

Escuela Superior Politécnica del Litoral

Facultad de Ingeniería en Electricidad y Computación

Desarrollo de Solución Automatizada para Despliegue de Microservicios en

Ambientes de Prueba en Empresa de Telecomunicaciones

Proyecto de Titulación

Previo la obtención del Título de:

Magíster en Sistema de Información Gerencial

Presentado por:

Ing. John Jairo Flores Rodríguez

Ing. Kleber Ronald Lino Sánchez

Guayaquil - Ecuador

Año: 2025

II

Dedicatoria

A mi esposa, por ser mi compañera fiel en

este camino. Gracias por tu amor, tu

paciencia y tu apoyo incondicional que ha

sido clave para alcanzar esta meta.

A mi hijo, mi mayor motivación. Este logro

es para ti, con el anhelo de dejarte un

ejemplo de vida, esfuerzo y constancia.

Que veas que los sueños se pueden

alcanzar con disciplina y dedicación, y que

cada sacrificio tiene su recompensa.

A mi madre, por enseñarme con su ejemplo

los valores que hoy me definen. Gracias

por tu amor, tu fortaleza y tu apoyo

constante en cada etapa de mi vida.

Ing. John Jairo Flores R.

III

Dedicatoria

A mis padres, por su amor incondicional,

por confiar en mí incluso en los momentos

más difíciles y por enseñarme, con su

ejemplo, el valor del esfuerzo, la

responsabilidad y la humildad. Gracias por

ser mi guía y mi fortaleza en cada paso de

este camino.

A mi familia en general, por su apoyo

constante, por las palabras de aliento en los

momentos de cansancio y por celebrar cada

pequeño avance como un logro

compartido. Este trabajo es también

resultado de todo lo que me han dado,

comprensión, paciencia y motivación para

seguir superándome cada día.

Ing. Kléber Lino Sánchez

IV

Agradecimientos

En primer lugar, agradezco

profundamente a Dios por colmar mi vida

de bendiciones, por darme salud y

fortaleza, y por brindarme la oportunidad

de culminar esta etapa importante de mi

formación académica.

A mi familia, mi pilar incondicional,

gracias por su apoyo constante, su

paciencia y su comprensión, los cuales

fueron fundamentales para alcanzar este

logro.

Ing. John Jairo Flores R.

V

Agradecimientos

Mi más profundo agradecimiento a Dios,

por darme la fuerza, la claridad y la

perseverancia para seguir adelante en cada

etapa de este proceso. Sin Su guía

constante, este logro no habría sido

posible.

A mi familia, y en especial a mis padres,

por estar siempre ahí, apoyándome sin

condiciones, creyendo en mí incluso

cuando yo mismo dudaba. Gracias por su

paciencia, por motivarme a dar lo mejor y

por acompañarme en todo momento.

Ing. Kléber Lino Sánchez

VI

Declaración Expresa

Yo/Nosotros John Jairo Flores Rodríguez y Kleber Ronald Lino Sánchez acuerdo/acordamos y

reconozco/reconocemos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de

graduación corresponderá al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este

acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra

con facultad de sublicenciar, incluyendo la autorización para su divulgación, así como para la

creación y uso de obras derivadas. En el caso de usos comerciales se respetará el porcentaje de

participación en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invención,

modelo de utilidad, diseño industrial, secreto industrial, software o información no divulgada

que corresponda o pueda corresponder respecto de cualquier investigación, desarrollo

tecnológico o invención realizada por mí/nosotros durante el desarrollo del proyecto de

graduación, pertenecerán de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del

porcentaje que me/nos corresponda de los beneficios económicos que la ESPOL reciba por la

explotación de mi/nuestra innovación, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigación (OTRI) de la

ESPOL comunique al/los autor/es que existe una innovación potencialmente patentable sobre

los resultados del proyecto de graduación, no se realizará publicación o divulgación alguna, sin

la autorización expresa y previa de la ESPOL.

Guayaquil, 07 de Julio del 2025.

Ing. John Jairo Flores

Rodriguez

 Ing. Kleber Ronald

Sanchez Lino

VII

Evaluadores

Mgtr. Juan Carlos García

Tutor de proyecto

Mgtr. Lenin Freire Cobo

Revisor de proyecto

VIII

Resumen

Este trabajo presenta el diseño e implementación de una solución automatizada para optimizar el proceso de

despliegue de ambientes de prueba, con el objetivo de reducir el tiempo de ejecución, minimizar la carga operativa

del equipo de QA y mejorar la eficiencia técnica frente a la alta demanda de proyectos simultáneos. Se justifica su

desarrollo debido a los prolongados tiempos y altos niveles de intervención manual requeridos en el proceso actual.

Para el desarrollo del proyecto, se emplearon herramientas como N8N, Redis, GitLab y Telegram, integradas en

una arquitectura distribuida. Se configuró un flujo automatizado que permitió ejecutar despliegues verticales de

microservicios mediante comandos estructurados.

Los resultados mostraron una reducción significativa en los tiempos de despliegue de 2 a 3 días a menos de una

hora en proyectos de alta complejidad. Además, se evidenció una disminución en la carga operativa y en la

frecuencia de errores.

Se concluye que la solución propuesta cumple con los objetivos de eficiencia, escalabilidad y autonomía técnica

del equipo de QA y despliegue. El enfoque puede adaptarse a distintos tamaños de proyecto, permitiendo mayor

control y rapidez en la preparación de ambientes de prueba.

Palabras clave: Automatización, Despliegue, QA, Microservicios, Optimización.

IX

Abstract

This project addresses the challenge of optimizing the deployment process of testing environments in a

telecommunications company. The current process involves deploying around 80 microservices and can take up

to three days, resulting in a high operational load for QA and infrastructure teams. To tackle this issue, a distributed

architecture was designed using tools such as N8N, GitLab, Redis, and Telegram. This solution allows automated

deployment flows to be triggered through structured messages, enabling dynamic configuration generation and

execution of GitLab pipelines.

As a result, the average deployment time was reduced from several days to just a few hours, depending on project

complexity. The system currently supports vertical deployment only, following a sequential logic based on

functional dependencies. Initial tests show stable performance and high potential for scalable implementation.

It is concluded that the proposed automated architecture improves deployment efficiency, reduces human errors,

and enhances QA team autonomy in managing test environments.

Keywords: Test environments, automation, deployment optimization, microservices, CI/CD.

X

Índice general

Dedicatoria ... II

Agradecimientos ... IV

Declaración Expresa ... VI

Evaluadores .. VII

Resumen .. VIII

Abstract ... IX

Índice general .. X

Abreviaturas .. XII

Simbología ... XIII

Índice de figuras .. XIV

Índice de tablas ... XV

Índice de planos .. ¡Error! Marcador no definido.

CAPÍTULO 1 ... 16

1. Introducción .. 16

1.1. Descripción del Problema ... 16

1.2 Justificación del Problema ... 17

1.3 Objetivos. ... 17

1.3.1 Objetivo general ... 17

1.3.2 Objetivos específicos ... 17

1.4 Marco teórico ... 18

1.4.1 Despliegue de software en entornos empresariales ... 18

1.4.2 Arquitectura de microservicios .. 22

1.4.3 Automatización del despliegue de software .. 23

1.4.4 Herramientas de automatización y orquestación de flujos .. 27

CAPÍTULO 2 ... 31

2. Metodología. ... 31

2.1 Enfoque metodológico y arquitectura de la solución propuesta .. 33

XI

2.2 Diseño conceptual de la solución .. 35

2.3 Diseño detallado del sistema automatizado ... 36

2.4 Participantes del estudio .. 40

2.5 Recolección de datos ... 41

2.6 Análisis de datos .. 41

2.7 Evaluación del prototipo funcional .. 41

2.8 Consideraciones éticas ... 42

CAPÍTULO 3 ... 43

3. RESULTADOS Y ANÁLISIS ... 43

3.1 Estado actual del desarrollo ... 43

3.2 Flujo representativo implementado ... 43

3.3 Cumplimiento de Objetivos ... 43

3.3.1 Cuadro de complejidad y tiempo de despliegue .. 44

3.3.2 Cuadro de carga operativa ... 44

3.3.3 Cuadro de errores operativos ... 45

3.4 Evidencias gráficas del flujo implementado .. 46

3.5 Limitaciones .. 47

CAPÍTULO 4 ... 48

4. CONCLUSIONES Y RECOMENDACIONES ... 48

4.1 Conclusiones .. 48

4.2 Recomendaciones .. 48

Referencias ... 50

Apéndice ... ¡Error! Marcador no definido.

