“Diseño e implementación de una solución informática para el seguimiento de objetivos estratégicos de empresas de distribución del sector eléctrico. Caso CNEL Milagro.”

Previa a la obtención del título de Ingeniero en Computación Especialización Sistemas Multimedia.

PRESENTADA POR:
CÉSAR ENRIQUE VALLEJO VILLACÍS
DANIEL ALFONSO VACA SEMINARIO

GUAYAQUIL – ECUADOR

2012
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

INFORME DE PROYECTO DE GRADUACIÓN

"Diseño e implementación de una solución informática para el seguimiento de objetivos estratégicos de empresas de distribución del sector eléctrico. Caso CNEL Milagro."

Previa a la obtención del título de Ingeniero en Computación Especialización Sistemas Multimedia

PRESENTADA POR:

CÉSAR ENRIQUE VALLEJO VILLACÍS
DANIEL ALFONSO VACA SEMINARIO

GUAYAQUIL – ECUADOR
2012
AGRADECIMIENTO

A nuestras familias, por su constante e incansable apoyo durante nuestra carrera universitaria.

A nuestro director de tesis, Ing. Galo Valverde por su constante guía en la elaboración de este trabajo y por las facilidades prestadas para la ejecución de este proyecto de grado en las instalaciones de CNEL Milagro.
DEDICATORIA

A nuestros padres y hermanos.
TRIBUNAL DE SUSTENTACIÓN

MSc. Sara Ríos O.
PRESIDENTE

Ing. Galo Valverde
DIRECTOR DE PROYECTO DE GRADUACIÓN

Dr. Xavier Ochoa
MIEMBRO PRINCIPAL
DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Proyecto de Graduación, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL."

(Reglamento de graduación de la ESPOL)

__

César Enrique Vallejo Villacís

__

Daniel Alfonso Vaca Seminario
RESUMEN

Ninguna empresa en el actual mundo globalizado y de vertiginosos cambios puede sobrevivir sin la aplicación de un Plan Estratégico bien sustentado que asegure un horizonte competitivo y claro mediante el cumplimiento de metas y objetivos para el corto, mediano y largo plazos.

La CNEL-Milagro ejecutó en el año 2007 una serie de talleres con la finalidad de definir su Plan Estratégico, a ser cumplido en un lapso de cuatro años. Dada esta circunstancia, nace la necesidad de contar con un mecanismo de medición de la gestión realizada, ya que dentro de la compañía no existe un mecanismo formalmente planteado para realizar el control y seguimiento del Plan Estratégico 2007-2011, lo que dificulta la correcta ejecución y obtención de las metas establecidas en dicho plan.

En base a lo anterior, se propone implementar un Cuadro de Mando Integral (BalancedScorecard) que permita a la alta directiva de la CNEL-Milagro contar con la información adecuada para una rápida y efectiva toma de decisiones en lo que respecta a la dirección, control y retro-alimentación sobre la ejecución de las actividades planteadas en el Plan Estratégico, ayudando de esta manera a que los objetivos y metas del plan sean conseguidos dentro de los tiempos y parámetros deseados. Dicha herramienta permitirá visualizar de manera ágil, precisa y sencilla el
estado actual de los medidores de desempeño financieros, operacionales, comerciales y de recursos humanos que informarán cómo está actuando la empresa en la consecución de sus objetivos estratégicos.

La solución propuesta es el diseño de una herramienta tecnológica que posea las características de visualización y análisis de los medidores de desempeño definidos en el alcance de este proyecto que se encuentran basados en el Plan Estratégico 2007-2011 de la CNEL-Milagro, junto a otros indicadores del Fondo de Solidaridad. En consecuencia, surge la necesidad de ejecutar un proyecto de ámbito tecnológico cuyo producto final es la solución anteriormente descrita.

La documentación del libro de tesis se divide en cinco capítulos, cada uno correspondiente a las distintas fases contempladas en la ejecución del proyecto y enmarcadas dentro de la metodología Microsoft Solutions Framework V3, a continuación una breve descripción.

En el capítulo uno, titulado “Envisionamiento”, se incluye los antecedentes de CNEL Milagro y el levantamiento de su infraestructura de TI, la metodología seleccionada para el proyecto, objetivos, hipótesis, y otros componentes necesarios para realizar el entregable principal del capítulo: El “Documento de Visión y Alcance”.
El capítulo dos, denominado “Planeación” y cuyo entregable principal es el “Documento de Especificaciones Funcionales y No funcionales”, describe a detalle cuáles son las funcionalidades descritas en el capítulo anterior, además se incluyen los perfiles de usuarios, prototipos de las pantallas y la descripción de los elementos presentados en cada una de ellas.

Durante el capítulo tres, llamado “Desarrollo” se definen los aspectos técnicos de la construcción del producto final. Aquí se definen las fuentes de datos de origen para la extracción de información a ser utilizada, el modelo de datos propio del producto final, las sentencias de las consultas a las bases de datos, el proceso de consolidación de información, y la infraestructura que soporta la implementación. El entregable principal de este capítulo es el “Documento de Especificaciones Técnicas”.

