Escuela Superior Politécnica del Litoral

Facultad de Ingenieria en Electricidad y Computacion

Desarrollo de Solucion Automatizada para Despliegue de Microservicios en
Ambientes de Prueba en Empresa de Telecomunicaciones
Proyecto de Titulacion
Previo la obtencion del Titulo de:

Magister en Sistema de Informacion Gerencial

Presentado por:
Ing. John Jairo Flores Rodriguez

Ing. Kleber Ronald Lino Sanchez

Guayaquil - Ecuador

Ano: 2025

Dedicatoria

A mi esposa, por ser mi compaifiera fiel en
este camino. Gracias por tu amor, tu
paciencia y tu apoyo incondicional que ha
sido clave para alcanzar esta meta.

A mi hijo, mi mayor motivacion. Este logro
es para ti, con el anhelo de dejarte un
ejemplo de vida, esfuerzo y constancia.
Que veas que los suefios se pueden
alcanzar con disciplina y dedicacion, y que
cada sacrificio tiene su recompensa.

A mi madre, por ensefiarme con su ejemplo
los valores que hoy me definen. Gracias
por tu amor, tu fortaleza y tu apoyo

constante en cada etapa de mi vida.

Ing. John Jairo Flores R.

Dedicatoria

A mis padres, por su amor incondicional,
por confiar en mi incluso en los momentos
mas dificiles y por ensefarme, con su
ejemplo, el wvalor del esfuerzo, la
responsabilidad y la humildad. Gracias por
ser mi guia y mi fortaleza en cada paso de
este camino.

A mi familia en general, por su apoyo
constante, por las palabras de aliento en los
momentos de cansancio y por celebrar cada
pequeno avance como un logro
compartido. Este trabajo es también
resultado de todo lo que me han dado,
comprension, paciencia y motivacion para

seguir superandome cada dia.

Ing. Kléber Lino Sanchez

Agradecimientos

En primer lugar, agradezco
profundamente a Dios por colmar mi vida
de bendiciones, por darme salud y
fortaleza, y por brindarme la oportunidad
de culminar esta etapa importante de mi
formacion académica.

A mi familia, mi pilar incondicional,
gracias por su apoyo constante, su
paciencia y su comprension, los cuales
fueron fundamentales para alcanzar este

logro.

Ing. John Jairo Flores R.

Agradecimientos

Mi mas profundo agradecimiento a Dios,
por darme la fuerza, la claridad y la
perseverancia para seguir adelante en cada
etapa de este proceso. Sin Su guia
constante, este logro no habria sido
posible.

A mi familia, y en especial a mis padres,
por estar siempre ahi, apoyandome sin
condiciones, creyendo en mi incluso
cuando yo mismo dudaba. Gracias por su
paciencia, por motivarme a dar lo mejor y

por acompafiarme en todo momento.

Ing. Kléber Lino Sanchez

VI

Declaracion Expresa

Yo/Nosotros John Jairo Flores Rodriguez y Kleber Ronald Lino Sanchez acuerdo/acordamos y

reconozco/reconocemos quc:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de
graduacion corresponderd al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este
acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra
con facultad de sublicenciar, incluyendo la autorizacion para su divulgacion, asi como para la
creacion y uso de obras derivadas. En el caso de usos comerciales se respetara el porcentaje de

participacion en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invencion,
modelo de utilidad, disefio industrial, secreto industrial, software o informaciéon no divulgada
que corresponda o pueda corresponder respecto de cualquier investigacion, desarrollo
tecnoldgico o invencion realizada por mi/nosotros durante el desarrollo del proyecto de
graduacion, perteneceran de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del
porcentaje que me/nos corresponda de los beneficios economicos que la ESPOL reciba por la

explotacién de mi/nuestra innovacion, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigacion (OTRI) de la
ESPOL comunique al/los autor/es que existe una innovacion potencialmente patentable sobre
los resultados del proyecto de graduacion, no se realizara publicacion o divulgacion alguna, sin

la autorizacion expresa y previa de la ESPOL.

Guayaquil, 07 de Julio del 2025.

i John Jairo Flores

X Kleber Ronald Lino
Rodriguez

Sanchez

:
Ing. John Jairo Flores Ing. Kleber Ronald

Rodriguez Sanchez Lino

Evaluadores

=" Fi rmado el ect r 6ni canent e_por

Eir JUAN CARLOS GARCI A
L PLUA

o= Val i dar Gni camente con FirmaEC

Mgtr. Juan Carlos Garcia

Tutor de proyecto

%LEN N ESUARDS ™
FREI RE GOBO

Val i dar Gni camente con Fi rmaEC

Mgtr. Lenin Freire Cobo

Revisor de proyecto

VI

VI

Resumen

Este trabajo presenta el disefio e implementacion de una soluciéon automatizada para optimizar el proceso de
despliegue de ambientes de prueba, con el objetivo de reducir el tiempo de ejecucion, minimizar la carga operativa
del equipo de QA y mejorar la eficiencia técnica frente a la alta demanda de proyectos simultaneos. Se justifica su

desarrollo debido a los prolongados tiempos y altos niveles de intervencion manual requeridos en el proceso actual.

Para el desarrollo del proyecto, se emplearon herramientas como N8N, Redis, GitLab y Telegram, integradas en
una arquitectura distribuida. Se configurd un flujo automatizado que permitié ejecutar despliegues verticales de

microservicios mediante comandos estructurados.

Los resultados mostraron una reduccion significativa en los tiempos de despliegue de 2 a 3 dias a menos de una
hora en proyectos de alta complejidad. Ademas, se evidencidé una disminucion en la carga operativa y en la

frecuencia de errores.

Se concluye que la solucion propuesta cumple con los objetivos de eficiencia, escalabilidad y autonomia técnica
del equipo de QA y despliegue. El enfoque puede adaptarse a distintos tamafios de proyecto, permitiendo mayor

control y rapidez en la preparacion de ambientes de prueba.

Palabras clave: Automatizacion, Despliegue, QA, Microservicios, Optimizacion.

Abstract

This project addresses the challenge of optimizing the deployment process of testing environments in a
telecommunications company. The current process involves deploying around 80 microservices and can take up
to three days, resulting in a high operational load for QA and infrastructure teams. To tackle this issue, a distributed
architecture was designed using tools such as N8N, GitLab, Redis, and Telegram. This solution allows automated
deployment flows to be triggered through structured messages, enabling dynamic configuration generation and

execution of GitLab pipelines.

As aresult, the average deployment time was reduced from several days to just a few hours, depending on project
complexity. The system currently supports vertical deployment only, following a sequential logic based on

functional dependencies. Initial tests show stable performance and high potential for scalable implementation.

It is concluded that the proposed automated architecture improves deployment efficiency, reduces human errors,

and enhances QA team autonomy in managing test environments.

Keywords: Test environments, automation, deployment optimization, microservices, CI/CD.

indice general

DIEAICALOTIA ...ttt ettt et a e bt bbbt b e et b bbbttt et et e be e bt e bt bt h e b bt et beee II
A GIAQCCIMICIIEOSeevveeienieeeieteeeeeete et e et e testtetesseesseesaesseasse st ensenseensesseensesseensesnsenseensenseensenseensenseensenseanseensenseensenses v
DeClaracion EXPIESA.......c.eecieruirieriieieeiieieeiee et tete et e et et e st e este s st essesseesseeseensessaesseessanseenseseansesseensesseensesneensensnensens VI
EVATUAAOTES ...ttt ettt et b e bbbttt et et eb bbbt bt b e a et et a et enee VII
RESUIMIEI ..ottt ettt et sttt et b et b e e b ea e eaeesaeessesaeemnesueennesueennenanens Vil
AADSITACT. ...ttt ettt et a et h e bbb bt b h ettt et ea e a e a e e bt bt e bt bbb bt sa bttt e b e eneen IX
TIICE GENEITAL ...t X
ADTEVIATUTEAS. c..c.eutiteiteiteteeieet ettt sttt ettt et et ea et e eateb e eb e bt sb et b e be st et et et ea s e st e st emeebeeatebeebeebesbesbeebenbe st et ententens XII
T 1001070) Lo} 4 T H PSRRI X1
TICE A& FIGULAS ... e se s s aes s s eee s en s X1V
ENAICE @ TADIAS ..o XV
INAICE A PIANOS ... iError! Marcador no definido.
CAPITULO 1 ittt 16
L TOEEOAUCCION ...ttt ettt b et s e b b ettt e e ea b e bt e bt e bt e bt sbe s b b s b et et e e e e ene 16
1.1. Descripcion del ProODICMA.c.coveiiiiieiieieieie ettt sttt st e b e et esseeneesseensesneensessnensens 16
1.2 Justificacion del ProDIEmA..........coooiiiiiniiiiiiiiccietc sttt ettt 17

L IO o) 151 T3S 17
1.3.1 ODJEHIVO GENETAL.....c..eiieiiieieeiieieeiieteeee e et et et et etesseeae s st esteeseenseeseenseeseasseansesseensesseensesseensesseensesnsensens 17
1.3.2 ObDJCtIVOS ©SPECTIICOS 1.uveuvieureiieiieiieiieiieteetesteete st ete st eae st etesseesseeseenseeseenseaneesseensesseensesseensesseensennsensens 17

14 IMEAICO LROTICO ... cueutntiieiieiteteettet sttt ettt ettt et ea e bbbt bbbt e bt et ea b e st e st e bt e bt ebesbeeb e e bt st e st et e na et ennennene 18
1.4.1 Despliegue de software en entornos eMPreSarialesccvivereriereeieriieiereeeeseeeeseeeeseeeeeseeeesneneens 18
1.4.2 Arquitectura d€ MICTOSEIVICIOSvevierieeeeierieetesseestesstessesseesessaensesseesseessesseassesseassesseensesseessesseensesssensens 22
1.4.3 Automatizacion del despliegue de SOTEWAIEc.eecveieierieiieieeieeeee e 23
1.4.4 Herramientas de automatizacion y orquestacion de flujoscecveeeriieieriieiienieie e 27
CAPITULO 2 ..ottt 31
1Y (7o () (o4 T TSRS 31

2.1 Enfoque metodoldgico y arquitectura de 1a solucion propuesta...........cceceeeeeeeerererieneenieseene e 33

XI

2.2 Disefio conceptual de 12 SOIUCIONocuieeiiiieiieiieie ettt ettt et st eae st eaeseeesesseensessaensens 35
2.3 Disefio detallado del sistema automatiZadocoeevieerieenieiniiineeeeeeeeeeee e 36
2.4 Participantes del @STUAIOcveruieieriieieee ettt ettt ettt e ettt e st e e s e s st ensesseensesneenseseeenseennennens 40
2.5 ReCOLECCION A ALOS ...ttt 41
2.6 ANALISIS A€ dALOSouiiiiiiieiirecec e et 41
2.7 Evaluacion del prototipo fUnCional............c.ccceeviiiierieiieiicieseeeeee ettt st s nseenaenneas 41
2.8 CONSIAEIACIONES GLICAS......ceeuiieiiieiiiciieieitetee ettt ettt st sttt ne 42
CAPITULO 3 ..oooeiieeeieiiceeeeeiis e seessss s 43
3. RESULTADOS Y ANALISISoooiveivieeiecieseiesseessses s 43
3.1 Estado actual del deSarrolloc....ccvviiriiiiiiiiiiciice e e 43
3.2 Flujo representativo implementadoceecueeieriirieriieieniteie ettt ettt seeeneeseeenaesseensesseensessnensens 43
3.3 Cumplimiento de ODJELIVOSevvieieriieieetieteetierteeteste et et et e st ete s st esesseessesseesseeseeseensesseensesseensesseensesseensens 43
3.3.1 Cuadro de complejidad y tiempo de deSpliCZUEecverierierieeieieeieeeee e 44
3.3.2 Cuadro de Carga OPCIATIVAccueeieriieiereieiesteetestetesteetesseesesseesteeseenseassesseeseesseensesseensesseensesseensessaensens 44
3.3.3 Cuadro de CITOTES OPETALIVOSeeueetieeiereieeerteeteseteteseeesesseesesseenseessenseassesseessesseensesseessesssensesseensessaensens 45
3.4 Evidencias graficas del flujo implementado............cevieeieriroienieecieieeeee et 46
3.5 LIMILACIONESevuviuitinietiietieeieeeeiest ettt sttt a et a et b e s e ae e 47
CAPITULO 4 ..o 48
4. CONCLUSIONES Y RECOMENDACIONESccoeceutitmieiiininieieitntneieittneseieesesseseiesesseseseesseseseeessssenesenens 48
4.1 CONCIUSIONES ...ttt st sttt b et b et b e b e s se e ae e 48
4.2 RECOMENUACIONESveuviineiiiiirieicreeit ettt ettt ettt ettt st sttt et a e b e e e s e ae e 48
RELETEICIAS ...ttt ettt e et a et s et s e st a st en st n e s e nes 50
APENAICE ... oottt ettt sttt s et e s e ettt et e te et e nseensenneentene iError! Marcador no definido.

