, “Software Measurement by Using Artificial Intelligence”, J.
Nanomater., vol. 2022, num. 1, p. 7283171, 2022, doi:
10.1155/2022/7283171.

B. Kim etal.,, “The Breakthrough Memory Solutions for Improved
Performance on LLM Inference”, IEEE Micro, vol. 44, nam. 3, pp. 40-48,
may 2024, doi: 10.1109/MM.2024.3375352.

Y. Chang et al., “A Survey on Evaluation of Large Language Models”,
ACM Trans Intell Syst Technol, vol. 15, num. 3, p. 39:1-39:45, mar. 2024,
doi: 10.1145/3641289.

H. Naveed etal., “A Comprehensive Overview of Large Language
Models”, el 9 de abril de 2024, arXiv: arXiv:2307.06435. doi:
10.48550/arXiv.2307.06435.

E. Y. Zhang, A. D. Cheok, Z. Pan, J. Cai, y Y. Yan, “From Turing to
Transformers: A Comprehensive Review and Tutorial on the Evolution
and Applications of Generative Transformer Models”, Sci, vol. 5, num. 4,
Art. nim. 4, dic. 2023, doi: 10.3390/sci5040046.

J. Rumbaugh, I. Jacobson, y G. Booch, The unified modeling language
reference manual: the definitive reference to the UML from the original
designers, 5. print. en The Addison-Wesley object technology series.
Reading, Mass.: Addison-Wesley, 2003.

X. Hou etal., “Large Language Models for Software Engineering: A
Systematic Literature Review”, el 10 de abril de 2024, arXiv:
arXiv:2308.10620. doi: 10.48550/arXiv.2308.10620.

D. De Bari, “Evaluating Large Language Models in Software Design: A
Comparative Analysis of UML Class Diagram Generation”, laurea,
Politecnico di Torino, 2024. Consultado: el 15 de mayo de 2024. [En
linea]. Disponible en: https://webthesis.biblio.polito.it/31177/

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

124

R. Lakatos, P. Pollner, A. Hajdu, y T. Joo, “Investigating the performance
of Retrieval-Augmented Generation and fine-tuning for the development
of Al-driven knowledge-based systems”, el 12 de marzo de 2024, arXiv:
arXiv:2403.09727. doi: 10.48550/arXiv.2403.09727.

S. Barnett, Z. Brannelly, S. Kurniawan, y S. Wong, “Fine-Tuning or Fine-
Failing? Debunking Performance Myths in Large Language Models”, el
17 de junio de 2024, arXiv. arXiv:2406.11201. doi:
10.48550/arXiv.2406.11201.

“The C4 model for visualising software architecture”. Consultado: el 2 de
septiembre de 2024. [En linea]. Disponible en: https://c4model.com/
‘Free UML, BPMN and Agile Tutorials - Learn Step-by-Step”.
Consultado: el 6 de septiembre de 2024. [En linea]. Disponible en:
https://www.visual-paradigm.com/tutorials/

“Funcionalidades Principales de PowerDesigner”’. Consultado: el 6 de
septiembre de 2024. [En linea). Disponible en:
https://www.powerdesigner.biz/ES/powerdesigner/powerdesigner-
features.html

“‘Diagramming, Data Visualization and Real-Time Collaboration |
Lucidchart’. Consultado: el 6 de septiembre de 2024. [En lineal].
Disponible en: https://www.lucidchart.com/pages/product

“Draw Diagrams Online | Gliffy”. Consultado: el 6 de septiembre de 2024.
[En linea]. Disponible en: https://www.gliffy.com/products/gliffy-online
“StarUML”. Consultado: el 6 de septiembre de 2024. [En lineal.
Disponible en: https://staruml.io/

“Quick Start Guide - ModelioOpenSource/Modelio Wiki - GitHub”.
Consultado: el 6 de septiembre de 2024. [En linea]. Disponible en:
https://github.com/ModelioOpenSource/Modelio/wiki/Quick-Start-Guide
‘USE: UML-based Specification Environment”, SourceForge.
Consultado: el 6 de septiembre de 2024. [En linea]. Disponible en:

https://sourceforge.net/projects/useocl/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