Anexos .. 53

XII

Abreviaturas

CI Integración Continua (Continuous Integration)

CD Despliegue Continuo (Continuous Deployment)

IaC Infraestructura como Código (Infrastructure as Code)

QA Aseguramiento de la Calidad (Quality Assurance)

API Interfaz de Programación de Aplicaciones (Application Programming Interface)

N8N Herramienta de automatización de flujos sin código (No-code Workflow Automation Tool)

YAML
YAML Ain’t Markup Language (Formato de serialización de datos usado en archivos de

configuración)

TIC Tecnologías de la Información y Comunicación

MS Microservicio

SDLC Ciclo de Vida del Software (Software Development Life Cycle)

TDD Desarrollo guiado por pruebas (Test-Driven Development)

Redis Repositorio de estructuras de datos clave-valor en memoria (Remote Dictionary Server)

GitLab Plataforma de DevOps para repositorio de código, integración y despliegue

XIII

Simbología

min Minutos

h Horas

% Porcentaje

Nº Número de Microservicios

XIV

Índice de figuras

Figura 1. Ciclo de Vida de Software ... 19

Figura 2. Despliegue de Software ... 20

Figura 3. Ambientes Tecnológicos ... 21

Figura 4. Arquitectura de Microservicio .. 22

Figura 5. DevOps .. 24

Figura 6. CI/CD .. 25

Figura 7. Docker and Kubernets ... 26

Figura 8. Metricas DORA .. 27

Figura 9. n8n .. 28

Figura 10. Telegram .. 29

Figura 11. Orchestration tools .. 30

Figura 12. Open Source ... 31

Figura 13. Carga Operativa .. 32

Figura 14. Frecuencia de Errores .. 32

Figura 15. Tiempo promedio .. 33

Figura 16. Diagrama de automatización del despliegue en ambientes de prueba. 36

Figura 17. Integración con redis ... 37

Figura 18. Integracion con telegram .. 38

Figura 19. Automatización de despliegue con GitLab CI/CD .. 38

Figura 20. Despliegue de contenedores en OpenShift ... 39

Figura 21. Lógica condicional y control de errores ... 39

Figura 22. Auditoría y trazabilidad 1 .. 40

Figura 23. Auditoría y trazabilidad 2 .. 40

Figura 24. Evidencias gráficas del flujo implementado 1 .. 46

Figura 25. Evidencias gráficas del flujo implementado 2 .. 46

Figura 26. Evidencias gráficas del flujo implementado 3 .. 47

Figura 27. Evidencias gráficas del flujo implementado 4 .. 47

Figura 28. Evidencias gráficas del flujo implementado 5 .. 47

XV

Índice de tablas

Tabla I. Ponderación de herramientas de orquestación .. 33

Tabla II. Resumen de atributos de arquitectura diseñada ... 34

Tabla III. Tiempos estimados de despliegue .. 44

Tabla IV. Comparativa de cargas operativa ... 45

Tabla V. Errores operativos ... 45

16

CAPÍTULO 1

1. Introducción

En las empresas de telecomunicaciones con alta carga operativa, los procesos manuales para la preparación de

ambientes de prueba representan una limitación significativa para la validación oportuna de aplicaciones. Este

problema se acentúa en arquitecturas basadas en microservicios, donde cada ambiente requiere el despliegue

coordinado de decenas de componentes, generando retrasos operativos y sobrecarga para los equipos técnicos.

Actualmente, la ausencia de automatización y de mecanismos de despliegue selectivo obliga a los ingenieros a

levantar todos los microservicios, incluso cuando no han sido modificados. Esta práctica incrementa los tiempos

de espera y afecta la productividad del área de QA, dificultando la entrega ágil de proyectos y elevando los riesgos

operativos y contractuales.

La presente investigación propone el desarrollo de una solución automatizada que permita gestionar el despliegue

de microservicios en ambientes de prueba de forma eficiente y bajo demanda. La propuesta integra herramientas

como N8N, GitLab CI/CD, Redis y Telegram, con el objetivo de reducir los tiempos de preparación de ambientes

de días a minutos(min), optimizar el uso de recursos técnicos y mejorar la capacidad de respuesta del área de

calidad de software.

1.1. Descripción del Problema

El presente trabajo se desarrolla en una empresa grande del sector de telecomunicaciones, específicamente en el

departamento de Calidad de Software (QA), donde se requiere validar aplicaciones complejas compuestas por

múltiples microservicios. Los involucrados en esta problemática son principalmente los ingenieros de despliegue,

un equipo reducido de solo tres personas que deben atender múltiples solicitudes de levantamiento de ambientes

de prueba para los proyectos que la empresa desarrolla.

El problema radica en la alta demanda de ambientes de prueba frente a la capacidad limitada del equipo de

despliegue, ya que, para cada validación funcional, los QA necesitan que se levanten más de 35 microservicios

por ambiente, lo que toma entre 2 a 3 días hábiles.

Las causas principales de este problema están relacionadas a una arquitectura poco flexible que obliga a desplegar

todos los microservicios incluso si no han sido modificados, así como la ausencia de procesos automatizados que

permitan realizar despliegues selectivos o bajo demanda.

Las consecuencias derivadas de esta situación incluyen retrasos en la entrega de proyectos, sanciones

contractuales, insatisfacción de usuarios internos y aumento de costos por la necesidad de ampliar el equipo

17

técnico. Para resolver el problema, se propone evaluar una arquitectura automatizada que permita gestionar el

despliegue de ambientes de prueba de forma más ágil y eficiente, integrando herramientas tecnológicas (N8N,

Redis, GitLab CI/CD y Telegram,) de modo que los QA puedan solicitar ambientes listos y completos mediante

la automatización, reduciendo los tiempos de espera de días a minutos y optimizando los recursos disponibles.

1.2 Justificación del Problema

En las empresas de telecomunicaciones con alta carga operativa, el proceso de preparación de ambientes de prueba

representa un cuello de botella crítico que afecta directamente la calidad del software y el cumplimiento de los

cronogramas, De hecho, estudios recientes evidencian que la formación en tecnologías DevOps y la incorporación

de herramientas basadas en inteligencia artificial son claves para superar estos cuellos de botella [1] y mejorar la

confiabilidad en entornos de alta demanda operativa [2].

Resolver este problema es importante porque actualmente se requiere de uno a dos días para desplegar todos los

microservicios necesarios, lo cual genera retrasos, sobrecarga de trabajo y riesgo de sanciones contractuales. La

situación descrita no es particular de una sola organización, sino que representa una problemática común en

diversas empresas del sector, especialmente aquellas con estructuras operativas similares. Con la solución

propuesta se reducirán drásticamente los tiempos de los despliegues, permitiendo realizarlos en cuestión de

minutos. Esto servirá para optimizar los recursos humanos y técnicos, aumentar la productividad del equipo y

liberar al personal de tareas repetitivas y manuales [3].

La solución es útil porque mejora la eficiencia operativa, reduce los costos, y permite generar datos valiosos para

la toma de decisiones estratégicas [4], ya que la observabilidad y automatización son claves para responder

rápidamente a la complejidad de los entornos distribuidos en microservicios. Será especialmente útil para los

ingenieros de despliegue, los equipos de QA, los líderes de proyecto y la gerencia de sistemas, al facilitar un

proceso más ágil, controlado y sostenible dentro de la gestión de sistemas de información reduciendo los cuellos

de botella en los flujos de trabajo e incrementando la capacidad de respuesta operativa [5].

1.3 Objetivos.

1.3.1 Objetivo general

Desarrollar una solución automatizada para el despliegue de microservicios en ambientes de prueba, orientada a

reducir los tiempos operativos y optimizar los recursos técnicos en empresas de telecomunicaciones, mediante el

uso de herramientas de automatización e integración continua, con el fin de mejorar la eficiencia y sostenibilidad

en la gestión de sistemas de información.

1.3.2 Objetivos específicos

18

1. Analizar la situación actual del proceso de despliegue de ambientes de prueba, identificando tiempos,

recursos involucrados, herramientas utilizadas y los principales cuellos de botella en el entorno operativo

de QA Desarrollar el control proporcional integral… (Ingeniería en Electrónica y Automatización).

2. Identificar las oportunidades de mejora en la gestión del proceso de preparación de ambientes, utilizando

la situación actual del proceso considerando la carga operativa del personal de despliegue, la arquitectura

de microservicios y la demanda de ambientes simultáneos.

3. Diseñar una arquitectura automatizada y adaptable, mediante la integración de herramientas utilizadas

dentro de la organización y orientadas a reducir el esfuerzo manual y permitir el despliegue eficiente de

ambientes de prueba bajo demanda.

4. Evaluar un prototipo funcional de la arquitectura propuesta, en el diseño y que permita a los usuarios del

área de QA gestionar de forma autónoma el despliegue parcial o completo de microservicios, con base

en las necesidades de cada proyecto.

1.4 Marco teórico

1.4.1 Despliegue de software en entornos empresariales

Ciclo de vida del software

El ciclo de vida de software (Software Development Life Cycle, SDLC) es un modelo estructurado que define las

fases necesarias para el desarrollo, implementación y mantenimiento de sistemas informáticos. Este concepto ha

sido aplicado en la industria de software para estructurar, planificar y controlar el proceso de desarrollo, con el

objetivo de asegurar consistencia y trazabilidad en los proyectos informáticos [6].

Las fases clásicas del SDLC son: análisis de requerimientos, diseño del sistema, implementación, pruebas,

despliegue y mantenimiento. Estas etapas han sido reconocidas como practicas esenciales en el desarrollo del

software, sin importar el modelo utilizado (cascada, iterativo, ágil, espiral entre otros). [7]

19

Figura 1. Ciclo de Vida de Software

Fuente: https://www.linkedin.com/pulse/modelos-del-ciclo-de-vida-software-daniel-hernandez/

En entornos empresariales con arquitecturas distribuidas, como los microservicios, se ha documentado que la

integración de automatización y monitoreo dentro del ciclo de vida del software ayuda a mejorar la confiabilidad

del sistema. Waseem et al. argumenta que, para mantener la estabilidad operativa en este tipo de entornos, es

fundamental incorporar prácticas de verificación, diseño observable y despliegue automatizado desde las primeras

fases del SDLC [8].

Etapas del despliegue de software

El despliegue de software es el proceso mediante el cual una aplicación es trasladada desde un entorno de

desarrollo o integración hacia un entorno de producción o prueba. Este proceso está compuesto de fases que están

sujetas a políticas de control de versiones, integración continua y gestión de artefactos, factores clave para

garantizar la trazabilidad y reproducibilidad de los entornos de prueba [9].

En entornos con alta carga operativa, como el sector de telecomunicaciones, se ha evidenciado que la ausencia de

automatización en la etapa de despliegue genera cuellos de botella significativos. Agrawal et al. Identifican que

los mayores retrasos operativos ocurren durante las etapas de configuración manual y validación, proponiendo

como solución la incorporación de pipelines de entrega continua y herramientas de infraestructura como código

(IaC) [10].

20

Figura 2. Despliegue de Software

Fuente : https://medium.com/devops-dudes/tagged/deployment-automation

El proceso de despliegue puede dividirse en varias etapas estructuradas que permiten una transición controlada y

segura, según Humble y Farley [11], estas etapas incluyen:

• Planificación del despliegue: definición de la estrategia, recursos, ventanas de mantenimiento,

mecanismos de reversión y métricas de éxito.

