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I 

 

RESUMEN 

Este proyecto propone el diseño de un agente inteligente orientado a facilitar el acceso a información técnica sobre 

requerimientos funcionales en una empresa de telecomunicaciones. Se plantea como objetivo principal mejorar la 

forma en que los usuarios consultan documentación histórica, reduciendo ambigüedad, tiempo de búsqueda y pérdida 

de información. La propuesta se justifica en la necesidad de automatizar procesos de recuperación de información y 

aprovechar tecnologías de inteligencia artificial aplicadas al contexto empresarial. Para el desarrollo del sistema, se 

utilizaron herramientas de código abierto como GitLab, Qdrant, n8n y el modelo de lenguaje LlamA. Se diseñó una 

arquitectura modular tipo RAG (Retrieval-Augmented Generation), que integró flujos automatizados, vectorización 

de textos técnicos y generación de respuestas en lenguaje natural. Los resultados demostraron que la solución es 

técnicamente viable, funcional en entornos locales y capaz de responder con precisión a preguntas formuladas en 

lenguaje natural. Asimismo, se comprobó la utilidad de aplicar IA generativa sobre datos técnicos estructurados. Se 

concluye que el agente inteligente propuesto puede adaptarse a la infraestructura actual de la empresa, optimizando la 

consulta de requerimientos y fortaleciendo la reutilización del conocimiento técnico.  
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ABSTRACT 

This project proposes the design of an intelligent agent aimed at facilitating access to technical information on 

functional requirements within a telecommunications company. The main objective is to improve how users retrieve 

historical documentation, reducing ambiguity, search time, and loss of relevant information. The proposal is justified 

by the need to automate information retrieval processes and to apply artificial intelligence technologies in enterprise 

environments. For the development of the system, open-source tools such as GitLab, Qdrant, n8n, and the Llama 

language model were used. A modular RAG-based (Retrieval-Augmented Generation) architecture was designed, 

integrating automated workflows, technical text vectorization, and natural language response generation. The results 

showed that the solution is technically feasible, functional in local environments, and capable of responding 

accurately to natural language questions. Additionally, the usefulness of applying generative AI to structured 

technical data was confirmed. It is concluded that the proposed intelligent agent can be integrated into the company’s 

current infrastructure, optimizing requirements consultation and enhancing the reuse of technical knowledge.  
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CAPÍTULO 1 

1. INTRODUCCIÓN 

1.1 Descripción del Problema  

Dentro del contexto de los sistemas de información y del sector de telecomunicaciones, la correcta elaboración de los 

requerimientos funcionales es un aspecto determinante para garantizar la eficacia y viabilidad de los proyectos 

tecnológicos. 

En una empresa de telecomunicaciones de gran tamaño con múltiples departamentos, objeto de este estudio, se han 

identificado dificultades durante el proceso de elaboración de requerimientos las cuales afectan la calidad de las 

soluciones planteadas. 

Como consecuencia, se producen retrasos en el ingreso oportuno de los requerimientos y se generan múltiples 

iteraciones de reuniones para el levantamiento inicial, necesarias para aclarar, corregir y redefinir continuamente las 

especificaciones funcionales. Esta situación no solo impacta en los tiempos y recursos de los proyectos, sino que 

también limita la claridad en la definición de las verdaderas necesidades del negocio y su correcta traducción a 

soluciones técnicas viables. 

La construcción de este buscador inteligente es uno de los primeros proyectos que servirá de base para futuras 

implementaciones con inteligencia artificial en la empresa. Este diseño busca fomentar la adaptación de esta tecnología 

en nuevos proyectos, permitiendo que en etapas posteriores pueda ser considerado como un componente dentro de un 

ecosistema más amplio de soluciones basadas en IA.  

El presente trabajo de titulación tiene como propósito el diseño de un asistente inteligente de búsqueda que estará 

orientado a facilitar el acceso a información histórica sobre requerimientos, permitiendo a los usuarios consultar 

ejemplos previos y obtener referencias útiles que les ayuden a redactar nuevos requerimientos de forma más clara. El 

diseño propuesto busca que el usuario pueda reducir tiempos al crear sus requerimientos y evitar la ambigüedad del 

mismo, minimizar la necesidad de iteraciones innecesarias y mejorar la alineación entre las necesidades del negocio. 

En las empresas de telecomunicaciones, caracterizada por una alta complejidad técnica y la participación de múltiples 

áreas, la falta de un sistema estructurado para recuperar información de proyectos anteriores representa un desafío 

constante. Actualmente, consultar antecedentes sobre requerimientos implementados suele implicar recurrir a correos 

antiguos o realizar consultas informales, lo que genera pérdida de tiempo y retrabajo. En muchos casos, aunque se 

sepa de una funcionalidad que ya fue desarrollada, no se tiene claridad sobre a qué proyecto perteneció, quién fue su 

responsable o bajo qué requerimiento se ejecutó. 

1.2 Justificación del Problema 

El diseño de un sistema de búsqueda inteligente, basado en consultas en lenguaje natural e integrado con un repositorio 

reorganizado como GitLab, responde a la necesidad de optimizar la búsqueda y recuperación de información útil para 

el diseño de nuevos requerimientos. Este enfoque facilitará un acceso rápido a la información para los usuarios, al 

reutilizar los datos existentes de los proyectos. 

Además, el sistema se apoya en principios de exploración de datos, lo que le permite adaptar sus respuestas en función 

de las necesidades del usuario y de los datos almacenados en el repositorio. Esta capacidad incrementa su utilidad a 

medida que se enriquece el repositorio y se afina la interacción. En consecuencia, la propuesta no solo ofrece un apoyo 

efectivo en la redacción de requerimientos desde las etapas iniciales del proyecto, sino que también establece las bases 

para futuras implementaciones que integren inteligencia artificial aplicada a la toma de decisiones, fortaleciendo así 

la eficiencia y trazabilidad en la gestión de proyectos tecnológicos. 

Esta técnica se utiliza en diversas áreas y ha demostrado ser efectiva, ofreciendo soluciones flexibles y seguras para 

abordar una variedad de problemas  [1]  . El estudio de [2] aborda los desafíos y avances en la implementación de 

modelos de lenguaje grandes (LLMs), que pueden ser fundamentales para el análisis de requerimientos. También las 

ventajas de utilizar programas para el tratamiento automático de datos  puede facilitar la validación de requisitos [3] . 
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Adicional los sistemas de gestión de flujos de trabajo deben transformar los procesos de negocio en expresiones 

comprensibles por las computadoras, lo que es esencial para la automatización en este contexto [4]. En conclusión en 

el estudio de [5] resaltan el potencial transformador de la Inteligencia Artificial (IA) para optimizar las tareas de 

gestión de proyectos. 

Este proyecto es viable, ya que se cuenta con acceso a los actores principales con quienes se podrá interactuar para 

recopilar información sobre problemas recurrentes en el proceso de gestión de requerimientos. Además, el alcance del 

proyecto se enfoca en desarrollar un diseño estructurado que sirva como base para la implementación de un buscador 

inteligente. Asimismo, se dispone de acceso a la información histórica y actual de requerimientos, lo cual permite 

realizar un análisis adecuado y garantizar la calidad del diseño propuesto. 

1.3 Objetivos  

1.3.1 Objetivo general  

Diseñar un sistema de búsqueda inteligente, que apoye a los usuarios en el levantamiento de requerimientos 

funcionales, facilitando el acceso a la información mediante la reutilización de información histórica de proyectos 

anteriores, integrando modelos de lenguaje natural y flujos automatizados con acceso al repositorio GitLab. 

1.3.2 Objetivos específicos  

1. Identificar los puntos de dolor en la búsqueda y recuperación de requerimientos funcionales, en los equipos 

de negocio y técnicos mediante formularios estructurados que permitan evidenciar ambigüedades, tiempos 

de respuestas y pérdida de información útil. 

2. Estandarizar la forma en la que se registra la información de los proyectos en el repositorio de GitLab, 

organizando los requerimientos de manera lógica y accesible para facilitar su búsqueda y consulta en el 

análisis de datos históricos. 

3. Definir los flujos de interacción y arquitectura de la búsqueda inteligente, mediante prototipos de interfaz 

que conecte el modelo de lenguaje natural (LLM) con información extraída de GitLab mediante flujo 

automatizado N8N, permitiendo de esta forma interpretar consultas en lenguaje natural y entregar respuestas 

contextualizadas a usuarios. 

 

1.4 Marco teórico 

El presente capítulo tiene como propósito presentar los fundamentos teóricos y tecnológicos que respaldan el 

desarrollo del agente inteligente de búsqueda propuesto. Para esto, se explorarán las distintas herramientas y 

metodologías que permiten estructurar soluciones orientadas a optimizar el levantamiento de requerimientos en 

entornos complejos como el de una empresa de telecomunicaciones. Se abordarán temas como la automatización de 

procesos mediante flujos orquestados, la organización eficiente de repositorios en plataformas colaborativas como 

GitLab, y la aplicación de modelos avanzados de lenguaje natural para interpretar consultas formuladas por los 

usuarios. Además, se revisarán las características claves relacionados con los agentes inteligentes, su evolución 

histórica y su contribución a la optimización de procesos dentro del ámbito de la ingeniería de software. Esta revisión 

permitirá comprender los elementos que sustentan el diseño propuesto y establecerá los criterios técnicos sobre los 

cuales se construirá una solución innovadora, flexible y alineada con los desafíos actuales de la gestión de proyectos 

tecnológicos. 

1.4.1  Modelado del flujo automatizado 

Durante los últimos años la automatización de procesos, se ha convertido en un elemento central dentro de la 

transformación digital de las organizaciones, el uso adecuado de los recursos en la operativa es uno de los factores  

claves para la mejora del rendimiento, al facilitar la disminución de errores humanos y acelerar la capacidad de 

respuesta, uno de los modelados formal que se tiene es el caso de Business Process Model and Notation (BPMN 2.0), 

donde se puede mostrar los flujos actuales y esperados mediante grafico de actividades, decisiones y eventos, en este 

punto permite no solo documentar, sino ejecutar flujos operativos de forma estructurada [6] a través de técnicas de 

análisis y optimización formal [7].Plataformas low-code como n8n permiten aplicar este enfoque en entornos visuales 

e interactivos, facilitando la construcción de secuencias de procesos automatizados mediante nodos que reaccionan a 

eventos como llamadas API, transformaciones o disparadores externos, sin requerir programación intensiva [8] lo cual 

permite una adaptabilidad de los cambios del negocio, todo esto indica que un flujo automatizado bien diseñado parte 

de una definición precisa de las actividades y sus interrelaciones, lo que permite organizar los pasos en una secuencia 

lógica y ofrecer una visualización clara del sistema. Esta claridad no solo facilita la colaboración entre perfiles técnicos 

y no técnicos, sino que, al integrarse con nuevas estrategias de automatización, mejora significativamente la 

interacción entre los procesos automáticos y los usuarios humanos [9]. 

GitLab en la actualidad para el desarrollo colaborativo de software se ha consolidado una plataforma integral, dentro 

del ciclo completo del desarrollo ya que abarca desde la planificación de un proyecto monitoreo del desarrollo, y hasta 
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la mejora continua (CI/CD). La arquitectura DevOps permite colocar dentro de la herramienta tareas para control de 

versiones con Git, monitoreo y gestión de incidencias, la documentación en Markdown, las pruebas automatizadas y 

la integración continua. Toda esta centralización dentro de la herramienta permite tener una mayor trazabilidad y 

colaboración entre equipos técnicos y no técnicos, facilitando la transparencia y el versionamiento de los artefactos 

producidos. 