Cl
Cbh
IaC
QA
API
N8N

YAML

TIC
MS
SDLC
TDD
Redis
GitLab

Xl

Abreviaturas

Integracion Continua (Continuous Integration)

Despliegue Continuo (Continuous Deployment)

Infraestructura como Codigo (Infrastructure as Code)

Aseguramiento de la Calidad (Quality Assurance)

Interfaz de Programacion de Aplicaciones (Application Programming Interface)
Herramienta de automatizacion de flujos sin codigo (No-code Workflow Automation Tool)
YAML Ain’t Markup Language (Formato de serializacion de datos usado en archivos de
configuracion)

Tecnologias de la Informacion y Comunicacion

Microservicio

Ciclo de Vida del Software (Software Development Life Cycle)

Desarrollo guiado por pruebas (Test-Driven Development)

Repositorio de estructuras de datos clave-valor en memoria (Remote Dictionary Server)

Plataforma de DevOps para repositorio de codigo, integracion y despliegue

min

%
NO

Simbologia

Minutos
Horas
Porcentaje

Numero de Microservicios

X1

XV

ndice de figuras

Figura 1. Ciclo de Vida de SOftWareuuuuuiiiiiiiieeeeeccieeeeee e 19
Figura 2. Despliegue de SOftWaTrecoevviiiiiiiiiiiiei e 20
Figura 3. Ambientes TeCnOlOZICOScevrrrmrimmmiiiiiiii e eee e e e e e e e eee e 21
Figura 4. Arquitectura de MICTOSEIVICIO ...uvvrruuuuuiiasseeeeeeeeeeeeeeeeeet e e e e e e e e e e e eeeeennennnnes 22
FIGUIA 5. DEVOIPS . ettt ettt e ettt a e e e e e e e e e e e e e eennrnnnnn 24
FIGUIA 6. CI/CD ..ottt ettt e e e e e e e e e e e e e eeennnnnnnes 25
Figura 7. Docker and KUubEINetsoouriiiiimiiiiiiiii e 26
Figura 8. Metricas DORAcoi oot e e e e e e e e e e ennnnnnnes 27
FIGUIA 0. N8I .ttt e e e e e e e e e nn e 28
Figura 10, Tele@Iam..uuieeeee ettt e e e e e e e e e e e e eennnnnnnes 29
Figura 11. Orchestration tOO0LScoiiiiiiiiiiiiiiiei e e e e e e e e enennnnns 30
Figura 12, QPN SOUTICEuuieeeeeeeeeeeeiiieeee ettt e e e e e ettt e e e e e a e e e e e e e e e e e eeeeeennnnnnnns 31
Figura 13. Carga OPeratiVacceeiiiiiiieiiiiiiiiiea e e e e e e e e et e e et et a e e e e e e e e e e eeeeeennnnnnns 32
Figura 14. Frecuencia de EITOTESceuriiiiiumuiiiiiii ettt e e e e e e enennnnns 32
Figura 15. Tiempo Promedio........ccoeiiiimmmimmiiiiiiaias e e e e e ettt e e e e e e e e e e e eeeeeennnnenns 33
Figura 16. Diagrama de automatizacion del despliegue en ambientes de prueba................... 36
Figura 17. Integracion CON TEAISceirrrrrmmrruniiiaae s e e e e e e ettt ee et e e e e e e e e e e e eeennennnnes 37
Figura 18. Integracion con telegram............uuuuuuuiiiiiiee e e e 38
Figura 19. Automatizacion de despliegue con GitLab CI/CDeeuuiiiiiiiiiiiiieiiiiiieiiiinnne 38
Figura 20. Despliegue de contenedores en OpenShiftoooviiiiiiiiiiiiiiiieeee 39
Figura 21. Logica condicional y control de errorescovvvveeiruriuimiiiiinieeeeeeeeeeeeeeeeenennnnne 39
Figura 22. Auditoria y trazabilidad 1ooummiiiiiii e 40
Figura 23. Auditoria y trazabilidad 2ouueeiiiiii e 40
Figura 24. Evidencias graficas del flujo implementado 1oovveiiiiiiiiiiiiiiiiiiiiieeiieee 46
Figura 25. Evidencias gréficas del flujo implementado 2oovveiiiiiiiiiiiiiiiiiiiiieeeeeinnne 46
Figura 26. Evidencias gréficas del flujo implementado 3oovviiiiiiiiiiiiiiiiiiiiiieeeene 47
Figura 27. Evidencias gréficas del flujo implementado 4ovveeiiiiiiiiiiiiiiiiiiiieeeninnene 47

Figura 28.

Evidencias graficas del flujo implementado 5cccoooeiiiiiiiiiiiiiiiiin 47

XV

Indice de tablas
Tabla I. Ponderacion de herramientas de orquestacion.............ooovviveirimiiiiiiiiiiiieee e eeeeeee 33
Tabla II. Resumen de atributos de arquitectura disefiada............ccoevverimimiiiiiiiiiiiiee e, 34
Tabla III. Tiempos estimados de deSPlIEZUEvvureumuiiiiiie e 44
Tabla IV. Comparativa de cargas OPEIatiVauuuueuuueueiieeeeeeeeeeeeeeeeeennreae e eeeeeeens 45

Tabla V. EITOIES OPETAtIVOSuuuiieeeeieeeeeeeeiieeeteti e e e e e e et e e e e e e e e e e e e eeees 45

16

CAPITULO 1

1. Introducciéon

En las empresas de telecomunicaciones con alta carga operativa, los procesos manuales para la preparacion de
ambientes de prueba representan una limitacion significativa para la validacion oportuna de aplicaciones. Este
problema se acentua en arquitecturas basadas en microservicios, donde cada ambiente requiere el despliegue

coordinado de decenas de componentes, generando retrasos operativos y sobrecarga para los equipos técnicos.

Actualmente, la ausencia de automatizacion y de mecanismos de despliegue selectivo obliga a los ingenieros a
levantar todos los microservicios, incluso cuando no han sido modificados. Esta practica incrementa los tiempos
de espera y afecta la productividad del area de QA, dificultando la entrega agil de proyectos y elevando los riesgos

operativos y contractuales.

La presente investigacion propone el desarrollo de una solucidén automatizada que permita gestionar el despliegue
de microservicios en ambientes de prueba de forma eficiente y bajo demanda. La propuesta integra herramientas
como N8N, GitLab CI/CD, Redis y Telegram, con el objetivo de reducir los tiempos de preparacion de ambientes
de dias a minutos(min), optimizar el uso de recursos técnicos y mejorar la capacidad de respuesta del area de

calidad de software.

1.1. Descripcion del Problema

El presente trabajo se desarrolla en una empresa grande del sector de telecomunicaciones, especificamente en el
departamento de Calidad de Software (QA), donde se requiere validar aplicaciones complejas compuestas por
multiples microservicios. Los involucrados en esta problematica son principalmente los ingenieros de despliegue,
un equipo reducido de solo tres personas que deben atender multiples solicitudes de levantamiento de ambientes

de prueba para los proyectos que la empresa desarrolla.

El problema radica en la alta demanda de ambientes de prueba frente a la capacidad limitada del equipo de
despliegue, ya que, para cada validacion funcional, los QA necesitan que se levanten mas de 35 microservicios

por ambiente, lo que toma entre 2 a 3 dias habiles.

Las causas principales de este problema estan relacionadas a una arquitectura poco flexible que obliga a desplegar
todos los microservicios incluso si no han sido modificados, asi como la ausencia de procesos automatizados que

permitan realizar despliegues selectivos o bajo demanda.

Las consecuencias derivadas de esta situacion incluyen retrasos en la entrega de proyectos, sanciones

contractuales, insatisfaccion de usuarios internos y aumento de costos por la necesidad de ampliar el equipo

17

técnico. Para resolver el problema, se propone evaluar una arquitectura automatizada que permita gestionar el

despliegue de ambientes de prueba de forma mas agil y eficiente, integrando herramientas tecnoldgicas (N8N,

Redis, GitLab CI/CD y Telegram,) de modo que los QA puedan solicitar ambientes listos y completos mediante

la automatizacion, reduciendo los tiempos de espera de dias a minutos y optimizando los recursos disponibles.

1.2 Justificacion del Problema

En las empresas de telecomunicaciones con alta carga operativa, el proceso de preparacion de ambientes de prueba
representa un cuello de botella critico que afecta directamente la calidad del software y el cumplimiento de los
cronogramas, De hecho, estudios recientes evidencian que la formacion en tecnologias DevOps y la incorporacion
de herramientas basadas en inteligencia artificial son claves para superar estos cuellos de botella [1] y mejorar la

confiabilidad en entornos de alta demanda operativa [2].

Resolver este problema es importante porque actualmente se requiere de uno a dos dias para desplegar todos los
microservicios necesarios, lo cual genera retrasos, sobrecarga de trabajo y riesgo de sanciones contractuales. La
situacion descrita no es particular de una sola organizacion, sino que representa una problematica comun en
diversas empresas del sector, especialmente aquellas con estructuras operativas similares. Con la solucion
propuesta se reduciran drasticamente los tiempos de los despliegues, permitiendo realizarlos en cuestion de
minutos. Esto servira para optimizar los recursos humanos y técnicos, aumentar la productividad del equipo y

liberar al personal de tareas repetitivas y manuales [3].

La solucion es util porque mejora la eficiencia operativa, reduce los costos, y permite generar datos valiosos para
la toma de decisiones estratégicas [4], ya que la observabilidad y automatizacion son claves para responder
rapidamente a la complejidad de los entornos distribuidos en microservicios. Sera especialmente util para los
ingenieros de despliegue, los equipos de QA, los lideres de proyecto y la gerencia de sistemas, al facilitar un
proceso mas agil, controlado y sostenible dentro de la gestion de sistemas de informacion reduciendo los cuellos

de botella en los flujos de trabajo e incrementando la capacidad de respuesta operativa [5].