• Preparación del entorno: provisión de infraestructura y configuración del entorno, ya sea de forma manual

o automatizada.

• Empaquetado del software: compilación, versionado y almacenamiento del artefacto en un repositorio de

gestión como JFrog Artifactory o Nexus.

• Despliegue: traslado e instalación del artefacto en el entorno de destino, mediante procesos automatizados

o manuales.

• Verificación post-despliegue: ejecución de pruebas básicas, validación de servicios y monitoreo del

sistema.

• Documentación y retroalimentación: registro de resultados, recopilación de observaciones y

retroalimentación para procesos futuros.

Ambientes tecnológicos

Los ambientes tecnológicos son entornos controlados y configurables que permiten ejecutar, validar y mantener

aplicaciones de software a lo largo de su ciclo de vida. Estos ambientes pueden ser físicos o virtuales y su correcta

definición es esencial para garantizar la calidad y estabilidad del sistema desplegado [12].

En muchas definiciones sobre los ambientes tecnológicos se identifica tres tipos principales de ambientes:

desarrollo, pruebas (QA) y producción. Cada ambiente cumple con una función específica dentro del proceso de

entrega de software. En contextos empresariales donde se trabaja con arquitecturas de microservicios, los

21

ambientes deben ser capaces de soportar múltiples componentes distribuidos, configuraciones dinámicas, y un alto

grado de automatización para facilitar la integración y el despliegue continuo.

La estandarización de ambientes tecnológicos es una práctica recomendada para mitigar inconsistencias entre

entornos, especialmente en procesos de validación funcional. Waseem et al. afirman que la falta de consistencia

entre los entornos de prueba y producción representa una de las principales fuentes de errores en sistemas

distribuidos [13].

Figura 3. Ambientes Tecnológicos

Fuente: https://www.3csoftware.com/impactecs-in-depth-comparing-models-and-migrating-items-between-models/

Retos comunes en el despliegue

El despliegue de software es una de la fase crítica en el ciclo de vida del desarrollo, especialmente en sistemas

empresariales con arquitecturas distribuidas. Esta etapa enfrenta diversos retos técnicos y operativos que pueden

afectar la calidad del sistema, el tiempo de entrega y la continuidad de los servicios. Entre los principales desafíos

se encuentran: la complejidad en la gestión de dependencias, la falta de automatización, la inconsistencia entre

entornos y los errores derivados de configuraciones manuales [14].

Los errores de despliegue suelen originarse por diferencias entre los entornos de prueba y producción, así como

por la ausencia de mecanismos de monitoreo y validación continua. Además, existe la necesidad de estandarizar

los procesos de despliegue para evitar inconsistencias y reducir el riesgo operativo.

Otro reto frecuente son los cuellos de botella operativos estos se presentan cuando los procesos de despliegue

dependen excesivamente de la intervención manual, lo cual genera demoras y sobrecarga en equipos técnicos,

especialmente en empresas con alta demanda de ambientes de prueba.

22

1.4.2 Arquitectura de microservicios

Comparación entre arquitecturas

Las arquitecturas de software definen la forma en que se estructuran, desarrollan y despliegan las aplicaciones. Y

se destacan dos enfoques para la construcción de sistemas empresariales: la arquitectura monolítica y la

arquitectura de microservicios. Cada una presenta ventajas y limitaciones que han sido ampliamente analizadas en

función del tipo de sistema, el volumen de usuarios y la frecuencia de cambios funcionales [15].

La arquitectura monolítica centraliza todos los componentes de una aplicación en un único paquete de despliegue.

Esto implica que cualquier modificación, incluso menor, requiere reconstruir y volver a desplegar todo el sistema.

Este modelo puede ser adecuado en proyectos pequeños o de baja complejidad, pero en entornos con alta demanda

operativa puede derivar en problemas de escalabilidad, acoplamiento excesivo y dificultad de mantenimiento [16].

La arquitectura de microservicios organiza el sistema como un conjunto de servicios independientes que se

comunican entre sí mediante interfaces bien definidas. Este enfoque facilita la implementación de despliegues

autónomos y escalabilidad horizontal. Waseem et al. señalan que esta separación de responsabilidades permite

gestionar mejor los errores, realizar pruebas aisladas y responder de forma más eficiente ante la evolución de los

requisitos [17].

Figura 4. Arquitectura de Microservicio

Fuente: https://ed.team/blog/que-es-y-para-que-sirve-la-arquitectura-de-microservicios

Ventajas de los microservicios

Uno de los beneficios fundamentales de los microservicios es la escalabilidad individualizada. Cada servicio puede

ser escalado de forma independiente en función de su demanda, lo que permite optimizar el uso de recursos y

adaptarse eficientemente a cargas variables. Taibi et al. sostienen que esta capacidad de escalado granular resulta

23

especialmente útil en entornos con alta variabilidad operativa, como los sistemas empresariales de

telecomunicaciones [18].

Otra ventaja es la facilidad de mantenimiento y actualización de servicios. Al estar desacoplados, los

microservicios permiten aplicar cambios en un componente sin afectar el resto del sistema. Waseem et al. resaltan

que esta propiedad facilita la implementación de procesos de integración y despliegue continuo (CI/CD), así como

la automatización de pruebas en entornos de validación [19].

Además, la arquitectura de microservicios permite una adopción progresiva. A diferencia de modelos que

requieren una reestructuración completa, los microservicios pueden ser introducidos de forma gradual, facilitando

su incorporación en sistemas legados sin afectar su operación continua [20].

Desafíos de validación e integración

Uno de los principales retos es la complejidad en las pruebas de integración, ya que los microservicios dependen

de múltiples componentes desplegados de forma concurrente. Según Smith et al., la verificación funcional en

entornos distribuidos requiere configurar ambientes de prueba realistas, reproducibles y sincronizados, lo que

representa un desafío logístico y técnico para los equipos de calidad [21].

Además, los microservicios suelen tener interacciones no determinísticas debido al uso de colas, eventos, APIs

externas y balanceadores de carga. Esto dificulta la aplicación de pruebas tradicionales y exige estrategias como

pruebas de contrato, pruebas de componentes aislados y pruebas end-to-end coordinadas mediante herramientas

de orquestación [22].

Los microservicios presentan un reto adicional relacionado con la trazabilidad de fallos durante las pruebas. La

naturaleza distribuida del sistema complica la recolección de logs, métricas y eventos relevantes para el diagnóstico

de errores. En este contexto, es fundamental contar con soluciones de observabilidad que integren trazas

distribuidas, monitoreo de servicios y análisis de dependencias para facilitar la depuración de fallos complejos

[23].

1.4.3 Automatización del despliegue de software

Cultura DevOps

En los últimos años, la adopción del enfoque DevOps ha transformado los procesos tradicionales de desarrollo y

operaciones, fomentando la automatización, la colaboración y la entrega continua de software. DevOps se ha

consolidado como un modelo cultural y técnico que busca la integración fluida entre los equipos de desarrollo

(Dev) y operaciones (Ops), con el objetivo de mejorar la calidad, velocidad y confiabilidad del ciclo de vida del

software [24].

24

DevOps promueve prácticas como la integración continua, la entrega continua (CI/CD) y el monitoreo proactivo.

Estas prácticas permiten automatizar el ciclo de vida del software, desde la compilación hasta el despliegue en

distintos entornos, garantizando calidad y eficiencia en cada etapa del proceso [25].

Figura 5. DevOps

Fuente: https://dev.to/emminex/what-is-devops-7f0

En organizaciones con alta demanda operativa, como las empresas de telecomunicaciones, la automatización del

despliegue se convierte en un componente esencial para afrontar la complejidad y el dinamismo de los entornos

tecnológicos. La ejecución manual de estas tareas resulta costosa, con altos tiempos de ejecución y propensa a

errores, lo cual puede impactar negativamente en la estabilidad de los servicios. Por ello, se ha demostrado que la

adopción de pipelines automatizados de despliegue contribuye a una mayor agilidad operativa, minimización de

fallos humanos y reducción de tiempos de entrega [26].

Integración y entrega continua (CI/CD)

La automatización del despliegue de software ha sido impulsada por la necesidad de acelerar el ciclo de desarrollo

de software y aumentar la confiabilidad en la entrega de aplicaciones. Las prácticas de Integración Continua

(Continuous Integration, CI) y Entrega Continua (Continuous Delivery, CD) se han consolidado como pilares

fundamentales para garantizar la calidad y consistencia del software en todos sus ambientes tecnológicos como el

desarrollo prueba y producción.

25

Figura 6. CI/CD

Fuente: https://www.linkedin.com/pulse/devops-qu%C3%A9-son-vs-sysadmin-rodrigo-marti-pascual/

La integración continua permite fusionar de manera frecuente los cambios de código realizados por diferentes

desarrolladores en un repositorio compartido, desencadenando automáticamente la ejecución de pruebas unitarias

y análisis de calidad. Este proceso busca detectar errores tempranamente y reducir los conflictos de integración. Y

la entrega continua amplía este enfoque automatizando el despliegue del software en entornos controlados,

permitiendo su liberación de forma rápida y segura siempre que se cumplan los criterios de calidad definidos [27].

En arquitecturas como los microservicios la implementación de pipelines CI/CD permite desplegar y probar cada

servicio de manera independiente, manteniendo la coherencia entre versiones y facilitando el aislamiento de

errores. H. Shafiq indica que la adopción de CI/CD en entornos distribuidos mejora la eficiencia operativa, reduce

los tiempos de ciclo y refuerza la trazabilidad de los cambios en empresas con alta carga tecnológica, como las del

sector de telecomunicaciones [28].

Herramientas de soporte

La automatización del despliegue de software se fundamenta en el uso de herramientas que permiten ejecutar

procesos complejos de manera repetible, eficiente y controlada. Estas herramientas forman el núcleo de los

pipelines de CI/CD y están diseñadas para orquestar tareas de construcción, prueba, integración, empaquetado y

despliegue de aplicaciones en múltiples entornos.