En el cuarto y quinto capítulo, titulados “Estabilización” e “Implantación”, se documenta la fase de denominada por MSF como “Despliegue”, lo que incluye la ejecución de las pruebas del producto final, la carga de datos, el paso a producción, y la formalización de cierre del proyecto. Se generó además la documentación del instructivo de implantación y los manuales de usuario. Como principal entregable de este capítulo, se encuentra el “Documento de Planeación de Pruebas e Instalación de Producto”.
Finalmente aparece la sección de “Conclusiones y Recomendaciones”, en cual se revisa el cumplimiento de los objetivos planteados y las oportunidades para nuevos proyectos.
3.2.5. Diseño de carga de información y esquema de procesamiento 79
3.2.5.1. Fuentes de datos .. 80
3.2.5.2. Herramienta utilizada para la implementación del componente 82
3.2.5.3. Diseño del proceso de carga de datos ... 84
3.3. Ejecución de prueba de concepto ... 85
3.4. Construcción de la solución ... 89
3.4.1. Construcción del Paquete SSIS de carga de datos 90
3.4.2. Construcción del Cubo de Información ... 96
3.4.3. Diseño y construcción de los Reportes de Gestión 101
3.4.4. Construcción del Cuadro de Mando Integral utilizando el diseñador de tableros de Microsoft Office PerformancePoint Server 103
3.4.5. Configuración de seguridad ... 114
4. Estabilización ... 122
4.1. Actividades de Estabilización .. 123
4.2. Construcción de Guión de Pruebas ... 127
4.3. Guión de Pruebas de Datos ... 129
4.4. Guión de Pruebas de Usuarios ... 131
4.5. Certificación de la Solución ... 134
5. Implantación .. 136
5.1. Actividades de Implantación ... 137
5.2. Capacitación Técnica y Administrativa de la Solución 140
5.3. Puesta en producción de la Solución .. 142
5.4. Acreditación de la Solución ... 144
5.5. Cierre del proyecto ... 144
CONCLUSIONES Y RECOMENDACIONES
RECOMENDACIONES Y OPORTUNIDADES PARA PROYECTOS FUTUROS
ANEXOS
BIBLIOGRAFÍA
ÍNDICE DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1-1</td>
<td>Roles en MSF correspondientes a los Roles en CNEL Milagro</td>
<td>8</td>
</tr>
<tr>
<td>Tabla 1-2</td>
<td>Indicadores dentro del Alcance del Proyecto</td>
<td>11</td>
</tr>
<tr>
<td>Tabla 1-3</td>
<td>Direcciones impactadas por el proyecto</td>
<td>13</td>
</tr>
<tr>
<td>Tabla 1-4</td>
<td>Plataformas disponibles en CNEL Milagro</td>
<td>23</td>
</tr>
<tr>
<td>Tabla 2-1</td>
<td>Plataformas de la Solución Propuesta</td>
<td>33</td>
</tr>
<tr>
<td>Tabla 2-2</td>
<td>Recursos Implementados en el Producto Final</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 2-3</td>
<td>Accesos de los Funcionarios al Producto Final</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 2-4</td>
<td>Formato de Información de Pantalla</td>
<td>42</td>
</tr>
<tr>
<td>Tabla 2-5</td>
<td>Hitos incluidos en el cronograma</td>
<td>53</td>
</tr>
<tr>
<td>Tabla 2-6</td>
<td>Características de Equipo de Ambiente de Desarrollo/Pruebas</td>
<td>54</td>
</tr>
<tr>
<td>Tabla 3-1</td>
<td>Interacción de Aplicaciones con la Solución</td>
<td>73</td>
</tr>
<tr>
<td>Tabla 3-2</td>
<td>Requerimientos de Hardware de Microsoft Office PerformancePoint 2007</td>
<td>77</td>
</tr>
<tr>
<td>Tabla 3-3</td>
<td>Requerimientos de Hardware de Microsoft SQL Server 2005</td>
<td>78</td>
</tr>
<tr>
<td>Tabla 3-4</td>
<td>Fuentes de Datos: Bases de Datos y Tablas</td>
<td>81</td>
</tr>
<tr>
<td>Tabla 3-5</td>
<td>Requerimientos Funcionales probados en el proyecto</td>
<td>88</td>
</tr>
<tr>
<td>Tabla 3-6</td>
<td>Nivel de Acceso para grupo de usuarios “Administradores”</td>
<td>119</td>
</tr>
<tr>
<td>Tabla 3-7</td>
<td>Nivel de Acceso para grupo de usuarios “Funcional”</td>
<td>120</td>
</tr>
<tr>
<td>Tabla 4-1</td>
<td>Estructura de casos de prueba para especificaciones funcionales</td>
<td>127</td>
</tr>
</tbody>
</table>
ÍNDICE DE FIGURAS

Gráfico 1-1 Fase de Envisionamiento dentro del Ciclo de Vida propuesto por MSF v3............5
Gráfico 1-2 Hitos de la Fase de Envisionamiento...6
Gráfico 1-3 Indicadores de Gestión seleccionados del Plan Estratégico de CNEI Milagro...9
Gráfico 2-1 Fase de Planeación dentro del Ciclo de Vida propuesto por MSF v3...........29
Gráfico 2-2 Hitos de la Fase de Planeación...29
Gráfico 2-3 Esquema Gráfico de Solución Propuesta..34
Gráfico 3-1 Fase de Desarrollo dentro del Ciclo de Vida propuesto por MSF v3............59
Gráfico 3-2 Hitos de la Fase de Desarrollo...60
Gráfico 3-3 Arquitectura conceptual de la aplicación...64
Gráfico 3-4 Flujo de información desde las fuentes de datos hasta el cuadro de mando integral.........70
Gráfico 3-5 Diagrama de Infraestructura Física...71
Gráfico 3-6 Cuadro de Reportes Disponibles...102
Gráfico 3-7 Umbrales de Indicadores..108
Gráfico 3-8 Indicador “Incrementando es mejor”...109
Gráfico 3-9 Indicador “Reduciendo es mejor”...110
Gráfico 3-10 Indicador “Cerca de la meta es mejor”..111
Gráfico 3-11 Cuadro de Indicadores...112
Gráfico 3-12 Reportes Varios Anuales...113
Gráfico 3-13 Cuadro de Mando Integral..114
Gráfico 4-1 Fase de Estabilización dentro del Ciclo de Vida propuesto por MSF v3....124
Gráfico 4-2 Hitos de la Fase de Estabilización...125
Gráfico 5-1 Fase deImplantación dentro del Ciclo de Vida propuesto por MSF v3.....138
Gráfico 5-2 Hitos de la Fase de Implantación..139
INTRODUCCIÓN

El presente proyecto nació por la necesidad de CNEL Milagro de medir su gestión como organización [1], acorde al cumplimiento de su Plan Estratégico. Como antecedente, se conoció que este plan fue el resultado de un taller realizado por parte de la Institución a fin de establecer un estado deseado, y llegar al mismo mediante el cierre de brechas, las cuales necesitan ser monitoreadas, a fin de evaluar la gestión de la Alta Dirección [2].

Dadas estas circunstancias, nació la iniciativa de implementar una solución que a más de medir ciertos indicadores de gestión para el plan estratégico, también apoye a las Direcciones de CNEL Milagro en la generación de ciertos reportes que detallen información ampliada sobre estos indicadores.

De esta forma nace el proyecto “Diseño de una herramienta de Medidores de Desempeño basados en el Plan Estratégico (Tablero de Mando Integral) para empresas de Distribución del Sector Eléctrico. Caso Empresa Eléctrica de Milagro C.A.” [3], el cual tiene como visión el siguiente estamento:

2. Los detalles del plan estratégico se encuentran en las referencias Anexo I y Anexo II. Se las ha excluido del cuerpo principal del libro de proyecto ya que el trabajo desarrollado aquí no se centra en temas de desarrollo organizacional, sino más bien en documentar el ciclo de vida en la implementación del tablero de indicadores de gestión, el cual mide, en el tiempo, el cumplimiento de dicho plan.

3. A la fecha de la aprobación del tema, la Institución aún tenía este nombre como oficial.
“Proporcionar una herramienta tecnológica que, junto a las políticas de la empresa, permita alinear a las personas, procesos y áreas funcionales de CNEL-Milagro con los objetivos estratégicos de la Compañía”

Como actividad inicial, se seleccionó un marco referencia de gestión de proyectos, Microsoft Solutions Framework V3 [4], a fin de que los esfuerzos de esta iniciativa se alinearan a un modelo conocido, probado, verificable e irrebatible en su concepción. Por este motivo, se han elaborado capítulos que corresponden a cada fase del ciclo de vida del marco de referencia, y cada uno de ellos está acompañado por un documento, que corresponde al entregable principal del capítulo, y cuenta con la aprobación documentada por parte de CNEL Milagro, previo a seguir a la subsecuente fase del proyecto.

CAPITULO 1
1. Envisionamiento

Durante este primer capítulo se procedió a realizar las visitas iniciales a CNEL Milagro (de aquí en adelante denominada también como “La Compañía” o “La Organización”) con la finalidad de definir el alcance de los recursos involucrados en el proyecto: Servidores, aplicativos y personas. Además se procedió a realizar la aprobación de los indicadores de gestión a ser implementados en la solución. Por otra parte, este capítulo contiene la definición de las metodologías a ser utilizadas como marco referencial de trabajo.

Los temas desarrollados durante este capítulo fueron:

- Plan de Gestión EEMCA 2007 - 2011
- Metodologías seleccionadas
- Actividades de Envisionamiento
- Definición de Objetivos
- Asunciones y Limitantes
- Alcance preliminar del proyecto
- Levantamiento de Ambiente de TI
- Organización del Equipo de Trabajo
1.1. Plan de Gestión EEMCA 2007 - 2011

Como primera actividad del proyecto, se realizó el entendimiento del documento sobre el cual nace la necesidad de implementar una solución: El Plan Estratégico.