Para el contexto de los requerimientos de software con respecto a proyectos, lo convierte en un repositorio robusto 

por su sistema de gestión de issues/incidencias, milestones, y documentación. Aquí se almacena información relevante 

de proyectos y permite toma de decisiones, se podrá evidenciar los cambios dentro de las funcionalidades y reglas que 

tiene el negocio. Por todas sus ventajas en datos históricos, y para el análisis retrospectivo de requerimientos y la 

reutilización del conocimiento almacenado, convierte a la herramienta en un punto clave.  

Esta herramienta ofrece comunicaciones con otras plataformas a través de API REST, que por medio de parámetros 

permite acceder a la información almacenada, lo cual facilita la integración con procesos automatizados, para 

alimentar la información del agente que sea capaz de extraer, analizar y contextualizar información sobre 

requerimientos anteriores para facilitar la toma de decisiones en etapas tempranas del ciclo de vida del software. 

En investigaciones recientes, se ha demostrado que los repositorios de software no solo son herramientas de gestión 

operativa, sino también fuentes útiles para la minería de procesos orientada a la mejora continua. Por ejemplo,[10] 

analizan cómo los repositorios de desarrollo pueden alimentar retrospectivas ágiles y revelar patrones de colaboración, 

comunicación y evolución técnica dentro de equipos de ingeniería de software. Esta evidencia empírica valida el uso 

de plataformas colaborativas como GitLab como base para la construcción de sistemas inteligentes que apoyen tareas 

complejas como la recuperación de requerimientos y el diseño asistido de soluciones. 

En el diseño propuesto, el agente de búsqueda se basa en la ejecución de un flujo automatizado que extrae información 

desde archivos estructurados (DERCAS) adjuntos a issues en GitLab. Esto permite alimentar al agente con datos de 

forma constante y controlada. A continuación, se presentan las funcionalidades clave de GitLab que hacen posible 

esta arquitectura de extracción automatizada. 

 
Tabla I. Funcionalidades Gitlab vs Agente 

Funcionalidad de GitLab 
 

Aplicación en la solución 

propuesta 

Beneficio para el agente 

inteligente 

Seguimiento de issue 
 

Almacena solicitudes técnicas 

donde se adjuntan archivos 

DERCAS. 
 

Permite al agente localizar 

requerimientos de la 

herramienta. 
 

Archivos adjuntos en issues 
 

 

Se carga la información en un 

issue 
 

Permite una recolección 

automatizada de datos sin 

necesidad de explorar todo 

el repositorio. 
 

API RESTful 
 

Obtiene información como 

nombres de archivo, autores, 

fechas y otros metadatos 

vinculados a un issue. 
 

Clasificación por autor o por 

tipo de requerimiento. 
 

Historial de cambios (Git) 
 

Permite la carga de los archivos y 

sus versiones  
 

Permite al agente 

contextualizar cómo ha 

evolucionado un 
requerimiento documentado 

 

 

En la actualidad, los flujos automatizados han revolucionado la forma en que las organizaciones llevan a cabo sus 

operaciones, ofreciendo una gran eficiencia y una capacidad de respuesta ágil ante las demandas del mercado. La 

retroalimentación inmediata se ha convertido en un elemento fundamental de esta transformación, mejorando 

notablemente la toma de decisiones y la gestión de procesos. 

Los flujos automatizados permiten que las tareas repetitivas y monótonas se realicen sin necesidad de intervención 

humana, lo que libera a los empleados para que se enfoquen en actividades más estratégicas. Por ejemplo, en una 

empresa de comercio electrónico, un flujo automatizado puede encargarse del procesamiento de pedidos, desde la 

recepción hasta la confirmación y el envío. Esto no solo acelera el proceso, sino que también minimiza la posibilidad 

de errores humanos, resultando en una experiencia más fluida para el cliente. 

La retroalimentación inmediata se integra en estos flujos automatizados mediante sistemas de monitoreo y análisis de 

datos. Cuando un cliente realiza un pedido, el sistema puede enviar automáticamente una notificación al equipo de 

ventas y al departamento de logística. Si se presenta un retraso en el envío, el sistema puede alertar a los responsables, 

quienes pueden tomar medidas de manera inmediata para solucionar el inconveniente. Esta capacidad de respuesta 
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rápida es esencial en un entorno empresarial donde la satisfacción del cliente es crucial. 

En los últimos años el auge de la IA conversacional y los chatbots, como ChatGPT, ha comenzado a revolucionar 

varios sectores. La capacidad de recibir información instantánea permite a estos agentes ajustar sus respuestas y 

recomendaciones en función de las interacciones del usuario [11]. 

La automatización del flujo de recuperación de información a través de un agente de búsqueda inteligente transforma 

el modelo de procesos to-be al sustituir tareas manuales de exploración documental por una extracción estructurada 

y automática desde archivos subidos a plataformas como GitLab. Esta incorporación no altera el contenido de los 

requerimientos, pero sí agiliza su disponibilidad y trazabilidad, optimizando los tiempos de consulta en entornos donde 

la documentación técnica es extensa. Este tipo de automatización especializada responde al enfoque de Intelligent 

Process Automation centrado en tareas cognitivas delimitadas, como la clasificación, lectura y vinculación de archivos 

técnicos[12], [13]. 

Ha sido un proceso continuo desde hace mucho tiempo atrás y ha estado orientado por avances en inteligencia artificial 

y computación, tales como: Sistemas Basados en Conocimiento, Agentes autónomos, Procesamiento del Lenguaje 

Natural, Modelos de Lenguaje. Reflejan un avance constante en la comprensión y aplicación de la inteligencia artificial 

en los agentes inteligentes. 

1.4.2 Agentes Inteligentes 

Dentro de la evolución de los Agentes Inteligentes  los principales fueron los Sistemas Basados en Conocimiento 

(Knowledge-Based Systems), que operaban mediante reglas explícitas codificadas por expertos para simular procesos 

de toma de decisiones en dominios específicos. Aunque efectivos en un entorno o área muy limitada, estos sistemas 

carecían de flexibilidad para adaptarse a nuevos escenarios y dependían completamente del conocimiento explícito 

programado. 

Posteriormente, el desarrollo de agentes autónomos supuso un avance significativo: estos agentes podían percibir su 

entorno, procesar información y actuar de forma independiente para alcanzar objetivos. Este paradigma se amplió con 

los sistemas multiagente, donde múltiples agentes interactúan y cooperan para resolver problemas complejos y 

distribuidos, como ocurre en la gestión dinámica del tráfico de datos en redes de telecomunicaciones o la coordinación 

en redes de sensores inalámbricos. 

La incorporación del Procesamiento del Lenguaje Natural (PLN) permitió que los agentes inteligentes entendieran y 

generaran lenguaje humano, facilitando así la interacción natural con los usuarios. Esto propició la creación de agentes 

conversacionales y asistentes virtuales, como Siri, Alexa y Google Assistant, que integran tecnologías de 

reconocimiento de voz y análisis semántico para responder preguntas, ejecutar comandos y aprender de las 

interacciones. 

Lo más reciente la evolución hacia modelos de lenguaje basados en aprendizaje profundo, como la arquitectura de red 

neuronal, que ha revolucionado los agentes inteligentes. Estos modelos, entrenados con grandes volúmenes de datos, 

han ampliado la capacidad de comprensión, generación de texto y razonamiento contextual de los agentes, permitiendo 

aplicaciones avanzadas en análisis de requerimientos, generación de documentación automática y soporte en la toma 

de decisiones. 

La evolución de la inteligencia artificial generativa ha tenido un cambio significativo en la remodelación del futuro 

de la tecnología en diferentes aspectos. Las redes inalámbricas, en particular, con el crecimiento de las redes 

autoevolutivas, representan un gran área para explotar y cosechar varios beneficios que pueden cambiar 

fundamentalmente la forma en que se diseñan y operan las redes inalámbricas en la actualidad [14]. 

Dentro de los beneficios podemos encontrar que son impulsados por tecnologías de inteligencia artificial y aprendizaje 

automático, representan una herramienta clave en la transformación de los procesos de toma de decisiones en empresas 

de tecnología. Estos agentes son capaces de analizar grandes volúmenes de datos, identificar patrones complejos y 

generar recomendaciones o tomar decisiones autónomas en tiempo real. Entre sus principales beneficios destacan la 

mejora en la precisión de las decisiones, la reducción del error humano, la capacidad para operar a gran escala y 

velocidad, y la automatización de tareas repetitivas. Además, permiten personalizar respuestas según el contexto y 

anticipar comportamientos futuros mediante modelos predictivos.  

La innovación continua es otra ventaja, ya que los agentes inteligentes pueden aprender y adaptarse a nuevas 

situaciones a través de técnicas de aprendizaje automático. Esto significa que su rendimiento puede mejorar con el 

tiempo, permitiendo a las organizaciones mantenerse competitivas en un entorno en constante cambio. 

La escalabilidad es otro aspecto destacado. Los agentes inteligentes pueden adaptarse a diferentes volúmenes de 

trabajo sin necesidad de aumentar proporcionalmente los recursos humanos. Esto permite a las empresas crecer y 

expandirse sin enfrentar los mismos desafíos que tendrían al aumentar su personal. 

Su aplicación se ha demostrado efectiva en diversos sectores como las telecomunicaciones, salud, finanzas y logística, 

facilitando desde diagnósticos médicos y detección de fraudes hasta optimización de redes y procesos operativos. En 

conclusión, la implementación de agentes inteligentes no solo potencia la eficiencia operativa, sino que también 

impulsa la innovación estratégica al transformar datos complejos en conocimientos accionables [15]. 

La definición del agente es considerada como un sistema autónomo capaz de percibir, razonar y actuar para alcanzar 
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objetivos específicos. Se clasifican en diversos tipos como agentes reactivos, deliberativos o de aprendizaje, cada uno 

con aplicaciones adecuadas para el análisis y validación automatizada de requisitos [16] 

Los agentes reactivos son sistemas que responden a estímulos del entorno de manera inmediata, sin mantener un 

modelo interno del estado del mundo. Su comportamiento se basa en reglas simples de condición y acción, lo que les 

permite actuar rápidamente ante cambios en su entorno. 

Los agentes deliberativos son sistemas que poseen un modelo interno del entorno y utilizan este modelo para razonar 

y planificar sus acciones. Estos agentes pueden prevenir las consecuencias de sus decisiones y, por lo tanto, son 

capaces de tomar decisiones más informadas y estratégicas a largo plazo. 

Los agentes de aprendizaje son sistemas que tienen la capacidad de mejorar su rendimiento a lo largo del tiempo 

mediante la experiencia. Utilizan técnicas de aprendizaje automático para adaptarse a cambios en el entorno y 

optimizar su comportamiento, aprendiendo de sus errores y ajustando sus estrategias en función de la 

retroalimentación recibida. 

La elección del tipo de agente inteligente depende del contexto específico y los objetivos de la automatización. En 

particular, para el análisis y validación automatizada de requisitos, se requieren agentes que combinen capacidades de 

razonamiento estructurado con aprendizaje adaptativo para manejar la complejidad y variabilidad inherente a los 

proyectos de desarrollo de software. 