Entre las plataformas de automatización más empleadas se encuentran Jenkins, GitLab CI/CD, GitHub Actions y

Azure DevOps. Estas herramientas permiten definir flujos de trabajo automatizados que integran las distintas fases

26

del ciclo de vida del software. Su capacidad para integrarse con sistemas de control de versiones, gestores de

artefactos, plataformas en la nube y soluciones de monitoreo las convierte en componentes esenciales en entornos

de entrega continua [29].

En los microservicios el despliegue utiliza herramientas de conterenización como Docker, que encapsula cada

servicio junto con sus dependencias, garantizando la portabilidad entre entornos. Para orquestar estos

contenedores, Kubernetes permite gestionar la distribución de cargas, la resiliencia de los servicios y la

escalabilidad automática. Estas tecnologías habilita despliegues segmentados y actualizaciones sin interrupciones,

características fundamentales en sistemas distribuidos [30].

Figura 7. Docker and Kubernets

Fuente: https://sonamthakur7172.medium.com/microservices-design-principle-design-patterns-cd14321c61fd

La integración de herramientas CI/CD, contenedores y orquestadores conforma un ecosistema robusto para

automatizar el despliegue de microservicios. Esta arquitectura de soporte es fundamental para garantizar la

eficiencia operativa, la reproducibilidad de los entornos de prueba y la calidad del software en sectores con alta

demanda tecnológica.

Metricas de desempeño.

La evaluación del desempeño en procesos automatizados de despliegue de software es fundamental para medir la

eficiencia, calidad y confiabilidad de los sistemas implementados. Las métricas permiten a los equipos de

ingeniería identificar cuellos de botella, validar mejoras continuas y tomar decisiones informadas respecto al

diseño y operación de pipelines de despliegue.

A nivel general, las prácticas de DevOps han promovido el uso de indicadores clave como la frecuencia de

despliegue (Deployment Frequency), el tiempo medio de entrega (Lead Time for Changes), la tasa de fallos en

27

cambios (Change Failure Rate) y el tiempo medio de recuperación (Time to Restore Service). Estas métricas han

sido reconocidas como esenciales para evaluar el rendimiento de los equipos de desarrollo y operaciones en

entornos automatizados y altamente dinámicos [31].

Figura 8. Metricas DORA

Fuente: https://medium.com/gits-apps-insight/dora-metrics-how-to-measure-software-delivery-performance-e890ec2011c0

En las empresas de telecomunicaciones con alta carga operativa, estas métricas permiten gestionar entornos de

prueba de forma más efectiva, optimizando la disponibilidad de recursos, reduciendo la intervención manual y

garantizando la trazabilidad de los resultados. Además, la recopilación y análisis sistemático de estas métricas,

mediante herramientas de observabilidad e integración continua, contribuye a mejorar la trazabilidad de los

cambios y a facilitar auditorías técnicas en organizaciones con altos estándares de cumplimiento y disponibilidad.

1.4.4 Herramientas de automatización y orquestación de flujos

N8n

La automatización de flujos de trabajo es una práctica adoptada en entornos de desarrollo y operaciones, ya que

permite reducir el esfuerzo manual, disminuir errores operativos y mejorar la eficiencia en tareas repetitivas y

críticas para el ciclo de vida del software. Las herramientas de orquestación se emplean para coordinar y ejecutar

procesos distribuidos mediante flujos lógicos, integrando distintos servicios, aplicaciones y plataformas.

n8n se ha consolidado como una herramienta de automatización de código abierto que permite crear flujos de

trabajo automatizados a través de una interfaz visual basada en nodos. n8n ofrece un modelo de automatización

autoalojado y altamente personalizable, lo cual favorece su adopción en entornos corporativos con restricciones

de seguridad o necesidades específicas de integración. Esta herramienta admite la conexión con más de 200

28

servicios a través de conectores predefinidos, incluyendo bases de datos, APIs REST, herramientas DevOps y

plataformas de mensajería [32].

Figura 9. n8n

Fuente: https://www.linkedin.com/posts/ai-insider-intel_automation-ai-devtools-activity-7310724103680720896-93Yg/

Además, n8n soporta tanto ejecuciones programadas como disparadores por eventos, lo cual resulta adecuado para

sistemas donde se requiere una reacción automatizada ante cambios en el estado de los servicios, como

actualizaciones de versiones o resultados de pruebas automatizadas. Su uso en entornos de telecomunicaciones ha

sido reportado en proyectos orientados a la automatización de la gestión de incidencias y del monitoreo de

aplicaciones distribuidas [33].

Telegram como canal de integración

La integración de canales de mensajería como Telegram ha adquirido relevancia debido a su arquitectura basada

en APIs, su disponibilidad multiplataforma y su capacidad de operar en tiempo real, lo que facilita su adopción

como medio de interacción entre sistemas automatizados y operadores humanos.

Telegram ofrece una API robusta para la creación de bots, que permite ejecutar comandos, enviar notificaciones y

consultar datos en tiempo real, integrándose eficientemente con flujos de trabajo automatizados. Esta capacidad

ha sido aprovechada en la automatización de pipelines de desarrollo y despliegue, así como en la supervisión de

entornos de prueba y producción, donde las alertas instantáneas y la interacción directa contribuyen a reducir el

tiempo de respuesta ante fallos o eventos críticos [34].

29

Figura 10. Telegram

Fuente: https://web.telegram.org/a/

Telegram, cuando se integran con herramientas de automatización como n8n, Jenkins o GitLab CI/CD, permiten

mejorar la visibilidad de los procesos y habilitar una comunicación bidireccional automatizada, facilitando

acciones remotas como la aprobación de despliegues, la ejecución de tareas o la recepción de informes sobre el

estado de los sistemas [35]. Este tipo de integración es especialmente valiosa en organizaciones con alta carga

operativa, donde el monitoreo constante de múltiples servicios distribuidos requiere canales de notificación

eficaces y en tiempo real.

Orquestación de procesos

La orquestación de procesos es un componente esencial dentro de los entornos de automatización moderna, ya que

permite coordinar de forma estructurada y lógica la ejecución de tareas distribuidas, particularmente en

arquitecturas basadas en microservicios. La orquestación centraliza el control del flujo, facilitando la supervisión

y la recuperación ante errores en contextos complejos como los despliegues automatizados [36].

En el ámbito de la ingeniería de software, se han desarrollado diversas plataformas para la orquestación de flujos

de trabajo que permiten integrar múltiples herramientas, servicios y procesos en pipelines automatizados.

Herramientas como Apache Airflow, Argo Workflows y n8n han sido utilizadas ampliamente para diseñar,

ejecutar y monitorear procesos de orquestación, proporcionando funcionalidades como el manejo de dependencias,

ejecución paralela y lógica condicional.

30

Figura 11. Orchestration tools

Fuente: https://medium.com/@sumitmudliar/argo-workflow-vs-apache-airflow-0325158536e5

En entornos de telecomunicaciones con alta carga operativa, la orquestación ha sido empleada para optimizar

tareas críticas como el aprovisionamiento de ambientes de prueba, el despliegue continuo de microservicios y la

notificación de eventos en tiempo real. La implementación de orquestadores visuales o declarativos contribuye

significativamente a reducir la complejidad operativa, mejorar la trazabilidad y garantizar la consistencia de los

entornos de prueba [37].

Herramientas open source en entornos DevOps

El uso de herramientas open source ha adquirido una relevancia estratégica, especialmente en organizaciones que

buscan agilidad, escalabilidad y control sobre sus flujos de trabajo. Estas herramientas permiten automatizar y

orquestar procesos de desarrollo, pruebas y despliegue de manera integral, integrando funcionalidades clave como

integración continua, entrega continua y monitoreo.

Proyectos como Jenkins, GitLab CI, Argo CD, y Spinnaker destacan por su adopción generalizada y sus

capacidades para gestionar pipelines de automatización en arquitecturas basadas en microservicios. Estas

soluciones permiten construir flujos complejos de despliegue, reducir errores humanos, mejorar la trazabilidad y

disminuir los tiempos de entrega [38].

31

Figura 12. Open Source

Fuente: https://directortic.es/estrategia-it/las-ventajas-del-open-source-la-empresa-2017022117457.htm

El uso de herramientas de código abierto también responde a la necesidad de control sobre la infraestructura

tecnológica en sectores de telecomunicaciones, donde los sistemas críticos requieren una automatización confiable

y transparente. Según estudios, la combinación de estas herramientas con plataformas de contenedores como

Kubernetes permite a las organizaciones escalar sus aplicaciones y gestionar microservicios de forma eficiente

[39].

CAPÍTULO 2

2. Metodología.

La metodología de la investigación se basó en un enfoque aplicado, con diseño no experimental y corte transversal.

Se empleó una metodología descriptiva y tecnológica, orientada a identificar las oportunidades de mejora en el

proceso de despliegue de ambientes de prueba, diseñar e implementar una solución automatizada y evaluar su

impacto en términos de tiempo de despliegue y carga operativa. El estudio se basó únicamente en métodos

cuantitativos, utilizando encuestas estructuradas con escala de Likert y preguntas cerradas. Los resultados fueron

analizados mediante estadísticas descriptivas, como el cálculo de frecuencias y porcentajes, mediante la

comparación de indicadores antes y después del desarrollo del prototipo, lo que permitió evaluar los cambios

percibidos en el proceso de despliegue.

Antes de definir la arquitectura y seleccionar las herramientas tecnológicas, se realizó un diagnóstico mediante

encuestas dirigidas al equipo técnico, lo cual permitió identificar los principales desafíos del proceso actual. Entre

los hallazgos más relevantes, se observó que el 57.9 % de los encuestados indicó que el despliegue completo de

un ambiente de prueba tomaba en promedio 3 días, mientras que el 31.6 % reportó 2 días. Además, más del 70 %

manifestó que el nivel de carga operativa era de moderada a alta complejidad. También se evidenció que los errores

durante los despliegues eran frecuentes y que la satisfacción con el proceso era limitada, con una mayoría

puntuando con apenas 3 sobre 5. Finalmente, se identificó que el 79 % experimentó retrasos en los cronogramas

por el tiempo requerido para completar los despliegues.

