utiliza en el mes posterior, incurrirá en un costo mensual de almacenamiento adicional de 1.50 dólares por unidad. Los componentes nuevos se pueden comprar a 200 dólares cada uno el primer mes, con un incremento del 5% en el precio cada mes. Formule el problema como un modelo de transporte y resuélvalo usando TORA, interprete la solución determinando el programa óptimo para satisfacer la demanda de estos componentes durante los próximos seis meses.

- 3. Considere el espacio solución bidimensional en la figura siguiente.
 - a) Determine gráficamente el punto extremo óptimo, suponiendo que la función objetivo se da como.

Maximice
$$z = 3x_1 + 6x_2$$
 x_2
 x_3
 x_4
 x_5
 x_6
 x_6
 x_7
 x_8
 x_8

- b) Si las iteraciones símplex empiezan en el punto A, identifique la ruta del algoritmo
- c) Considerando el orden establecido de las restricciones en el gráfico adjunto y llamando S_i las respectivas variables de holgura de cada restricción, indicar las variables de entrada y salida en cada iteración hasta llegar a la solución por la ruta establecida en el literal b).
- Analizar el caso pollo loco y dar una solución al problema de Don Francisco soportándose en algún análisis estudiado en el curso.