Este documento es el resultado de una serie de talleres llevados a cabo por parte de CNEL Milagro y contó con la participación de la Alta Dirección y las Direcciones Funcionales de la Compañía.

El área de interés de este documento se encuentra en el Literal 8, titulado “Planes operativos a Largo Plazo”, y dentro del mismo se consideraron como seleccionables, aquellos medidores de gestión que se contemplan en las categorías definidas en la metodología de Tablero de Indicadores de Gestión: Financiero, operativo, comercial y RRHH.

En conversaciones con el Director de Informática, Ing. Galo Valverde, se definió que los indicadores considerados para este proyecto fueran los del área comercial, los cuales tienen alcance en la facturación y recuperación de cartera, siendo de gran importancia para el giro del negocio.

El detalle de la selección de indicadores de gestión se encuentra en la sección “1.3.2.1 Alcance preliminar del proyecto” en este documento. Por otra parte el
1.2. Metodologías seleccionadas

Se procedió a realizar la selección de la metodología a utilizar en el proyecto, a fin de alinear la gestión del mismo a las mejores prácticas de la Industria.

La metodología seleccionada para la gestión de roles y ciclo de vida del proyecto fue Microsoft Solutions Framework v3 (de aquí en adelante referida como MSF v3). El criterio que primó para esta decisión fue que MSFv3 proporciona un marco de trabajo con todos los elementos necesarios para implantaciones de soluciones de tecnologías de la información, lo cual se adecua a lo necesitado en este proyecto.

Vale la pena aclarar que el alcance de la aplicación de MSFv3 para este proyecto fue como marco referencial de trabajo, es decir que no es la intención realizar la generación total de los entregables y actividades, y más bien, como se indicó al principio de esta sección, fue alinear los conceptos metodológicos entre los tesistas, instituciones involucradas, y revisores.

La segunda metodología seleccionada, se preocupa de proporcionar un marco referencial para el diseño del tablero de indicadores de gestión. Con este
objetivo, se seleccionó el marco de trabajo de Balanced Scorecard, desarrollado por Kaplan y Norton en 1996 [5]. En este marco referencial se indican ciertos criterios de construcción de indicadores de gestión, y cuatro áreas de clasificación de los mismos: Área Financiera, Comercial, Operativa y de Recursos Humanos.

1.3. Actividades de Envisionamiento

![Diagrama de MSF](image)

Gráfico 1-1 Fase de Envisionamiento dentro del Ciclo de Vida propuesto por MSF v3

Como lo indica el “Gráfico 1-1 Fase de Envisionamiento dentro del Ciclo de Vida propuesto por MSF v3”, la primera fase en el proyecto, acorde a lo definido en el ciclo de vida de la metodología seleccionada, es la de Envisionamiento.

En el “Gráfico 1-2 Hitos de la Fase de Envisionamiento” se muestran los hitos principales para esta fase, a continuación una breve descripción:

Gráfico 1-2 Hitos de la Fase de Envisionamiento

- **Organizar el equipo de trabajo con una visión única del proyecto:** En esta primera actividad se realizó la identificación de los integrantes del equipo del proyecto, considerando como principal criterio, el rol de administración de las diferentes plataformas de tecnologías de información utilizadas por parte de la CNEL Milagro.
- Definir y aprobar la línea base de la visión del proyecto: En esta actividad se construyó el entregable principal del capítulo, el “Documento de Visión y Alcance”, y se realizó su debida aprobación.

1.3.1. Organizar el Equipo de Trabajo

Se realizó la identificación de las personas que conformaron el equipo de trabajo según el modelo de Roles de MSF. El criterio que primó en nuestra selección fue incluir al personal clave dentro de la administración de la infraestructura involucrada en el alcance [6]. La “Tabla 1-1 Roles en MSF correspondientes a los Roles en CNEI Milagro” se revisó en conjunto con el Director de Informática, y presenta el personal seleccionado y su rol dentro del proyecto:

<table>
<thead>
<tr>
<th>Rol en MSF</th>
<th>Funcionario</th>
<th>Rol en la Compañía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Líder de Proyecto</td>
<td>Galo Valverde</td>
<td>Director de Informática</td>
</tr>
<tr>
<td>Líder de Producto</td>
<td>Ramón Mieles</td>
<td>Auditor Interno</td>
</tr>
<tr>
<td>Administración de</td>
<td>Roxana Albuja</td>
<td>Administradora de</td>
</tr>
<tr>
<td>Entregables</td>
<td></td>
<td>Aplicativo X-Near</td>
</tr>
<tr>
<td>Desarrollador</td>
<td>Daniel Vaca</td>
<td>Tesista</td>
</tr>
<tr>
<td></td>
<td>César Vallejo</td>
<td>Tesista</td>
</tr>
</tbody>
</table>

Revisar la siguiente sección para obtener más detalle de la selección de la infraestructura seleccionada dentro del alcance.
<table>
<thead>
<tr>
<th>Pruebas</th>
<th>Roxana Albuja</th>
<th>Administradora de Aplicativo X-Near</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruebas</td>
<td>Galo Valverde</td>
<td>Director de Informática</td>
</tr>
<tr>
<td></td>
<td>Ramón Mieles</td>
<td>Auditor Interno</td>
</tr>
<tr>
<td></td>
<td>Daniel Vaca</td>
<td>Tesista</td>
</tr>
<tr>
<td></td>
<td>César Vallejo</td>
<td>Tesista</td>
</tr>
<tr>
<td>Experiencia de Usuario</td>
<td>Daniel Vaca</td>
<td>Tesista</td>
</tr>
<tr>
<td></td>
<td>Roxana Albuja</td>
<td>Administradora de Aplicativo X-Near</td>
</tr>
</tbody>
</table>

Tabla 1-1 Roles en MSF correspondientes a los Roles en CNEL Milagro

Se indicó que la asignación de algunos roles no cumplieran las buenas prácticas de segregación de funciones, por ejemplo que las personas encargadas del Desarrollo no intervengan en la fase de Pruebas, sin embargo el Director de Informática aprobó la designación presentada en función de la experiencia del personal y su contribución al proyecto, es decir, fue un riesgo conocido y aceptado por parte del Negocio.
1.3.2. Definir y aprobar la línea base de la visión del proyecto

1.3.2.1. Alcance preliminar del proyecto

Para esta actividad, el 13 de Marzo del 2009 se procedió a realizar una visita a las instalaciones de CNEL Milagro, y se sostuvo una reunión con el Ing. Galo Valverde, quien desempeña el rol de Director de Informática.