1.3 Objetivos.

1.3.1 Objetivo general

Desarrollar una solucion automatizada para el despliegue de microservicios en ambientes de prueba, orientada a
reducir los tiempos operativos y optimizar los recursos técnicos en empresas de telecomunicaciones, mediante el
uso de herramientas de automatizacion e integracion continua, con el fin de mejorar la eficiencia y sostenibilidad

en la gestion de sistemas de informacion.

1.3.2 Objetivos especificos

18

1. Analizar la situacién actual del proceso de despliegue de ambientes de prueba, identificando tiempos,
recursos involucrados, herramientas utilizadas y los principales cuellos de botella en el entorno operativo
de QA Desarrollar el control proporcional integral... (Ingenieria en Electrénica y Automatizacion).

2. Identificar las oportunidades de mejora en la gestion del proceso de preparacion de ambientes, utilizando
la situacion actual del proceso considerando la carga operativa del personal de despliegue, la arquitectura
de microservicios y la demanda de ambientes simultaneos.

3. Disefiar una arquitectura automatizada y adaptable, mediante la integracion de herramientas utilizadas
dentro de la organizacion y orientadas a reducir el esfuerzo manual y permitir el despliegue eficiente de
ambientes de prueba bajo demanda.

4. Evaluar un prototipo funcional de la arquitectura propuesta, en el disefio y que permita a los usuarios del
area de QA gestionar de forma autéonoma el despliegue parcial o completo de microservicios, con base

en las necesidades de cada proyecto.

1.4 Marco teorico

1.4.1 Despliegue de software en entornos empresariales

Ciclo de vida del software

El ciclo de vida de software (Software Development Life Cycle, SDLC) es un modelo estructurado que define las
fases necesarias para el desarrollo, implementacion y mantenimiento de sistemas informaticos. Este concepto ha
sido aplicado en la industria de software para estructurar, planificar y controlar el proceso de desarrollo, con el

objetivo de asegurar consistencia y trazabilidad en los proyectos informaticos [6].

Las fases clasicas del SDLC son: analisis de requerimientos, disefio del sistema, implementacion, pruebas,
despliegue y mantenimiento. Estas etapas han sido reconocidas como practicas esenciales en el desarrollo del

software, sin importar el modelo utilizado (cascada, iterativo, agil, espiral entre otros). [7]

19

6.
Mantenimiento

CICLO DE VIDA
DEL
DESARROLLO DE
SOFTWARE

3.
Pruebas Codificacion
(testing) (Implementacion)

Figura 1. Ciclo de Vida de Software

Fuente: https://www.linkedin.com/pulse/modelos-del-ciclo-de-vida-software-daniel-hernandez/

En entornos empresariales con arquitecturas distribuidas, como los microservicios, se ha documentado que la
integracion de automatizacion y monitoreo dentro del ciclo de vida del software ayuda a mejorar la confiabilidad
del sistema. Waseem et al. argumenta que, para mantener la estabilidad operativa en este tipo de entornos, es
fundamental incorporar practicas de verificacion, disefio observable y despliegue automatizado desde las primeras
fases del SDLC [8].

Etapas del despliegue de software

El despliegue de software es el proceso mediante el cual una aplicacion es trasladada desde un entorno de
desarrollo o integracion hacia un entorno de produccion o prueba. Este proceso estd compuesto de fases que estan
sujetas a politicas de control de versiones, integracion continua y gestion de artefactos, factores clave para

garantizar la trazabilidad y reproducibilidad de los entornos de prueba [9].

En entornos con alta carga operativa, como el sector de telecomunicaciones, se ha evidenciado que la ausencia de
automatizacion en la etapa de despliegue genera cuellos de botella significativos. Agrawal et al. Identifican que
los mayores retrasos operativos ocurren durante las etapas de configuracion manual y validacion, proponiendo
como solucidn la incorporacion de pipelines de entrega continua y herramientas de infraestructura como codigo

(1aC) [10].

20

ENp-—gi-]

Figura 2. Despliegue de Software

Fuente : https://medium.com/devops-dudes/tagged/deployment-automation

El proceso de despliegue puede dividirse en varias etapas estructuradas que permiten una transicion controlada y

segura, segun Humble y Farley [11], estas etapas incluyen:

® Planificacion del despliegue: definicion de la estrategia, recursos, ventanas de mantenimiento,
mecanismos de reversion y métricas de éxito.

® Preparacion del entorno: provision de infraestructura y configuracion del entorno, ya sea de forma manual
o automatizada.

e Empaquetado del software: compilacion, versionado y almacenamiento del artefacto en un repositorio de
gestion como JFrog Artifactory o Nexus.

® Despliegue: traslado e instalacion del artefacto en el entorno de destino, mediante procesos automatizados
0 manuales.

® Verificacion post-despliegue: ejecucion de pruebas basicas, validacion de servicios y monitoreo del
sistema.

e Documentacion y retroalimentacion: registro de resultados, recopilacion de observaciones y

retroalimentacion para procesos futuros.

Ambientes tecnologicos

Los ambientes tecnolégicos son entornos controlados y configurables que permiten ejecutar, validar y mantener
aplicaciones de software a lo largo de su ciclo de vida. Estos ambientes pueden ser fisicos o virtuales y su correcta

definicion es esencial para garantizar la calidad y estabilidad del sistema desplegado [12].

En muchas definiciones sobre los ambientes tecnoldgicos se identifica tres tipos principales de ambientes:
desarrollo, pruebas (QA) y produccion. Cada ambiente cumple con una funcion especifica dentro del proceso de

entrega de software. En contextos empresariales donde se trabaja con arquitecturas de microservicios, los

21

ambientes deben ser capaces de soportar multiples componentes distribuidos, configuraciones dinamicas, y un alto

grado de automatizacion para facilitar la integracion y el despliegue continuo.

La estandarizacion de ambientes tecnologicos es una practica recomendada para mitigar inconsistencias entre
entornos, especialmente en procesos de validacion funcional. Waseem et al. afirman que la falta de consistencia
entre los entornos de prueba y produccion representa una de las principales fuentes de errores en sistemas

distribuidos [13].

&

Development Testing/QA Production

Figura 3. Ambientes Tecnolégicos

Fuente: https://www.3csoftware.com/impactecs-in-depth-comparing-models-and-migrating-items-between-models/

Retos comunes en el despliegue

El despliegue de software es una de la fase critica en el ciclo de vida del desarrollo, especialmente en sistemas
empresariales con arquitecturas distribuidas. Esta etapa enfrenta diversos retos técnicos y operativos que pueden
afectar la calidad del sistema, el tiempo de entrega y la continuidad de los servicios. Entre los principales desafios
se encuentran: la complejidad en la gestion de dependencias, la falta de automatizacion, la inconsistencia entre

entornos y los errores derivados de configuraciones manuales [14].

Los errores de despliegue suelen originarse por diferencias entre los entornos de prueba y produccion, asi como
por la ausencia de mecanismos de monitoreo y validacidon continua. Ademas, existe la necesidad de estandarizar

los procesos de despliegue para evitar inconsistencias y reducir el riesgo operativo.

Otro reto frecuente son los cuellos de botella operativos estos se presentan cuando los procesos de despliegue
dependen excesivamente de la intervencion manual, lo cual genera demoras y sobrecarga en equipos técnicos,

especialmente en empresas con alta demanda de ambientes de prueba.

22

1.4.2 Arquitectura de microservicios

Comparacién entre arquitecturas

Las arquitecturas de software definen la forma en que se estructuran, desarrollan y despliegan las aplicaciones. Y
se destacan dos enfoques para la construccion de sistemas empresariales: la arquitectura monolitica y la
arquitectura de microservicios. Cada una presenta ventajas y limitaciones que han sido ampliamente analizadas en

funcion del tipo de sistema, el volumen de usuarios y la frecuencia de cambios funcionales [15].

La arquitectura monolitica centraliza todos los componentes de una aplicacion en un tinico paquete de despliegue.
Esto implica que cualquier modificacion, incluso menor, requiere reconstruir y volver a desplegar todo el sistema.
Este modelo puede ser adecuado en proyectos pequefios o de baja complejidad, pero en entornos con alta demanda

operativa puede derivar en problemas de escalabilidad, acoplamiento excesivo y dificultad de mantenimiento [16].

La arquitectura de microservicios organiza el sistema como un conjunto de servicios independientes que se
comunican entre si mediante interfaces bien definidas. Este enfoque facilita la implementacion de despliegues
auténomos y escalabilidad horizontal. Waseem et al. sefialan que esta separacion de responsabilidades permite
gestionar mejor los errores, realizar pruebas aisladas y responder de forma mas eficiente ante la evolucion de los

requisitos [17].

<

lﬁﬁ

MONOLITICO MICROSERVICIOS

Figura 4. Arquitectura de Microservicio

Fuente: https://ed.team/blog/que-es-y-para-que-sirve-la-arquitectura-de-microservicios

Ventajas de los microservicios

Uno de los beneficios fundamentales de los microservicios es la escalabilidad individualizada. Cada servicio puede
ser escalado de forma independiente en funcion de su demanda, lo que permite optimizar el uso de recursos y

adaptarse eficientemente a cargas variables. Taibi et al. sostienen que esta capacidad de escalado granular resulta

23

especialmente util en entornos con alta variabilidad operativa, como los sistemas empresariales de

telecomunicaciones [18].

Otra ventaja es la facilidad de mantenimiento y actualizacion de servicios. Al estar desacoplados, los
microservicios permiten aplicar cambios en un componente sin afectar el resto del sistema. Waseem et al. resaltan
que esta propiedad facilita la implementacion de procesos de integracion y despliegue continuo (CI/CD), asi como

la automatizacion de pruebas en entornos de validacion [19].

Ademas, la arquitectura de microservicios permite una adopcién progresiva. A diferencia de modelos que
requieren una reestructuracion completa, los microservicios pueden ser introducidos de forma gradual, facilitando

su incorporacion en sistemas legados sin afectar su operacion continua [20].

Desafios de validacion e integracion

Uno de los principales retos es la complejidad en las pruebas de integracion, ya que los microservicios dependen
de multiples componentes desplegados de forma concurrente. Segin Smith et al., la verificacion funcional en
entornos distribuidos requiere configurar ambientes de prueba realistas, reproducibles y sincronizados, lo que

representa un desafio logistico y técnico para los equipos de calidad [21].

Ademas, los microservicios suelen tener interacciones no deterministicas debido al uso de colas, eventos, APIs
externas y balanceadores de carga. Esto dificulta la aplicacion de pruebas tradicionales y exige estrategias como
pruebas de contrato, pruebas de componentes aislados y pruebas end-to-end coordinadas mediante herramientas

de orquestacion [22].

Los microservicios presentan un reto adicional relacionado con la trazabilidad de fallos durante las pruebas. La
naturaleza distribuida del sistema complica la recoleccion de logs, métricas y eventos relevantes para el diagnostico
de errores. En este contexto, es fundamental contar con soluciones de observabilidad que integren trazas
distribuidas, monitoreo de servicios y analisis de dependencias para facilitar la depuracion de fallos complejos

[23].