125

“‘herramienta de codigo abierto que utiliza descripciones textuales
simples para dibujar hermosos diagramas UML.” Consultado: el 6 de
septiembre de 2024. [En linea]. Disponible en: https://plantuml.com/es/
“Class diagrams | Mermaid”. Consultado: el 6 de septiembre de 2024.
[En linea]. Disponible en:
https://mermaid.js.org/syntax/classDiagram.html

M. Richards y N. Ford, Fundamentals of Software Architecture: An
Engineering Approach. O’Reilly Media, Inc., 2020.

G. Marquez, H. Astudillo, y R. Kazman, “Architectural tactics in software
architecture: A systematic mapping study”, J. Syst. Softw., vol. 197, p.
111558, mar. 2023, doi: 10.1016/}.jss.2022.111558.

E. Gamma, Ed., Design patterns: elements of reusable object-oriented
software, 39. printing. en Addison-Wesley professional computing series.
Boston, Mass. Munich: Addison-Wesley, 2011.

G. Suryanarayana, G. Samarthyam, y T. Sharma, Eds., “Appendix A -
Software Design Principles”, en Refactoring for Software Design Smells,
Boston: Morgan Kaufmann, 2015, pp. 213-215. doi: 10.1016/B978-0-12-
801397-7.15001-5.

R. C. Martin, J. Grenning, S. Brown, y K. Henney, Clean Architecture: a
craftsman’s guide to software structure and design. en Robert C. Martin
series. Boston Columbus Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris
Montreal Toronto Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul
Singapore Taipei Tokyo: Prentice Hall, 2018.

L. Mehra, Software Design Patterns for Java Developers: Expert-led
Approaches to Build Re-usable Software and Enterprise Applications
(English Edition). BPB Publications, 2021.

“Software Architecture Patterns, 2nd Edition[Book]”. Consultado: el 10 de

septiembre de 2024. [En linea]. Disponible en:

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]
[37]

126

https://www.oreilly.com/library/view/software-architecture-
patterns/9781098134280/

A. Cockburn, “Hexagonal architecture”, Alistair Cockburn. Consultado: el
10 de septiembre de 2024. [En linea]. Disponible en:
https://alistair.cockburn.us/hexagonal-architecture/

D. Garlan, “Software Architecture”, Wiley Encycl. Comput. Sci. Eng., ene.
2007, Consultado: el 10 de septiembre de 2024. [En linea]. Disponible
en: https://www.academia.edu/99223468/Software_Architecture

A. Bellemare, Building event-driven microservices: leveraging
organizational data at scale, First edition. Sebastopol, CA: O’Reilly
Media, 2020.

S. Newman, “Monolith to Microservices”.

M. Jovanovié¢, “What Is a Modular Monolith?” Consultado: el 10 de
septiembre de 2024. [En linea]. Disponible en:
https://www.milanjovanovic.tech/blog/what-is-a-modular-monolith

M. Ozkaya, “Microservices Killer: Modular Monolithic Architecture”,
Design Microservices Architecture with Patterns & Principles.
Consultado: el 10 de septiembre de 2024. [En linea]. Disponible en:
https://medium.com/design-microservices-architecture-with-
patterns/microservices-killer-modular-monolithic-architecture-
ac83814f6862

“Reading ‘The C4 model for visualising software architecture

, Leanpub.
Consultado: el 10 de septiembre de 2024. [En linea]. Disponible en:
https://leanpub.com/visualising-software-architecture/read_sample

I. Sommerville, “Ingenieria de Software”.

R. S. Pressman, “Ingenieria del Software. Un Enfoque Practico”.

J. Arnowitz, M. Arent, y N. Berger, Effective Prototyping for Software
Makers (Interactive Technologies). 2006.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

127

D. Benyon, Designing interactive systems: a comprehensive guide to
HCI, UX and interaction design, 3. ed. Harlow; Munich: Pearson
Education, 2014.

J. Bloch, Effective Java, Third edition. Boston Columbus Indianapolis
New York San Francisco Amsterdam Cape Town Dubai London Madrid
Milan Munich Paris Montreal Toronto Delhi Mexico City Sado Paulo
Sydney Hong Kong Seoul Singapore Taipei Tokyo: Addison-Wesley,
2018.