Existe una creciente demanda de agentes inteligentes en sectores tecnológicos para automatizar procesos complejos, 

entre ellos la validación de requerimientos, impulsada por la necesidad de optimizar tiempos y reducir errores en 

proyectos de software de gran escala. Los avances recientes prometen superar las barreras existentes al mejorar el 

procesamiento del lenguaje natural y las capacidades de razonamiento. Si bien es prometedor, para crear asistentes 

virtuales más avanzados aún enfrenta desafíos como garantizar un rendimiento robusto y gestionar la variabilidad de 

los comandos de usuario en el mundo real. 

Además, la personalización de servicios se ha convertido en una prioridad. Las empresas están utilizando agentes 

inteligentes para ofrecer experiencias adaptadas a las preferencias individuales de los usuarios, lo que no solo mejora 

la satisfacción del cliente, sino que también fomenta la lealtad a la marca. Los agentes son capaces de analizar datos 

en tiempo real, lo que les permite anticipar necesidades y ofrecer recomendaciones personalizadas. 

Una tendencia importante es el desarrollo de agentes autónomos, que pueden operar de manera independiente. Esto 

permite a las organizaciones delegar tareas críticas sin necesidad de intervención humana, aumentando la eficiencia y 

reduciendo la posibilidad de errores. Además, los agentes inteligentes están diseñados para colaborar con los humanos, 

complementando sus habilidades y facilitando una cooperación más efectiva en el entorno laboral. 

El artículo de [17] propone un novedoso asistente virtual basado en LLM que puede realizar automáticamente 

operaciones de varios pasos dentro de aplicaciones móviles, basándose en solicitudes de usuario de alto nivel. 

 

Las bases de datos vectoriales se han convertido en una pieza importante para los sistemas que necesitan buscar 

información a partir de una base de conocimiento y no solo por coincidencia exacta de palabras. Este tipo de tecnología 

guarda representaciones numéricas de los datos, llamadas vectores o embeddings, que conservan relaciones de 

significado y permiten que una consulta devuelva resultados que están relacionados conceptualmente aunque usen un 

vocabulario diferente[18]. Para encontrar rápidamente elementos similares, utilizan algoritmos como HNSW 

(Hierarchical Navigable Small World) , reconocidos por su velocidad y precisión en espacios de alta dimensión  [19] 

[20]. En este ecosistema, Qdrant destaca como una solución open-source optimizada para búsquedas vectoriales, 

integrando HNSW con filtrado avanzado, ideal para arquitecturas RAG donde un modelo de lenguaje aprovecha el 

contexto recuperado para generar respuestas más relevantes [21] . 

En el diseño de esta investigación, Qdrant actúa como repositorio semántico de requerimientos funcionales. Su 

conexión con GitLab, N8N y el modelo LLaMA se hace mediante integración punto a punto: un canal directo que 

favorece la baja latencia y simplicidad. Aunque este enfoque crea una interdependencia entre componentes, en este 

prototipo controlado es efectivo porque simplifica la implementación y asegura que las respuestas estén sustentadas 

en datos técnicos revisados. 

1.4.3 Modelos de Lenguaje Grandes (LLMs).  

Se define a los modelos de lenguaje Grande como sistemas de inteligencia artificial diseñados para comprender, 

generar y manipular el lenguaje humano de manera efectiva, entrenados con volúmenes masivos de texto. Su 

arquitectura se basa en la estructura de transformadores, que permite procesar secuencias de datos de manera eficiente 

y capturar relaciones contextuales a gran escala. Se destacan por su capacidad para aprender patrones complejos en el 

lenguaje, lo que les permite realizar diversas tareas, como traducción automática, generación de texto, respuesta a 

preguntas y asistencia en procesos de toma de decisiones. Esto mejora significativamente la interacción entre los 

sistemas y los usuarios en aplicaciones de procesamiento de lenguaje natural. 

En el artículo de [21] presenta una herramienta de diseño de arquitectura basada en el modelo de lenguaje grande, que 

logra un diseño de arquitectura inteligente mediante la comprensión de las intenciones del usuario y la generación y 

optimización de diseños. La herramienta de diseño de arquitectura es responsable de recibir las entradas de diseño del 
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usuario y mostrar los resultados del diseño, mientras que el modelo de lenguaje grande se encarga de la tarea de diseño 

de arquitectura inteligente. 

Dentro de los tipos que han transformado de manera significativa el ámbito del procesamiento del lenguaje natural 

(NLP), abriendo la puerta a una amplia gama de aplicaciones que incluyen desde la generación de texto hasta la 

traducción automática. A continuación, se describen los principales tipos de LLM, cada uno con sus propias 

características y aplicaciones específicas: 

Modelos Generativos, diseñados para generar texto coherente y relevante a partir de una entrada dada. Utilizan 

técnicas de aprendizaje profundo para predecir la siguiente palabra en una secuencia, lo que les permite crear contenido 

original. Como referencia tenemos a GPT-3 y GPT-4, que han demostrado capacidades avanzadas en la generación 

de texto. 

Modelos de Traducción, Especializados en traducir texto de un idioma a otro, estos modelos utilizan LLM para 

mejorar la precisión y fluidez de las traducciones. Un ejemplo notable es Google Translate, que ha integrado LLM 

para ofrecer traducciones más contextuales y precisas. 

Modelos de Resumen, Estos modelos son capaces de condensar información extensa en resúmenes breves y concisos, 

extrayendo los puntos clave de documentos largos. Se utilizan en aplicaciones que requieren la síntesis de información, 

como la generación de resúmenes de artículos o informes. 

Modelos de Conversación, Diseñados para interactuar con los usuarios en un formato de diálogo, estos modelos 

permiten mantener conversaciones naturales y fluidas. Los chatbots que utilizan LLMs son un ejemplo de esta 

categoría, brindando asistencia y respuestas a preguntas en tiempo real. 

Modelos Multimodales, Estos modelos son capaces de procesar y generar no solo texto, sino también imágenes y otros 

tipos de datos. Un ejemplo es Gemini de Google, que combina texto e imágenes para ofrecer respuestas más completas 

y contextuales. 

Modelos de Código, Especializados en la generación y comprensión de código de programación, estos modelos 

ayudan a los desarrolladores a escribir código de manera más eficiente. OpenAI Codex es un ejemplo que permite a 

los programadores interactuar con el modelo para obtener sugerencias y soluciones de codificación. 

En conclusión, los LLM son una parte esencial del procesamiento informático del lenguaje, ya que permiten 

comprender patrones verbales complejos y generar respuestas coherentes y apropiadas en un contexto determinado 

[22]. 

A continuación, se detalla un cuadro con los tipos de modelos más concurrentes. 

 
Tabla II. Tipos de Modelos 

Tipo de LLM Ejemplo Características 

Modelos Generativos 
GPT-3, ChatRWKV, 

Llama 

Generan texto coherente y contextual, ideales para 

interacciones conversacionales. 

Modelos de Conversación Lamda, Meena 
Diseñados para interactuar con los usuarios en un formato de 

diálogo. 

Modelos de Resumen XLNet, ALBERT 
Diseñados para responder preguntas específicas basadas en un 

contexto dado. 

Modelos de Traducción Gemma, Alma, Especializados en traducir texto entre diferentes idiomas. 

Modelos de Multimodales GPT-4, DALL-E 
Son capaces de procesar y generar no solo texto, sino también 
imágenes y otros tipos de datos 

Modelos de código Copilot, DeepCode 
Especializados en la generación y comprensión de código de 
programación 

 

Con respecto a los costos asociados al desarrollo y despliegue de LLM ha experimentado una evolución significativa 

desde los primeros sistemas de procesamiento del lenguaje natural hasta los modelos actuales, impulsada por avances 

tecnológicos y cambios en la escala y complejidad de los modelos. 

En las primeras etapas del procesamiento del lenguaje natural, durante las décadas de 1980 y 1990, los modelos se 

basaban principalmente en reglas manuales y sistemas estadísticos simples. Estos sistemas, aunque limitados en 

capacidad, eran relativamente económicos en términos computacionales porque operaban sobre conjuntos de datos 

reducidos y modelos menos complejos. Sin embargo, su alcance y precisión eran limitados, lo que obligaba a 

intervenciones humanas frecuentes y extensos esfuerzos en la elaboración y mantenimiento de reglas, lo que traducía 

en costos humanos y de tiempo elevados, aunque con baja inversión en infraestructura computacional. 

Con la llegada de métodos estadísticos y de aprendizaje automático en los 2000, el tamaño de los modelos y la cantidad 

de datos utilizados comenzaron a aumentar considerablemente. Modelos como los basados en n-gramas o modelos de 

Markov ocultos demandaban mayor poder computacional para entrenarse, y se incrementaron los costos de 

procesamiento y almacenamiento. A medida que los modelos aumentaban en complejidad y tamaño, también lo hacían 

los costos asociados a la infraestructura tecnológica necesaria para su entrenamiento, almacenaje y despliegue. Las 

empresas e instituciones comenzaron a invertir en clusters de computación especializados y almacenamiento en 

grandes volúmenes. 
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En la actualidad, con la aparición de modelos como GPT-3, con 175 mil millones de parámetros, el costo de 

entrenamiento se ha disparado a niveles sin precedentes [23]. Además, los costos operativos siguen siendo altos debido 

a la complejidad de la inferencia, que demanda recursos potentes para brindar respuestas rápidas en aplicaciones en 

tiempo real. 

A pesar de los altos costos actuales, se observan tendencias que apuntan a reducirlos, como el uso de hardware más 

eficiente, modelos más compactos mediante aprendizaje y estrategias para reutilizar modelos preentrenados. Estas 

innovaciones buscan popularizar el acceso a LLMs, permitiendo su uso en empresas y sectores con menores recursos. 

El artículo de [24] explora la incorporación de soluciones LLM como servicio en los flujos de trabajo empresariales, 

centrándose en los costos de inferencia. Analizamos diversas ofertas de LLM y realizan un análisis comparativo 

basado en un caso práctico real de un chatbot de IA. 

Se ha considerado como limitaciones y consideraciones de los Modelos de Lenguaje de Grande que han revolucionado 

la forma en que interactuamos con la tecnología, pero también presentan varios puntos que es importante tener en 

cuenta. Una de las principales preocupaciones es el sesgo en los datos. Estos modelos se entrenan utilizando grandes 

volúmenes de información, y si esos datos contienen sesgos, el modelo puede reproducir y amplificar esos mismos 

sesgos en sus respuestas. Esto puede llevar a resultados injustos o inexactos. 

Otro aspecto a considerar es la dependencia de los datos de entrenamiento. La calidad y diversidad de estos datos son 

cruciales para el rendimiento del modelo. Si los datos son limitados o no representan adecuadamente la realidad, el 

modelo puede tener dificultades para generalizar y ofrecer respuestas precisas. Además, entrenar y ejecutar estos 

modelos requiere recursos computacionales significativos, lo que puede ser un obstáculo para muchas organizaciones. 

Además, aunque los LLM son capaces de generar texto que parezca coherente y relevante, no poseen una comprensión 

profunda del contenido. Su funcionamiento se basa en patrones estadísticos, lo que significa que no entienden 

realmente lo que están diciendo. Esto puede resultar en la generación de información incorrecta o engañosa, ya que 

no tienen la capacidad de verificar hechos o acceder a información actualizada. 

A pesar de su utilidad, los LLMs presentan limitaciones como la generación ocasional de respuestas incorrectas o 

ambiguas, dependencia de grandes cantidades de datos y consideraciones a la privacidad, factores que deben 

controlarse al implementar agentes inteligentes para validación de requerimientos [25]. 