32

Estos resultados sirvieron como base para justificar la necesidad de una solución integral que permitiera

automatizar tareas críticas del proceso, reducir los tiempos de respuesta y otorgar mayor autonomía al equipo de

calidad. A partir de esta evaluación inicial se diseñó la arquitectura propuesta

Nivel de Carga Operativa:

Figura 13. Carga Operativa

Frecuencia de errores en el proceso de despliegue:

Figura 14. Frecuencia de Errores

Tiempo promedio en levantar ambiente de pruebas completos en días:

33

Figura 15. Tiempo promedio

2.1 Enfoque metodológico y arquitectura de la solución propuesta

El enfoque metodológico se centró en la identificación, selección e integración de herramientas tecnológicas que

permitieran automatizar el proceso de despliegue de ambientes de prueba. A partir de un análisis del proceso actual

y de los principales puntos de mejora, se diseñó una arquitectura integral basada en componentes de código abierto,

con el objetivo de reducir los tiempos de despliegue, disminuir la carga operativa y otorgar mayor autonomía al

equipo de calidad.

Para seleccionar las herramientas que conformarían la solución, se aplicó una matriz de decisión ponderada

enfocada en la herramienta de orquestación de flujos automatizados (workflow engine), comparando N8N, GitHub

Actions y Jenkins. Los criterios considerados fueron: integración con APIs, curva de aprendizaje, funcionalidades

nativas, escalabilidad, soporte y comunidad. Esta evaluación fue necesaria para validar que su elección seguía

siendo la más adecuada frente a alternativas actuales del mercado.

A continuación, se presenta el resultado de la matriz de decisión ponderada:

Tabla I. Ponderación de herramientas de orquestación

Criterio Peso N8N Jenkins GitHub Actions

Integración con APIs 25% 5 3 5
Curva de aprendizaje 20% 5 2 3

Funcionalidades nativas 20% 5 4 4

Escalabilidad 20% 4 5 5
Soporte y comunidad 15% 4 5 5

Puntaje total 4.65 3.55 4.55

34

Los resultados confirmaron que N8N destacaba por su facilidad de integración, su bajo nivel de complejidad para

los usuarios (curva de aprendizaje baja) y sus potentes funcionalidades nativas para la gestión de flujos, por lo que

fue ratificada como la herramienta principal para el diseño de la solución.

Además de N8N, se incorporaron otros componentes tecnológicos, cada uno seleccionado por su pertinencia

técnica y por estar ya integrados en el ecosistema de la empresa:

GitLab: Sistema de control de versiones y plataforma de CI/CD ampliamente utilizada en la organización,

permitiendo una integración fluida con los repositorios de código y pipelines de despliegue.

Redis: Base de datos en memoria elegida por su alta velocidad de acceso, ideal para almacenar información

reutilizable en los flujos de despliegue y facilitar tiempos de respuesta óptimos.

Telegram: Plataforma de mensajería seleccionada como interfaz operativa por su facilidad de uso, su integración

con APIs y su uso extendido dentro de la empresa.

OpenShift: Plataforma de orquestación de contenedores, que permite la gestión escalable y automatizada de

microservicios y front-end en los ambientes de prueba.

Dado que la solución propuesta combinaba múltiples componentes, se procedió a realizar una evaluación integral

de la arquitectura, con el fin de describir sus principales características técnicas y operativas, proporcionando una

visión completa del sistema en su conjunto. Para ello, se elaboró un cuadro de síntesis que resume los atributos

más relevantes de la arquitectura diseñada.

Tabla II. Resumen de atributos de arquitectura diseñada

Criterio Solución propuesta (N8N, GitLab, Redis, Telegram, OpenShift)

Arquitectura integrada Sí
Flujo automatizado Completo y controlado por eventos

Persistencia de datos Redis (rápida, en memoria)

Comunicación APIs + Telegram
Curva de aprendizaje Media-Baja

Escalabilidad Alta (contenedores + OpenShift)

Costos Gratuito/Open Source
Comunidad y soporte Alta (GitLab, Telegram, OpenShift)

La combinación de estos componentes permitió diseñar una arquitectura modular, escalable y replicable, que

optimiza los tiempos de despliegue y reduce la carga operativa. La solución integral propuesta demostró ser

adecuada para abordar los retos identificados en el proceso actual de preparación de ambientes de prueba.

35

2.2 Diseño conceptual de la solución

Basándose en el enfoque metodológico y en la arquitectura integral definida en la sección anterior, se procedió a

la elaboración del diseño conceptual de la solución automatizada de despliegue de ambientes de prueba. Este

diseño tuvo como propósito establecer los componentes fundamentales, sus interacciones y los flujos lógicos

necesarios para automatizar tareas que anteriormente eran ejecutadas de forma manual por el personal de

despliegue.

El diseño conceptual se centró en la construcción de un sistema modular, orientado a eventos y adaptable a

diferentes entornos de prueba. Para ello, se definieron los siguientes elementos clave:

Flujos de automatización (workflows): Fueron diseñados en N8N como nodos conectados entre sí, siguiendo

una lógica condicional basada en comandos recibidos desde Telegram. Cada flujo representó una tarea

automatizada específica, como consulta de datos parametrizados en Redis, ejecución de despliegues vía GitLab

CI/CD y notificación de resultados.

Base de validación dinámica: Redis se utilizó como base de datos en memoria para almacenar temporalmente

información clave relacionada con la ejecución de los flujos. Su alta velocidad de lectura y escritura permitió

obtener respuestas inmediatas y eficientes. los cuales eran consultados por todos los flujos relacionados,

permitiendo así reutilizar información y asegurar coherencia cuando diferentes usuarios solicitaban el despliegue

de un mismo microservicio.

Interfaz de usuario vía Telegram: Se implementó un bot de Telegram que permitió la comunicación directa entre

los usuarios y el sistema. A través de comandos abreviados y mensajes en lenguaje natural, los ingenieros de

calidad pudieron interactuar con el sistema sin necesidad de acceder a plataformas técnicas o portales internos.

Orquestación del despliegue: GitLab se empleó como repositorio de código y motor de ejecución para los

pipelines de despliegue. Cada solicitud activada desde N8N generó una llamada al pipeline correspondiente,

pasando variables para el correcto despliegue en OpenShift.

Gestión de contenedores en OpenShift: Finalmente, el despliegue de microservicios y front-end se llevó a cabo

en la plataforma OpenShift mediante llamadas a su API REST, lo que permitió una integración directa y segura

para el despliegue, seguimiento y cierre de pods en el entorno de prueba.

Como resultado, el diseño conceptual permitió construir un sistema centrado en el usuario final (QA, despliegue),

con mínima intervención manual, alta reutilización y orientado a mejorar la eficiencia operativa. Además, se

consideraron desde el inicio aspectos como la trazabilidad, el manejo de errores, los tiempos de espera, todo ello

documentado para facilitar el mantenimiento y la escalabilidad del modelo.

36

Figura 16. Diagrama de automatización del despliegue en ambientes de prueba.

2.3 Diseño detallado del sistema automatizado

Una vez definido el diseño conceptual, se procedió a estructurar el diseño detallado del sistema automatizado de

despliegue. Esta fase comprendió la definición técnica minuciosa de cada componente, los parámetros de

ejecución, la integración entre herramientas y las validaciones necesarias para garantizar un despliegue total o

parcial eficiente y seguro.

El sistema se diseñó bajo una arquitectura distribuida, basada en contenedores, e incluyó los siguientes módulos

técnicos:

Flujos de trabajo en N8N: Se implementaron flujos de trabajo orientados a eventos, donde cada ejecución

representó una operación automatizada iniciada por comandos estructurados enviados desde Telegram. Los

37

primeros nodos de cada flujo fueron responsables de recuperar información de configuración desde Redis,

necesaria para continuar con la ejecución de tareas como validaciones de datos para el despliegue.

A lo largo del flujo, se definieron nodos condicionales que permitieron bifurcar la ejecución de acuerdo con al tipo

de componente (microservicio o front-end). Estas bifurcaciones activaban subflujos que incluían la generación

dinámica de archivos de propiedades, bloqueo temporal de ejecuciones paralelas, y llamadas a pipelines definidos

en GitLab CI/CD para realizar el despliegue correspondiente.

Integración con Redis: Se diseñaron estructuras clave-valor que almacenaron datos relacionados con cada flujo.

Redis actuó como memoria intermedia para validar las condiciones requeridas antes de ejecutar un proceso. Por

ejemplo, se verificó si los campos necesarios (CPU, Memoria y Réplicas) estaban presentes antes de proceder al

despliegue.

Figura 17. Integración con redis

Interacción con Telegram: A través de un bot configurado, se habilitó la ejecución de comandos estructurados

enviados directamente desde Telegram. El usuario QA/Despliegue puede enviar un bloque con parámetros como

usuario, nombre_ms, qa, bd_url y kafka_ip, los cuales son interpretados automáticamente por los flujos definidos

en N8N.

Por ejemplo, al enviar la información, el bot procesa los valores recibidos y ejecuta un flujo de despliegue

específico en OCP (OpenShift), sin que el usuario deba acceder directamente a la infraestructura ni realizar

acciones técnicas manuales.

Esta integración permite que el equipo QA realice despliegues, sean totales o parciales y sin necesidad de

conocimientos técnicos avanzados, optimizando los tiempos operativos y reduciendo errores humanos.

38

Figura 18. Integracion con telegram

Automatización de despliegue con GitLab CI/CD: Se construyó una llamada al pipeline correspondiente en

GitLab. El sistema utilizó la API de GitLab para disparar la ejecución del pipeline, pasando como variables

dinámicas los datos obtenidos desde Redis y el flujo de N8N. Se aseguraron validaciones previas para evitar

ejecuciones duplicadas y controlar condiciones de error.