Como primer paso, se sostuvo una sesión de trabajo con el funcionario en cuestión, a fin de definir el grupo preliminar de indicadores y en primer lugar se analizó el Plan Estratégico. El “Gráfico 1-3 Indicadores de Gestión seleccionados del Plan Estratégico de CNEL Milagro” presentan los indicadores seleccionados de este documento:

<table>
<thead>
<tr>
<th>ACCIÓN/ACTIVIDAD</th>
<th>INDICADOR</th>
<th>FORMA DE MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GESTIÓN DE COBRANZA</td>
<td>VALORES EN DOLARES COBRADOS</td>
<td>VALOR RECAUDADO/CARTERA VENCIDA - VALOR CARTERA VENCIDA</td>
</tr>
<tr>
<td>2. DEPURACIÓN DE CARTERA</td>
<td>VALOR FACTURADO A CLIENTES LIBRO NO ENRUTADOS</td>
<td>[VALORES RECUERDADOS A CLIENTES LIBRO 100 * VALORES FACTURADOS CLIENTES NO ENRUTADOS LIBRO 100] / 100</td>
</tr>
</tbody>
</table>

Gráfico 1-3 Indicadores de Gestión seleccionados del Plan Estratégico de CNEL Milagro
Los indicadores seleccionados del Plan Estratégico fueron de naturaleza Comercial debido a que estas metas son calificadas por la Compañía como críticas para el giro del negocio y poseen mayor prioridad de seguimiento, y adicionalmente se encuentran entre los reportes e indicadores que requieren ser entregados a los Entes de Control del Estado. El detalle del plan estratégico se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”.

El siguiente paso fue realizar el relevamiento de la información necesaria para generar otros indicadores de gestión y sus respectivos reportes. Para este fin se mantuvieron reuniones con las Direcciones de Planificación, Finanzas, RRHH y Servicio al Cliente. Como producto de las mismas, se definieron los demás indicadores de gestión basados en la recolección los documentos, que por una parte plasman las necesidades de seguimiento (interno) y cumplimiento (Entes Reguladores) de las Direcciones, y por otra partesirvieron de modelo para el diseño de las pantallas del producto final. La “Tabla 1-2 Indicadores dentro del Alcance del Proyecto” presenta los indicadores seleccionados:
<table>
<thead>
<tr>
<th>Dirección</th>
<th>Indicador</th>
<th>Usuario experto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial/Financiera</td>
<td>Recaudación vs.</td>
<td>Jorge Pérez</td>
</tr>
<tr>
<td></td>
<td>Facturación Total</td>
<td></td>
</tr>
<tr>
<td>Operaciones</td>
<td>Pérdidas de Energía</td>
<td>César Ron</td>
</tr>
<tr>
<td></td>
<td>Calidad de Servicio Comercial</td>
<td>Enrique Villegas</td>
</tr>
<tr>
<td>Técnica</td>
<td>Tiempo total de Interrupción</td>
<td>Segundo Jara</td>
</tr>
<tr>
<td></td>
<td>Frecuencia de Interrupción</td>
<td>Segundo Jara</td>
</tr>
<tr>
<td></td>
<td>Nivel de Voltaje</td>
<td>Segundo Guerrero</td>
</tr>
<tr>
<td></td>
<td>Factor de Potencia</td>
<td>Segundo Guerrero</td>
</tr>
<tr>
<td></td>
<td>Flicker y Armónicos</td>
<td>Segundo Guerrero</td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td>Coeficiente de Empleados</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1-2 Indicadores dentro del Alcance del Proyecto

En la “Tabla 1-3 Direcciones impactadas por el proyecto” se adjunta además cuales son las áreas que se verán impactadas
por la implementación de la solución, y una descripción del alcance del impacto mencionado:

<table>
<thead>
<tr>
<th>Área</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección Comercial</td>
<td>Generará información de facturación, recaudación y cobranzas que será consolidada en el BSC y utilizará los medidores de desempeño para evaluar su gestión con respecto a los objetivos establecidos.</td>
</tr>
<tr>
<td>Dirección de Planificación</td>
<td>Generará información que será consolidada en el BSC y utilizará los medidores de desempeño para evaluar su gestión y los cumplimientos a las normas gubernamentales (Fondo de Solidaridad).</td>
</tr>
<tr>
<td>Dirección de Operaciones</td>
<td>Generará información de pérdidas de energía y calidad del servicio comercial que será consolidada en el BSC y utilizará los medidores de desempeño para evaluar su gestión con respecto a los objetivos establecidos.</td>
</tr>
<tr>
<td>Dirección de</td>
<td>Generará información acerca de la relación en</td>
</tr>
<tr>
<td>Recursos humanos</td>
<td>la cantidad de empleados con la cantidad de clientes de la empresa y utilizará los medidores de desempeño para evaluar su gestión con respecto a los objetivos establecidos.</td>
</tr>
<tr>
<td>Dirección Financiera</td>
<td>Generará información de facturación, recaudación y cobranzas que será consolidada en el BSC que será consolidada en el BSC y utilizará los medidores de desempeño para evaluar su gestión y los cumplimientos a las normas gubernamentales (Fondo de Solidaridad).</td>
</tr>
<tr>
<td>Dirección de Informática</td>
<td>Dar soporte tecnológico a la herramienta, apoyo al usuario final y mantenimiento.</td>
</tr>
</tbody>
</table>

Tabla 1-3 Direcciones impactadas por el proyecto

El detalle de los indicadores se tratará en el Capítulo 2, ya que la meta en este capítulo es acotar y formalizar, a grandes rasgos, el objetivo y los alcances del producto final.

1.3.2.2. Objetivos del Proyecto

Objetivo General:
Que CNEL Milagro tenga a su disposición un conjunto de 11 indicadores de gestión que cubran perspectivas financieras, comerciales y técnicas, cuya cobertura esté orientada a cubrir las necesidades de información en lo referente al seguimiento y control de objetivos de la compañía (consumo interno), y la entrega de reportes para los Entes de Reguladores del Estado (consumo externo).

Objetivos Secundarios:

- Proporcionar una herramienta de medición y gestión para objetivos seleccionados del plan estratégico.

- Proporcionar información oportuna para la toma de decisiones.

- Optimizar el tiempo de la Alta Dirección de la Organización proporcionando un enfoque de mayor detalle a las mediciones obtenidas.

- Proporcionar los criterios detallados (transacciones) y oportunos a los mandos medios de la Organización sobre el rendimiento del proceso crítico seleccionado.
1.3.2.3. Asunciones y Restricciones

Durante las reuniones sostenidas con el Director de Informática de CNEL Milagro, se realizó la definición de las siguientes asunciones:

- Se cuenta con un DataWareHouse, cuya capa de base de datos se usará como fuente de información.

- Los datos del DataWareHouse son confiables y su frecuencia de actualización están dentro de las normas establecidas en la empresa.

- Se cuenta en la empresa con el personal capacitado del área técnica de infraestructura y Base de Datos.

- La empresa asignará los recursos humanos y tecnológicos necesarios dentro de los tiempos acordados para poder cubrir las necesidades del desarrollo de este proyecto.
De la misma forma, el cliente confirmó la veracidad de las siguientes restricciones:

- Los objetivos del plan estratégico limitan el alcance de este proyecto.

- El rendimiento de la aplicación dependerá de las características de los equipos tecnológicos utilizados, así como del volumen de la información manejada.

- La vigencia de la información presentada estará sujeta a la regularidad con la cual se actualice la información de los cubos de datos a implementar.

- Dentro del alcance de este proyecto sólo se contemplan los usuarios de las áreas indicadas en la Tabla 1-2 “Direcciones Impactadas por el Proyecto” de este documento.

- No existe un tiempo especificado para la elaboración de cada uno de los entregables de este proyecto, pues esto está sujeto al avance de las investigaciones sobre las herramientas de implementación, la elaboración de diseños de la solución y las correcciones de la presente
documentación que están implicatas en la elaboración de este proyecto como Trabajo de Titulación.