“Spring Boot”, Spring Boot. Consultado: el 11 de septiembre de 2024.
[En linea]. Disponible en: https://spring.io/projects/spring-boot

“IntelliJ IDEA — the Leading Java and Kotlin IDE”, JetBrains. Consultado:
el 11 de septiembre de 2024. [En linea]. Disponible en:
https://www.jetbrains.com/idea/

‘Angular’. Consultado: el 11 de septiembre de 2024. [En linea].
Disponible en: https://angular.dev/

“Visual Studio Code - Code Editing. Redefined”. Consultado: el 11 de
septiembre de 2024. [En linea]. Disponible en:
https://code.visualstudio.com/

“Welcome to Python.org”, Python.org. Consultado: el 11 de septiembre
de 2024. [En linea]. Disponible en: https://www.python.org/doc/
“‘Download PyCharm: The Python IDE for data science and web
development by JetBrains”, JetBrains. Consultado: el 11 de septiembre
de 2024. [En linea]. Disponible en:
https://www.jetbrains.com/pycharm/download/

“‘Milvus vector database documentation”. Consultado: el 11 de
septiembre de 2024. [En linea]. Disponible en: https://milvus.io/docs

T. B. Brown et al., “Language Models are Few-Shot Learners”, el 22 de
julio de 2020, arXiv: arXiv:2005.14165. doi: 10.48550/arXiv.2005.14165.
A. Vaswani et al., “Attention Is All You Need”, el 1 de agosto de 2023,
arXiv: arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

128

“GPT-4". Consultado: el 11 de septiembre de 2024. [En linea]. Disponible
en: https://openai.com/index/gpt-4-research/

“Hugging Face — The Al community building the future.” Consultado: el
11 de septiembre de 2024. [En linea]. Disponible en:
https://huggingface.co/

M. Chen et al., “Evaluating Large Language Models Trained on Code”,
arXiv.org. Consultado: el 11 de septiembre de 2024. [En linea].
Disponible en: https://arxiv.org/abs/2107.03374v2

‘LLM Fine-tuning Use Case: Generate Code Documentation”.
Consultado: el 11 de septiembre de 2024. [En linea]. Disponible en:
https://predibase.com/documentation-generation

“GitHub Copilot - Your Al pair programmer”, GitHub. Consultado: el 11
de septiembre de 2024. [En lineal]. Disponible en:
https://github.com/features/copilot

“Eraser — Docs and Diagrams for Engineering Teams”. Consultado: el 11
de septiembre de 2024. [En linea]. Disponible en: https://www.eraser.io/
J. Li, Y. Yuan, y Z. Zhang, “Enhancing LLM Factual Accuracy with RAG
to Counter Hallucinations: A Case Study on Domain-Specific Queries in
Private Knowledge-Bases”, el 15 de marzo de 2024, arXiv:
arXiv:2403.10446. doi: 10.48550/arXiv.2403.10446.

M. R. J, K. VM, H. Warrier, y Y. Gupta, “Fine Tuning LLM for Enterprise:
Practical Guidelines and Recommendations”, el 23 de marzo de 2024,
arXiv: arXiv:2404.10779. doi: 10.48550/arXiv.2404.10779.

A. Balaguer et al., “RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case
Study on Agriculture”, el 30 de enero de 2024, arXiv: arXiv:2401.08406.
doi: 10.48550/arXiv.2401.08406.

S. Alghisi, M. Rizzoli, G. Roccabruna, S. M. Mousavi, y G. Riccardi,
“Should We Fine-Tune or RAG? Evaluating Different Techniques to
Adapt LLMs for Dialogue”, el 10 de junio de 2024, arXiv:
arXiv:2406.06399. doi: 10.48550/arXiv.2406.06399.

[59]

[60]

[61]

[62]

129

A. M. Alashqar, “Automatic Generation of Uml Diagrams from Scenario-
Based User Requirements”, Jordanian J. Comput. Inf. Technol., vol. 7,
nam. 2, 2021, Consultado: el 6 de septiembre de 2024. [En linea].
Disponible en:
https://www.proquest.com/docview/2672361426/abstract/2FE1A673EF
C44E2EPQ/1

A. Conrardy y J. Cabot, “From Image to UML: First Results of Image
Based UML Diagram Generation Using LLMs”, el 17 de abril de 2024,
arXiv: arXiv:2404.11376. doi: 10.48550/arXiv.2404.11376.