1.4.3 Automatizacion del despliegue de software

Cultura DevOps

En los tltimos afios, la adopcion del enfoque DevOps ha transformado los procesos tradicionales de desarrollo y
operaciones, fomentando la automatizacion, la colaboracion y la entrega continua de software. DevOps se ha
consolidado como un modelo cultural y técnico que busca la integracion fluida entre los equipos de desarrollo
(Dev) y operaciones (Ops), con el objetivo de mejorar la calidad, velocidad y confiabilidad del ciclo de vida del

software [24].

24

DevOps promueve practicas como la integracion continua, la entrega continua (CI/CD) y el monitoreo proactivo.

Estas practicas permiten automatizar el ciclo de vida del software, desde la compilacion hasta el despliegue en

distintos entornos, garantizando calidad y eficiencia en cada etapa del proceso [25].

Sy

Ops

Figura 5. DevOps

Fuente: https://dev.to/emminex/what-is-devops-7f0

En organizaciones con alta demanda operativa, como las empresas de telecomunicaciones, la automatizacion del
despliegue se convierte en un componente esencial para afrontar la complejidad y el dinamismo de los entornos
tecnologicos. La ejecucion manual de estas tareas resulta costosa, con altos tiempos de ejecucion y propensa a
errores, lo cual puede impactar negativamente en la estabilidad de los servicios. Por ello, se ha demostrado que la
adopcion de pipelines automatizados de despliegue contribuye a una mayor agilidad operativa, minimizacion de

fallos humanos y reduccion de tiempos de entrega [26].

Integracion y entrega continua (CI/CD)

La automatizacion del despliegue de software ha sido impulsada por la necesidad de acelerar el ciclo de desarrollo
de software y aumentar la confiabilidad en la entrega de aplicaciones. Las practicas de Integracion Continua
(Continuous Integration, CI) y Entrega Continua (Continuous Delivery, CD) se han consolidado como pilares
fundamentales para garantizar la calidad y consistencia del software en todos sus ambientes tecnologicos como el

desarrollo prueba y produccion.

25

Confluence DC/0S docker

©sht
“u

X ‘.’(‘uRAJ ozt | &

31vH3do

kubernetes

splunk>
Jenns CODESHIP DATADOG

Figura 6. CI/CD

Fuente: https://www.linkedin.com/pulse/devops-qu% C3% A9-son-vs-sysadmin-rodrigo-marti-pascual/

La integracion continua permite fusionar de manera frecuente los cambios de codigo realizados por diferentes
desarrolladores en un repositorio compartido, desencadenando automaticamente la ejecucion de pruebas unitarias
y analisis de calidad. Este proceso busca detectar errores tempranamente y reducir los conflictos de integracion. Y
la entrega continua amplia este enfoque automatizando el despliegue del software en entornos controlados,

permitiendo su liberacion de forma rapida y segura siempre que se cumplan los criterios de calidad definidos [27].

En arquitecturas como los microservicios la implementacion de pipelines CI/CD permite desplegar y probar cada
servicio de manera independiente, manteniendo la coherencia entre versiones y facilitando el aislamiento de
errores. H. Shafiq indica que la adopcion de CI/CD en entornos distribuidos mejora la eficiencia operativa, reduce
los tiempos de ciclo y refuerza la trazabilidad de los cambios en empresas con alta carga tecnologica, como las del

sector de telecomunicaciones [28].

Herramientas de soporte

La automatizacion del despliegue de software se fundamenta en el uso de herramientas que permiten ejecutar
procesos complejos de manera repetible, eficiente y controlada. Estas herramientas forman el nucleo de los
pipelines de CI/CD y estan disefiadas para orquestar tareas de construccion, prueba, integracion, empaquetado y

despliegue de aplicaciones en multiples entornos.

Entre las plataformas de automatizaciéon mas empleadas se encuentran Jenkins, GitLab CI/CD, GitHub Actions y

Azure DevOps. Estas herramientas permiten definir flujos de trabajo automatizados que integran las distintas fases

26

del ciclo de vida del software. Su capacidad para integrarse con sistemas de control de versiones, gestores de
artefactos, plataformas en la nube y soluciones de monitoreo las convierte en componentes esenciales en entornos

de entrega continua [29].

En los microservicios el despliegue utiliza herramientas de conterenizacion como Docker, que encapsula cada
servicio junto con sus dependencias, garantizando la portabilidad entre entornos. Para orquestar estos
contenedores, Kubernetes permite gestionar la distribucion de cargas, la resiliencia de los servicios y la
escalabilidad automatica. Estas tecnologias habilita despliegues segmentados y actualizaciones sin interrupciones,

caracteristicas fundamentales en sistemas distribuidos [30].

Figura 7. Docker and Kubernets

Fuente: https://sonamthakur7172.medium.com/microservices-design-principle-design-patterns-cd14321c61fd

La integracién de herramientas CI/CD, contenedores y orquestadores conforma un ecosistema robusto para
automatizar el despliegue de microservicios. Esta arquitectura de soporte es fundamental para garantizar la
eficiencia operativa, la reproducibilidad de los entornos de prueba y la calidad del software en sectores con alta

demanda tecnoldgica.

Metricas de desempeiio.

La evaluacion del desempefio en procesos automatizados de despliegue de software es fundamental para medir la
eficiencia, calidad y confiabilidad de los sistemas implementados. Las métricas permiten a los equipos de
ingenieria identificar cuellos de botella, validar mejoras continuas y tomar decisiones informadas respecto al

disefio y operacion de pipelines de despliegue.

A nivel general, las practicas de DevOps han promovido el uso de indicadores clave como la frecuencia de

despliegue (Deployment Frequency), el tiempo medio de entrega (Lead Time for Changes), la tasa de fallos en

27

cambios (Change Failure Rate) y el tiempo medio de recuperacion (Time to Restore Service). Estas métricas han

sido reconocidas como esenciales para evaluar el rendimiento de los equipos de desarrollo y operaciones en

entornos automatizados y altamente dinamicos [31].

DELIVERY SPEED DELIVERY QUALITY

DEPLOYMENT
FREQUENCY

TIME TO RESTORE
SERVICE

{0

LEAD TIME FOR

CHANGE CHANGE FAILURE RATE

Figura 8. Metricas DORA

Fuente: https://medium.com/gits-apps-insight/dora-metrics-how-to-measure-software-delivery-performance-e890ec2011c0

En las empresas de telecomunicaciones con alta carga operativa, estas métricas permiten gestionar entornos de
prueba de forma mas efectiva, optimizando la disponibilidad de recursos, reduciendo la intervencion manual y
garantizando la trazabilidad de los resultados. Ademas, la recopilacion y analisis sistematico de estas métricas,
mediante herramientas de observabilidad e integracion continua, contribuye a mejorar la trazabilidad de los

cambios y a facilitar auditorias técnicas en organizaciones con altos estandares de cumplimiento y disponibilidad.

1.4.4 Herramientas de automatizacion y orquestacion de flujos

N8n

La automatizacion de flujos de trabajo es una practica adoptada en entornos de desarrollo y operaciones, ya que
permite reducir el esfuerzo manual, disminuir errores operativos y mejorar la eficiencia en tareas repetitivas y
criticas para el ciclo de vida del software. Las herramientas de orquestacion se emplean para coordinar y ejecutar

procesos distribuidos mediante flujos l6gicos, integrando distintos servicios, aplicaciones y plataformas.

n8n se ha consolidado como una herramienta de automatizacion de codigo abierto que permite crear flujos de
trabajo automatizados a través de una interfaz visual basada en nodos. n8n ofrece un modelo de automatizacion
autoalojado y altamente personalizable, lo cual favorece su adopcion en entornos corporativos con restricciones

de seguridad o necesidades especificas de integracion. Esta herramienta admite la conexién con mas de 200

28

servicios a través de conectores predefinidos, incluyendo bases de datos, APIs REST, herramientas DevOps y

plataformas de mensajeria [32].

Figura 9. n8n

Fuente: https://www.linkedin.com/posts/ai-insider-intel_automation-ai-devtools-activity-7310724103680720896-93Yg/

Ademas, n8n soporta tanto ejecuciones programadas como disparadores por eventos, lo cual resulta adecuado para
sistemas donde se requiere una reaccion automatizada ante cambios en el estado de los servicios, como
actualizaciones de versiones o resultados de pruebas automatizadas. Su uso en entornos de telecomunicaciones ha
sido reportado en proyectos orientados a la automatizacion de la gestion de incidencias y del monitoreo de

aplicaciones distribuidas [33].

Telegram como canal de integracién

La integracion de canales de mensajeria como Telegram ha adquirido relevancia debido a su arquitectura basada
en APIs, su disponibilidad multiplataforma y su capacidad de operar en tiempo real, lo que facilita su adopcion

como medio de interaccion entre sistemas automatizados y operadores humanos.

Telegram ofrece una API robusta para la creacion de bots, que permite ejecutar comandos, enviar notificaciones y
consultar datos en tiempo real, integrandose eficientemente con flujos de trabajo automatizados. Esta capacidad
ha sido aprovechada en la automatizacion de pipelines de desarrollo y despliegue, asi como en la supervision de
entornos de prueba y produccion, donde las alertas instantaneas y la interaccion directa contribuyen a reducir el

tiempo de respuesta ante fallos o eventos criticos [34].

29

Telegram

Figura 10. Telegram

Fuente: https://web.telegram.org/a/

Telegram, cuando se integran con herramientas de automatizacion como n8n, Jenkins o GitLab CI/CD, permiten
mejorar la visibilidad de los procesos y habilitar una comunicacién bidireccional automatizada, facilitando
acciones remotas como la aprobacion de despliegues, la ejecucion de tareas o la recepcion de informes sobre el
estado de los sistemas [35]. Este tipo de integracion es especialmente valiosa en organizaciones con alta carga
operativa, donde el monitoreo constante de multiples servicios distribuidos requiere canales de notificacion

eficaces y en tiempo real.

Orquestacion de procesos

La orquestacion de procesos es un componente esencial dentro de los entornos de automatizacion moderna, ya que
permite coordinar de forma estructurada y logica la ejecucion de tareas distribuidas, particularmente en
arquitecturas basadas en microservicios. La orquestacion centraliza el control del flujo, facilitando la supervision

y la recuperacion ante errores en contextos complejos como los despliegues automatizados [36].

En el ambito de la ingenieria de software, se han desarrollado diversas plataformas para la orquestacion de flujos
de trabajo que permiten integrar multiples herramientas, servicios y procesos en pipelines automatizados.
Herramientas como Apache Airflow, Argo Workflows y n8n han sido utilizadas ampliamente para disefiar,
ejecutar y monitorear procesos de orquestacion, proporcionando funcionalidades como el manejo de dependencias,

ejecucion paralela y logica condicional.

30

Apache

Airflow

Figura 11. Orchestration tools

Fuente: https://medium.com/@sumitmudliar/argo-workflow-vs-apache-airflow-0325158536e5

En entornos de telecomunicaciones con alta carga operativa, la orquestacion ha sido empleada para optimizar
tareas criticas como el aprovisionamiento de ambientes de prueba, el despliegue continuo de microservicios y la
notificacion de eventos en tiempo real. La implementacion de orquestadores visuales o declarativos contribuye
significativamente a reducir la complejidad operativa, mejorar la trazabilidad y garantizar la consistencia de los

entornos de prueba [37].

Herramientas open source en entornos DevOps

El uso de herramientas open source ha adquirido una relevancia estratégica, especialmente en organizaciones que
buscan agilidad, escalabilidad y control sobre sus flujos de trabajo. Estas herramientas permiten automatizar y
orquestar procesos de desarrollo, pruebas y despliegue de manera integral, integrando funcionalidades clave como

integracion continua, entrega continua y monitoreo.

