ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

INSTITUTO DE CIENCIAS MATEMÁTICAS MÉTODOS CUANTITATIVOS III AUDITORÍA

PRIMERA EVALUACIÓN

Julio 8 de 2009

CRITERIOS DE CALIFICACION

CALIFICAC	CION
TEMA 1	
TEMA2	
TEMA3	
TEMA4	
TOTAL EXAMEN	
DEBERES Y	
LECCIONES	
TOTAL	-

- 1. Justificando correctamente su respuesta, califique como VERDADERA o FALSA a cada una de las siguientes proposiciones: (20 puntos)
 - a) La serie de potencias en x de la función $f(x) = e^{\sqrt{x}} 1$ es

$$\sum_{n=6}^{+\infty} \frac{x^{\frac{n-5}{2}}}{(n-5)!}$$

CRITERIO	PUNTAJE
Indica la serie de la función $y = e^x$	1
Obtiene la representación de la función $y = e^{\sqrt{x}}$ en serie de potencias.	1
Obtiene la representación de la función	
$f(x) = e^{\sqrt{x}} - 1$ en serie de potencias.	1
Realiza el cambio de variable para que el índice de la serie obtenida tenga valor inicial n=6	1
Concluye que la proposición es VERDADERA.	1

b) La serie de potencias
$$\sum_{n=0}^{+\infty} \frac{(n+k)x^{n+1}}{n!}$$
 diverge en todos los reales excepto en el punto x=0.

CRITERIO	PUNTAJE
Aplica el criterio del cociente absoluto para determinar el intervalo de convergencia de la serie.	2
Resuelve el límite planteado y analiza de acuerdo al criterio utilizado, concluyendo que el intervalo de convergencia son todos los reales.	2
Concluye que la proposición es FALSA.	1