1.4.4 casos similares de Integraciones 

Entre los casos similares de integración donde los entornos de la automatización de procesos requieren respuestas 

dinámicas y contextualizadas, los modelos de lenguaje de gran escala (LLMs) han demostrado ser una solución eficaz 

al integrarse como componentes interpretativos dentro de arquitecturas controladas por eventos. Un ejemplo destacado 

es el trabajo desarrollado por [26], quienes diseñaron un sistema de automatización industrial basado en LLMs capaz 

de recibir entradas en tiempo real provenientes de sensores o eventos del entorno operativo. A través del análisis 

semántico de estos eventos, el modelo generaba planes de acción detallados que eran traducidos en instrucciones 

ejecutables por microservicios a través de APIs. Esta arquitectura no solo permitió automatizar tareas que 

tradicionalmente dependían de reglas codificadas, sino que introdujo flexibilidad semántica y adaptabilidad contextual 

en la toma de decisiones operativas. El enfoque modular del sistema, donde los LLMs funcionaban como 

intermediarios inteligentes entre el entorno y los servicios de control, demuestra una clara analogía con herramientas 

como n8n, en las que flujos visuales automatizados pueden incorporar modelos de lenguaje para interpretar entradas 

textuales, consultar servicios externos y desencadenar acciones de forma programada. En el contexto de esta 

investigación, dicho paradigma resulta aplicable a la extracción de información desde archivos técnicos como los 

DERCAS en GitLab, permitiendo que el agente de búsqueda estructure respuestas automáticas basadas en el contenido 

recibido, sin intervención humana directa. La validación de este enfoque en un entorno de automatización industrial 

con alta demanda de precisión y sincronización refuerza la solidez del modelo propuesto en esta tesis para el ámbito 

de telecomunicaciones. 

En la investigación llevada a cabo por [27] se evaluaron diversos modelos de lenguaje de gran escala (LLMs) aplicados 

a tareas automatizadas relacionadas con el procesamiento del lenguaje natural. El análisis incluyó indicadores clave 

como la exactitud, la completitud de la información, la pertinencia de las respuestas, su claridad, y el tiempo requerido 

para generarlas. Estos resultados ofrecen un punto de referencia cuantitativo sobre el rendimiento de los LLMs en 

contextos de automatización semántica, lo cual resulta pertinente para la solución propuesta en esta tesis, donde se 

busca estructurar información técnica mediante un agente de búsqueda inteligente. La Tabla resume los valores 

obtenidos en dicha evaluación. 

 
Tabla III. Precisión, Completitud, Relevancia, Comprensibilidad, Legibilidad y Tiempo de Respuesta promediados entre todos 

los modelos de lenguaje (LLMs) [27] 

Métrica Precisión Integridad Relevancia Comprensibilidad Legibilidad 
Tiempo 

Tomado 

Media 2.860 4.192 3.833 3.551 4.525 16.977 

Desviación estándar 0.445 1.206 0.567 0.766 0.935 17.994 

Mínimo 0.000 0.000 0.000 0.000 0.000 0.000 
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25% (Q1) 3.000 4.000 4.000 3.000 4.000 0.000 

50% (Mediana) 3.000 5.000 4.000 4.000 5.000 11.000 

75% (Q3) 3.000 5.000 4.000 4.000 5.000 30.250 

Máximo 3.000 5.000 4.000 4.000 5.000 75.000 

 

Diversas investigaciones recientes sobre casos de LLm en entornos colaborativos han abordado la incorporación de 

inteligencia artificial, especialmente modelos de lenguaje de gran escala (LLMs), en entornos de desarrollo 

colaborativo como GitHub y GitLab, con el objetivo de automatizar la recuperación, organización y generación de 

información técnica. Estos casos permiten evidenciar cómo otras soluciones han enfrentado desafíos similares, como 

el acceso estructurado a requerimientos, el análisis de incidencias y la documentación automatizada. 

En el estudio [28] se evidencia el uso de modelos de lenguaje en proyectos públicos de GitHub, demostrando que 

herramientas como Copilot y ChatGPT son aplicadas para generar fragmentos de código, automatizar 

transformaciones de datos y redactar documentación técnica en tiempo real. Esta evidencia respalda la viabilidad de 

utilizar LLMs para reducir el esfuerzo manual en tareas de codificación y documentación, funciones alineadas con la 

automatización de extracción de requerimientos. 

En el estudio de [10]se analizan las técnicas de minería de issue trackers en plataformas colaborativas, destacando 

cómo el análisis de texto libre en incidencias puede extraer patrones recurrentes, detectar temas críticos y sugerir 

acciones correctivas. Este enfoque tiene una similitud con el diseño del agente inteligente, donde se pretende recuperar 

información técnica desde documentos DERCAS en issues de GitLab. 

Por otra parte en el caso de [29] se basa en proponer un modelo en el que detectan deudas técnicas de issues dentro de 

este caso se demuestra cómo el procesamiento semántico de texto en plataformas colaborativas puede aportar valor 

adicional al ciclo de desarrollo, automatizando actividades que usualmente requerirían revisión humana. 

En el siguiente caso de estudio sobre implementación de agentes inteligentes en ingeniería de software se evidencia 

que están transformando el desarrollo mediante la automatización de tareas, de procesos y mejora en la toma de 

decisiones. facilitando la automatización y mejorando la eficiencia en diversas áreas. 

Un caso relevante es el uso de agentes en la detección de errores y pruebas automatizadas. Estos agentes pueden 

simular el comportamiento del usuario y ejecutar pruebas de manera continua, lo que permite detectar fallos en etapas 

tempranas del desarrollo. Además, en la gestión de proyectos, los agentes inteligentes pueden optimizar la asignación 

de recursos y el seguimiento del progreso, mejorando la colaboración entre equipos. 

En la  investigación de [30] presenta un enfoque novedoso que utiliza  LLM para mejorar el modelo de software, 

utilizando un aprendizaje rápido, este método admite varias actividades de modelado sin datos de entrenamiento 

extensos. Inicialmente se centran en formalismos estáticos y conductuales como los diagramas UML, pero su objetivo 

es extenderlo a otros paradigmas e integrarlo en la línea de Ingeniería dirigida por modelos. Además de evaluar la 

productividad, la calidad del modelo y la precisión al recibir sugerencias en tiempo real y sensibles al contexto durante 

las tareas de modelado.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

CAPÍTULO 2 

2. METODOLOGÍA. 

2.1 Definición de la metodología aplicada 

El presente trabajo se desarrolló bajo un enfoque metodológico no experimental, de tipo transversal, lo que permitió 

analizar la situación actual del proceso de levantamiento de requerimientos durante la etapa de creación de 

requerimientos en una empresa de telecomunicaciones. El propósito de esta fase fue obtener una visión más clara 

sobre los principales problemas que enfrentaban los usuarios al momento de buscar o referenciar requerimientos 

previos. Entre los aspectos más críticos se identificaron: ambigüedad en la redacción de los requerimientos, 

desalineación entre las áreas de negocio involucradas, y pérdida de información histórica en proyectos ya puestos en 

producción. 

A partir de esta evaluación, se planteó el diseño de una solución tecnológica basada en un sistema de búsqueda 

inteligente, con el objetivo de facilitar a los usuarios el acceso a información previa de forma contextualizada, clara y 

útil, que sirviera de apoyo en la elaboración de nuevos requerimientos. 

  2.1.1 Justificación  

El método que se eligió en este estudio se fundamenta en la definición del problema planteado y en la forma en que 

la información está estructurada y disponible dentro de la organización. El trabajo se centra en el diseño de un agente 

inteligente capaz de facilitar información de requerimientos técnicos realizados en la empresa de telecomunicaciones, 

lo cual exige un enfoque que combine procesamiento automático, lenguaje natural y recuperación de información. 

Esta estrategia metodológica permitió abordar adecuadamente el problema, ya que no solo automatiza el 

procesamiento de la información, sino que además mejora la forma en que los usuarios acceden al conocimiento 

existente dentro de los sistemas de gestión de requerimientos. 

Adicional no solo se alineó con los objetivos generales y específicos del estudio, sino que además traza una ruta clara 

para su futura implementación, validación y aplicación en entornos reales de gestión de requerimientos. 

La arquitectura propuesta se basa en evidencia técnica documentada, que valida el uso de modelos generativos 

conectados a motores de recuperación como alternativa eficaz frente a los enfoques tradicionales de preguntas y 

respuestas [31]. Para realizar la búsqueda semántica, se seleccionó la base de datos vectorial Qdrant, por su capacidad 

para manejar vectores de alta dimensión y su compatibilidad con metadatos. Estas características la convierten en una 

herramienta ideal para sistemas RAG escalables [32]. GitLab permite configurar Webhooks en proyectos para enviar 

automáticamente solicitudes HTTP a endpoints externos cuando ocurren eventos relevantes como creación o 

actualización de issues. Esta capacidad fue aprovechada en el diseño del agente para activar automáticamente los 

flujos en n8n ante cualquier modificación de requerimientos [33]. Finalmente,  [5] subraya el potencial transformador 

de la Inteligencia Artificial (IA) para optimizar las tareas de gestión de proyectos, lo que respalda la viabilidad de 

implementar un agente inteligente en la empresa de telecomunicaciones. 

 

Justificación de la alternativa seleccionada.- Esta solución demostró un alto nivel de cumplimiento en los criterios 

clave del proyecto, destacándose en aspectos como automatización, escalabilidad y reducción del tiempo de búsqueda. 

En contraste, la alternativa basada únicamente en indexación tradicional obtuvo la puntuación más baja, reflejando su 

incapacidad para enfrentar los retos semánticos del problema identificado. La segunda alternativa, que proponía el uso 

de modelos LLM sin automatización, mostró un desempeño intermedio, con buen entendimiento del lenguaje natural, 

pero limitada por la intervención manual requerida por parte del usuario. 

La alternativa seleccionada, al integrar un modelo LLM dentro de un flujo automatizado (N8N), ofreció una solución 

innovadora, adaptable y con alto impacto en términos de eficiencia operativa. Asimismo, permite escalar su 

implementación a otras áreas del negocio, aprovechar repositorios existentes como GitLab, y facilitar la consulta 

contextualizada de requerimientos previos sin necesidad de experiencia técnica por parte del usuario final. 
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2.2 Recopilación de datos  

2.2.1 Levantamiento información mediante encuestas 

Recopilación y análisis de la información.- Para recopilar la información necesaria, se diseñó un cuestionario 

estructurado con preguntas cerradas, orientadas a identificar los principales puntos de dolor relacionados con el acceso 

a información histórica, el funcionamiento actual del repositorio y la percepción sobre la viabilidad de implementar 

una solución automatizada. La encuesta estuvo dirigida a actores clave dentro del proceso de levantamiento de 

requerimientos, incluyendo: 

• 12 jefaturas departamentales responsables de la generación de requerimientos. 

• 4 analistas de negocio. 

• 8 líderes de proyecto. 

Lo que representó un total de 24 participantes, correspondiente al 100 % de la muestra definida. 

Las encuestas fueron aplicadas mediante la herramienta Google Forms, lo cual permitió recopilar los datos de forma 

ágil, estructurada y estandarizada. Cada formulario estuvo compuesto por 10 preguntas cerradas, lo que facilitó el 

posterior análisis cuantitativo de las respuestas. Las preguntas se centraron en evaluar la calidad del proceso actual de 

búsqueda de requerimientos, así como el tiempo promedio que los usuarios tardaban en encontrar información 

relevante dentro del repositorio institucional. 

