ESCUELA SUPERIOR POLITECNICA DEL LITORAL
PROGRAMACION ORIENTADA A OBJETOS
EXAMEN SEGUNDO PARCIAL - 2025 - 2T

NOMBRE:

PARALELO:

(5 puntos)Tema 1. Indique si es verdadero (V) o falso(F):

Una clase puede heredar de multiples interfaces.

Una clase puede ser abstract y final a la vez.

archivo XML con las variables de la Activity.

El método findViewByld se utiliza para vincular los elementos definidos en el

o throws.

Las excepciones verificadas deben manejarse obligatoriamente con try-catch

NullPointerException es una excepcion verificada.

(20 puntos) Tema 2

Analice el cddigo mostrado a continuacién y responda las preguntas de acuerdo con las instrucciones.

interface Alerta {
String nivel();
String recomendacion();

}

}

}

}

abstract class EventoClimatico implements Alerta {
protected String provincia;

} public EventoClimatico(String provincia) {
this.provincia = provincia;

public void mostrar() {
System.out.printin(descripcion() + " | " + provincia);

protected abstract String descripcion();

public void emitirAlerta() {
System.out.printin("Nivel: " + nivel());
System.out.printin("Recomendacion: " +
recomendacion());

class Lluvialntensa extends EventoClimatico {
private int mm;

public Lluvialntensa(String provincia, int mm) {
super(provincia);
this.mm = mm;

}

@Override
protected String descripcion() {
return "Lluvia intensa (" + mm + " mm)";

}
@Override

class Sequia extends EventoClimatico {
private int diasSinLluvia;

public Sequia(String provincia, int diasSinLluvia)

{
super(provincia);

this.diasSinLluvia = diasSinLluvia;

}

@Override
protected String descripcion() {
return "Sequia (" + diasSinLluvia + " dias sin
lluvia)";

}




public String nivel() {
if (mm >= 80) { @Override
return "ALTA"; public String nivel() {
} else { if (diasSinLluvia >= 30) {
return "MEDIA"; return "ALTA";
} } else {
} return "MEDIA";
}
@Override }
public String recomendacion() {
if (mm >= 80) { @Override
return "Evitar zonas inundables"; public String recomendacion() {
} else { if (diasSinLluvia >= 30) {
return "Precaucion al conducir"; return "Ahorrar agua";
} } else {
} return "Monitorear consumo";
} }
}
!

public class Main {
public static void main(String[] args) {

EventoClimatico e1 = new Lluvialntensa("Guayas", 90);
EventoClimatico e2 = new Sequia("Manabi", 20);

// Descomenta SOLO UNA:

/I System.out.printin(e1.nivel() + " - " + e2.nivel()); //A
Il e2.mostrar(); //B

/I System.out(((Alerta) e1).recomendacion()); //C

Il ((EventoClimatico) e2).emitirAlerta(); /D

}
}
Si se descomenta cada linea, ¢ qué salida real produce el programa?
A) System.out.printin(e1.nivel() + " - " + e2.nivel()); B) e2.mostrar();
a) MEDIA - MEDIA a) Sequia (20 dias sin lluvia) | Manabi
b) ALTA - MEDIA b) Sequia (30 dias sin lluvia) | Manabi
c) ALTA - ALTA c¢) Sequia (20 dias sin lluvia) | Guayas
d) MEDIA - ALTA d) Nivel: MEDIA
C) System.out.printin(((Alerta) e1).recomendacion()); | D) ((EventoClimatico) e2).emitirAlerta();
a) Imprime: Evitar zonas inundables a)
b) Imprime: Precaucién al conducir Nivel: ALTA
¢) No imprime nada Recomendacion: Ahorrar agua
d) Da error de compilacion b)
Nivel: MEDIA
Recomendacion: Monitorear consumo
c)
Nivel: BAJA
Recomendacion: Evitar zonas
inundables

d) Da error porque no se puede hacer
casting




(75 puntos) TEMA 3. Desarrollo - Simulador de Rutinas Tabata
El método Tabata consiste en realizar 4 minutos de entrenamiento intenso:
e 8 rondas de:
o 20 segundos de ejercicio
o 10 segundos de descanso
Se desea crear un simulador que permita asignar distintos tipos de ejercicios para ejecutar una rutina
Tabata completa.
A continuacién, se muestra el diagrama de la capa modelo de la aplicacién

