
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

PROGRAMACIÓN ORIENTADA A OBJETOS

EXAMEN SEGUNDO PARCIAL - 2025 - 2T

NOMBRE: PARALELO:

(5 puntos)Tema 1. Indique si es verdadero (V) o falso(F):

Una clase puede heredar de múltiples interfaces.

Una clase puede ser abstract y final a la vez.

El método findViewById se utiliza para vincular los elementos definidos en el

archivo XML con las variables de la Activity.

Las excepciones verificadas deben manejarse obligatoriamente con try-catch

o throws.

NullPointerException es una excepción verificada.

(20 puntos) Tema 2

Analice el código mostrado a continuación y responda las preguntas de acuerdo con las instrucciones.

interface Alerta {
 String nivel();
 String recomendacion();
}

abstract class EventoClimatico implements Alerta {
 protected String provincia;

 public EventoClimatico(String provincia) {
 this.provincia = provincia;
 }

 public void mostrar() {
 System.out.println(descripcion() + " | " + provincia);
 }

 protected abstract String descripcion();

 public void emitirAlerta() {
 System.out.println("Nivel: " + nivel());
 System.out.println("Recomendación: " +
recomendacion());
 }
}

class LluviaIntensa extends EventoClimatico {
 private int mm;

 public LluviaIntensa(String provincia, int mm) {
 super(provincia);
 this.mm = mm;
 }

 @Override
 protected String descripcion() {
 return "Lluvia intensa (" + mm + " mm)";
 }

 @Override

class Sequia extends EventoClimatico {
 private int diasSinLluvia;

 public Sequia(String provincia, int diasSinLluvia)
{
 super(provincia);
 this.diasSinLluvia = diasSinLluvia;
 }

 @Override
 protected String descripcion() {
 return "Sequía (" + diasSinLluvia + " días sin
lluvia)";
 }

 public String nivel() {
 if (mm >= 80) {
 return "ALTA";
 } else {
 return "MEDIA";
 }
 }

 @Override
 public String recomendacion() {
 if (mm >= 80) {
 return "Evitar zonas inundables";
 } else {
 return "Precaución al conducir";
 }
 }
}

 @Override
 public String nivel() {
 if (diasSinLluvia >= 30) {
 return "ALTA";
 } else {
 return "MEDIA";
 }
 }

 @Override
 public String recomendacion() {
 if (diasSinLluvia >= 30) {
 return "Ahorrar agua";
 } else {
 return "Monitorear consumo";
 }
 }
}

public class Main {
 public static void main(String[] args) {

 EventoClimatico e1 = new LluviaIntensa("Guayas", 90);
 EventoClimatico e2 = new Sequia("Manabí", 20);

 // Descomenta SOLO UNA:
 // System.out.println(e1.nivel() + " - " + e2.nivel()); //A
 // e2.mostrar(); //B
 // System.out(((Alerta) e1).recomendacion()); //C
 // ((EventoClimatico) e2).emitirAlerta(); //D
 }
}

Si se descomenta cada línea, ¿qué salida real produce el programa?

A) System.out.println(e1.nivel() + " - " + e2.nivel());
a) MEDIA - MEDIA
b) ALTA - MEDIA
c) ALTA - ALTA
d) MEDIA - ALTA

B) e2.mostrar();
a) Sequía (20 días sin lluvia) | Manabí
b) Sequía (30 días sin lluvia) | Manabí
c) Sequía (20 días sin lluvia) | Guayas
d) Nivel: MEDIA

C) System.out.println(((Alerta) e1).recomendacion());
a) Imprime: Evitar zonas inundables
b) Imprime: Precaución al conducir
c) No imprime nada
d) Da error de compilación

D) ((EventoClimatico) e2).emitirAlerta();
a)
Nivel: ALTA
Recomendación: Ahorrar agua
b)
Nivel: MEDIA
Recomendación: Monitorear consumo
c)
Nivel: BAJA
Recomendación: Evitar zonas
inundables
d) Da error porque no se puede hacer
casting

(75 puntos) TEMA 3. Desarrollo - Simulador de Rutinas Tábata

El método Tábata consiste en realizar 4 minutos de entrenamiento intenso:

● 8 rondas de:

○ 20 segundos de ejercicio

○ 10 segundos de descanso

Se desea crear un simulador que permita asignar distintos tipos de ejercicios para ejecutar una rutina

Tabata completa.