Los puntos anteriores se incluyeron en el documento de Visión y Alcance. Para mayor detalle revisar la sección “1.4 Aprobar el “Documento de Visión y Alcance”.

1.3.2.4. Problema y solución propuesta del Proyecto

Una vez relevado el entendimiento sobre la necesidad de la implementación de indicadores de gestión y los documentos con los formatos para los Entes Reguladores, se procedió a plantear de manera formal el problema y la solución propuesta para el presente trabajo de titulación:

Problema:

En CNEL Milagro no existe un mecanismo formalmente planteado para realizar el control y seguimiento de ciertos indicadores de gestión del Plan Estratégico 2007-2011 y la operación de la Compañía respecto a los reportes para los Entes Reguladores del Estado, lo que dificulta la apropiada ejecución y obtención de las metas establecidas en dichoplán.
Solución:
La solución propuesta en este proyecto es el diseño de una herramienta tecnológica que posea las características de visualización y análisis de los medidores de desempeño definidos en el alcance de este proyecto y que se encuentran basados en el Plan Estratégico 2007 - 2011 y la información requerida por los Entes Reguladores del Estado. La solución incluirá el diseño de la capa de datos, de aplicación y de usuario final, así como los distintos reportes e indicadores con los que contará; la misma será implementada para el uso interno de la Compañía y accesible a los usuarios cuyo perfil dentro de la empresa lo necesite. Cabe recalcar que no se desarrollará una solución desde cero, sino que se trabajará con una herramienta existente en el mercado que se adecue a la plataforma tecnológica de la CNEL Milagro y que proporcione todas las características necesarias.

1.3.2.5. Levantamiento de Ambiente de TI
En este punto, se procedió a reconocer los recursos de TI que contienen la información clave para la implementación del producto final del proyecto.
Se identificaron los componentes que intervienen en la adquisición, procesamiento y almacenamiento de los datos usados en los indicadores de gestión. Estos componentes se clasificaron en los siguientes tipos:

- **Aplicativos**: incluye los sistemas de información utilizados por parte de la Compañía.

- **Repositorios de Datos**: refiere a las bases de datos o archivos planos utilizados por los aplicativos o en reportes manuales.

- **Plataformas**: referencia a los sistemas operativos, sistemas de base de datos o cualquier otro componente sobre el cual se soporten la operación de los aplicativos y repositorios de datos.

Aplicativos:

Se realizó la identificación de los aplicativos que son utilizados por la Compañía. El criterio utilizado fue la identificación del ciclo de vida de datos financieros, comerciales, operativos y de RRHH. Para este fin, se realizaron indagaciones con el Director
de Informática, y se obtuvieron datos sobre los siguientes aplicativos:

- **Zeus**: Aplicativo Comercial, es el encargado de gestionar los procesos principales de comercialización: definición de tarifas, generación y facturación de planillas, entre otros.

- **Flexline 7.5**: Aplicativo ERP Administrativo Financiero, es el encargado de gestionar los procesos administrativos de la EEMCA: definición de registros contables, bodegas, compras, tesorería, presupuesto, entre otros.

- **XNear 4.0**: Aplicativo Comercial Workflow, se encarga de gestionar procesos referentes a atención al cliente como por ejemplo el seguimiento de reclamos, notificaciones de cortes de servicio, nuevos servicios, instalación de medidores, entre otros.

- **Nomina**: Aplicativo de RRHH, su funcionalidad gira en torno al registro de empleados, y la generación de la nómina en base a sueldos definidos, horas trabajadas, permisos concedidos, entre otros.
Se conoció además que no existen aplicativos que soporten la operación de los procesos correspondientes a la Dirección Técnica y la Dirección Comercial.

Repositorio de Datos:

Con el conocimiento de los aplicativos que soportan los principales procesos de negocio de la Organización, se procedió a identificar los repositorios de datos necesarios para el proyecto a nivel de base de datos y archivos planos. Se realizaron visitas a las Dirección Comercial y Técnica, ya que como se indicó en la sección anterior, no existen sistemas información que sustenten los procesos para estas Direcciones, y se conoció que utilizan archivos planos (formato MS Excel 2003). A continuación se nombran los repositorios de datos identificados, y se comenta el contexto de los datos que almacenan:

BD EEMCA: Obtiene información de los siguientes índices de gestión:

- Gestión de cobranzas
- Depuración de cartera
- Recaudación Vs. Facturación Total
- Pérdidas de Energía
- Calidad del Servicio Comercial (Parte de la información, las demás son de hojas Excel)

BD NOMINA: Obtiene información de los siguientes índices de gestión:

- Coeficientes de empleados

Adicionalmente se identificaron los siguientes archivos, en su totalidad, se tratan de hojas de MS Excel 2003:

- **FORMULARIOS_CP_FEBRERO_2009:** Muestra los niveles de calidad de producto técnico en subestaciones, barras, alimentadores y transformadores.

- **FORMULARIO_CST_enero_2008:** Muestra los niveles de calidad de servicio técnico a nivel de subestación y alimentador.

Estos archivos planos serán utilizados para obtener la información correspondiente a los indicadores del área Técnica.
Plataformas:

Finalmente, se realizó el relevo en entendimiento de las plataformas que son utilizadas por los servidores de la Compañía. El objetivo de esta actividad fue definir la compatibilidad de la plataforma existente con los productos de la solución propuesta. Para mayor detalle de la solución propuesta revisar la sección “2.1.2.1 Modelo de Solución”. La “Tabla 1-4 Plataformas disponibles en CNEL Milagro” muestra el resultado de esta indagación:

<table>
<thead>
<tr>
<th>Plataforma</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base de datos</td>
<td>SQL Server 2000</td>
</tr>
<tr>
<td>Sistema Operativo</td>
<td>Windows 2000/2003</td>
</tr>
<tr>
<td>Base de Datos</td>
<td>SQL Server 2005</td>
</tr>
<tr>
<td>Trabajo Colaborativo</td>
<td>SharePoint 2007</td>
</tr>
<tr>
<td>Indicadores de Gestión</td>
<td>Performance Point Server 2007</td>
</tr>
</tbody>
</table>

Tabla 1-4 Plataformas disponibles en CNEL Milagro

Estos resultados se convierten automáticamente en una limitante del proyecto, ya que dado estas condiciones, se requiere utilizar tecnología Microsoft para un óptimo
desempeño e integración con la infraestructura existente. Esta circunstancia se comunicó al Director de Informática, quien dio el visto bueno para seguir adelante con el proyecto.

1.4. Aprobar el “Documento de Visión y Alcance”

Como parte final de este capítulo, se procedió a construir el entregable principal de esta fase del proyecto, el “Documento de Visión y Alcance”.

Según MSF v3, este documento engloba, “la identificación fundamental del problema, los requerimientos de negocio a alto nivel, la visión a largo plazo de la solución, los perfiles de usuario, el alcance de la solución y del proyecto, y el concepto de la solución.” (Microsoft Corporation, 2002)

Una vez conocidos los componentes del entregable final, se creó el documento que incluye las secciones indicadas. Adicionalmente se incluyó una sección de “Funcionalidad Fuera de Alcance”, ya que los tesisistas consideraron necesario acotar formalmente las funcionalidades no incluidas del producto final del proyecto.