Una vez completada la fase de recolección de datos, se procedió a su análisis utilizando herramientas estadísticas 

básicas. A través del cálculo de frecuencias y porcentajes, fue posible agrupar las respuestas por bloque temático y 

detectar patrones comunes que evidenciaron los principales puntos críticos del proceso. Los resultados fueron 

representados mediante gráficos que permitieron visualizar de manera clara la percepción de los distintos perfiles 

encuestados, tanto técnicos como no técnicos. Esta diversidad de perspectivas facilitó una validación más completa 

del diagnóstico y una comprensión integral del problema. 

Entre los principales hallazgos, se identificó que un número considerable de usuarios experimentaba dificultades 

frecuentes para localizar requerimientos previos, lo cual repercutía en la eficiencia del proceso. Asimismo, se 

evidenció la necesidad recurrente de realizar múltiples iteraciones entre los usuarios y los responsables del proceso 

antes de consolidar el requerimiento en el formato DERCAS, como consecuencia de la ausencia de mecanismos que 

permitieran consultar de manera rápida y estructurada los requerimientos documentados en proyectos puestos en 

producción. Esta limitación obligaba a los actores a recurrir a consultas informales. Estos resultados permitieron 

confirmar que existía una oportunidad clara de mejora mediante el uso de herramientas tecnológicas que optimicen la 

búsqueda y recuperación de información. 

Adicionalmente, se llevó a cabo una evaluación comparativa entre el tiempo promedio de búsqueda reportado por los 

usuarios en las encuestas y el tiempo estimado de consulta de un agente inteligente basado en modelos de lenguaje 

natural (LLM). Esta comparación se fundamentó en referencias documentadas de soluciones similares ya 

implementadas, donde se evidenciaron mejoras en la recuperación de información. Para el análisis se consideraron 

dos indicadores clave: 

• El tiempo promedio que un usuario tardaba actualmente en localizar un requerimiento funcional específico. 

• El tiempo estimado de respuesta de una API conectada al agente inteligente, capaz de entregar resultados 

relevantes de forma automatizada y contextualizada. 

Para sustentar esta estimación, se revisaron estudios recientes como el de [34], en el cual se analizaron estrategias de 

optimización aplicadas durante la ejecución de modelos de lenguaje, tales como el escalado dinámico en tiempo de 

consulta (latency-aware test-time scaling), que permitieron reducir significativamente los tiempos de respuesta sin 

comprometer la precisión de los resultados. Esta evidencia respaldó la viabilidad técnica de implementar un agente 

inteligente enfocado en la búsqueda eficiente de requerimientos. 

 

.  
Fig. 1. Frecuencia con la que los encuestados necesitan buscar requerimientos. 
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Análisis e interpretación: La mayoría de los encuestados (72 %) recurrió con frecuencia a requerimientos previos, 

lo que evidenció una alta dependencia de información histórica. 

 

 
Fig. 2. Tiempo estimado para localizar requerimientos 

Análisis e interpretación: El 40 % de los encuestados indicó que tardaba más de 15 minutos en encontrar un 

requerimiento, lo que evidenció dificultades en el acceso y búsqueda. 

 

 
Fig. 3. Frecuencia con que se detecta ambigüedad en los requerimientos 

 

Análisis e interpretación: El 80 % de los encuestados reportó encontrar falta de claridad en los documentos. 

 

 
 
Fig. 4. Opinión sobre el formato actual de los documentos de requerimientos. 

 

Análisis e interpretación: El 60 % expresó un grado de conformidad con el formato actual, un 40 % manifestó 

desacuerdo, lo que indicó oportunidades de mejora en la estructura documental. 
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Fig. 5. Dependencia de información de otra persona. 

 

Análisis e interpretación: El 76 % reconoció depender de otros, para interpretar requerimientos, lo que evidenció 

una necesidad de mejorar la autonomía en el acceso de los documentos. 

 
Fig. 6. Opinión de los encuestados sobre la organización de los requerimientos. 

Análisis e interpretación: Solo el 12 % percibió una organización lógica en el repositorio actual, mientras que el 

88 % expresó desacuerdo, lo que reflejó una mejora en la gestión de requerimientos. 

 

 
Fig. 7. Medio más utilizado por los encuestados para buscar requerimientos. 

Análisis e interpretación: El 48 % de los encuestados buscó requerimientos previos consultando a compañeros. 
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Fig. 8. Incidencia de pérdida de información de los requerimientos. 

Análisis e interpretación: El 88 % indicó haber experimentado pérdida de información. 

 

 
Fig. 9. Percepción sobre un sistema de búsqueda inteligente basado en lenguaje natural para recuperar requerimientos. 

Análisis e interpretación: El 88 % consideró necesario implementar un sistema de búsqueda inteligente, lo que reflejó 

un alto interés por soluciones que optimicen el acceso a requerimientos 

. 

 
Fig. 10. Puntuación de funcionalidades más importantes en una herramienta de búsqueda de requerimientos. 

Análisis e interpretación: La funcionalidad más solicitada fue la interpretación de lenguaje natural (92 %), seguida 

de la búsqueda de requerimientos similares (56 %), lo que confirmó la necesidad de herramientas intuitivas y 

orientadas al contexto de la información de requerimientos. 
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2.2.2 Proceso actual AS-IS 

 
Fig. 11. Flujo actual (AS-IS) de creación de requerimientos. 

El proceso de creación de requerimientos, se iniciaba cuando la jefatura de un departamento identificaba la necesidad 

de una mejora o nuevo requerimiento. Como primer paso, la jefatura se reunía con el departamento de procesos con 

el objetivo de coordinar la agenda inicial para entender el proceso y aplicar la mejora. Una vez que se realizaba la 

reunión con los involucrados, se redactaban los primeros datos del requerimiento funcional, en el documento que 

actualmente se maneja llamado DERCAS. Como parte de esta etapa se realizaba un paso fundamental que es la 

revisión de procesos anteriores o de requerimientos ya en producción. Esta actividad tenía como propósito aprovechar 

la información inicial y evitar la duplicación de esfuerzos, así como considerar aspectos técnicos ya identificados en 

requerimientos anteriores. 

Una vez documentadas las ideas principales del requerimiento, y siempre que estas fueran claras y completas, el 

documento era enviado para aprobación a la jefatura responsable de la mejora. En caso de que el contenido no fuera 

suficientemente comprensible, se procedía a revisar nuevamente documentación relacionada o a retomar sesiones de 

revisión con los involucrados en el proceso. 

Cuando la jefatura aprobaba el requerimiento, este era compartido con el Coordinador de Sistemas. El mismo que 

realizaba una revisión preliminar y asignaba el nuevo requerimiento al equipo responsable. Dicha asignación 

contemplaba la participación de un líder de proyecto, encargado de validar la información técnica, y un analista, quien 

revisaba la estructura y redacción del documento de requerimiento. 

Tras el análisis del documento, si el equipo técnico comprendía correctamente el alcance de lo solicitado, se daba 

inicio a la etapa de análisis del proyecto. En este punto, el líder de proyecto elaboraba un cronograma estimado de 

tiempos, el cual era validado por el Coordinador de Sistemas y luego remitido al usuario del área de procesos. Por el 

contrario, si durante la revisión se detectaban inconsistencias o ambigüedades, el requerimiento era devuelto al sponsor 

principal para su corrección y reformulación, con el fin de que fuese reenviado en una versión clara. 

Dentro de este flujo se evidenció limitaciones relevantes, tales como la falta de herramientas para sistematizar la 

revisión de requerimientos previos, la ausencia de un repositorio centralizado de requerimientos, y la dependencia de 

reiteradas reuniones para avanzar en el entendimiento del requerimiento, con esto se propone un flujo TO-BE en el 

cual se centra en la mejora de estas falencias. 

 

2.3Propuesta del flujo automatizado 

2.3.1   Alternativas de solución 

Descripción de las alternativas propuestas.- Para determinar cuál de las propuestas representaba la solución más 

adecuada al problema, se realizó un análisis comparativo mediante la técnica Matriz de Decisión Ponderada, la que 

permitió evaluar las opciones según criterios, entre tres alternativas técnicas, las cuales se orientaron en la mejora del 

acceso a los requerimientos funcionales. Esta metodología permitió comparar de forma estructurada las alternativas 

consideradas, asignando un peso a cada criterio y evaluando el grado de cumplimiento por parte de cada propuesta. 
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Las alternativas fueron las siguientes: 

• Alternativa 1: Sistema de indexación sin inteligencia contextual. 

Esta opción consistió en implementar un motor de búsqueda que se base en mecanismos de indexación y filtrado por 

palabras clave. Permitía organizar los requerimientos de manera estructurada por categorías o etiquetas, mejorando la 

navegación entre el repositorio. Sin embargo, no incorporaba interpretación semántica ni procesamiento del lenguaje 

natural, lo que limitaba su capacidad para responder consultas o adaptarse al contexto del usuario en la búsqueda. 

• Alternativa 2: Uso de modelo LLM con consulta directa (sin automatización). 

Esta alternativa propuso la incorporación de un modelo de lenguaje natural (LLM) para interpretar preguntas y ofrecer 

respuestas a partir de la información que se cargue. Esto mejoraba en la comprensión del contenido y permitía formular 

preguntas en lenguaje natural, pero se dependía completamente del usuario y la manualidad en la carga de archivos, 

iniciar la consulta y gestionar la interacción. 

• Alternativa 3: Agente de búsqueda inteligente con automatización mediante flujo N8N. 

Esta opción integró el uso de un modelo LLM dentro de un flujo automatizado diseñado en N8N, conectado 

directamente con los repositorios GitLab. El agente se activaba al detectar nuevos archivos o actualizaciones, extraía 

la información relevante y permitía realizar consultas en lenguaje natural con respuestas estructuradas. Esta alternativa 

combinó automatización, interpretación de lenguaje natural y retroalimentación estructurada, adaptándose además a 

futuras integraciones. 

2.3.2 Selección de la Propuesta   

Evaluación comparativa mediante Matriz de Decisión Ponderada.- En el proceso de evaluación comparativa, se 

utilizó una Matriz de Decisión Ponderada para valorar las alternativas propuestas en función de criterios técnicos y 

operativos. Cada alternativa fue calificada en una escala de 1 a 5, donde 1 representa un bajo cumplimiento y 5 un 

cumplimiento óptimo respecto a cada criterio. Esta calificación refleja el nivel de desempeño de cada alternativa. 

Cada criterio fue ponderado según su relevancia estratégica y técnica, con pesos definidos por los arquitectos del 

departamento para asegurar un equilibrio entre factibilidad y valor práctico. La suma total fue 1, con la siguiente 

distribución: 

 
Tabla IV. Criterios de evaluación y peso de alternativas. 

Criterio Peso asignado 

Integración con plataformas existentes 0.15 

Facilidad de implementación 0.10 

Nivel de automatización alcanzable 0.20 

Escalabilidad 0.15 

Reducción del tiempo de búsqueda 0.25 

Costos de desarrollo y mantenimiento 0.15 

Total 1.00 

 

Para obtener el puntaje total ponderado de cada alternativa, se multiplicó la calificación por el peso correspondiente 

en cada criterio, y luego se sumaron todos los resultados. Esta metodología permitió comparar las alternativas de 

forma cuantitativa y justificada, combinando tanto el cumplimiento técnico como la relevancia estratégica de cada 

dimensión evaluada. 

 
Tabla V. Evaluación ponderada de alternativas tecnológicas para búsqueda de requerimientos. 