E. A. Abdelnabi, A. M. Maatuk, y M. Hagal, “Generating UML Class
Diagram from Natural Language Requirements: A Survey of Approaches
and Techniques”, en 2021 IEEE 1st International Maghreb Meeting of the
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering MI-STA, may 2021, pp. 288-293. doi:
10.1109/MI-STA52233.2021.9464433.

B. Wang, C. Wang, P. Liang, B. Li, y C. Zeng, “How LLMs Aid in UML
Modeling: An Exploratory Study with Novice Analysts”, el 26 de abril de
2024, arXiv: arXiv:2404.17739. doi: 10.48550/arXiv.2404.17739.

ANEXOS

Anexo 1: Formato de encuesta inicial.

130

* |

1.

2.

3.

Evaluacion de propuesta para
herramienta asistente de disefno de

software

Encuesta para determinar la necesidad de una herramienta para la generacién
automética de propuestas base, de diagramas de componentes UML para una solucién
de

software, a partir del ingreso de algunos requisitos.

ndica aue la nreaunta es ohligatoria
Indica que la pregunta es obligatoria

Correo electrénico *

¢Cudl es el nivel de automatizacién actual en el subproceso que corresponde al *
disefio del diagrama de componentes para una solucién de software?

Marca solo un évalo.

Nad Totalmente automatizado

Con la metodologia actual, ;que tan rapido resulta validar la existencia en el *

sistema, de una funcionalidad (componente) necesaria para un disefio?

Marca solo un évalo.

Muy Muy répido

131

5.

6.

Con la metodologia actual, ¢cuantas horas aproximadamente le toma disefiar
un diagrama de componentes para una nueva solucion con arquitectura
completa?

Marca solo un évalo.

Menor o igual a 2 horas
Menor o igual a 4 horas
Menor o igual a 8 horas
Menor o igual a 16 horas
Menor o igual a 24 horas
Menor o igual a 32 horas
Menor o igual a 40 horas

Mas de 40 horas

Con la metodologia actual, una vez disefiado el diagra de componentes, ;qué
tan rapido resulta ajustarlo en caso de requerir cambios?

Marca solo un évalo.

Muy Muy répido

Con la metodologia actual, ¢que tan facil resulta versionar los disefios de las
soluciones?

Marca solo un évalo.

Muy Muy fécil

*

132

¢Cree usted que le resultaria atil contar con una herramienta que le proporcione *

de forma automatica, un diagrama de componentes base, en formato plantUml,
mediante el ingreso de los requisitos de la solucion?

Marca solo un évalo.

Poc: Muy dutil

Google no cred ni aproho este contenido.

Google Formularios

Anexo 2: Diccionario para estructura de contexto

133

{

"nombre™: "nombre del componente”,
"tipo": "Composite / Core / DB/ etc",
"capa": "Api Layer / FrontEnd Layer / etc",
"Regla: clave": "valor",

"Regla: clave": "valor",

"funcionalidad": "la funcionalidad del componente”

134

Anexo 3: Contrato para generacion de contexto

{
"prefix": "component_dictionary",
"lengSupportedText": 1000,
"strings": [
{
"toEmbed": "La funcionalidad del componente, que forma parte del
diccionario”,

"text": "contenido completo del diccionario en formato string"

Anexo 4. Diagrama en formato PlantUml

135

@startuml

top to bottom direction
skinparam linetype ortho
skinparam shadowing true
skinparam componentStyle rectangle
skinparam backgroundColor transparent
skinparam frame{
BorderColor black
BorderThickness "1"
}
skinparam {
padding 5
roundcorner "20"
}
skinparam component {
BorderThickness 1
BorderColor Blue
BorderColor<<nuevo>> Red
}
skinparam database {
BorderThickness 1
BorderColor Blue

BorderColor<<nuevo>> Red

}

hide stereotype

136

frame "Aplicacion Pagos"” {

frame "FrontEnd Layer" {
['Extranet”] as 1

}

frame "Api Layer" {
['apiGateway"] as 2
['ms comp payment"] as 3
['ms comp perfil cliente"] as 4
['Camunda Api"] as 5

['ms comp notificaciones"] as 6

frame "Partners Layer" {
['middleware"] as 7

}

frame "Core Layer" {
['ms core logs"] as 8

}

frame "Repository Layer" {
['repository oracle billing"] as 9
database "oracle" as 10
['repository mongo logs"] as 11
database "mongo" as 12