Figura 19. Automatización de despliegue con GitLab CI/CD

Despliegue de contenedores en OpenShift: Los pipelines de GitLab incluyeron scripts que interactuaron

directamente con OpenShift para desplegar contenedores de microservicios y front-end. La estructura del script

permitió escalar pods, revisar logs en caso de error y confirmar el estado de los despliegues.

39

Figura 20. Despliegue de contenedores en OpenShift

Lógica condicional y control de errores: Todos los flujos de N8N incluyeron nodos para verificar el estado de

la respuesta de cada API utilizada. En caso de error, se enviaron mensajes personalizados al canal de Telegram,

explicando el motivo de la falla y sugiriendo acciones correctivas.

Figura 21. Lógica condicional y control de errores

Auditoría y trazabilidad: Cada ejecución quedó registrada tanto en N8N como en GitLab, permitiendo

reconstruir el historial completo de acciones. Se utilizó un identificador único por flujo para facilitar el seguimiento

y análisis posterior. Este enfoque aseguró transparencia y capacidad de diagnóstico frente a incidencias.

40

Figura 22. Auditoría y trazabilidad 1

Figura 23. Auditoría y trazabilidad 2

El diseño detallado permitió construir una solución robusta, reutilizable y extensible, adaptable a otros entornos o

proyectos similares. La combinación de herramientas de código abierto, flujos condicionales y validaciones

dinámicas proporcionó una base sólida para escalar el sistema y mantenerlo de manera sostenible.

2.4 Participantes del estudio

El estudio contó con la participación directa de profesionales del área de calidad y despliegue de software de una

organización dedicada a servicios tecnológicos. En total, se involucraron 29 personas, distribuidas en 26 ingenieros

de calidad (QA) y 3 ingenieros de despliegue, quienes formaron parte activa del ciclo de vida de los ambientes de

prueba.

Los participantes fueron seleccionados por su experiencia previa en procesos manuales de despliegue y pruebas

funcionales, así como por su involucramiento frecuente en proyectos que requerían levantar ambientes compuestos

por múltiples microservicios y front-end. Esta experiencia fue clave para obtener opiniones fundadas sobre los

tiempos, carga operativa y dificultades técnicas antes y después del desarrollo del sistema automatizado.

La participación fue voluntaria y se garantizó el anonimato de las respuestas. Todos los ingenieros recibieron una

explicación clara sobre los objetivos del estudio y la utilidad de la información recopilada, la cual se enfocó en

validar la efectividad de la solución desarrollada.

Los roles dentro del equipo permitieron obtener una visión integral: los QA aportaron información sobre el proceso

de solicitud, pruebas y validaciones de ambientes, mientras que los ingenieros de despliegue brindaron datos sobre

la configuración, ejecución y seguimiento de los procesos manuales y automatizados. Esta diversidad de puntos

de vista permitió evaluar de manera más objetiva el impacto del sistema automatizado en todo el flujo de trabajo.

41

2.5 Recolección de datos

La recolección de datos se llevó a cabo durante el proceso de desarrollo del prototipo de automatización de

ambientes de prueba. Para ello, se elaboró un instrumento en forma de encuesta estructurada. La encuesta fue

diseñada para capturar información antes y después de la puesta en marcha de la solución automatizada,

permitiendo así una comparación directa sobre la experiencia y percepción de los usuarios.

Las preguntas cuantitativas utilizaron una escala tipo Likert de 5 puntos, facilitando la medición de percepciones

sobre tiempo de despliegue, carga operativa y facilidad de uso. Adicionalmente, se incluyeron preguntas abiertas

para obtener opiniones y observaciones cualitativas. El cuestionario aplicado se detalla en el Anexo 1.

2.6 Análisis de datos

El análisis de los datos se realizó una vez concluido el proceso de recolección de la información. Para el tratamiento

de los datos cuantitativos, se utilizaron métodos estadísticos descriptivos como el cálculo de promedios,

porcentajes y distribución de frecuencias. Estos resultados fueron representados visualmente mediante gráficos de

barras y gráficos circulares, lo cual facilitó la interpretación comparativa de las condiciones antes y después de la

automatización.

Se definieron dos variables principales que serán analizadas: el tiempo total de despliegue de ambientes de prueba

y la carga operativa percibida por los participantes. Las respuestas fueron clasificadas en función del tipo de

pregunta, y aquellas de naturaleza subjetiva fueron evaluadas utilizando una escala de Likert de 5 puntos,

permitiendo medir el grado de acuerdo de los encuestados con afirmaciones relacionadas con la eficiencia,

facilidad de uso y autonomía en los procesos.

En el caso de los datos cualitativos, se aplicó un análisis temático, el cual consistió en agrupar las respuestas

abiertas en categorías según patrones recurrentes identificados en los comentarios. Por ejemplo, varias respuestas

coincidieron en el tema "reducción de tiempos de espera para realizar pruebas", mientras que otras se agruparon

bajo el tema "menor dependencia del equipo de despliegue". Este agrupamiento permitió extraer conclusiones

significativas sobre la percepción del personal técnico respecto al impacto de la solución automatizada, tanto en

términos de productividad como de colaboración entre equipos.

2.7 Evaluación del prototipo funcional

La evaluación del prototipo funcional se llevó a cabo una vez desarrollada la solución automatizada basada en

N8N, Redis, GitLab CI/CD, y comandos de control a través de Telegram. Este prototipo permitió realizar

despliegues selectivos de microservicios y contenedores frontend en ambientes de prueba, simulando el flujo de

trabajo real que habitualmente es gestionado manualmente por los ingenieros de despliegue.

42

Para medir el impacto de la solución, se utilizaron dos enfoques complementarios: la comparación de indicadores

clave antes y después del desarrollo, y la percepción del personal técnico involucrado. Los indicadores evaluados

fueron el tiempo total de despliegue y la carga operativa relacionada con las tareas necesarias para poner en

funcionamiento un entorno de pruebas funcional.

El diseño del prototipo tuvo como objetivo reducir significativamente el tiempo de despliegue que actualmente

requiere entre 2 a 3 días, llevándolo a tiempos mínimos mediante automatización; así como disminuir la carga

operativa del equipo de despliegue. Estos impactos serán evaluados mediante el análisis de los datos recolectados,

utilizando encuestas estructuradas aplicadas a los participantes.

Además, se consideraron aspectos adicionales como la estabilidad del sistema, la facilidad de adopción, la

autonomía de los ingenieros de calidad (QA) para ejecutar ambientes bajo demanda, y la claridad en la

visualización de procesos. Los comentarios obtenidos durante la evaluación servirán como insumo para identificar

oportunidades de mejora y establecer lineamientos para una posible implementación a escala en otros proyectos o

departamentos de la organización.

2.8 Consideraciones éticas

Durante el desarrollo de esta investigación, se observaron principios éticos fundamentales que garantizaron el

respeto y la protección de los participantes y de la información recolectada. Se aseguró en todo momento la

voluntariedad de los participantes, quienes fueron informados previamente sobre los objetivos del estudio, el tipo

de información que se recabaría, y el uso exclusivo con fines académicos y de mejora interna de procesos.

Antes de aplicar las encuestas, se solicitó el consentimiento informado de cada participante, dejando en claro que

su participación era anónima, confidencial y que podían retirarse en cualquier momento sin consecuencias. Las

respuestas fueron almacenadas sin asociar datos personales ni laborales específicos, lo que permitió preservar la

privacidad de los colaboradores involucrados.

Asimismo, se evitó cualquier forma de presión jerárquica que pudiera influir en las respuestas del personal técnico.

Se promovió un ambiente neutral y seguro para expresar opiniones y percepciones sobre el sistema actual y el

prototipo automatizado propuesto.

Finalmente, se respetaron los principios de integridad académica, evitando el plagio, reportando fielmente los

resultados obtenidos, y citando adecuadamente todas las fuentes de información consultadas. Esta investigación

fue desarrollada bajo el compromiso de contribuir positivamente al entorno organizacional, sin afectar

negativamente a ninguna persona o área involucrada.

43

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

En este capítulo presentaremos los principales resultados esperados y evidencia de los avances alcanzados en el

desarrollo de la solución automatizada orientada a optimizar el proceso de despliegue de ambientes de prueba. La

propuesta se enfoca en reducir los tiempos de despliegue, disminuir la carga operativa del equipo técnico y mejorar

la autonomía del área de calidad.

3.1 Estado actual del desarrollo

Actualmente se ha desarrollado un prototipo funcional basado en una arquitectura distribuida compuesta por

herramientas como N8N, Redis, GitLab y Telegram. Este sistema permite ejecutar flujos automatizados mediante

comandos enviados desde Telegram, los cuales son interpretados por flujos configurados en N8N. Estos flujos

realizan validaciones previas, obtienen configuraciones y datos desde Redis y ejecutan pipelines de despliegue

definidos en GitLab CI/CD, lo que permite desplegar selectivamente microservicios y Front-end sobre entornos

gestionados por OpenShift.

3.2 Flujo representativo implementado

A continuación, se muestra un flujo representativo que integra los componentes claves de la solución:

1. El usuario QA envía un mensaje estructurado a través de Telegram.

2. N8N recibe el mensaje, valida los datos y consulta a la base Redis.

3. Según los valores recuperados, N8N activa condiciones y ejecuta acciones como:

a. Generar propiedades de despliegue.

b. Llamar al pipeline correspondiente en GitLab.

c. Despliegues en Openshift

d. Informar del resultado por Telegram.

Esta arquitectura ha demostrado un comportamiento estable en pruebas internas, permitiendo consolidar las

herramientas técnicas para su implementación.

3.3 Cumplimiento de Objetivos

A continuación, se describe el nivel de cumplimiento de los objetivos establecidos:

- Análisis del proceso actual: Se realizó mediante encuestas y revisión del flujo de trabajo actual, donde se

evidenció una carga operativa alta y tiempos prolongados de despliegue.

