

ESCUELA SUPERIOR POLITECNICA DEL LITORAL Instituto de Ciencias Matemáticas

Examen Parcial de Álgebra Lineal para Ingeniería en Auditoría y CPA Guayaquil, 03 de diciembre de 2009

Nombre: Paralelo:

1 (20 ptos.) Califique como verdaderas o falsas las siguientes proposiciones. Justifique se respuesta.
a) Sea $\{V, \oplus, \odot\}$ un espacio vectorial real. Si $v \in V$, entonces $2 \odot v = v \oplus v$.
b) Sean v_1 , v_2 , u_1 , u_2 cuatro vectores de un espacio vectorial V. Si $gen\{v_1,v_2\}=gen\{u_1,u_2\}$ entonces $\{v_1,v_2,u_1,u_2\}$ es linealmente dependiente en V.
c) Si en un espacio vectorial V se tienen n vectores linealmente independientes, entonces l $dimV=n$.

d)	Sea v un vector de un espacio vectorial V con base ordenada $B=\{v_1,v_2,\dots v_n\}$. Si $[v]_B=0$, entonces v es el vector neutro de V .
e)	Si V es un espacio vectorial con bases ordenadas distintas B_1 y B_2 , entonces la matriz de
	transición de B_1 a B_2 es la matriz identidad.

2.- (20 ptos.) Sean $V=\mathbb{R}^3$ y los subconjuntos de V:

$$H = gen\left\{ \begin{pmatrix} 2\\0\\1 \end{pmatrix}; \begin{pmatrix} -1\\2\\0 \end{pmatrix} \right\}, W = \left\{ \begin{pmatrix} x\\y\\z \end{pmatrix} / 2x = 1 - y; \ y = 2z; x, y, z \in \mathbb{R} \right\}; U = \left\{ \begin{pmatrix} 2t\\t\\0 \end{pmatrix}; t \in \mathbb{R} \right\}.$$

Determine:

- a) Qué subconjuntos son subespacios vectoriales de V.
- b) Una base y la dimensión del subespacio intersección entre los subespacios identificados en a).

3.- (10 ptos.) Sea A=
$$\begin{pmatrix} 2 & 1 & 3 & 0 \\ 1 & 0 & 1 & -1 \\ 2 & 3 & -1 & -2 \end{pmatrix}$$
. Determine: a) R_A y C_A. b) ρ (A).

4.- (10 ptos.) Sea Re = \mathbb{R}^2 y $p(x, y) = \{(x, y) \in \mathbb{R}^2 / 3x^2 - 6y + 9 = 0; 2y - 6x + 5 = 0\}$. Determine Ap(x, y).