}

1-->2: Rest

2 --> 3. Rest

3-->5:Grpc

3 -->6: Grpc

3 --> 8: Kafka

3-->9: Grpc

137

5-->7:Rest
8 -->11: Dependency
9 -->10: Tcp
11 -->12: Tcp
3-->4:Grpc
}
@enduml

138

Anexo 5: Diagrama en formato imagen

prIic acion PagosJ

FrontEnd Layer

"Extranet"

Rest

s N ™
Api Layer

k4

"apiGateway"

Rest
Grpc (X A Kafka
ST "ms comp payment" |
J
Grpc

Y Y k4

["ms comp perfil cliente" J ["Camunda Api" J ["ms comp notificaciones" J

. J
Rest Dependency

Partners Layer

"middleware"

(Repository Lay%r)

Y

["repository mongo logs"] ["repository oracle billing" J

Tep Tcp

Anexo 6: Formato de encuesta final

139

1.

* Indica que la pregunta es ohligatoria
q preg g

2.

3.

Evaluacion de prototipo para
herramienta asistente de diseno de

software

Encuesta para determinar la aceptacion por parte del equipo de arquitectura, para el
prototipo de una herramienta que genera de forma automética, diagramas base de
componentes de software con ayuda de un LLM y con base en los requisitos de la
solucion.

Correo electrénico *

Usabilidad y Experiencia de Usuario

¢Qué tan intuitiva te parecio la interfaz del prototipo? *

Marca solo un évalo.

Nad Muy intuitiva

¢El prototipo facilit6 la generacion de diagramas de componentes en
comparacioén con tus métodos habituales?

Marca solo un évalo.

Nad Mucho

140

4.

5.

6.

7.

¢Encontraste algun obstaculo técnico al utilizar el prototipo? Si es asi, por favor *
indicalo.

Funcionalidad y Rendimiento

¢Coémo calificarias la precision de los diagramas generados por el prototipo? *

Marca solo un évalo.

Nad Muy preciso

¢Qué tan rapido es el proceso de generacion de diagramas en el prototipo? *

Marca solo un évalo.

Nad Muy répido

¢ Te resulto util la asistencia del LLM en la generacién de diagramas? *

Marca solo un évalo.

Nad Muy dtil

Percepcién general

141

8.

9.

10.

11.

¢Coémo evaluas tu satisfaccion general con el prototipo? *

Marca solo un évalo.

Nad Muy satisfecho

¢Consideras que el prototipo podria aumentar la eficiencia en tus proyectos? *

Marca solo un évalo.

Si

No

¢Qué aspectos del prototipo te parecieron mas valiosos? *

¢Qué funcionalidades adicionales te gustaria que el prototipo incorporara para *
mejorar su integracion?. Redactalo por items

Google no cred ni aprobo este contenido.

Google Formularios

	AGRADECIMIENTO
	DEDICATORIA
	DECLARACIÓN EXPRESA
	EVALUADORES
	RESUMEN
	ÍNDICE GENERAL
	ABREVIATURAS
	ÍNDICE DE FIGURAS
	ÍNDICE DE TABLAS
	INTRODUCCIÓN
	Capítulo I
	GENERALIDADES
	1.1 Antecedentes
	1.2 Descripción del problema
	1.3 Solución propuesta
	1.4 Objetivo general
	1.5 Objetivos específicos
	1.6 Metodología

	Capítulo II
	MARCO TEÓRICO
	1.

	2.1 Lenguaje unificado de modelado (UML)
	2.1.1 Introducción al lenguaje unificado de modelado
	2.1.2 Objetivos del modelado UML
	2.1.3 Tipos de diagramas UML
	2.1.3.1 Vista estática
	2.1.3.2 Vista de casos de uso
	2.1.3.3 Vista de interacción
	2.1.3.4 Vista de máquina de estados
	2.1.3.5 Vista de actividad
	2.1.3.6 Vistas físicas
	2.1.3.7 Vistas de gestión de modelos
	2.1.3.8 Diagramas de componentes

	2.1.4 Aplicaciones y usos del lenguaje UML
	2.1.4.1 Diseño de software
	2.1.4.2 Gestión de requerimientos
	2.1.4.3 Modelado de sistemas
	2.1.4.4 Diseño de bases de datos
	2.1.4.5 Documentación