Proyectos como Jenkins, GitLab CI, Argo CD, y Spinnaker destacan por su adopcion generalizada y sus
capacidades para gestionar pipelines de automatizaciéon en arquitecturas basadas en microservicios. Estas
soluciones permiten construir flujos complejos de despliegue, reducir errores humanos, mejorar la trazabilidad y

disminuir los tiempos de entrega [38].

31

Figura 12. Open Source

Fuente: https://directortic.es/estrategia-it/las-ventajas-del-open-source-la-empresa-2017022117457.htm

El uso de herramientas de codigo abierto también responde a la necesidad de control sobre la infraestructura
tecnologica en sectores de telecomunicaciones, donde los sistemas criticos requieren una automatizacion confiable
y transparente. Segun estudios, la combinacion de estas herramientas con plataformas de contenedores como
Kubernetes permite a las organizaciones escalar sus aplicaciones y gestionar microservicios de forma eficiente

[39].

CAPITULO2

2. Metodologia.

La metodologia de la investigacion se bas6 en un enfoque aplicado, con disefio no experimental y corte transversal.
Se empled una metodologia descriptiva y tecnologica, orientada a identificar las oportunidades de mejora en el
proceso de despliegue de ambientes de prueba, disefiar ¢ implementar una solucion automatizada y evaluar su
impacto en términos de tiempo de despliegue y carga operativa. El estudio se basd unicamente en métodos
cuantitativos, utilizando encuestas estructuradas con escala de Likert y preguntas cerradas. Los resultados fueron
analizados mediante estadisticas descriptivas, como el calculo de frecuencias y porcentajes, mediante la
comparacion de indicadores antes y después del desarrollo del prototipo, lo que permitié evaluar los cambios

percibidos en el proceso de despliegue.

Antes de definir la arquitectura y seleccionar las herramientas tecnologicas, se realizé un diagnostico mediante
encuestas dirigidas al equipo técnico, lo cual permitio identificar los principales desafios del proceso actual. Entre
los hallazgos mas relevantes, se observo que el 57.9 % de los encuestados indicod que el despliegue completo de
un ambiente de prueba tomaba en promedio 3 dias, mientras que el 31.6 % reportd 2 dias. Ademas, mas del 70 %
manifestd que el nivel de carga operativa era de moderada a alta complejidad. También se evidencio que los errores
durante los despliegues eran frecuentes y que la satisfaccion con el proceso era limitada, con una mayoria
puntuando con apenas 3 sobre 5. Finalmente, se identifico que el 79 % experiment6 retrasos en los cronogramas

por el tiempo requerido para completar los despliegues.

32

Estos resultados sirvieron como base para justificar la necesidad de una solucién integral que permitiera
automatizar tareas criticas del proceso, reducir los tiempos de respuesta y otorgar mayor autonomia al equipo de

calidad. A partir de esta evaluacion inicial se disefi la arquitectura propuesta

Nivel de Carga Operativa:

@ Muy baja complejidad
@ Baja complejidad

@ Complejidad moderada
@ Alta complejidad

@ Muy alta complejidad

‘

Figura 13. Carga Operativa

Frecuencia de errores en el proceso de despliegue:

@ Nunca

® Raravez

@ Aveces

@ Frecuentemente
@ Siempre

Figura 14. Frecuencia de Errores

Tiempo promedio en levantar ambiente de pruebas completos en dias:

33

o!
@2

@4
®5

Figura 15. Tiempo promedio

2.1 Enfoque metodolégico y arquitectura de la solucion propuesta

El enfoque metodologico se centro en la identificacion, seleccion e integracion de herramientas tecnologicas que
permitieran automatizar el proceso de despliegue de ambientes de prueba. A partir de un analisis del proceso actual
y de los principales puntos de mejora, se disefi6 una arquitectura integral basada en componentes de codigo abierto,
con el objetivo de reducir los tiempos de despliegue, disminuir la carga operativa y otorgar mayor autonomia al

equipo de calidad.

Para seleccionar las herramientas que conformarian la solucion, se aplicé una matriz de decision ponderada
enfocada en la herramienta de orquestacion de flujos automatizados (workflow engine), comparando N8N, GitHub
Actions y Jenkins. Los criterios considerados fueron: integracion con APIs, curva de aprendizaje, funcionalidades
nativas, escalabilidad, soporte y comunidad. Esta evaluacion fue necesaria para validar que su eleccion seguia

siendo la mas adecuada frente a alternativas actuales del mercado.

A continuacion, se presenta el resultado de la matriz de decision ponderada:

Tabla I. Ponderacion de herramientas de orquestacion

Criterio Peso N8N Jenkins GitHub Actions
Integracion con APls 25% 5 3 5
Curva de aprendizaje 20% 5 2 3
Funcionalidades nativas 20% 5 4 4
Escalabilidad 20% 4 5 5
Soporte y comunidad 15% 4 5 5
Puntaje total 4.65 3.55 4.55

34

Los resultados confirmaron que N8N destacaba por su facilidad de integracion, su bajo nivel de complejidad para
los usuarios (curva de aprendizaje baja) y sus potentes funcionalidades nativas para la gestion de flujos, por lo que

fue ratificada como la herramienta principal para el disefio de la solucion.

Ademas de N8N, se incorporaron otros componentes tecnoldgicos, cada uno seleccionado por su pertinencia

técnica y por estar ya integrados en el ecosistema de la empresa:

GitLab: Sistema de control de versiones y plataforma de CI/CD ampliamente utilizada en la organizacion,

permitiendo una integracion fluida con los repositorios de codigo y pipelines de despliegue.

Redis: Base de datos en memoria elegida por su alta velocidad de acceso, ideal para almacenar informacion

reutilizable en los flujos de despliegue y facilitar tiempos de respuesta 6ptimos.

Telegram: Plataforma de mensajeria seleccionada como interfaz operativa por su facilidad de uso, su integracion

con APIs y su uso extendido dentro de la empresa.

OpenShift: Plataforma de orquestacion de contenedores, que permite la gestion escalable y automatizada de

microservicios y front-end en los ambientes de prueba.

Dado que la solucién propuesta combinaba multiples componentes, se procedio a realizar una evaluacion integral
de la arquitectura, con el fin de describir sus principales caracteristicas técnicas y operativas, proporcionando una
vision completa del sistema en su conjunto. Para ello, se elabor6 un cuadro de sintesis que resume los atributos

mas relevantes de la arquitectura disefiada.

Tabla II. Resumen de atributos de arquitectura disefiada

Criterio Solucién propuesta (N8N, GitLab, Redis, Telegram, OpenShift)
Arquitectura integrada Si

Flujo automatizado Completo y controlado por eventos

Persistencia de datos Redis (rapida, en memoria)

Comunicacioén APIs + Telegram

Curva de aprendizaje Media-Baja

Escalabilidad Alta (contenedores + OpenShift)

Costos Gratuito/Open Source

Comunidad y soporte Alta (GitLab, Telegram, OpenShift)

La combinacion de estos componentes permitid disefiar una arquitectura modular, escalable y replicable, que
optimiza los tiempos de despliegue y reduce la carga operativa. La solucion integral propuesta demostrd ser

adecuada para abordar los retos identificados en el proceso actual de preparacion de ambientes de prueba.

35

2.2 Diseiio conceptual de la solucién

Basandose en el enfoque metodologico y en la arquitectura integral definida en la seccion anterior, se procedio a
la elaboracion del disefio conceptual de la solucion automatizada de despliegue de ambientes de prueba. Este
disefio tuvo como propdsito establecer los componentes fundamentales, sus interacciones y los flujos logicos
necesarios para automatizar tareas que anteriormente eran ejecutadas de forma manual por el personal de

despliegue.

El disefio conceptual se centrd en la construccion de un sistema modular, orientado a eventos y adaptable a

diferentes entornos de prueba. Para ello, se definieron los siguientes elementos clave:

Flujos de automatizacion (workflows): Fueron disefiados en N8N como nodos conectados entre si, siguiendo
una loégica condicional basada en comandos recibidos desde Telegram. Cada flujo representd una tarea
automatizada especifica, como consulta de datos parametrizados en Redis, ejecucion de despliegues via GitLab

CI/CD y notificacion de resultados.

Base de validacion dinamica: Redis se utiliz6 como base de datos en memoria para almacenar temporalmente
informacion clave relacionada con la ejecucion de los flujos. Su alta velocidad de lectura y escritura permitid
obtener respuestas inmediatas y eficientes. los cuales eran consultados por todos los flujos relacionados,
permitiendo asi reutilizar informacion y asegurar coherencia cuando diferentes usuarios solicitaban el despliegue

de un mismo microservicio.

Interfaz de usuario via Telegram: Se implemento6 un bot de Telegram que permitio la comunicacion directa entre
los usuarios y el sistema. A través de comandos abreviados y mensajes en lenguaje natural, los ingenieros de

calidad pudieron interactuar con el sistema sin necesidad de acceder a plataformas técnicas o portales internos.

Orquestacion del despliegue: GitLab se empled como repositorio de codigo y motor de ejecucion para los
pipelines de despliegue. Cada solicitud activada desde N8N generd una llamada al pipeline correspondiente,

pasando variables para el correcto despliegue en OpenShift.

Gestion de contenedores en OpenShift: Finalmente, el despliegue de microservicios y front-end se llevo a cabo
en la plataforma OpenShift mediante llamadas a su API REST, lo que permiti6 una integracion directa y segura

para el despliegue, seguimiento y cierre de pods en el entorno de prueba.

Como resultado, el disefio conceptual permiti6 construir un sistema centrado en el usuario final (QA, despliegue),
con minima intervencion manual, alta reutilizacion y orientado a mejorar la eficiencia operativa. Ademas, se
consideraron desde el inicio aspectos como la trazabilidad, el manejo de errores, los tiempos de espera, todo ello

documentado para facilitar el mantenimiento y la escalabilidad del modelo.

36

AUTOMATIZACION DE DESPLIEGUE DE CONTENEDORES

O 0ol nén &P redis &y} GitLat 9
(=

-
Envia mensaje de
texto con un formarto }—

Recibe nuevo
mensaje desde
Telegram: valida y

L especifico procesa mensaje _ Despliega
» microservicios en
l Openshift
)

Envia mensaje al
usuario indicando el |€{N
ermor

N p——

QA / Despliegue

Consulta, valida y

organiza informacion Obtiene
para el despliegue informacion del
despliegue

I Consulta informacion
de usuario y

microservicios

Ejecuta pipeline

Obtiene plantillas
de microservicig

Consulta resulladosw .
- Obtiene resultados
- del pipeline y los del despliegue

Envia mensaje con
los resultados

envia por Telegram

Figura 16. Diagrama de automatizacion del despliegue en ambientes de prueba.
2.3 Disefio detallado del sistema automatizado

Una vez definido el disefio conceptual, se procedi6 a estructurar el disefio detallado del sistema automatizado de
despliegue. Esta fase comprendié la definicion técnica minuciosa de cada componente, los parametros de
ejecucion, la integracion entre herramientas y las validaciones necesarias para garantizar un despliegue total o

parcial eficiente y seguro.