Como resultado final se obtuvo el entregable de este capítulo donde se condensan los objetivos y alcances de alto nivel de la solución final. El
detalle de este documento se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”

Este documento pasó por el ciclo de revisión correspondiente por parte del Director de Informática de la Compañía, adicionalmente se sometió a la revisión del Auditor Interno de la Compañía. Se obtuvo la aprobación formal el día 22 de Mayo del 2009. La evidencia de la aprobación se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”.
CAPITULO 2
2. Planeación

El Capítulo Uno se enfocó en la planeación del tiempo del proyecto, lo que incluyó realizar la primera versión del cronograma y la definición de una línea base preliminar del alcance del proyecto, ambos temas se volverían a revisar en esta fase de Planeación, la cual toma en cuenta temas, como por ejemplo, la creación de una de lista de necesidades que posteriormente dieron paso a las especificaciones funcionales y no funcionales, prototipos de pantalla, entre otros.

MSF v3 también pide realizar un plan maestro en esta fase del proyecto. Sin embargo, para este proyecto algunos sus componentes no se documentaron (por ej. el plan de costos), ya que no fue aplicable en nuestro de trabajo debido a que el mismo giró en torno a un trabajo de graduación: el valor de la mano de obra es cero, y los equipos, licencias y todos los recursos tecnológicos necesarios ya los poseía la Compañía de antemano. De la misma manerahubio otros de planes que menciona el marco de trabajo que no aplican en este proyecto, y los sustentos serán expuestos más adelante en este capítulo.

Los temas desarrollados durante este capítulo son:

- Actividades de Planeación
- Estimación de Cronograma
- Definición de Especificaciones Funcionales y No Funcionales (Definición de Alcance)
2.1. Actividades de Planeación

En esta fase del proyecto, la totalidad de horas fueron invertidas en realizar la planeación del mismo. El objetivo de esta fase fue "crear la arquitectura y el diseño de la solución, los planes de proyecto, y el cronograma" (Microsoft Corporation, 2002).

Por otra parte el alcance de las actividades en esta fase fue que el "equipo de proyecto debe enfocarse en conocer toda la información como sea posible, y seguir adelante cuando se tenga suficiente cantidad de la misma" (Microsoft Corporation, 2002).

El "Gráfico 2-1Fase de Planeación dentro del Ciclo de Vida propuesto por MSF v3", muestra cual es el alcance de la fase de Planeación dentro de la metodología de Gestión de Proyectos.
Gráfico 2-1 Fase de Planeación dentro del Ciclo de Vida propuesto por MSF v3

La ejecución de actividades e hitos se siguieron según lo sugerido por MSFv3, como lo muestra el "Gráfico 2-2 Hitos de la Fase de Planeación".
Dentro de los hitos ejecutados en el proyecto se encuentran los siguientes:

- **Validación de la Tecnología**: Consiste en realizar un reconocimiento sobre la infraestructura involucrada en las actividades del proyecto y el funcionamiento del producto final.

- **Definición de Especificaciones Funcionales y No Funcionales**: Es el documento principal de este capítulo, el cual define las necesidades de la Compañía y las relaciona con funcionalidades del producto final. Además se presentan los prototipos de pantalla, que son aquellos que dan el contexto de las funcionalidades requeridas.

- **Definición Inicial del Plan Maestro del Proyecto**: Se documentan todos los planes subsidiarios que apliquen al proyecto, y pasan a formar parte del plan maestro. En nuestro caso no aplicaba la elaboración de algunos de estos planes.

- **Definición Inicial del Cronograma**: En esta sección se documenta la línea base de los tiempos del proyecto, lo que incluye su duración y secuencia.

- **Configuración del Ambiente de Desarrollo y Pruebas**: Última sección del capítulo, se preocupa por documentar las características de hardware y
software de la infraestructura necesaria para el desarrollo y las pruebas de la Solución.

2.1.1. Validación de la Tecnología

Durante esta actividad se debe realizar un reconocimiento de la Infraestructura de TI de la Compañía. Esta tarea se ejecutó con antelación en la fase de Envisionamiento, debido a que se necesitaba conocer los detalles de los orígenes de datos, las plataformas y las personas que administraban esos recursos tecnológicos. Para mayor detalle revisar la referencia “1.3.2.5Levantamiento de Ambiente de TI” dentro de este documento.

2.1.2. Definición de Especificaciones Funcionales y No Funcionales

La generación de este entregable concentró el mayor número de horas durante la planeación del proyecto. Esto se debió al nivel minucioso de documentación de estas especificaciones, y posteriormente a la revisión y aprobación final de todos los indicadores, reportes y pantallas involucrados en el producto final, previoa realizar cualquier actividad de desarrollo.
Por eso la mayoría de esfuerzos se concentraron en construir el principal entregable de este capítulo: la Especificación Funcional y No Funcional, con su respectiva aprobación por parte del Director de Informática de la Compañía (Revisar "Aprobación del Documento de Especificaciones Funcionales y No Funcionales").

Los componentes de este documento son los siguientes:

- Modelo de Solución Propuesta
- Especificaciones Funcionales
- Especificaciones No Funcionales

2.1.2.1. Modelo de Solución

El modelo de la solución consistió en realizar una descripción de manera detallada, pero sin especificaciones técnicas, sobre diversos aspectos del producto final del proyecto. El primer aspecto que cubrió esta sección fue realizar un diagrama general de la solución en el que se describe de manera gráfica la interacción entre los usuarios, los informes e indicadores, las plataformas involucradas y las fuentes de datos necesarias. A continuación la Tabla 2-1 Plataformas de la Solución
Propuesta" define de manera formal las plataformas utilizadas en la construcción del producto final:

<table>
<thead>
<tr>
<th>Plataforma</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Windows Server 2003</td>
<td>Sistema Operativo de Servidor</td>
</tr>
<tr>
<td>Microsoft SQL Server 2005</td>
<td>Motor de Base de Datos</td>
</tr>
<tr>
<td>SharePoint Services 3.0</td>
<td>Plataforma de Intranet para documentos organizacionales</td>
</tr>
<tr>
<td>Performance Point Services</td>
<td>Motor de Business Intelligence que soporta los indicadores de gestión</td>
</tr>
<tr>
<td>ReportingServices</td>
<td>Generador de Reportes de SQL Server 2005 que se presentarán por medio de SharePoint Services</td>
</tr>
</tbody>
</table>

Tabla 2-1 Plataformas de la Solución Propuesta

Los componentes listados se instalaron en un equipo proporcionado por CNEI Milagro, y que es usado únicamente por el producto final del proyecto. Para obtener detalles sobre este tema revisar la referencia "2.1.5 Configurar Ambiente de Desarrollo/Pruebas" en este documento. El "Gráfico 2-3
Esquema Gráfico de Solución Propuesta presenta los componentes principales del producto final y las relaciones entre ellos.

Gráfico 2-3 Esquema Gráfico de Solución Propuesta

A grandes rasgos, el gráfico indica que el usuario tiene acceso al tablero de indicadores de gestión, y sus respectivos reportes. Estos indicadores son generados en el servidor donde se aloja la solución, y el mismo concentra información de diferentes fuentes de datos mediante un proceso de consolidación.
Una vez realizada la descripción general, se definió el alcance de los indicadores de gestión a ser implementados, es decir, se incluyó el contexto y el mecanismo de generación de los indicadores de gestión. De esta forma se listan los trece indicadores a ser implementados [7], clasificados en su respectiva categoría, y se comenta como se realizará la extracción de datos y su lectura en el contexto del producto final.