Criterio Peso 

Sistema de indexación 

sin inteligencia 

contextual 

 Uso de modelo LLM 

con consulta directa (sin 

automatización) 

 Agente de búsqueda 

inteligente con 

automatización mediante 

flujo N8N 

Integración con plataformas 0.15 2 (0.30) 3 (0.45) 5 (0.75) 

Facilidad de implementación 0.10 4 (0.40) 3 (0.30) 4 (0.40) 

Nivel de automatización 0.20 1 (0.20) 2 (0.40) 5 (1.00) 

Escalabilidad 0.15 2 (0.30) 4 (0.60) 5 (0.75) 

Reducción del tiempo de 

búsqueda 
0.25 2 (0.50) 4 (1.00) 5 (1.25) 

Costos de 

desarrollo/mantenimiento 
0.15 5 (0.75) 3 (0.45) 4 (0.60) 
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Revisión de la mejor alternativa. - Los criterios más relevantes fueron la escalabilidad, la automatización y la 

reducción del tiempo de búsqueda, por su alineación con los problemas detectados inicialmente. Aunque también se 

consideraron el costo y el tiempo de desarrollo, su ponderación fue menor. La alternativa de indexación sin inteligencia 

contextual obtuvo el puntaje más bajo por su enfoque tradicional. La opción con LLM sin automatización logró una 

puntuación intermedia, limitada por su dependencia manual. En cambio, la propuesta con agente inteligente 

automatizado mediante N8N alcanzó la mayor valoración (4,75), destacando por su escalabilidad, integración y 

capacidad de automatización. Se concluyó que esta era la opción más adecuada técnica y estratégicamente, por lo que 

fue seleccionada como base del diseño de solución. 

2.3.3 Diseño del flujo   

Flujo envío de información Gitlab- Qdrant 

 
Fig. 12. Flujo envío información de Gitlab 

 

El diseño definió un flujo automatizado para el procesamiento de requerimientos desde su creación o edición en 

GitLab. Su objetivo fue integrar documentos en una base de datos vectorial, permitiendo búsquedas semánticas 

mediante un modelo de lenguaje LLM. Implementado en N8N, este flujo actuó como orquestador y ejecutó 

automáticamente operaciones como validación, descarga, extracción, vectorización y almacenamiento tras cada 

evento registrado en GitLab. A continuación, se describen sus componentes, herramientas y funciones principales. 

Evento GitLab.- Al crear o editar un issue en GitLab, se activaba automáticamente un webhook previamente 

configurado, que enviaba los datos del evento al sistema automatizado. Esta configuración se realizaba en Projects → 

Settings → Webhook, donde se registraba la URL del flujo en N8N y, de forma crucial, se activaba el evento issues, 

indispensable para que el flujo se ejecutara correctamente. 

Para asegurar una automatización efectiva y facilitar la búsqueda por parte del agente, se definieron estándares que 

cada issue debía cumplir. Estos incluían: 

• Título: Debe ser corto y bien especifico. 

• Descripción: Un resumen claro del motivo de creación del issue. 

• Documento adjunto: Documento adjunto con un nombre especifico “DERCAS.pdf”. 

• Label: Para este diseño se le asociaría “Requerimiento”. 

 

 
Fig. 13. Creación webhooks 

Puntaje total ponderado 1.00 2.45 3.20 4.75 
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Fig. 14. Creación Labels. 

• Webhook en N8N.-El flujo en N8N comienza al recibir ese webhook vía POST. El nodo inicial captura los 

datos enviados por GitLab, incluyendo el project_id y el id del issue. Este evento es en el nodo inicial del 

flujo N8N. 

• Obtención detalles.-Con los identificadores del proyecto y del id issue, el flujo realiza una solicitud HTTP 

a la API REST de GitLab para obtener información completa del requerimiento: título, descripción, etiquetas 

y enlaces a archivos adjuntos. Todo esto realizado mediante una configuración realizada en este nodo donde 

tiene la url del api de Gitlab. 

• Validar nombre del archivo.-Se analiza el contenido de la descripción del issue para extraer la URL del 

archivo PDF. Se valida que el archivo tenga exactamente el nombre del archivo a extraer. Si no coincide, el 

flujo se detiene. Esta validación se realiza dentro del mismo nodo que extrae el archivo. 

• Descargar documento.-Si el archivo es válido, se realiza una descarga del documento desde GitLab 

mediante una solicitud HTTP. El archivo PDF, con esto se enviará al siguiente nodo para que continue el 

flujo 

• Preparar metadatos.-Se genera un objeto JSON que contiene los metadatos relevantes del requerimiento, 

incluyendo el título del issue, el nombre del proyecto, la fecha del evento y la URL del archivo. Este JSON 

acompañará al archivo para su procesamiento. 

• Procesar documento.-Se realiza una solicitud HTTP POST al endpoint /procesar_pdf, enviando el archivo 

más los metadatos. El método recibe este contenido y comienza el procesamiento. 

• Este método extrae el texto del documento PDF usando la herramienta pdfplumber, luego convierte el texto 

en vectores semánticos teniendo lista la información para bitacorizar en Qdrant. 

o Debido a que la información obtenida es extensa, esta información se divide en fragmentos de 200 

palabras máximo, se detalla ejemplo. 

 
Tabla VI. Fragmento palabras 

 
Fragmento de 200 palabras 

{ 

      "id": "frag-001", 

      "vector": [0.12, 0.98, ...], 
      "payload": { 

        "titulo": "Proyecto Pedidos", 

        "tipo": "Requerimiento", 

        "fecha": "2024-09-15", 
        "contenido": "El sistema permite crear pedidos para el personal de 

campo………." 

 } 

{ 
   …. 

} 

 

• Para generar los vectores semánticos, se utilizó el modelo all-MiniLM-L6-v2 que es una librería, que 

transforma texto en vectores de 384 dimensiones. Este modelo fue seleccionado por su eficiencia, precisión 

y compatibilidad con sistemas de búsqueda semántica como Qdrant. 

• Una vez generados estos fragmentos son enviados para su almacenamiento tal como se indica en el siguiente 

punto. 

• Guardar en Qdrant.- Finalmente, los vectores generados junto con su contexto se almacenan en la base de 

datos vectorial Qdrant. Esto permite realizar búsquedas semánticas por similitud en futuras consultas de 

usuario. 
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• Antes de poder hacer los registros se creó la colección donde se determina la distancia Coseno que es la más 

adecuada para Qdrant garantizando una recuperación más precisa y coherente del contenido de información 

• A continuación, se detalla un ejemplo grafico de la vectorización y almacenamiento. 

 

 
Fig. 15. Flujo vectorización en qdrant. 

Para los proyectos actuales se analizó generar la información histórica de estos con un solo documento integrado por 

proyecto que fue proporcionado por el departamento de procesos que realizó esta tarea por el mismo tema de que no 

se tenía información a la mano de mayoría de estos proyectos, estos documentos contienen las diferentes 

funcionalidades que se aplicaron a cada uno de estos. En conclusión, una vez obtuvo estos documentos se agregaron 

a un issues cumpliendo así con la carga automática al dispararse el webhook que inicia este flujo.   

A continuación, se detalla un gráfico del flujo en N8N. 

 

 

 
Fig. 16. Flujo N8N automatización. 

2.3.4 Herramientas 

 
Tabla VII. Herramientas y Uso. 

Herramienta Uso en el diseño 

N8N Orquestador de flujos de automatización 

GitLab API Fuente de datos (issues y adjuntos como DERCAS) 

Qdrant Base de datos vectorial para almacenamiento y recuperación por 

similitud 

LLama Generación de respuestas en lenguaje natural a partir del contexto 

Pdfplumber  Biblioteca de extracción de texto desde documentos PDF 

all-MiniLM-L6-v2 Librería para generar vectores de carga y consulta 

Bizagi Modeler Para modelo de flujo de procesos 
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2.3.5 Especificaciones. 

Técnicas. - Este diseño se basa en una arquitectura modular e integrable, orientada a facilitar el acceso a información 

de requerimientos funcionales dentro de una empresa de telecomunicaciones. Entre las principales características 

técnicas del sistema propuesto se incluyen: 

• Automatización de flujos con N8N para la recolección estructurada de datos y documentos asociados desde 

GitLab mediante API REST. 

• El flujo n8n puede incorporar nodos de validación y reintento para manejar errores como respuestas vacías, 

formatos malformados o caídas temporales del servidor LLM o la base vectorial. 

• Técnicas de vectorización en Qdrant y modelos de lenguaje con Llama, que permiten representar el contenido 

de los requerimientos de manera semántica. 

• Para mejorar la calidad de la vectorización, los documentos extraídos desde GitLab son divididos en 

fragmentos de tamaño razonable, asegurando que los vectores representen unidades coherentes de 

significado. 

• Una arquitectura basada en RAG (Retrieval-Augmented Generation), que combina búsqueda vectorial en 

Qdrant con generación de respuestas en lenguaje natural. 

• El diseño utiliza el modelo Llama para la generación de respuestas en lenguaje natural, ejecutado en el 

entorno del proyecto, sin depender de servicios externos. 

 

Consideraciones Éticas y Legales 

• Todos los datos utilizados en esta investigación provienen de entornos controlados, sin afectar operaciones 

reales ni comprometer información sensible de la empresa. 

• No se procesaron datos sensibles ni personales de usuarios, conforme a lo establecido en normativas de 

protección de datos. La información fue limitada a requerimientos funcionales, sin incluir nombres, 

identificadores u otra información personal. 

• Se utilizaron exclusivamente herramientas open-source (como GitLab, Qdrant, N8N y Llama), en 

cumplimiento con sus respectivas licencias de uso y términos comunitarios. 

• El diseño no expone datos hacia internet ni usa servicios de terceros. Todo el procesamiento debe ser dentro 

de redes privadas, lo que cumple con políticas de confidencialidad de empresas de telecomunicaciones. 

• El modelo de lenguaje no fue ajustado con datos sensibles ni entrenado con información privada. Su uso se 

limita a generación de lenguaje sobre datos previamente controlados. 

• Se considera la necesidad de establecer gobernanza de datos a futuro para el uso de inteligencia artificial 

dentro de la organización. Aunque este diseño no abarca directamente una política de gobernanza, se 

reconoce la importancia de definir responsabilidades, límites de uso y criterios éticos en futuras fases de 

implementación. 

• Todas las respuestas generadas pueden ser rastreadas hasta el contexto exacto que las originó, permitiendo 

así una auditoría y revisión identificando así la transparencia y fiabilidad de la información proporcionada 

de parte del agente. 
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2.4 Diseño del agente de búsqueda  

    2.4.1 Arquitectura   

 
Fig. 17. Diagrama de interacción entre componentes. 

• Consulta El flujo de consulta inició cuando un usuario realiza una pregunta en lenguaje natural. Esta consulta 

se envía como una petición HTTP POST al endpoint de N8N que está expuesto en el webhook del flujo de 

consulta. 

• La consulta al sistema puede ser integrada desde cualquier interfaz frontend de la empresa que permita 

realizar solicitudes HTTP, como aplicaciones web, móviles o bots conversacionales. 

• Esto es posible gracias a que el flujo en N8N expone un webhook accesible vía HTTP, el cual acepta datos 

en formato JSON. 

• Al tratarse de una API abierta, cualquier cliente capaz de realizar una petición POST puede enviar la pregunta 

del usuario y recibir la respuesta generada por el modelo Llama. 

• Esta arquitectura facilita la incorporación de la solución en múltiples canales, sin acoplamiento directo con 

la lógica interna del procesamiento. 