44

- Identificación de oportunidades de mejora: Se propuso una arquitectura modular que permite despliegues

selectivos y más rápidos, considerando la carga del equipo de despliegue.
- Diseño de una arquitectura automatizada: Se implementó una arquitectura automatizada, integrando

herramientas open source y logrando adaptabilidad a distintos tipos de proyectos (alto, medio, bajo).
- Evaluación funcional del prototipo: Basado a las encuestas obtenidas se ha logrado el objetivo.

3.3.1 Cuadro de complejidad y tiempo de despliegue

Esta clasificación permite visualizar cómo la automatización se adapta a distintos escenarios según el tamaño y la

exigencia del proyecto. Se utiliza como evidencia comparativa para validar que el nuevo enfoque mejora

significativamente los tiempos, que originalmente eran de 2 a 3 días. Además, sirve como sustento para el

cumplimiento de los objetivos específicos 2, 3 y 4. Especialmente en cuanto a eficiencia y reducción de carga.

Tabla III. Tiempos estimados de despliegue

Tipo de Proyecto Nº de Microservicios Tiempo estimado de despliegue

Alto 80 1 hora

Medio 50 35 minutos

Bajo 30 20 minutos

Con la nueva solución que incluye herramientas como n8n para la orquestación y el uso de OpenShift, el proceso

se reduce considerablemente en el caso de los proyectos más complejos, el tiempo estimado bajó a una hora. Esta

diferencia no solo aligera la carga del equipo, sino que también permite responder más rápido cuando hay varias

solicitudes en paralelo, algo muy común cuando varios QA están trabajando al mismo tiempo. Gracias a esta

mejora, se están cumpliendo los objetivos planteados, en especial los relacionados con reducir tiempos y hacer

más eficiente la gestión de ambientes. La tabla presentada sirve como respaldo de esta evolución y demuestra

cómo el sistema se adapta bien a proyectos de distintos tamaños.

La forma actual del despliegue se realiza en la modalidad Vertical, despliegue por capas o funcionalidades

específicas en orden jerárquico o de prioridad por los nodos creados en n8n.

3.3.2 Cuadro de carga operativa

Uno de los aspectos más relevantes que se evidenció durante este trabajo fue la carga operativa requerida para

desplegar ambientes de prueba antes y después de la automatización. Este análisis, además de ser técnico, nos

ayuda a entender cómo los cambios aplicados impactan en la eficiencia del proceso desde una perspectiva humana

y operativa. Antes de la automatización, desplegar un ambiente para proyectos complejos representaba una tarea

ardua, que demandaba mucho tiempo y la participación constante del personal de despliegue y QA. Por ejemplo,

los proyectos catalogados como “Altos” alcanzaban el nivel máximo de carga (5), reflejando el esfuerzo crítico

que se necesitaba para completar el flujo. Esta situación no solo consumía tiempo, sino que también elevaba el

45

riesgo de errores y cuellos de botella. Con la implementación de una arquitectura automatizada y flexible, esta

carga operativa disminuyó considerablemente. En proyectos de alta complejidad, el esfuerzo se redujo de 5 a 3, y

en los proyectos de tipo medio y bajo, los valores bajaron aún más, llegando incluso a 1 en el mejor de los casos.

Esto quiere decir que, hoy en día, gracias a la automatización y a herramientas como el orquestador n8n, el personal

puede enfocarse más en otras tareas como el análisis de calidad y pruebas. Esta mejora se alinea directamente con

el objetivo específico 2, que plantea la necesidad de identificar oportunidades de mejora en la preparación de

ambientes, especialmente en lo que se refiere a la carga operativa. También guarda estrecha relación con el objetivo

3, ya que demuestra que la arquitectura automatizada no solo funciona, sino que también permite una gestión más

eficiente con menor intervención humana.

Tabla IV. Comparativa de cargas operativa

Tipo de Proyecto Carga operativa antes (escala 1 a 5) Carga operativa después (escala 1 a 5)

Alto 5 3

Medio 4 2

Bajo 3 1

3.3.3 Cuadro de errores operativos

Antes de implementar la arquitectura automatizada, el proceso de despliegue presentaba una alta probabilidad de

fallos operativos. Era común enfrentar errores como seleccionar versiones incorrectas, ejecutar pipelines de forma

incompleta o tener fallas de configuración. Estos errores eran especialmente frecuentes en los proyectos más

complejos, donde la cantidad de microservicios y pasos a seguir elevaban el riesgo de equivocaciones humanas.

Con la automatización, este panorama cambió significativamente. Al incorporar validaciones automáticas y

establecer un flujo estandarizado en las tareas de despliegue, se redujo considerablemente la necesidad de

intervención manual. Este cambio trajo consigo una importante disminución en la frecuencia de errores, haciéndolo

evidente incluso en proyectos de alta exigencia. La tabla presentada refleja claramente esta evolución. Por ejemplo,

en los proyectos clasificados como “Altos”, los errores pasaron de ser de alta frecuencia a baja frecuencia. En los

de tipo “Medio”, se mantuvieron en niveles bajos, y en los proyectos “Bajos”, donde ya eran mínimos, la

automatización prácticamente eliminó los errores por completo. Este resultado no solo demuestra una mejora en

la confiabilidad del proceso, sino que también respalda el cumplimiento de los objetivos específicos 2 y 3, al

reducir la carga operativa y elevar la calidad del servicio. Además, fortalece el diseño de una arquitectura más

robusta, adaptable y menos propensa a errores humanos.

Tabla V. Errores operativos

Tipo de Proyecto Errores antes de automatización Errores con automatización

Alto Alta frecuencia Baja frecuencia

Medio Media frecuencia Baja frecuencia

46

Bajo Media-baja Mínima

3.4 Evidencias gráficas del flujo implementado

A continuación, se presentan capturas del flujo implementado en N8N, donde se evidencia la integración con

Redis, GitLab y Telegram.

Inicio del flujo automatizado desde Telegram: Donde se envía el mensaje estándar para el despliegue del

microservicio o los microservicios.

Figura 24. Evidencias gráficas del flujo implementado 1

Así mismo el Bot de telegram envía respuestas para validar información recibida y confirmación del despliegue.

Figura 25. Evidencias gráficas del flujo implementado 2

47

Figura 26. Evidencias gráficas del flujo implementado 3

Tiempo de despliegue del microservicio:

Figura 27. Evidencias gráficas del flujo implementado 4

Figura 28. Evidencias gráficas del flujo implementado 5

3.5 Limitaciones

Durante la implementación se han identificado algunas limitaciones que deben considerarse:

Nuevas formas de mantenimiento: Al incluir múltiples herramientas, se debe considerar una estrategia clara de

soporte y actualización.

Conectividad y permisos: Algunos procesos pueden depender de APIs externas, tokens o acceso a recursos

limitados por políticas internas de cada empresa.

Sobrecarga operativa: En situaciones donde múltiples usuarios QA ejecutan despliegues simultáneos, existe el

riesgo de sobrecargar los recursos del clúster de OpenShift (OCP). Esto puede provocar caídas generales que

afectan a todos los proyectos levantados, impactando directamente en la disponibilidad del entorno y el

rendimiento general del sistema.

48

Tiempos de despliegue variables: Dependiendo del tamaño o la complejidad del proyecto, el tiempo de despliegue

puede incrementarse considerablemente. Esto puede generar cuellos de botella cuando otros proyectos deben

esperar a que finalice un despliegue previo, afectando la eficiencia del flujo de trabajo en entornos con alta

demanda de despliegues paralelos.

CAPÍTULO 4

 4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

• Se logró caracterizar detalladamente la situación actual del proceso de despliegue de ambientes de prueba

en entornos QA, identificando los tiempos que demanda en el despliegue de los microservicios , los

recursos involucrados y los principales cuellos de botella que afectan la eficiencia operativa.

• Uno de los principales obstáculos detectados fue la alta intervención manual requerida para la preparación

de ambientes, especialmente ante la demanda de ambientes simultáneos. Esto generaba sobrecarga en el

personal técnico y afectaba los tiempos de entrega y la calidad de las pruebas.

• A partir del análisis, se evidenció que la automatización del proceso a través de herramientas como

orquestadores, pipelines y servicios de mensajería reduce significativamente la intervención humana,

agiliza la ejecución y mejora la confiabilidad del sistema.
• Gracias a la automatización, el tiempo total de despliegue se redujo de 2 a 3 días a solo horas(h), incluso

en proyectos de alta complejidad. Este resultado evidencia una mejora concreta en el cumplimiento del

objetivo 2 (eficiencia operativa) y objetivo 3 (diseño de una arquitectura automatizada y adaptable).
• La disminución de la carga operativa permite que el personal de despliegue y QA se enfoque en tareas de

mayor valor, como la supervisión y soporte de los servidores, liberando tiempo y recursos.

• Se comprobó que el modelo propuesto es escalable y se adapta a diferentes niveles de complejidad,

permitiendo una gestión más autónoma del despliegue bajo demanda, lo cual responde directamente al

objetivo 4.

• Finalmente, el enfoque planteado sienta una base sólida para continuar optimizando los procesos QA,

orientándose hacia una solución más sostenible, eficiente y alineada con las necesidades reales del entorno

operativo.

4.2 Recomendaciones

Tras culminar lo planificado en la propuesta, se proponen las siguientes recomendaciones clave para continuar

fortaleciendo el modelo automatizado de despliegue:

49

• Implementar un sistema de métricas y monitoreo desde el inicio, para registrar los tiempos de despliegue,

los errores más comunes y las cargas operativas. Esto permitirá evaluar de manera objetiva el impacto

real de la automatización y detectar oportunidades de mejora.

• Realizar pruebas piloto controladas aplicando los flujos automatizados en proyectos de baja complejidad.

Esto permitirá validar el diseño de forma segura antes de escalar su aplicación a proyectos más complejos.

• Escalar progresivamente la automatización, comenzando por los microservicios más estables y

extendiéndola paulatinamente a componentes más críticos a medida que las integraciones se consoliden.