RutinaTabata Ejercicio
- atleta: String - nombre: String
- ejercicios: Ejercicio [1..%] - calorias: int
1 w
+ RutinaTabla(a: String, + Ejercicio(n: String, ¢: int)

e: Ejercicio [1..%])
+ getAtleta(): String gicjercicios| ). TJercicia] L,

+ getEjercicios() : Ejercicio [1..%] I gztgg[gg;es(()):' iSnttnng

e Una rutina tiene el nombre del atleta y una lista de ejercicios para esa rutina.
e Un Ejercicio tiene un nombre y el numero de calorias estimadas que consume.
Existe un archivo llamado ejercicios.txt que contiene la informacion de los ejercicios y tiene la siguiente
estructura:
Nombreejercicio,calorias
Ejemplo de archivo

Burpees,6

Squat Jumps,5
Mountain Climbers,4
High Knees,5
Jumping Jacks
Push-ups,3
Sprints,7

Considerando el diagrama de clases proporcionado, desarrolle lo indicado a continuacion.

En el paquete excepciones:

3.1 Cree una excepcion de tipo unchecked llamada PocosEjerciciosException con un constructor
que recibe el mensaje de la excepcioén.

En el paquete modelo:
Clase Ejercicio

3.2 Implemente el método estatico cargarEjercicios que lee el archivo ejercicios.txt y devuelve una
lista de tipo Ejercicio.
Para el manejo de las excepciones considere lo siguiente:

- Si el archivo a leer no existe, muestre un mensaje en la consola indicando: "Archivo ejercicios.txt no
encontrado".

- Si se produce un IOException muestre el mensaje "Error al procesar el archivo" mas el mensaje del
error.



- Recuerde capturar también los errores durante el procesamiento del contenido del archivo para
que todas las lineas del archivo sean leidas. Si se origina un error, muestre por consola el mensaje "Error
procesando la linea ", el contenido de la linea y el mensaje de error.

Si al finalizar la lectura del archivo la lista tiene menos de 2 ejercicios lance la excepcion
PocosEjerciciosException, con el mensaje: “Pocos ejercicios para seleccionar’.

Recuerde incluir en la firma del método que se puede lanzar la excepcion.

Clase RutinaTabata

3.3 Implemente el cédigo necesario para que la RutinaTabata se comporte como un hilo:

Itera 8 veces (cada iteracion es una ronda).
e En cada ronda:
o lItera la lista de ejercicios y para cada ejercicio:
m Imprime "Atleta <nombre> Ronda [n]: <nombre del ejercicio>".
Duerme el hilo 20 segundos
Imprime Atleta <nombre> Ronda [n]: Descanso iniciado".
Duerme el hilo 10 segundos
Imprime Atleta <nombre> Ronda [n]: Descanso finalizado".
Acumula las calorias del ejercicio

Al finalizar todas las rondas, debe mostrar un mensaje con el formato:
Atleta <nombre> - Total de calorias quemadas: <acumulado> kcal

Clase Main

- 3.4 Llame al método cargarEjercicios para obtener la lista de tipo Ejercicio, capture las
excepciones necesarias.
- 3.5 Con la lista del paso anterior llame al método asginarRutinas que devuelve una lista de
rutinas, e inicie la ejecucion de las rutinas.
o Recuerde que cada Rutina se comporta como un hilo.

Ejemplo de ejecucion de las rutinas para Camila y Jaime, cada una con dos ejercicios.

Atleta <Camila> Ronda [1] <Mountain Climbers>
Atleta <Jaime> Ronda [1] <Burpees>

Atleta <Jaime> Ronda [1] descanso iniciado.
Atleta <Camila> Ronda [1] descanso iniciado.
Atleta <Jaime> Ronda [1] descanso terminado.
Atleta <Camila> Ronda [1] descanso terminado.

Atleta <Camila> Ronda [8] <High Knees>

Atleta <Jaime> Ronda [8] <Squat Jumps>

Atleta <Jaime> Ronda [8] descanso iniciado.

Atleta <Camila> Ronda [8] descanso iniciado.

Atleta <Camila> Ronda [8] descanso terminado.
Atleta <Jaime> Ronda [8] descanso terminado.

Atleta <Camila> - Total de calorias quemadas:72 kcal
Atleta <Jaime> - Total de calorias quemadas:88 kcal




Contenido de la clase Main

public class Main {
public static void main(String[] args) {
//ICOMPLETAR: llame a cargarRutinas
//ICOMPLETAR: llame a asignarRutinas e inicie la ejecucion de cada rutina

//ASUMA QUE ESTE METODO YA ESTA IMPLEMENTADO

public static ArrayList<RutinaTabata> asignarRutinas(ArrayList<Ejercicio> listaEj){
/lcodigo que crea las rutinas
return lista;