• Webhook - Consulta Usuario. - El flujo comienza con el nodo Webhook en N8N, el cual recibe una consulta 

enviada por el usuario. La entrada debe ser una solicitud HTTP POST que contenga el texto de la pregunta 

en formato JSON bajo el campo 'consulta'. 

• Vectorizar Consulta. – Convierte la pregunta del usuario a vector usando un endpoint de modelo de 

embedding SentenceTransformer("all-MiniLM-L6-v2"). A continuación, un ejemplo. 

 
Tabla VIII. Ejemplo de Vector 

Vector 

"vector": [ 

0.03989684581756592, 

0.06593604385852814, 

-0.010924134403467178, 

0.008360879495739937, 

-0.07364846020936966, 

0.03933945298194885, 

0.11244940012693405, 

-0.009591905400156975, 

0.06352280080318451] 

 

• Buscar en Qdrant.- El contenido de la consulta se envía al endpoint /qdrant/search que interactúa con la 

base de datos vectorial Qdrant. En este punto, el texto se vectoriza y se ejecuta una búsqueda semántica sobre 
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los vectores previamente cargados a través del flujo de carga. Teniendo como resultado una lista de texto 

relevantes que sirven como contexto. 

 
Tabla IX. Vector Consulta y Resultado 

El resultado de la búsqueda devuelve información en el siguiente formato. 

"result": [ 

{ 

"id": 0, 

"version": 0, 

"score": 0.5519424, 

"payload": { 

"texto": "El sistema debe permitir la gestión de usuarios a través de roles." 

} 

} 

 

• Pasar pregunta. - Extrae únicamente la pregunta original desde el Webhook y la formatea como nuevo 

objeto. 

• Unir Pregunta más resultado. – Este nodo consiste en tener una estructura combinada que contiene tanto 

la pregunta como los textos relevantes para generar la respuesta. Esta información proviene de los nodoso 

Pasar pregunta y Buscar en Qdrant, teniendo como resultado un json con la información unificada. 

• Generar Respuesta con Llama. - La pregunta original del usuario y el contexto recuperado desde Qdrant 

se envían al endpoint /llama/responder. Este endpoint consulta al modelo Llama, que genera una respuesta 

textual coherente y relevante utilizando la información semántica recuperada. La respuesta es enviada de 

vuelta al flujo y puede devolverse al usuario directamente o mostrarse a través de una interfaz. 

• A continuación, se detalla una figura del flujo descrito en N8N. 

• Limpiar Texto. – Hace una depuración del texto eliminando caracteres y saltos de línea demás dejando un 

texto disponible para devolver. 

• Responder. - Devuelve la respuesta generada al cliente original, al tener este tipo de nodo el canal que envié 

la petición esperará la respuesta del flujo N8N. 

 

 
Fig. 18. Diagrama de interacción respuesta Llama 

En resumen, se planteó una solución pensada para ayudar a las personas que necesitan acceder rápidamente a 

información de proyectos anteriores. Esta propuesta busca que el proceso sea más sencillo, claro y ordenado, 

aprovechando herramientas que permiten encontrar la información sin tener que buscarla manualmente. Además, se 

pensó de forma flexible para que pueda adaptarse a otras áreas o necesidades similares. En el siguiente capítulo se 

mostrarán los resultados que se obtuvieron al probar esta idea, y cómo podría mejorar el trabajo que hoy en día hacen 

los equipos dentro de la organización. 

 

 

 

 



 

 

 

 

 

 

CAPÍTULO 3  

3. RESULTADOS Y ANÁLISIS 

3.1 Presentación de la solución 

 

A continuación, se describe la solución propuesta para mitigar el problema identificado, la dificultad de acceso rápido 

y preciso a los requerimientos funcionales de proyectos en una empresa de telecomunicaciones. La propuesta consiste 

en el diseño de un agente de búsqueda inteligente, capaz de procesar consultas en lenguaje natural, buscar en una base 

de datos vectorial, y retornar resultados relevantes y contextualizados. El diseño integra herramientas de 

automatización, procesamiento de lenguaje natural y recuperación de información semántica, también obtener la 

información de primera instancia para que mediante un flujo automatizado en N8N envíe esta información a una base 

en Qdrant de donde se obtendrá la información de las consultas que se realicen. 

Esto reduce la dependencia de personal técnicos, mejora la productividad en áreas de análisis y desarrollo, y disminuye 

la posibilidad de omitir requerimientos críticos. 

La solución propuesta se centra en un diseño que demuestre la viabilidad técnica de un sistema automatizado e 

inteligente para el acceso a requerimientos. La propuesta incluye los siguientes elementos clave: 

• Gitlab como fuente estructurada de documentos técnicos y requerimientos oficiales. 

• N8N, como flujo automatizado para obtener la información de documentos enviados desde Giltab. 

• Qdrant, una base de datos vectorial para el almacenamiento semántico de requerimientos. 

• Un modelo de lenguaje LLM, como Llama, para procesar consultas en lenguaje natural. 

 

El sistema inicia con una consulta, por ejemplo: ¿Cuáles son los requisitos para el módulo de facturación digital? Esta 

entrada es procesada y enviada a través de un flujo automatizado, desarrollado en N8N, que transforma la consulta en 

un vector numérico representativo. 

Este vector se compara contra los vectores previamente almacenados en la base Qdrant, que representa requerimientos 

obtenidos de los documentos extraídos desde GitLab. Los resultados más relevantes basados en similitud semántica 

son devueltos al sistema, y una respuesta en lenguaje natural es finalmente presentada al usuario. 

3.2 Resultados de validación, pruebas o simulaciones 

Se realizaron varias pruebas en un entorno simulado. Estas pruebas del flujo automatizado nos ayudaron a validar el 

comportamiento del mismo, validar el tiempo que se tarda en dar una respuesta, y si la información que entrega el 

agente este contextualizada. 

Las simulaciones se hicieron a través de Postman, donde se enviaron preguntas al flujo automatizado creado en N8N. 

Este flujo simuló lo que haría el agente inteligente: recibió la pregunta, buscó la información de los vectores 

relacionados y generó una respuesta basada en la información disponible. 

A continuación, se muestran los principales resultados obtenidos durante estas pruebas: 

• Tiempos de respuesta por cada parte del flujo. - Se midió cuánto tiempo toma cada paso desde que el sistema 

recibe una consulta hasta que entrega la respuesta final. En promedio, todo el proceso duró menos de 6 

minutos, lo cual representa una mejora significativa frente al proceso actual, donde las personas pueden tardar 

más de 1 día buscando información similar o incluso no llegar a encontrarla. 

 

 
Tabla X. Tiempos de respuesta en Flujo de Automatización N8N 

Etapa del flujo Tiempo promedio (segundos) 

Vectorización de la consulta  10–15 
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Búsqueda semántica en Qdrant  8–12 

Procesamiento de resultados  10 

Generación de respuesta con LLaMA  240–300 

Limpieza del texto y respuesta final  15–20 

Total del flujo (promedio)  360 segundos (6 minutos) 

 

 

Estas son algunas de las preguntas enviadas al sistema y las respuestas que generó en cada caso. También se indica el 

tiempo que tomó procesar cada una: 

 
Tabla XI. Tiempo de respuesta entre consulta 

Consulta realizada Tiempo de respuesta Respuesta generada 

¿Qué requerimientos tiene el proyecto 

de pedidos? 

44 segundos Módulos de solicitud, aprobación y 

seguimiento de órdenes. 

¿Qué se implementó en trazabilidad? 47 segundos Geolocalización y registro de eventos por 

activo. 

¿Quién lideró el módulo de instalación? 46 segundos Responsable: Coordinador de Operaciones. 

 

Estas respuestas fueron útiles y coherentes con el contenido de los documentos almacenados, lo que demuestra que el 

sistema puede entregar información relevante sin necesidad de intervención humana. 

El nuevo flujo automatizado logró reducir la dependencia de otras personas, acortar tiempos de revisión documental 

y mejorar la calidad de las respuestas.  

 

 
Fig. 19. Flujo automatización ejecutado 

Asimismo, para que el sistema pudiera entregar respuestas relevantes, se alimentó previamente la base de datos 

vectorial con requerimientos reales extraídos de proyectos. Para esta tarea se utilizó un script en Python, que convirtió 

cada texto en un vector mediante un modelo semántico (SentenceTransformer) y lo insertó en la colección de Qdrant. 

 

 
Fig. 20.  Inserción de requerimientos vectorizados en la colección Qdrant 

Este proceso permitió tener una base de conocimiento previamente vectorizada, lo cual fue fundamental para que el 

agente pudiera realizar búsquedas semánticas eficaces y responder consultas con base en similitud contextual. 

Como parte del flujo automatizado, se configuró un webhook de tipo POST en la plataforma N8N. Este webhook 
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actúa como punto de entrada para recibir consultas por parte de los usuarios, ya sea desde herramientas como Postman 

o desde una interfaz. Cada vez que una pregunta es enviada, el sistema la redirecciona automáticamente hacia los 

siguientes componentes del flujo para su procesamiento semántico. 

 

 
Fig. 21.  Configuración del Webhook para recepción de consultas de usuario en N8N 

Una vez que el sistema recibe la consulta del usuario, el siguiente nodo consiste en transformar esa pregunta en una 

representación que pueda ser entendida por el modelo. Para esto, se utiliza un componente encargado de convertir el 

texto de la pregunta en una secuencia de números. Esta transformación permite que la información pueda ser 

comparada con otras ya almacenadas, buscando así similitudes que ayuden a encontrar respuestas más acertadas. 

El sistema traduce la pregunta a un lenguaje interno, basado en números llamado conjunto de  vectores, que le facilita 

identificar patrones comunes entre preguntas nuevas y antiguos requerimientos. 

 

 
Fig. 22.  Transformación de la pregunta del usuario en una representación numérica para su análisis 

Después de transformar la pregunta del usuario en un conjunto de valores numéricos, el sistema compara esa 

información con los datos previamente almacenados en su base de conocimiento. Este proceso se conoce como 

búsqueda semántica, y lo que hace es encontrar coincidencias en función del significado, no necesariamente de las 

palabras exactas. En este caso, el sistema consultó la colección de requerimientos en Qdrant y encontró varios 

fragmentos relevantes que tenían relación con la consulta enviada. 
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Fig. 23. Búsqueda semántica en la colección en Qdrant 

Una vez identificados los resultados más cercanos en la base de conocimiento, el sistema necesita reorganizar los 

datos para que puedan ser utilizados en la siguiente etapa. Este nodo toma la información recibida y la prepara para 

continuar con el flujo. 

Este nodo, aunque no realiza ninguna transformación, es fundamental para mantener la secuencia lógica del flujo, 

asegurando que tanto la pregunta original como los textos encontrados estén disponibles para que el sistema pueda 

generar una respuesta completa y coherente. 

 

 
Fig. 24.  Nodo que transfiere la pregunta y los resultados hacia el generador de respuesta 

 

Después de recuperar los textos más relacionados con la pregunta, el sistema los une con la consulta original. Esta 

combinación permite entregar al modelo toda la información relevante, asegurando que la respuesta final sea clara, 

coherente. 

En esta etapa, el sistema construye una respuesta utilizando un modelo de lenguaje. Para que esta generación sea 

precisa, se definió un mensaje inicial conocido como prompt que le indica al modelo que debe responder únicamente 

con base en los textos entregados como contexto, sin inventar ni salirse del tema. Esta técnica ayuda a asegurar que 

las respuestas sean claras, útiles y directamente relacionadas con lo que el usuario consultó. 
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Fig. 25. Combinación de la pregunta original con los resultados encontrados 

 

 
Fig. 26. Configuración del modelo LLaMA con un prompt guiado para generar la respuesta final. 