A continuación, se muestra el diagrama de la capa modelo de la aplicación

● Una rutina tiene el nombre del atleta y una lista de ejercicios para esa rutina.

● Un Ejercicio tiene un nombre y el número de calorías estimadas que consume.

Existe un archivo llamado ejercicios.txt que contiene la información de los ejercicios y tiene la siguiente

estructura:

Nombreejercicio,calorias

Ejemplo de archivo

Burpees,6
Squat Jumps,5
Mountain Climbers,4
High Knees,5
Jumping Jacks
Push-ups,3
Sprints,7

Considerando el diagrama de clases proporcionado, desarrolle lo indicado a continuación.

En el paquete excepciones:

3.1 Cree una excepción de tipo unchecked llamada PocosEjerciciosException con un constructor

que recibe el mensaje de la excepción.

En el paquete modelo:

Clase Ejercicio

3.2 Implemente el método estático cargarEjercicios que lee el archivo ejercicios.txt y devuelve una

lista de tipo Ejercicio.

Para el manejo de las excepciones considere lo siguiente:

 - Si el archivo a leer no existe, muestre un mensaje en la consola indicando: "Archivo ejercicios.txt no

encontrado".

 - Si se produce un IOException muestre el mensaje "Error al procesar el archivo" más el mensaje del

error.

 - Recuerde capturar también los errores durante el procesamiento del contenido del archivo para

que todas las líneas del archivo sean leídas. Si se origina un error, muestre por consola el mensaje "Error

procesando la línea ", el contenido de la línea y el mensaje de error.

Si al finalizar la lectura del archivo la lista tiene menos de 2 ejercicios lance la excepción

PocosEjerciciosException, con el mensaje: “Pocos ejercicios para seleccionar”.

Recuerde incluir en la firma del método que se puede lanzar la excepción.

Clase RutinaTabata

3.3 Implemente el código necesario para que la RutinaTabata se comporte como un hilo:

Itera 8 veces (cada iteración es una ronda).

● En cada ronda:

○ Itera la lista de ejercicios y para cada ejercicio:

■ Imprime "Atleta <nombre> Ronda [n]: <nombre del ejercicio>".

■ Duerme el hilo 20 segundos

■ Imprime Atleta <nombre> Ronda [n]: Descanso iniciado".

■ Duerme el hilo 10 segundos

■ Imprime Atleta <nombre> Ronda [n]: Descanso finalizado".

■ Acumula las calorías del ejercicio

Al finalizar todas las rondas, debe mostrar un mensaje con el formato:

 Atleta <nombre> - Total de calorías quemadas: <acumulado> kcal

Clase Main

- 3.4 Llame al método cargarEjercicios para obtener la lista de tipo Ejercicio, capture las

excepciones necesarias.

- 3.5 Con la lista del paso anterior llame al método asginarRutinas que devuelve una lista de

rutinas, e inicie la ejecución de las rutinas.

o Recuerde que cada Rutina se comporta como un hilo.

Ejemplo de ejecución de las rutinas para Camila y Jaime, cada una con dos ejercicios.

Atleta <Camila> Ronda [1] <Mountain Climbers>
Atleta <Jaime> Ronda [1] <Burpees>
Atleta <Jaime> Ronda [1] descanso iniciado.
Atleta <Camila> Ronda [1] descanso iniciado.
Atleta <Jaime> Ronda [1] descanso terminado.
Atleta <Camila> Ronda [1] descanso terminado.
….
Atleta <Camila> Ronda [8] <High Knees>
Atleta <Jaime> Ronda [8] <Squat Jumps>
Atleta <Jaime> Ronda [8] descanso iniciado.
Atleta <Camila> Ronda [8] descanso iniciado.
Atleta <Camila> Ronda [8] descanso terminado.
Atleta <Jaime> Ronda [8] descanso terminado.
Atleta <Camila> - Total de calorías quemadas:72 kcal
Atleta <Jaime> - Total de calorías quemadas:88 kcal

Contenido de la clase Main

public class Main {

 public static void main(String[] args) {

 //COMPLETAR: llame a cargarRutinas

 //COMPLETAR: llame a asignarRutinas e inicie la ejecución de cada rutina

 }

 //ASUMA QUE ESTE MÉTODO YA ESTÁ IMPLEMENTADO

 public static ArrayList<RutinaTabata> asignarRutinas(ArrayList<Ejercicio> listaEj){

 //código que crea las rutinas

 return lista;

 }

}