	2.1.5 Herramientas de modelado UML
	2.1.5.1 Herramientas de generación gráfica
	2.1.5.2 Herramientas basadas en la nube
	2.1.5.3 Herramientas con generación automática de código
	2.1.5.4 Herramientas de modelado de procesos de negocio
	2.1.5.5 Herramientas de validación y simulación
	2.1.5.6 Herramientas de modelado basado en texto

	2.2 Arquitectura de software
	2.2.1 Introducción a la arquitectura de software
	2.2.2 Principios de diseño
	2.2.2.1 Principio de responsabilidad única
	2.2.2.2 Principio abierto/cerrado
	2.2.2.3 Principio de sustitución de Liskov
	2.2.2.4 Principio de segregación de interfaces
	2.2.2.5 Principio de inversión de dependencias
	2.2.2.6 Principio Don’t Repeat yourself
	2.2.2.7 Principio KISS

	2.2.3 Patrones de diseño
	2.2.3.1 Patrones creacionales
	2.2.3.1.1 Factory Method
	2.2.3.1.2 Abstract Factory

	2.2.3.2 Patrones estructurales
	2.2.3.2.1 Adapter
	2.2.3.2.2 Bridge
	2.2.3.2.3 Decorator
	2.2.3.2.4 Facade
	2.2.3.2.5 Proxy

	2.2.3.3 Patrones de comportamiento
	2.2.3.3.1 Strategy
	2.2.3.3.2 Template Method
	2.2.3.3.3 Mediator
	2.2.3.3.4 Chain of Responsability

	2.2.4 Patrones de arquitectura
	2.2.4.1 Arquitectura en capas
	2.2.4.2 Arquitectura hexagonal
	2.2.4.3 Arquitectura de tuberías y filtros
	2.2.4.4 Arquitectura orientada a eventos
	2.2.4.5 Arquitectura de microservicios
	2.2.4.6 Arquitectura monolítica modular

	2.2.5 Diseño y documentación de la arquitectura
	2.2.5.1 Modelo C4
	2.2.5.2 Ventajas del Modelo C4
	2.2.5.3 Consideraciones en la Aplicación del Modelo C4

	2.3 Prototipos de software
	2.3.1 Introducción a los prototipos de software
	2.3.2 Importancia de prototipado en un proyecto de software
	2.3.3 Tipos de prototipos de software
	2.3.3.1 Prototipos de Baja Fidelidad:
	2.3.3.2 Prototipos de Alta Fidelidad:
	2.3.3.3 Prototipos Funcionales:

	2.3.4 Herramientas y tecnologías de desarrollo
	2.3.4.1 Java
	2.3.4.2 Springboot
	2.3.4.3 Intellij Idea Comunity Edition
	2.3.4.4 Angular
	2.3.4.5 Visual Studio Code
	2.3.4.6 Python
	2.3.4.7 PyCharm Community Edition
	2.3.4.8 Milvus DB

	2.4 Grandes modelos de lenguaje
	2.4.1 Introducción a los grandes modelos de lenguaje
	2.4.2 Arquitectura de los grandes modelos de lenguaje
	2.4.3 Valor de los grandes modelos de lenguaje
	2.4.4 Aplicación de los grandes modelos de lenguaje en el diseño de software
	2.4.5 Aumentar la relevancia contextual de los resultados
	2.4.5.1 Generación Aumentada por Recuperación (RAG)
	2.4.5.2 Ajuste fino del modelo (Fine-Tuning)

	2.4.6 Limitaciones y desafíos de los LLM en el diseño de software

	2.5 Trabajos similares
	2.5.1 Revisión de trabajos similares
	2.5.2 Identificación de vacíos en el conocimiento
	2.5.3 Conclusión de revisión de trabajos similares

	Capítulo III
	DEFINICIÓN DE LA SITUACIÓN ACTUAL
	3.1 Descripción del proceso actual de diseño de arquitectura de software
	3.1.1 Flujo para el diseño de diagramas de componentes
	3.1.1.1 Levantamiento
	3.1.1.2 Análisis
	3.1.1.3 Diseño
	3.1.1.4 Socialización

	3.1.2 Modelo AS-IS
	3.1.3 Herramientas y técnicas
	3.1.4 Roles involucrados
	3.1.4.1 Levantamiento
	3.1.4.2 Análisis
	3.1.4.3 Diseño
	3.1.4.4 Socialización