 

Antes de mostrar la respuesta al usuario, el sistema ejecuta un nodo de limpieza el cual permite filtrar elementos 

innecesarios y unir adecuadamente los fragmentos generados por el modelo, asegurando que el mensaje final sea claro, 

sin errores ni repeticiones. De esta forma, se mejora la calidad del texto que el usuario recibe. 
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Fig. 27. Proceso de limpieza de texto antes de enviar la respuesta al usuario 

Finalmente, el sistema entrega la respuesta al usuario. Este paso ocurre mediante un nodo que toma el mensaje ya 

limpio y lo envía a través del webhook que originó la consulta. De esta manera, quien hizo la pregunta recibe un texto 

claro, útil y contextualizado. 

 

 
Fig. 28. Nodo de respuesta que entrega el resultado al usuario 

La ejecución completa del flujo permitió comprobar que la solución diseñada funciona de forma coherente y entrega 

respuestas claras en un entorno controlado. Estos resultados confirman que el agente es capaz de procesar una 

pregunta, buscar información relacionada y generar una respuesta comprensible.  

3.3 Comparación entre el modelo actual y el modelo propuesto 

3.3.1 Proceso TO BE 

Durante el levantamiento de información se evidenciaron limitaciones en el modelo actual de búsqueda y consulta de 

requerimientos funcionales. Estas limitaciones se traducían en tiempos elevados de búsqueda, ambigüedad en la 

redacción y falta de trazabilidad de los requerimientos ya utilizados. Por ejemplo, en muchos casos era necesario 

consultar a otros colaboradores, revisar manualmente proyectos previos y depender del conocimiento individual 

acumulado. 

Con la implementación del nuevo modelo propuesto, estas tareas se automatizaron mediante un agente inteligente que 

busca, interpreta y entrega información relevante de forma inmediata. Esta transformación se tradujo en una mejora 

significativa en la eficiencia del proceso, especialmente al reducir el tiempo promedio estimado de consulta de 45 

minutos (en el modelo actual) a menos de 7 minutos con el modelo automatizado. 
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Tabla XII. Comparación general entre AS-IS , TO-BE 

Elemento evaluado  Modelo Actual (AS-IS)  Modelo Propuesto (TO-BE) 

Búsqueda de requerimientos 

similares  

Manual, dependiente del criterio 

individual  

Automatizada, basada en similitud 

semántica 

Tiempo promedio de respuesta  45 minutos  6 a 7 minutos (ejecución validada) 

Fuente de información  Parcial, no centralizada  Integrada y accesible desde una 

única fuente 

Reutilización de información  Baja, con esfuerzo significativo  Alta, basada en vectorización y 

recuperación semántica 

Claridad de información  Variable Enriquecida con datos 

contextualizados 

Colaboración entre áreas  Limitada, por diferencias en la 

interpretación  

Facilitada por acceso común a datos 

y lenguaje unificado 

Escalabilidad Baja, no replicable fácilmente a 

otros procesos  

Alta, gracias al diseño modular y 
reutilizable del agente 

 

 

 

 
Fig. 29. Diagrama de Proceso TO- BE integración de Agente contextualizado LLM 

 

En conclusión, al comparar el proceso actual con el modelo propuesto, se observa una mejora evidente en la forma en 

que se consultan los requerimientos. Antes, esta tarea dependía mucho de la memoria o experiencia del equipo, lo que 

generaba demoras e incluso errores. Con el nuevo diseño, se facilita el acceso a información ya existente y se ahorra 

tiempo. Estos cambios no solo atienden el problema identificado, sino que demuestran que la solución planteada puede 

aplicarse también a otros procesos dentro de la empresa. 

3.4 Discusión  

Los resultados obtenidos evidencian la viabilidad técnica y operativa del agente inteligente de búsqueda diseñado, que 

integra flujos automatizados en N8N, vectorización con Qdrant y generación de respuestas en lenguaje natural 

mediante el modelo LLaMA. Esta solución permitió automatizar la recuperación de información desde documentos 

DERCAS almacenados en GitLab, optimizando así el acceso a requerimientos funcionales históricos. 
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Durante las pruebas, se observó una reducción significativa en el tiempo de respuesta, pasando de un promedio de 45 

minutos a 6-7 minutos, lo cual representa una mejora considerable en la eficiencia operativa del proceso. Este hallazgo 

cumple con los objetivos, que planteaba diseñar una arquitectura que conecte modelos de lenguaje natural con la 

información almacenada, para entregar respuestas contextualizadas a los usuarios. 

Comparado con el modelo AS-IS, el sistema propuesto (TO-BE) mejoró en múltiples dimensiones: 

• La búsqueda de requerimientos similares pasó de ser manual y subjetiva a un proceso automatizado, basado 

en similitud semántica. 

• Se incrementó la claridad y reutilización de la información, gracias a la estandarización de etiquetas, 

estructuras mínimas y metadatos. 

• La solución se diseñó con un enfoque escalable y modular, permitiendo su replicabilidad a otros procesos de 

la organización. 

• El agente esta enfocado para que cualquier usuario pueda hacer uso del mismo, reduciendo la dependencia  

de personas y el acceso a la información. 

Sin embargo, también se identificaron limitaciones relevantes que deben considerarse en futuras iteraciones: 

• La calidad y estandarización del contenido en los archivos DERCAS influye directamente en la calidad de la 

vectorización; documentos mal estructurados generan resultados menos precisos. 

• El uso de herramientas como Qdrant y LLaMA requiere una infraestructura robusta, lo cual puede representar 

una barrera técnica para entornos de bajo presupuesto o con recursos limitados. 

• La complejidad en la configuración del flujo N8N, especialmente en la validación de parámetros, manejo de 

errores y orden de ejecución, puede dificultar su mantenimiento sin personal capacitado. 

• Se identificó una oportunidad de mejora en el enriquecimiento del prompt utilizado por el modelo LLaMA, 

lo que abre camino al uso de técnicas más avanzadas de prompt engineering. 

 

3.5 Conclusiones  

El diseño del agente inteligente de búsqueda permitió validar técnicamente la viabilidad de integrar herramientas de 

automatización N8N, bases vectoriales Qdrant y modelos de lenguaje LLaMA para facilitar el acceso a requerimientos 

documentados en entornos reales de desarrollo de software. 

Entre los principales hallazgos se destacan: 

• Se logró vectorizar exitosamente información extraída desde GitLab (issues y archivos DERCAS), lo que 

permitió almacenarla en una base vectorial semántica consultable. 

• La arquitectura diseñada permitió realizar búsquedas en lenguaje natural, entregando respuestas 

contextualizadas que se basaban exclusivamente en la información disponible en la base de requerimientos. 

• El flujo automatizado en n8n demostró un alto grado de adaptabilidad, permitiendo coordinar la interacción 

entre módulos sin necesidad de desarrollo adicional complejo. 

• Se evidenció que la calidad de las respuestas generadas por el modelo LLaMA depende directamente de la 

riqueza del contexto proporcionado y de una formulación clara del prompt. 

Logros alcanzados 

• Se cumplió con éxito cada uno de los objetivos específicos definidos en la tesis, incluyendo la estandarización   

del uso de GitLab, el diseño del flujo inteligente y la validación de la consulta a través del modelo LLaMA. 

• Se estableció una arquitectura funcional que demuestra cómo un sistema RAG (Retrieval-Augmented 

Generation) puede implementarse de tal forma sin depender de soluciones comerciales externas. 

• Se consiguió mantener trazabilidad de cada etapa del flujo, desde la entrada de la pregunta hasta la respuesta 

devuelta al usuario. 

• El diseño permite automatizar tareas repetitivas y reducir la dependencia de búsquedas manuales, generando 

respuestas contextualizadas que hubieran requerido intervención humana en el proceso tradicional. 

• Se demostró que la solución es viable y funcional bajo la infraestructura técnica disponible en la empresa, 

cumpliendo principios de seguridad de la información acordes con normativas establecidas en la misma. 

 

 

 

 

 

 



 

 

 

 

 

 

CAPÍTULO 4 

4. CONCLUSIONES Y RECOMENDACIONES 

4.1 Conclusiones 

Al finalizar el diseño propuesto, se lograron validar los componentes esenciales de una arquitectura de búsqueda 

inteligente para facilitar el acceso de información a requerimientos funcionales dentro de una empresa de 

telecomunicaciones. A continuación, se presentan los hallazgos más relevantes y su relación directa con los objetivos 

específicos del proyecto. 

• Se identificaron los principales puntos de dolor en los procesos de búsqueda de requerimientos, 

especialmente en cuanto a ambigüedad en los documentos, pérdida de información útil y largos tiempos de 

respuesta, esto se identificó mediante encuestas y análisis cualitativo el cual se evidenció la necesidad de 

mejorar el acceso a requerimientos históricos tanto para los equipos técnicos como de negocio. 

• Se logró estandarizar la forma en la que se registra la información de los proyectos en GitLab, a través de la 

organización lógica de issues, etiquetas y adjuntos estructurados como los documentos DERCAS, 

permitiendo establecer una base ordenada para su posterior vectorización y búsqueda. 

• Se definieron flujos automatizados en N8N que integran GitLab, Qdrant y el modelo de lenguaje Llama, 

permitiendo responder preguntas en lenguaje natural con información contextual proporcionada del 

repositorio Gitlab, demostrando que es posible interpretar consultas y generar respuestas coherentes basadas 

en el contenido almacenado. 

 

4.2 Recomendaciones 

Tras culminar esta propuesta de diseño de un agente de búsqueda inteligente, se determinan las siguientes 

recomendaciones primordiales para futuras adaptaciones de mejora del diseño planteado. Estas recomendaciones 

consideran tanto las limitaciones identificadas como las oportunidades de ampliación del sistema. 

• Aunque el sistema ya responde a preguntas en lenguaje natural, por ejemplo, mediante Postman o desde el 

flujo automatizado en N8N, su uso actual requiere conocimientos técnicos. Se recomienda desarrollar una 

interfaz web sencilla y segura que se integre con los sistemas existentes de la empresa, permitiendo que 

analistas, gestores y técnicos consulten información de requerimientos que necesiten. 

• Este diseño fue pensado para ejecutarse en servidores de la empresa, sin embargo, el modelo Llama requiere 

recursos significativos, especialmente en CPU y memoria RAM. Para garantizar una experiencia fluida en 

producción. 

• En esta fase se trabajó exclusivamente con documentos e issues del repositorio GitLab. Sin embargo, la 

infraestructura empresarial incluye otras fuentes valiosas como bases de conocimiento. Se recomienda 

adaptar el flujo para que incorpore y procese automáticamente estos recursos, fortaleciendo la base vectorial 

con información más completa. 

• Se recomienda mejorar la estructura de los prompts enviados al modelo Llama, especialmente para escenarios 

empresariales en los que la precisión es crítica. Esto puede lograrse mediante instrucciones más estrictas, el 

uso de delimitadores semánticos, la inclusión ejemplos representativos dentro del mismo mensaje que 

orienten la respuesta esperada incluso ajustes dinámicos del prompt según el tipo de requerimiento. 

• Debido a que el diseño está orientado a integrarse en la infraestructura de la empresa, será necesario 

incorporar mecanismos de control de acceso, autenticación de usuarios y trazabilidad de consultas. Estos 

aspectos no fueron cubiertos en esta propuesta, pero deben ser considerados para tener un mejor control a la 

información expuesta en este diseño.
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