Adicionalmente se definió con el Director de Informática que los datos serán mostrados con cortes mensuales, y el alcance de los datos históricos para cada indicador es de doce meses a partir del último mes cuya data haya sido cargada al sistema.

Dirección comercial y Financiera:

- Gestión de cobranzas.
- Depuración de cartera.
- Recaudación vs. Facturación total.

Dirección de Operaciones:

- Pérdidas de energía.

7 En el Capítulo Uno se indicó que eran once indicadores, sin embargo en la etapa de planeación aumentaron dos indicadores más debido a que el área comercial los requería.
- Calidad del servicio comercial – Conexiones de servicio urbano.
- Calidad del servicio comercial – Conexiones de servicio rural.
- Calidad del servicio comercial – Satisfacción de consumidores.

Dirección Técnica:

- Calidad del servicio técnico - Tiempo total de interrupción.
- Calidad del servicio técnico - Frecuencia de interrupción
- Calidad del producto - Nivel de voltaje.
- Calidad del producto - Factor de potencia.
- Calidad del producto - Flicker y armónicos.

Dirección de Recursos humanos:

- Coeficiente de empleados.

La definición de alcance de indicadores de gestión, también incluyó la formalización de los modos de presentación de la información para cada uno de ellos. En este proyecto se definieron dos tipos de modos de presentación: Reporte y
Datos. El modo “Reporte” consiste en una representación gráfica de los datos, a fin de revisar de manera rápida el comportamiento de los indicadores de gestión. El modo “Datos” corresponde a la presentación de información tabulada. Cabe indicar que estos alcances fueron definidos por parte de la Compañía, lo cual fue aprobado por el Director de Informática.

La “Tabla 2-2 Recursos Implementados en el Producto Final” muestra el listado de los recursos que se implementaron en los formatos de Reporte o Datos.

<table>
<thead>
<tr>
<th>Índices de gestión</th>
<th>Formatos</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 - Pérdidas de energía</td>
<td>Reporte</td>
</tr>
<tr>
<td>23 - Recaudación / Facturación Neta Mes</td>
<td>Reporte</td>
</tr>
<tr>
<td>24 - Recaudación / Facturación total</td>
<td>Reporte</td>
</tr>
<tr>
<td>27 - Clientes por trabajador</td>
<td>Reporte</td>
</tr>
</tbody>
</table>

Control de calidad

<table>
<thead>
<tr>
<th>Calidad del servicio comercial</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del servicio técnico - Frecuencia y</td>
<td>Datos</td>
</tr>
<tr>
<td>Tiempo de interrupción</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Calidad del producto - Nivel de voltaje</td>
<td>Datos</td>
</tr>
<tr>
<td>Calidad del producto - Factor de potencia</td>
<td>Datos</td>
</tr>
<tr>
<td>Calidad del producto - Flicker y armónicos</td>
<td>Datos</td>
</tr>
</tbody>
</table>

Tabla 2-2 Recursos Implementados en el Producto Final

En esta parte del documento de especificaciones funcionales, se realizó la descripción formal de las fuentes de datos del proyecto, lo que incluye base de datos, archivos planos y aplicativos con el fin de incluir formalmente las fuentes de datos identificadas en el capítulo anterior. Como parte final de esta sección se documenta el esquema de seguridad utilizado por el producto final, que se basa en el uso de la definición de accesos configurados a nivel de Windows Server 2003, SQL Server 2005, Performance Point Server y SharePointServices.

2.1.2.2. Requerimientos Funcionales

Con la definición formal del producto final, se procedió a realizar las indagaciones y definiciones sobre los requerimientos funcionales. El primer paso fue identificar a los usuarios que tendrán interacción con la solución, a fin de
formalizar de los tipos de acceso al producto final. La “Tabla 2-3 Accesos de los Funcionarios al Producto Final” muestra los tipos de accesos a nivel de funcionarios de la Compañía:

<table>
<thead>
<tr>
<th>Perfiles</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrador Global</td>
<td>Es la persona que se encarga de la administración de todo el producto final. Esto incluye la configuración de los indicadores de gestión, reportes, accesos y perfiles de usuario.</td>
</tr>
<tr>
<td>Director</td>
<td>Funcionario principal de un área funcional de la Compañía. Su acceso le permite observar el Tablero de Indicadores de Gestión y los reportes respectivos.</td>
</tr>
<tr>
<td>Funcionario</td>
<td>Integrante de un área funcional, el cual requiere acceso a generar los reportes necesarios para su envío a los Entes Reguladores del Estado.</td>
</tr>
</tbody>
</table>

Tabla 2-3 Accesos de los Funcionarios al Producto Final

Una vez definidos los tipos de accesos, se entró de lleno a relevar los requerimientos funcionales. El procedimiento ejecutado consistió en identificar necesidades, y estas a su vez se relacionaron con los requerimientos propiamente dichos. Los
criterios de documentación de las necesidades y requerimientos funcionales están tabulados en la sección “Lista de Necesidades” de la referencia “¡Error! No se encuentra el origen de la referencia.”. A continuación se presentan los criterios utilizados para clasificar a los requerimientos funcionales:

- **Criterio Uno:** Detallar cual serían los valores mostrados por los indicadores de gestión y la interpretación de estos valores. Referencias (RF): 1 al 7, 9 al 12, 15, 16, 18 al 23, 25, 26, 28 al 32, 34, 35, 37, 38, 40, 41,

- **Criterio Dos:** Describir Funcionalidades de navegación en las pantallas de la solución. Referencias (RF): 8, 10, 43, 44.

- **Criterio Tres:** Definir formatos de generación de reportes para los Entes Reguladores del Estado. Referencias (RF): 9, 13, 14, 17, 24, 27, 33, 36, 39, 42.

Esta clasificación servirá de base para construir los planes de pruebas del producto final, ya que contiene todas las necesidades de los usuarios de la Compañía a ser validadas.
2.1.2.3. Prototipo de Pantallas

En esta sección se describe el procedimiento ejecutado para construir los prototipos de pantallas, y que sirvieron como complemento de las especificaciones funcionales. El objetivo de realizar los prototipos fue formalizar el detalle de las funcionalidades gráficas del producto final, a fin de iniciar la construcción del mismo sobre diseños aprobados por parte de la Compañía.

El detalle del prototipo se encuentra en la referencia "¡Error! No se encuentra el origen de la referencia.". Se construyeron quince prototipos de pantallas basados en un archivo de Excel, y constó de dos partes:

- Cuadro de Indicadores de Gestión
- Pantallas de los Reportes y Listados de Información.

Una vez aprobado el prototipo (ver referencia "¡Error! No se encuentra el origen de la referencia.") se procedió a llenar un formato con las características para cada pantalla creada. A continuación la “Tabla 2-4 Formato de Información de Pantalla” muestra un ejemplo, y la descripción de cada campo:
<table>
<thead>
<tr>
<th>Etiqueta del campo</th>
<th>Descripción del campo, incluye una breve narrativa sobre el objetivo del campo</th>
<th><Control></th>
<th><Perfil de Acceso></th>
<th>O</th>
<th>E/S/M</th>
<th>V/H</th>
</tr>
</thead>
<tbody>
<tr>
<td><Título de campo></td>
<td><Descripción del campo>, incluye una breve narrativa sobre el objetivo del campo</td>
<td>describe si el campo es de columna, o si el objetivo del título de campo.</td>
<td>mostrar los perfiles que podrán ver el campo según el nivel de acceso del perfil.</td>
<td><Tipo de Campo></td>
<td>entrada (E), salida (S), o mixto (M)</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2.4. Especificaciones No Funcionales

La última sección del entregable principal de este capítulo fue las Especificaciones No Funcionales. En este tema se enfocó en temas de disponibilidad y tiempo de respuesta del producto final.