El sistema se disefi6 bajo una arquitectura distribuida, basada en contenedores, e incluyo6 los siguientes modulos

técnicos:

Flujos de trabajo en N8N: Se implementaron flujos de trabajo orientados a eventos, donde cada ejecucion

representd una operacion automatizada iniciada por comandos estructurados enviados desde Telegram. Los

37

primeros nodos de cada flujo fueron responsables de recuperar informacion de configuracion desde Redis,

necesaria para continuar con la ejecucion de tareas como validaciones de datos para el despliegue.

A lo largo del flujo, se definieron nodos condicionales que permitieron bifurcar la ejecucion de acuerdo con al tipo
de componente (microservicio o front-end). Estas bifurcaciones activaban subflujos que incluian la generacion
dindmica de archivos de propiedades, bloqueo temporal de ejecuciones paralelas, y llamadas a pipelines definidos

en GitLab CI/CD para realizar el despliegue correspondiente.

Integracion con Redis: Se disefiaron estructuras clave-valor que almacenaron datos relacionados con cada flujo.
Redis actué como memoria intermedia para validar las condiciones requeridas antes de ejecutar un proceso. Por
ejemplo, se verifico si los campos necesarios (CPU, Memoria y Réplicas) estaban presentes antes de proceder al

despliegue.

ConsultaConfigRedis ConvierteArrayConfigRedi EliminaConfigDespliegue SeteaConfigDespliegueMi
sMS Microservicio croservicio

Figura 17. Integracién con redis

Interaccion con Telegram: A través de un bot configurado, se habilit6 la ejecucion de comandos estructurados
enviados directamente desde Telegram. El usuario QA/Despliegue puede enviar un bloque con parametros como
usuario, nombre _ms, qa, bd url y kafka ip, los cuales son interpretados automaticamente por los flujos definidos

en N8N.

Por ejemplo, al enviar la informacion, el bot procesa los valores recibidos y ejecuta un flujo de despliegue
especifico en OCP (OpenShift), sin que el usuario deba acceder directamente a la infraestructura ni realizar

acciones técnicas manuales.

Esta integracion permite que el equipo QA realice despliegues, sean totales o parciales y sin necesidad de

conocimientos técnicos avanzados, optimizando los tiempos operativos y reduciendo errores humanos.

38

Schedule Trigger1 ObtieneConfiAmbiente ConfigAmbiente ObtieneConfigCredencial ConfigAmbienteN8N ObtieneUltimoMensajeT|
es egram

Figura 18. Integracion con telegram

Automatizacion de despliegue con GitLab CI/CD: Se construy6 una llamada al pipeline correspondiente en
GitLab. El sistema utilizo la API de GitLab para disparar la ejecucion del pipeline, pasando como variables
dindmicas los datos obtenidos desde Redis y el flujo de N8N. Se aseguraron validaciones previas para evitar

ejecuciones duplicadas y controlar condiciones de error.

tieneTokenPorUsuario EjecutaPipelineMsS

Figura 19. Automatizacion de despliegue con GitLab CI/CD

Despliegue de contenedores en OpenShift: Los pipelines de GitLab incluyeron scripts que interactuaron
directamente con OpenShift para desplegar contenedores de microservicios y front-end. La estructura del script

permitio escalar pods, revisar logs en caso de error y confirmar el estado de los despliegues.

39

Copy to editor

viaErrorPipelineDesplie

DINAN

o | @ _ ; @ ElminaLock1

5 WaitDespliegaMS ValidaPipelineDespliegaM Switchl ErviaResDespliegueMS_O
S > R K

= J

r

Figura 20. Despliegue de contenedores en OpenShift

Légica condicional y control de errores: Todos los flujos de N8N incluyeron nodos para verificar el estado de
la respuesta de cada API utilizada. En caso de error, se enviaron mensajes personalizados al canal de Telegram,

explicando el motivo de la falla y sugiriendo acciones correctivas.

ConsultaMSExisteEnPlanti EnviaResFaltaM$S
la

Figura 21. Légica condicional y control de errores

Auditoria y trazabilidad: Cada ejecucion quedd registrada tanto en N8N como en GitLab, permitiendo
reconstruir el historial completo de acciones. Se utiliz6 un identificador unico por flujo para facilitar el seguimiento

y analisis posterior. Este enfoque asegur6 transparencia y capacidad de diagndstico frente a incidencias.

40

Auto refresh Y

Jul 12, 10:49:50
Succeeded in 583ms

Jul 12, 10310 ‘ 7}% e}% «+—< e«.H «.% @«.% é«‘ﬁ :«i

eeded in

Schedule Triggerl ObtieneConfiAmbi C ObtieneConfigCredencial C: nteN8N Obt L

Figura 22. Auditoria y trazabilidad 1

Figura 23. Auditoria y trazabilidad 2

El disefio detallado permitié construir una solucion robusta, reutilizable y extensible, adaptable a otros entornos o
proyectos similares. La combinacion de herramientas de cddigo abierto, flujos condicionales y validaciones

dinamicas proporciond una base solida para escalar el sistema y mantenerlo de manera sostenible.

2.4 Participantes del estudio

El estudio conto6 con la participacion directa de profesionales del area de calidad y despliegue de software de una
organizacion dedicada a servicios tecnologicos. En total, se involucraron 29 personas, distribuidas en 26 ingenieros
de calidad (QA) y 3 ingenieros de despliegue, quienes formaron parte activa del ciclo de vida de los ambientes de

prueba.

Los participantes fueron seleccionados por su experiencia previa en procesos manuales de despliegue y pruebas
funcionales, asi como por su involucramiento frecuente en proyectos que requerian levantar ambientes compuestos
por multiples microservicios y front-end. Esta experiencia fue clave para obtener opiniones fundadas sobre los

tiempos, carga operativa y dificultades técnicas antes y después del desarrollo del sistema automatizado.

La participacion fue voluntaria y se garantizo el anonimato de las respuestas. Todos los ingenieros recibieron una
explicacion clara sobre los objetivos del estudio y la utilidad de la informacion recopilada, la cual se enfoco en

validar la efectividad de la solucion desarrollada.

Los roles dentro del equipo permitieron obtener una vision integral: los QA aportaron informacion sobre el proceso
de solicitud, pruebas y validaciones de ambientes, mientras que los ingenieros de despliegue brindaron datos sobre
la configuracion, ejecucion y seguimiento de los procesos manuales y automatizados. Esta diversidad de puntos

de vista permiti6 evaluar de manera mas objetiva el impacto del sistema automatizado en todo el flujo de trabajo.

41

2.5 Recoleccion de datos

La recoleccion de datos se llevo a cabo durante el proceso de desarrollo del prototipo de automatizacion de
ambientes de prueba. Para ello, se elabord un instrumento en forma de encuesta estructurada. La encuesta fue
disefiada para capturar informacion antes y después de la puesta en marcha de la solucion automatizada,

permitiendo asi una comparacion directa sobre la experiencia y percepcion de los usuarios.

Las preguntas cuantitativas utilizaron una escala tipo Likert de 5 puntos, facilitando la medicion de percepciones
sobre tiempo de despliegue, carga operativa y facilidad de uso. Adicionalmente, se incluyeron preguntas abiertas

para obtener opiniones y observaciones cualitativas. El cuestionario aplicado se detalla en el Anexo 1.

2.6 Analisis de datos

El analisis de los datos se realiz6 una vez concluido el proceso de recoleccion de la informacion. Para el tratamiento
de los datos cuantitativos, se utilizaron métodos estadisticos descriptivos como el calculo de promedios,
porcentajes y distribucion de frecuencias. Estos resultados fueron representados visualmente mediante graficos de
barras y graficos circulares, lo cual facilit6 la interpretacion comparativa de las condiciones antes y después de la

automatizacion.

Se definieron dos variables principales que seran analizadas: el tiempo total de despliegue de ambientes de prueba
y la carga operativa percibida por los participantes. Las respuestas fueron clasificadas en funcion del tipo de
pregunta, y aquellas de naturaleza subjetiva fueron evaluadas utilizando una escala de Likert de 5 puntos,
permitiendo medir el grado de acuerdo de los encuestados con afirmaciones relacionadas con la eficiencia,

facilidad de uso y autonomia en los procesos.

En el caso de los datos cualitativos, se aplicd un analisis tematico, el cual consistid en agrupar las respuestas
abiertas en categorias seguin patrones recurrentes identificados en los comentarios. Por ejemplo, varias respuestas
coincidieron en el tema "reduccion de tiempos de espera para realizar pruebas”, mientras que otras se agruparon
bajo el tema "menor dependencia del equipo de despliegue”. Este agrupamiento permitié extraer conclusiones
significativas sobre la percepcion del personal técnico respecto al impacto de la solucién automatizada, tanto en

términos de productividad como de colaboracion entre equipos.

2.7 Evaluacién del prototipo funcional

La evaluacion del prototipo funcional se llevo a cabo una vez desarrollada la solucién automatizada basada en
N8N, Redis, GitLab CI/CD, y comandos de control a través de Telegram. Este prototipo permiti6 realizar
despliegues selectivos de microservicios y contenedores frontend en ambientes de prueba, simulando el flujo de

trabajo real que habitualmente es gestionado manualmente por los ingenieros de despliegue.

42

Para medir el impacto de la solucion, se utilizaron dos enfoques complementarios: la comparacion de indicadores
clave antes y después del desarrollo, y la percepcion del personal técnico involucrado. Los indicadores evaluados
fueron el tiempo total de despliegue y la carga operativa relacionada con las tareas necesarias para poner en

funcionamiento un entorno de pruebas funcional.

El disefo del prototipo tuvo como objetivo reducir significativamente el tiempo de despliegue que actualmente
requiere entre 2 a 3 dias, llevandolo a tiempos minimos mediante automatizacion; asi como disminuir la carga
operativa del equipo de despliegue. Estos impactos seran evaluados mediante el analisis de los datos recolectados,

utilizando encuestas estructuradas aplicadas a los participantes.

Ademas, se consideraron aspectos adicionales como la estabilidad del sistema, la facilidad de adopcion, la
autonomia de los ingenieros de calidad (QA) para ejecutar ambientes bajo demanda, y la claridad en la
visualizacion de procesos. Los comentarios obtenidos durante la evaluacion serviran como insumo para identificar
oportunidades de mejora y establecer lineamientos para una posible implementacion a escala en otros proyectos o

departamentos de la organizacion.

2.8 Consideraciones éticas

Durante el desarrollo de esta investigacion, se observaron principios €ticos fundamentales que garantizaron el
respeto y la proteccion de los participantes y de la informacion recolectada. Se asegurd en todo momento la
voluntariedad de los participantes, quienes fueron informados previamente sobre los objetivos del estudio, el tipo

de informacion que se recabaria, y el uso exclusivo con fines académicos y de mejora interna de procesos.

Antes de aplicar las encuestas, se solicito el consentimiento informado de cada participante, dejando en claro que
su participacion era anonima, confidencial y que podian retirarse en cualquier momento sin consecuencias. Las
respuestas fueron almacenadas sin asociar datos personales ni laborales especificos, lo que permitié preservar la

privacidad de los colaboradores involucrados.

Asimismo, se evito cualquier forma de presion jerarquica que pudiera influir en las respuestas del personal técnico.
Se promovié un ambiente neutral y seguro para expresar opiniones y percepciones sobre el sistema actual y el

prototipo automatizado propuesto.

