Por favor, use este identificador para citar o enlazar este ítem: http://www.dspace.espol.edu.ec/handle/123456789/38144
Título : Modelación Matemática de la Propagación de Calor Con el Uso de las Ecuaciones Diferenciales Parciales y Diferenciales Finitas
Autor : Flores Nicolalde, Bolívar, Director
Díaz Santamaría, José Orlando
Palabras clave : MODELOS ECONOMICOS
ECUACION DIFERENCIAL
ECUACION DE LAPLACE
Fecha de publicación : 2015
Editorial : ESPOL. FCNM
Citación : Díaz Santamaría, José Orlando (2015). Modelación matemática de la propagación de calor con el uso de las ecuaciones diferenciales parciales y diferenciales finitas. Trabajo final para la obtención del título: MAESTRIA EN ENSEÑANZA DE LA FISICA. ESPOL. FCNM, Guayaquil. 59p.
Descripción : En el presente trabajo se propone un modelo matemático para la propagación de calor en una placa rectangular en régimen estacionario para los estudiantes que estudian la unidad de termodinámica por cuanto resulta un problema complejo de analizar. el modelo matemático se basa en la ecuación diferencial de laplace, considerando las condiciones de frontera dada y en régimen estacionaria. existe una técnica analítica para la resolución de esta ecuación conocida como el método de separación de variables (haberman, 2013). dependiendo del tipo de coordenadas en la que se defina el problema, en nuestro caso coordenadas rectangulares, el desarrollo de las soluciones conduce a series infinitas de fourier. alternativamente, pueden usarse métodos de aproximación numérica para hallar la distribución de temperaturas en la placa rectangular. entre los más desarrollados y usados se pueden citar el método de diferencias finitas.
URI : http://www.dspace.espol.edu.ec/xmlui/handle/123456789/38144
Aparece en las colecciones: Tesis de Maestría en Enseñanza de la Física

Ficheros en este ítem:
Fichero Tamaño Formato  
T-105348 DIAZ SANTAMARIA.pdf2.96 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.