• Documentar claramente cada etapa del proceso automatizado, con versiones controladas y adaptaciones

registradas. Esto facilitará la mantenibilidad del sistema y apoyará en la formación de nuevos integrantes

del equipo.

• Capacitar al personal involucrado, especialmente a QA y despliegue, mediante talleres prácticos sobre el

uso de las herramientas integradas y los nuevos flujos, para asegurar una adopción efectiva del modelo.

• Fomentar la mejora continua explorando la integración de herramientas de inteligencia artificial (IA) que

sugieran ambientes óptimos según la complejidad del proyecto o los cambios en el código.

• Permitir el escalamiento horizontal habilitando el envío de múltiples peticiones simultáneas desde QA,

sin necesidad de esperar que finalice un flujo. Esto es clave para optimizar el tiempo de despliegue cuando

varios QA trabajan en paralelo, aprovechando la capacidad de OpenShift y la orquestación del flujo con

n8n.

50

Referencias

[1] E. Sarmiento-Calisaya, A. Mamani-Aliaga, y J. C. S. D. P. Leite, «Introducing Computer Science

Undergraduate Students to DevOps Technologies from Software Engineering Fundamentals», en *Proceedings of

the 46th International Conference on Software Engineering: Software Engineering Education and Training*, en

ICSE-SEET ’24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 348–358. doi:

10.1145/3639474.3640071.

[2] S. M. Saleh, I. M. Sayem, N. Madhavji, y J. Steinbacher, “Advancing Software Security and Reliability in

Cloud Platforms through AI-based Anomaly Detection,” en *Proceedings of the 2024 on Cloud Computing

Security Workshop*, CCSW ’24. New York, NY, USA: Association for Computing Machinery, 2024.

[3] S. Smith, E. Robinson, T. Frederiksen, T. Stevens, T. Cerny, M. Bures, y D. Taibi, “Benchmarks for End-to-

End Microservices Testing,” arXiv, 2023. [En línea]. Disponible: https://arxiv.org/abs/2306.05895

[4] M. Waseem, P. Liang, M. Shahin, A. Di Salle, y G. Márquez, “Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective,” arXiv, 2021. [En línea]. Disponible:

https://arxiv.org/abs/2108.03384

[5] R. Agrawal, P. Banerjee, M. Harman, y A. Groce, “An Industrial Case Study on DevOps Pipeline Bottlenecks,”

en *2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP)*, Madrid, España, 2021, pp. 1–10. doi: 10.1109/ICSE-SEIP52600.2021.00006.

[6] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner’s Approach, 8th ed., New York, NY,

USA: McGraw-Hill, 2014.

[7] I. Sommerville, Software Engineering, 10th ed., Boston, MA, USA: Pearson, 2015.

[8] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, "Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.

[9] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, "Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.

[10] R. Agrawal, P. Banerjee, M. Harman, and A. Groce, “An Industrial Case Study on DevOps Pipeline

Bottlenecks,” in 2021 IEEE/ACM 43rd Int. Conf. Software Engineering: Software Engineering in Practice (ICSE-

SEIP), Madrid, Spain, 2021, pp. 1–10.

[11] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Boston, MA, USA: Addison-Wesley, 2010.
[12] J. García-Galán, J. García-Alonso, J. Berrocal, and J. M. Murillo, “A Review of Architectures and Platforms

for Edge Computing,” ACM Comput. Surv., vol. 54, no. 6, pp. 1–36, Oct. 2021.
[13] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, "Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective," arXiv preprint, arXiv:2108.03384, 2021.
[14] D. Taibi, L. Lavazza, and S. Janes, “Microservices in Practice: A Survey Study,” Journal of Systems and

Software, vol. 180, p. 111018, Jul. 2021.
[15] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices

Architectures: An Empirical Investigation,” IEEE Cloud Computing, vol. 8, no. 2, pp. 22–32, Mar./Apr. 2021.
[16] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad Smells,” IEEE Software, vol. 38, no. 1,

pp. 56–62, Jan. 2021.

51

[17] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, “Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective,” arXiv preprint, arXiv:2108.03384, 2021.
[18] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices

Architectures: An Empirical Investigation,” IEEE Cloud Computing, vol. 8, no. 2, pp. 22–32, Mar./Apr. 2021.
[19] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, “Design, Monitoring, and Testing of

Microservices Systems: The Practitioners’ Perspective,” arXiv preprint, arXiv:2108.03384, 2021.
[20] A. Sampaio, T. Batista, and S. Reinehr, “Microservices in Agile Software Development: A Systematic

Mapping Study,” in Proc. 20th International Conference on Software Technologies (ICSOFT), 2023, pp. 203–

210.
[21] S. Smith et al., “Benchmarks for End-to-End Microservices Testing,” arXiv preprint, arXiv:2306.05895,

2023.
 [22] T. Cerny, M. Bures, and D. Taibi, “Testing Microservices: A Survey of Challenges and Practices,” in Proc.

37th ACM/SIGAPP Symposium on Applied Computing (SAC), 2022, pp. 1278–1285.
[23] R. Sigurbjörnsson and D. Garlan, “Enabling Observability for Microservice-Based Systems Through

Automated Model Extraction,” in Proc. 15th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), 2020, pp. 123–129.
[24] M. Wiedemann, M. Wiesche, and H. Krcmar, “Understanding the Influence of DevOps Practices on Software

Development Performance,” Journal of Systems and Software, vol. 178, pp. 110980, 2021.

[25] T. Dingsøyr, F. Fægri, and H. Kulkarni, “Continuous Delivery and DevOps: Experiences from the Trenches,”

IEEE Software, vol. 38, no. 1, pp. 50–57, Jan.–Feb. 2021.

[26] J. Ordóñez and M. Vera, “Automatización de Procesos DevOps para el Despliegue de Servicios en Entornos

de Red 5G,” Revista Politécnica, vol. 49, no. 1, pp. 55–64, 2023.

[27] D. Gruen and N. Forsgren, “The State of DevOps Report,” Google Cloud and DORA, 2021.
[28] H. Shafiq, A. M. Khan, and S. Mahmood, “DevOps-Driven Continuous Integration and Continuous Delivery

Pipeline for Microservices: Industrial Case Study,” IEEE Access, vol. 9, pp. 129256–129269, 2021.
[29] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation, Addison-Wesley, 2021.

[30] M. García-Valls, T. Cucinotta, and C. Lu, “Challenges in Real-Time Cloud Infrastructures: A Survey,”

Journal of Systems Architecture, vol. 122, p. 102291, 2021.

[31] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps, IT Revolution,

2021.

[32] S. Ahmad and A. Bhatti, “Open Source Workflow Automation Tools for Modern DevOps: A Comparative

Study,” IEEE International Conference on Automation, Control and Smart Systems (ICACSS), pp. 101–106, 2021.

[33] L. M. Vargas et al., “Automated Incident Management in Telco Systems through Open-Source Orchestrators,”

IEEE Latin America Transactions, vol. 20, no. 4, pp. 732–739, 2022.

[34] A. M. Salazar, J. A. Peña, and F. García, “Messaging APIs as Integration Interfaces in DevOps Environments:

An Empirical Analysis,” IEEE Latin America Transactions, vol. 19, no. 5, pp. 821–829, 2021.

52

[35] R. Rodrigues and M. Oliveira, “Orchestrating Automated Workflows with Messaging Applications: A Case

Study on Telegram Bots,” Journal of Systems Integration, vol. 14, no. 2, pp. 45–53, 2023.
[36] T. Cerny, M. Bures, and D. Taibi, “Microservices: A Systematic Mapping Study on Orchestration,” ACM

Computing Surveys, vol. 54, no. 12, pp. 1–38, Dec. 2021.
[37] J. R. López and M. Andrade, “Automated Test Environment Provisioning Using Workflow Orchestration: A

Telecom Case Study,” IEEE Access, vol. 11, pp. 51234–51245, 2023.
[38] L. N. Mohammed et al., “Evaluation of Open Source Tools for CI/CD Automation in DevOps,” Journal of

Systems and Software, vol. 190, p. 111351, Jan. 2022.

[39] M. Álvarez, R. Rosero, and D. Salinas, “Evaluación de herramientas DevOps de código abierto para la gestión

automatizada de microservicios en telecomunicaciones,” Revista I+D Tecnológico, vol. 18, no. 2, pp. 23–31, 2022.

53

Anexos

Anexo 1. Cuestionario de Evaluación del Prototipo de Automatización

Indicaciones:
 A continuación, se presenta el cuestionario aplicado a los participantes del estudio. La encuesta fue estructurada

en dos bloques: antes y después de la implementación de la solución automatizada. Las preguntas utilizaron una

escala de Likert.

Parte A: Situación antes del desarrollo

1. ¿Cuánto tiempo en promedio toma levantar un ambiente de prueba completo (en días)?

2. ¿Qué nivel de carga operativa percibes al realizar los despliegues?

3. ¿Con qué frecuencia se producen errores durante el proceso de despliegue?

4. ¿Qué nivel de satisfacción tienes con el proceso actual de despliegue?

5. ¿Con qué frecuencia experimentas retrasos en los cronogramas debido al tiempo requerido para el

despliegue?

Parte B: Situación después del desarrollo

6. ¿Cuánto tiempo en promedio toma levantar un ambiente de prueba completo (en días)?
7. ¿Qué nivel de carga operativa percibes al realizar los despliegues?
8. ¿Con qué frecuencia se producen errores durante el proceso de despliegue?
9. ¿Qué nivel de satisfacción tienes con el proceso actual de despliegue?
10. ¿Con qué frecuencia experimentas retrasos en los cronogramas debido al tiempo requerido para el

despliegue?

		2025-08-18T10:10:00-0500

		2025-08-18T12:59:33-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

	

		2025-08-18T13:31:25-0500
	Firmado digitalmente con Security Data
https://www.securitydata.net.ec/

	

		2025-08-18T15:29:28-0500