Finalmente, se respetaron los principios de integridad académica, evitando el plagio, reportando fielmente los
resultados obtenidos, y citando adecuadamente todas las fuentes de informacion consultadas. Esta investigacion
fue desarrollada bajo el compromiso de contribuir positivamente al entorno organizacional, sin afectar

negativamente a ninguna persona o area involucrada.

43

CAPITULO 3
3. RESULTADOS Y ANALISIS

En este capitulo presentaremos los principales resultados esperados y evidencia de los avances alcanzados en el
desarrollo de la solucion automatizada orientada a optimizar el proceso de despliegue de ambientes de prueba. La
propuesta se enfoca en reducir los tiempos de despliegue, disminuir la carga operativa del equipo técnico y mejorar

la autonomia del area de calidad.
3.1 Estado actual del desarrollo

Actualmente se ha desarrollado un prototipo funcional basado en una arquitectura distribuida compuesta por
herramientas como N8N, Redis, GitLab y Telegram. Este sistema permite ejecutar flujos automatizados mediante
comandos enviados desde Telegram, los cuales son interpretados por flujos configurados en N8N. Estos flujos
realizan validaciones previas, obtienen configuraciones y datos desde Redis y ejecutan pipelines de despliegue
definidos en GitLab CI/CD, lo que permite desplegar selectivamente microservicios y Front-end sobre entornos

gestionados por OpenShift.
3.2 Flujo representativo implementado
A continuacion, se muestra un flujo representativo que integra los componentes claves de la solucion:

1. Elusuario QA envia un mensaje estructurado a través de Telegram.

2. N8N recibe el mensaje, valida los datos y consulta a la base Redis.

3. Segln los valores recuperados, N8N activa condiciones y ejecuta acciones como:
a. Generar propiedades de despliegue.
b. Llamar al pipeline correspondiente en GitLab.
c. Despliegues en Openshift

d. Informar del resultado por Telegram.

Esta arquitectura ha demostrado un comportamiento estable en pruebas internas, permitiendo consolidar las

herramientas técnicas para su implementacion.
3.3 Cumplimiento de Objetivos

A continuacion, se describe el nivel de cumplimiento de los objetivos establecidos:

- Analisis del proceso actual: Se realizd mediante encuestas y revision del flujo de trabajo actual, donde se

evidenci6 una carga operativa alta y tiempos prolongados de despliegue.

44

- Identificacion de oportunidades de mejora: Se propuso una arquitectura modular que permite despliegues

selectivos y mas rapidos, considerando la carga del equipo de despliegue.

- Disefio de una arquitectura automatizada: Se implementd una arquitectura automatizada, integrando

herramientas open source y logrando adaptabilidad a distintos tipos de proyectos (alto, medio, bajo).

- Evaluacion funcional del prototipo: Basado a las encuestas obtenidas se ha logrado el objetivo.

3.3.1 Cuadro de complejidad y tiempo de despliegue

Esta clasificacion permite visualizar como la automatizacion se adapta a distintos escenarios segun el tamafio y la
exigencia del proyecto. Se utiliza como evidencia comparativa para validar que el nuevo enfoque mejora
significativamente los tiempos, que originalmente eran de 2 a 3 dias. Ademas, sirve como sustento para el

cumplimiento de los objetivos especificos 2, 3 y 4. Especialmente en cuanto a eficiencia y reduccion de carga.

Tabla III. Tiempos estimados de despliegue

Tipo de Proyecto N° de Microservicios Tiempo estimado de despliegue
Alto 80 1 hora

Medio 50 35 minutos

Bajo 30 20 minutos

Con la nueva solucion que incluye herramientas como n8n para la orquestacion y el uso de OpenShift, el proceso
se reduce considerablemente en el caso de los proyectos mas complejos, el tiempo estimado bajé a una hora. Esta
diferencia no solo aligera la carga del equipo, sino que también permite responder mas rapido cuando hay varias
solicitudes en paralelo, algo muy comuin cuando varios QA estan trabajando al mismo tiempo. Gracias a esta
mejora, se estan cumpliendo los objetivos planteados, en especial los relacionados con reducir tiempos y hacer
mas eficiente la gestion de ambientes. La tabla presentada sirve como respaldo de esta evolucion y demuestra

como el sistema se adapta bien a proyectos de distintos tamafios.

La forma actual del despliegue se realiza en la modalidad Vertical, despliegue por capas o funcionalidades

especificas en orden jerarquico o de prioridad por los nodos creados en n8n.

3.3.2 Cuadro de carga operativa

Uno de los aspectos mas relevantes que se evidencid durante este trabajo fue la carga operativa requerida para
desplegar ambientes de prueba antes y después de la automatizacion. Este andlisis, ademdas de ser técnico, nos
ayuda a entender como los cambios aplicados impactan en la eficiencia del proceso desde una perspectiva humana
y operativa. Antes de la automatizacion, desplegar un ambiente para proyectos complejos representaba una tarea
ardua, que demandaba mucho tiempo y la participacion constante del personal de despliegue y QA. Por ejemplo,
los proyectos catalogados como “Altos” alcanzaban el nivel maximo de carga (5), reflejando el esfuerzo critico

que se necesitaba para completar el flujo. Esta situacion no solo consumia tiempo, sino que también elevaba el

45

riesgo de errores y cuellos de botella. Con la implementacion de una arquitectura automatizada y flexible, esta
carga operativa disminuy6 considerablemente. En proyectos de alta complejidad, el esfuerzo se redujode 5a 3,y
en los proyectos de tipo medio y bajo, los valores bajaron aun mas, llegando incluso a 1 en el mejor de los casos.
Esto quiere decir que, hoy en dia, gracias a la automatizacion y a herramientas como el orquestador n8n, el personal
puede enfocarse mas en otras tareas como el analisis de calidad y pruebas. Esta mejora se alinea directamente con
el objetivo especifico 2, que plantea la necesidad de identificar oportunidades de mejora en la preparacion de
ambientes, especialmente en lo que se refiere a la carga operativa. También guarda estrecha relacion con el objetivo
3, ya que demuestra que la arquitectura automatizada no solo funciona, sino que también permite una gestion mas

eficiente con menor intervencion humana.

Tabla IV. Comparativa de cargas operativa

Tipo de Proyecto Carga operativa antes (escala 1 a 5) Carga operativa después (escala 1 a 5)
Alto 5 3
Medio 4 2
Bajo 3 1

3.3.3 Cuadro de errores operativos

Antes de implementar la arquitectura automatizada, el proceso de despliegue presentaba una alta probabilidad de
fallos operativos. Era comun enfrentar errores como seleccionar versiones incorrectas, ejecutar pipelines de forma
incompleta o tener fallas de configuracion. Estos errores eran especialmente frecuentes en los proyectos mas
complejos, donde la cantidad de microservicios y pasos a seguir elevaban el riesgo de equivocaciones humanas.
Con la automatizacion, este panorama cambid significativamente. Al incorporar validaciones automaticas y
establecer un flujo estandarizado en las tareas de despliegue, se redujo considerablemente la necesidad de
intervencion manual. Este cambio trajo consigo una importante disminucion en la frecuencia de errores, haciéndolo
evidente incluso en proyectos de alta exigencia. La tabla presentada refleja claramente esta evolucion. Por ejemplo,
en los proyectos clasificados como “Altos”, los errores pasaron de ser de alta frecuencia a baja frecuencia. En los
de tipo “Medio”, se mantuvieron en niveles bajos, y en los proyectos “Bajos”, donde ya eran minimos, la
automatizacion practicamente eliminé los errores por completo. Este resultado no solo demuestra una mejora en
la confiabilidad del proceso, sino que también respalda el cumplimiento de los objetivos especificos 2 y 3, al
reducir la carga operativa y elevar la calidad del servicio. Ademas, fortalece el disefio de una arquitectura mas

robusta, adaptable y menos propensa a errores humanos.

Tabla V. Errores operativos

Tipo de Proyecto Errores antes de automatizacion Errores con automatizacion

Alto Alta frecuencia Baja frecuencia

Medio Media frecuencia Baja frecuencia

46

Bajo Media-baja Minima

3.4 Evidencias grificas del flujo implementado

A continuacion, se presentan capturas del flujo implementado en N8N, donde se evidencia la integraciéon con

Redis, GitLab y Telegram.

Inicio del flujo automatizado desde Telegram: Donde se envia el mensaje estandar para el despliegue del

microservicio o los microservicios.

nuevo_despliegue{
desplegar=ocp,
usuario= !
nombre_ms= bl ;
qa=60,
bd_url=jdbc:oracle:tt

-
=
Q)

kafka_ip= }

Figura 24. Evidencias graficas del flujo implementado 1

Asi mismo el Bot de telegram envia respuestas para validar informacion recibida y confirmacion del despliegue.

[

despliegue_bot

nuevo_despliegue{ desplegar=ocp, usuario= , nombre_m...

La informacion se encuentra correcta, se procede con
el despliegue. Por favor espere el mensaje de confirmacion.

Figura 25. Evidencias graficas del flujo implementado 2

47

” nuevo_despliegue{ desplegar=ocp, usuario= , nombre_m...
Los microservicios se desplegaron correctamente:

Ejecucion numero: 9606567

Figura 26. Evidencias graficas del flujo implementado 3

Tiempo de despliegue del microservicio:

Duration: 1 minute 3 seconds
Finished: 17 hours ago

Queued: 0 seconds

Figura 27. Evidencias graficas del flujo implementado 4

Figura 28. Evidencias graficas del flujo implementado 5

3.5 Limitaciones

Durante la implementacion se han identificado algunas limitaciones que deben considerarse:

Nuevas formas de mantenimiento: Al incluir multiples herramientas, se debe considerar una estrategia clara de

soporte y actualizacion.

Conectividad y permisos: Algunos procesos pueden depender de APIs externas, tokens o acceso a recursos

limitados por politicas internas de cada empresa.

Sobrecarga operativa: En situaciones donde multiples usuarios QA ejecutan despliegues simultaneos, existe el
riesgo de sobrecargar los recursos del cluster de OpenShift (OCP). Esto puede provocar caidas generales que
afectan a todos los proyectos levantados, impactando directamente en la disponibilidad del entorno y el

rendimiento general del sistema.

48

Tiempos de despliegue variables: Dependiendo del tamaiio o la complejidad del proyecto, el tiempo de despliegue
puede incrementarse considerablemente. Esto puede generar cuellos de botella cuando otros proyectos deben
esperar a que finalice un despliegue previo, afectando la eficiencia del flujo de trabajo en entornos con alta

demanda de despliegues paralelos.

CAPITULO 4
4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

® Se logro caracterizar detalladamente la situacion actual del proceso de despliegue de ambientes de prueba
en entornos QA, identificando los tiempos que demanda en el despliegue de los microservicios , los

recursos involucrados y los principales cuellos de botella que afectan la eficiencia operativa.

® Uno de los principales obstaculos detectados fue la alta intervencion manual requerida para la preparacion
de ambientes, especialmente ante la demanda de ambientes simultaneos. Esto generaba sobrecarga en el

personal técnico y afectaba los tiempos de entrega y la calidad de las pruebas.

® A partir del andlisis, se evidencié que la automatizacion del proceso a través de herramientas como
orquestadores, pipelines y servicios de mensajeria reduce significativamente la intervencion humana,
agiliza la ejecucion y mejora la confiabilidad del sistema.