	3.2 Encuestas y entrevistas
	3.2.1 Encuestas
	3.2.2 Entrevistas
	3.2.2.1 Identificación de las necesidades actuales
	3.2.2.2 Características de la solución propuesta
	3.2.2.3 Integración con herramientas existentes
	3.2.2.4 Seguridad y privacidad
	3.2.2.5 Escalabilidad y capacidad de evolución

	3.3 Métricas
	3.4 Limitaciones del proceso actual
	3.5 Conclusiones

	Capítulo IV
	ANÁLISIS Y DISEÑO DE LA HERRAMIENTA PROPUESTA
	2.

	4.1 Análisis de la solución
	4.2 Herramientas y tecnologías
	4.2.1 Herramienta de modelado UML
	4.2.2 Servicio de generación de diagrama
	4.2.3 Large Language model
	4.2.3.1 Técnica para mejorar la precisión de las respuestas
	4.2.3.2 Hardware para procesamiento del LLM

	4.2.4 Bases de datos
	4.2.4.1 Milvus Db
	4.2.4.2 Mongo Db

	4.2.5 Lenguajes de programación
	4.2.5.1 Java
	4.2.5.2 Python
	4.2.5.3 TypeScript

	4.2.6 Framework para FrontEnd
	4.2.7 Framework para Backend
	4.2.8 Tecnología de contenedorización
	4.2.9 Herramienta de autenticación única
	4.2.10 Herramienta para balanceo de carga

	4.3 Arquitectura de la solución
	4.3.1 Nuevo flujo (TO-BE) para el diseño de diagramas de componentes
	4.3.2 Diagrama de contexto
	4.3.3 Casos de uso
	4.3.3.1 Generación manual de información de contexto
	4.3.3.2 Generación de diagrama de componentes

	4.3.4 Diagrama de componentes
	4.3.5 Diagramas de secuencias
	4.3.5.1 Generación manual de información de contexto
	4.3.5.2 Generación de diagrama de componentes

	4.3.6 Diagrama de clases

	4.4 Desarrollo del prototipo
	4.4.1 Introducción
	4.4.2 Generación de información de contexto
	4.4.2.1 Descripción de la prueba
	4.4.2.2 Contrato
	4.4.2.3 Consumo
	4.4.2.4 Respuesta

	4.4.3 Generación de diagrama de componentes
	4.4.3.1 Descripción de la prueba
	4.4.3.2 Requisitos de prueba
	4.4.3.3 Ejecución de la prueba
	4.4.3.4 Resultado
	• Diagrama en formato PlantUml
	• Diagrama en formato png

	Capítulo V
	EVALUACIÓN Y ANÁLISIS DE RESULTADOS
	5.1 Validación del prototipo con el usuario
	5.2 Elaboración y toma de encuestas
	5.3 Análisis de resultados
	5.3.1 Respuesta a la pregunta de investigación

	5.4 Retos y limitaciones
	5.4.1 Limitaciones Semánticas de los LLM
	5.4.2 Limitaciones del Prototipo
	5.4.3 Conclusión

	5.5 Propuestas de mejora
	5.5.1 Generación de Diferentes Tipos de Diagramas UML
	5.5.2 Gestión de Espacios de Trabajo y Proyectos
	5.5.3 Mejoras en la Relación de Aspecto de los Diagramas
	5.5.4 Exportación de Diagramas en Formatos Adicionales
	5.5.5 Integración con Repositorios Corporativos
	5.5.6 Seguridad en el Consumo de Modelos de Lenguaje Grandes Externos
	5.5.7 Importación de Diagramas Existentes

	CONCLUSIONES Y RECOMENDACIONES
	CONCLUSIONES
	RECOMENDACIONES

	BIBLIOGRAFÍA
	ANEXOS
	Anexo 1: Formato de encuesta inicial.
	Anexo 2: Diccionario para estructura de contexto
	Anexo 3: Contrato para generación de contexto
	Anexo 4: Diagrama en formato PlantUml
	Anexo 5: Diagrama en formato imagen
	Anexo 6: Formato de encuesta final

		2024-12-09T20:30:54-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-12-09T21:35:49-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

		2024-12-10T15:13:42-0500