® QGracias a la automatizacion, el tiempo total de despliegue se redujo de 2 a 3 dias a solo horas(h), incluso
en proyectos de alta complejidad. Este resultado evidencia una mejora concreta en el cumplimiento del
objetivo 2 (eficiencia operativa) y objetivo 3 (diseflo de una arquitectura automatizada y adaptable).

e Ladisminucion de la carga operativa permite que el personal de despliegue y QA se enfoque en tareas de
mayor valor, como la supervision y soporte de los servidores, liberando tiempo y recursos.

e Se comprobd que el modelo propuesto es escalable y se adapta a diferentes niveles de complejidad,
permitiendo una gestion mas autéonoma del despliegue bajo demanda, lo cual responde directamente al
objetivo 4.

e Finalmente, el enfoque planteado sienta una base so6lida para continuar optimizando los procesos QA,
orientandose hacia una solucion mas sostenible, eficiente y alineada con las necesidades reales del entorno

operativo.

4.2 Recomendaciones

Tras culminar lo planificado en la propuesta, se proponen las siguientes recomendaciones clave para continuar

fortaleciendo el modelo automatizado de despliegue:

49

Implementar un sistema de métricas y monitoreo desde el inicio, para registrar los tiempos de despliegue,
los errores mas comunes y las cargas operativas. Esto permitira evaluar de manera objetiva el impacto

real de la automatizacion y detectar oportunidades de mejora.

Realizar pruebas piloto controladas aplicando los flujos automatizados en proyectos de baja complejidad.

Esto permitira validar el disefio de forma segura antes de escalar su aplicacion a proyectos mas complejos.

Escalar progresivamente la automatizacion, comenzando por los microservicios mas estables y

extendiéndola paulatinamente a componentes mas criticos a medida que las integraciones se consoliden.

Documentar claramente cada etapa del proceso automatizado, con versiones controladas y adaptaciones
registradas. Esto facilitara la mantenibilidad del sistema y apoyara en la formacion de nuevos integrantes
del equipo.

Capacitar al personal involucrado, especialmente a QA y despliegue, mediante talleres practicos sobre el

uso de las herramientas integradas y los nuevos flujos, para asegurar una adopcion efectiva del modelo.

Fomentar la mejora continua explorando la integracion de herramientas de inteligencia artificial (IA) que

sugieran ambientes Optimos segun la complejidad del proyecto o los cambios en el codigo.

Permitir el escalamiento horizontal habilitando el envio de multiples peticiones simultaneas desde QA,
sin necesidad de esperar que finalice un flujo. Esto es clave para optimizar el tiempo de despliegue cuando
varios QA trabajan en paralelo, aprovechando la capacidad de OpenShift y la orquestacion del flujo con

n8n.

50

Referencias

[1] E. Sarmiento-Calisaya, A. Mamani-Aliaga, y J. C. S. D. P. Leite, «Introducing Computer Science
Undergraduate Students to DevOps Technologies from Software Engineering Fundamentals», en *Proceedings of
the 46th International Conference on Software Engineering: Software Engineering Education and Training™*, en
ICSE-SEET °24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 348-358. doi:
10.1145/3639474.3640071.

[2] S. M. Saleh, I. M. Sayem, N. Madhavji, y J. Steinbacher, “Advancing Software Security and Reliability in
Cloud Platforms through Al-based Anomaly Detection,” en *Proceedings of the 2024 on Cloud Computing
Security Workshop*, CCSW ’24. New York, NY, USA: Association for Computing Machinery, 2024.

[3] S. Smith, E. Robinson, T. Frederiksen, T. Stevens, T. Cerny, M. Bures, y D. Taibi, “Benchmarks for End-to-
End Microservices Testing,” arXiv, 2023. [En linea]. Disponible: https://arxiv.org/abs/2306.05895

[4] M. Waseem, P. Liang, M. Shahin, A. Di Salle, y G. Marquez, “Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective,” arXiv, 2021. [En linea]. Disponible:
https://arxiv.org/abs/2108.03384

[5] R. Agrawal, P. Banerjee, M. Harman, y A. Groce, “An Industrial Case Study on DevOps Pipeline Bottlenecks,”
en *2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP)*, Madrid, Espaifia, 2021, pp. 1-10. doi: 10.1109/ICSE-SEIP52600.2021.00006.

[6] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner’s Approach, 8th ed., New York, NY,
USA: McGraw-Hill, 2014.

[7] I. Sommerville, Software Engineering, 10th ed., Boston, MA, USA: Pearson, 2015.

[8] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, "Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.

[9] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, "Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.

[10] R. Agrawal, P. Banerjee, M. Harman, and A. Groce, “An Industrial Case Study on DevOps Pipeline
Bottlenecks,” in 2021 IEEE/ACM 43rd Int. Conf. Software Engineering: Software Engineering in Practice (ICSE-
SEIP), Madrid, Spain, 2021, pp. 1-10.

[11] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation. Boston, MA, USA: Addison-Wesley, 2010.

[12] J. Garcia-Galan, J. Garcia-Alonso, J. Berrocal, and J. M. Murillo, “A Review of Architectures and Platforms
for Edge Computing,” ACM Comput. Surv., vol. 54, no. 6, pp. 1-36, Oct. 2021.

[13] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, "Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.

[14] D. Taibi, L. Lavazza, and S. Janes, “Microservices in Practice: A Survey Study,” Journal of Systems and
Software, vol. 180, p. 111018, Jul. 2021.

[15] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices
Architectures: An Empirical Investigation,” IEEE Cloud Computing, vol. 8, no. 2, pp. 2232, Mar./Apr. 2021.
[16] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad Smells,” IEEE Software, vol. 38, no. 1,
pp- 56-62, Jan. 2021.

51

[17] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, “Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective,” arXiv preprint, arXiv:2108.03384, 2021.

[18] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices
Architectures: An Empirical Investigation,” IEEE Cloud Computing, vol. 8, no. 2, pp. 2232, Mar./Apr. 2021.
[19] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez, “Design, Monitoring, and Testing of
Microservices Systems: The Practitioners’ Perspective,” arXiv preprint, arXiv:2108.03384, 2021.

[20] A. Sampaio, T. Batista, and S. Reinehr, “Microservices in Agile Software Development: A Systematic
Mapping Study,” in Proc. 20th International Conference on Software Technologies (ICSOFT), 2023, pp. 203—
210.

[21] S. Smith et al., “Benchmarks for End-to-End Microservices Testing,” arXiv preprint, arXiv:2306.05895,
2023.

[22] T. Cerny, M. Bures, and D. Taibi, “Testing Microservices: A Survey of Challenges and Practices,” in Proc.
37th ACM/SIGAPP Symposium on Applied Computing (SAC), 2022, pp. 1278—1285.

[23] R. Sigurbjornsson and D. Garlan, “Enabling Observability for Microservice-Based Systems Through
Automated Model Extraction,” in Proc. 15th International Symposium on Software Engineering for Adaptive and
Self~-Managing Systems (SEAMS), 2020, pp. 123—-129.

[24] M. Wiedemann, M. Wiesche, and H. Krcmar, “Understanding the Influence of DevOps Practices on Software
Development Performance,” Journal of Systems and Software, vol. 178, pp. 110980, 2021.

[25] T. Dingseyr, F. Faegri, and H. Kulkarni, “Continuous Delivery and DevOps: Experiences from the Trenches,”
IEEE Software, vol. 38, no. 1, pp. 50-57, Jan.—Feb. 2021.

[26] J. Ordofiez and M. Vera, “Automatizacion de Procesos DevOps para el Despliegue de Servicios en Entornos
de Red 5G,” Revista Politécnica, vol. 49, no. 1, pp. 55-64, 2023.

[27] D. Gruen and N. Forsgren, “The State of DevOps Report,” Google Cloud and DORA, 2021.
[28] H. Shafiq, A. M. Khan, and S. Mahmood, “DevOps-Driven Continuous Integration and Continuous Delivery
Pipeline for Microservices: Industrial Case Study,” IEEE Access, vol. 9, pp. 129256-129269, 2021.

[29] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation, Addison-Wesley, 2021.

[30] M. Garcia-Valls, T. Cucinotta, and C. Lu, “Challenges in Real-Time Cloud Infrastructures: A Survey,”
Journal of Systems Architecture, vol. 122, p. 102291, 2021.

[31] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps, IT Revolution,
2021.

[32] S. Ahmad and A. Bhatti, “Open Source Workflow Automation Tools for Modern DevOps: A Comparative
Study,” IEEE International Conference on Automation, Control and Smart Systems (ICACSS), pp. 101-106, 2021.
[33] L. M. Vargas et al., “Automated Incident Management in Telco Systems through Open-Source Orchestrators,”
IEEE Latin America Transactions, vol. 20, no. 4, pp. 732-739, 2022.

[34] A. M. Salazar, J. A. Pefia, and F. Garcia, “Messaging APIs as Integration Interfaces in DevOps Environments:
An Empirical Analysis,” IEEE Latin America Transactions, vol. 19, no. 5, pp. 821-829, 2021.

52

[35] R. Rodrigues and M. Oliveira, “Orchestrating Automated Workflows with Messaging Applications: A Case
Study on Telegram Bots,” Journal of Systems Integration, vol. 14, no. 2, pp. 45-53, 2023.

[36] T. Cerny, M. Bures, and D. Taibi, “Microservices: A Systematic Mapping Study on Orchestration,” ACM
Computing Surveys, vol. 54, no. 12, pp. 1-38, Dec. 2021.

[37]J. R. Lopez and M. Andrade, “Automated Test Environment Provisioning Using Workflow Orchestration: A
Telecom Case Study,” IEEE Access, vol. 11, pp. 51234-51245, 2023.

[38] L. N. Mohammed et al., “Evaluation of Open Source Tools for CI/CD Automation in DevOps,” Journal of
Systems and Software, vol. 190, p. 111351, Jan. 2022.

[39] M. Alvarez, R. Rosero, and D. Salinas, “Evaluacion de herramientas DevOps de c6digo abierto para la gestion

automatizada de microservicios en telecomunicaciones,” Revista [+D Tecnologico, vol. 18, no. 2, pp. 23-31,2022.

53

Anexos

Anexo 1. Cuestionario de Evaluaciéon del Prototipo de Automatizacién

Indicaciones:

A continuacion, se presenta el cuestionario aplicado a los participantes del estudio. La encuesta fue estructurada

en dos bloques: antes y después de la implementacion de la solucion automatizada. Las preguntas utilizaron una

escala de Likert.

Parte A: Situacion antes del desarrollo

A

(Cuanto tiempo en promedio toma levantar un ambiente de prueba completo (en dias)?

(Qué nivel de carga operativa percibes al realizar los despliegues?

(Con qué frecuencia se producen errores durante el proceso de despliegue?

(Qué nivel de satisfaccion tienes con el proceso actual de despliegue?

(Con qué frecuencia experimentas retrasos en los cronogramas debido al tiempo requerido para el

despliegue?

Parte B: Situacion después del desarrollo

= o 0 3R

(Cuanto tiempo en promedio toma levantar un ambiente de prueba completo (en dias)?
(Qué nivel de carga operativa percibes al realizar los despliegues?
(Con qué frecuencia se producen errores durante el proceso de despliegue?

(Qué nivel de satisfaccion tienes con el proceso actual de despliegue?

. (Con qué frecuencia experimentas retrasos en los cronogramas debido al tiempo requerido para el

despliegue?

		2025-08-18T10:10:00-0500

		2025-08-18T12:59:33-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

	

		2025-08-18T13:31:25-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

	

		2025-08-18T15:29:28-0500