Del análisis realizado se llegó a la conclusión de que el volumen de datos manejados por el producto final no causará mayor impacto en su operación debido a que el proceso que necesita más recursos computacionales es el de carga de datos, y por el conocimiento del negocio relevado en la etapa de Envisionamiento conocemos que los cortes de información necesarios para la Compañía son de frecuencia mensual. Dado lo anterior, existe un horizonte de 720 horas (30 días de 24 horas) disponibles al mes para programar esta tarea en un día en que sea baja la carga transaccional de la infraestructura de la Compañía.

También se concluyó que una vez cargados los datos no habrá un impacto sobre la disponibilidad de la información, esto se debe a que la misma no se presenta con cortes en tiempo real.
La razón de este comportamiento es que no todas las Direcciones de la Compañía poseen la información con cortes diarios. Por ejemplo, de lo indagado y observado, se conoció que la Dirección Técnica elabora sus reportes de frecuencia mensual en un archivo de Excel a medida que tiene información disponible. Este hecho impacta a cinco de los trece indicadores de gestión, y a catorce de las cuarenta y cuatro referencias funcionales.

La seguridad de la información como tal depende en primer lugar de la seguridad perimetral, física y ambiental que la Compañía haya definido para su infraestructura de TI, luego la seguridad lógica a nivel de información depende de la implementación de políticas, procedimientos y controles en sus plataformas y aplicaciones. Ambos puntos comentados quedan como responsabilidad de la Dirección de Informática y están fuera del alcance de este trabajo de graduación. Bajo el alcance de este proyecto se trató la seguridad de manera intrínseca en los entregables principales del Capítulo 1 y Capítulo 2, cuando se definieron los usuarios y tipos de accesos al producto final, sin contar los recursos prácticamente ilimitados que utiliza
Microsoft en el diseño de la seguridad de sus plataformas y la continua actualización de las mismas.

2.1.3. Definición del Plan Maestro de Proyecto

MSF v3 recomienda que se creen planes subsidiarios a fin de juntarlos en un plan maestro de proyecto. El marco referencial de trabajo destaca los siguientes planes:

- Plan de Despliegue
- Plan Piloto
- Plan de Compras
- Plan de Facilidades Físicas
- Plan de Pruebas
- Plan de Entrenamiento
- Plan de Comunicaciones
- Plan de Capacidad
- Plan de Seguridad
- Plan de Costos

De la lista mostrada sólo **se documentaron cuatro planes**. Esto se debió a las siguientes razones:
- El proyecto no tenía una fecha límite fija (Deadline), debido a que al tratarse de un proyecto de graduación, no existe un contrato firmado que establezca plazos y que cuyo incumplimiento involucre sanciones civiles, como por ejemplo ejecución de garantías. Lo indicado elimina la necesidad de un Plan Formal de Tiempo (Cronograma), sin embargo se trabajó con un cronograma de fechas estimadas (Primer plan creado).

- El proyecto no tenía un presupuesto asignado, ya que al ser un proyecto de graduación no existen valores de mano de obra, y las horas invertidas por el personal de la Compañía se devengan contra su sueldo mensual. Por otro lado el presupuesto anual de CNEL Milagro ya cubrió la inversión del servidor, por lo cual es un costo que no entra en el alcance del proyecto. Finalmente el tema de las licencias de las plataformas Microsoft fue negociado con el Director de Informática, quien indicó que se tenía bajo control el tema de las licencias utilizadas por el producto final. Lo indicado elimina la necesidad de un Plan de Compras, Plan de Costos, Plan de Capacidad y Plan de Facilidades Físicas.
- El proyecto se basa en la teoría de roles de MSF v3, y cada uno de los involucrados sabe cuáles son sus funciones, y la información de los contactos de los miembros del equipo de trabajo estuvo disponibles para todos desde el primer día de trabajo. Como se indicó también en el documento de Visión y Alcance (ver referencia “1.3.1Organizar el Equipo de Trabajo”), el Director de Informática es el Gerente de Producto (Product Manager), por lo que la comunicación con la Compañía está garantizada al ser este funcionario el único punto de contacto. Lo indicado elimina la necesidad de un Plan de Comunicaciones.

- CNEL Milagro como tal, solo posee jurisdicción en la Ciudad de Milagro y no posee agencias o un número significativo de oficinas en las cuales se deba replicar el producto final. Lo indicado elimina la necesidad de un Plan Piloto y un Plan Formal de Despliegue, sin embargo se realizará un instructivo de instalación del producto final(Segundo plan creado).

- El proyecto estará instalado en un servidor exclusivo para este fin. El Director de Informática nos aseguró que no existen otros usuarios que accedan a este equipo, y el mismo se encuentra
gobernado por las políticas, procedimientos y controles de la Compañía, lo cual asegura la confidencialidad de la información. Por otra parte no se está trabajando con operaciones de escritura sobre los datos de otros aplicativos transaccionales en ambiente de producción lo cual asegura la integridad y disponibilidad de la información. Lo indicado elimina la necesidad de un Plan de Seguridad.

- El proyecto no involucra una implementación típica de software, ya que no se desarrolló bajo un lenguaje de programación como tal, más bien lo que se hizo fue sincronizar diferentes plataformas de Inteligencias de Negocio y Trabajo Colaborativo a través de la creación de scripts a nivel de datos, para extraer la información de diversas fuentes, la consoliden, y luego mostrarla en pantallas que se crearon en gran porcentaje bajo ambiente de diseño. Esto implica que no se requiere realizar una revisión extensa sobre código, y el enfoque debe ser en que la funcionalidad implementada esté bajo los requerimientos funcionales relevados en este capítulo. Lo indicado elimina la necesidad de un Plan Formal de Pruebas. Sin embargo se realizaron recorridos sobre las pantallas del producto final a fin de que los usuarios validen los
requerimientos funcionales y proporcionen su aceptación final (**Tercer plan creado**).

- Los usuarios finales, es decir los directores funcionales, no superan las diez personas. Por otro lado, la línea de productos Microsoft sigue los modelos metafóricos, visuales e interactivos usados en otras aplicaciones de amplio uso a nivel mundial (Ej. Microsoft Office). Por este motivo la brecha digital a cubrir para los usuarios finales es muy corta, y se enfoca en el uso del producto final de los indicadores, y no en familiarizarse con los tipos de controles (widgets) y elementos gráficos utilizados. Lo indicado elimina la necesidad de un Plan Formal de Entrenamiento. Sin embargo se ejecutaron sesiones de capacitación a los usuarios finales y se procedió a hacer la elaboración de un manual de usuario (**Cuarto plan creado**).

Lo ejecutado en esta fase de planeación, con su respectiva justificación fundamentada dadas las circunstancias del proyecto, se contempla en el estándar mundial de la administración de proyectos, el PMBOK, el cual en su tercera versión indica de manera textual que la aplicación buenas prácticas de los marcos de trabajos de proyectos, como por ejemplo MSF v3, "**no quiere decir que el conocimiento descrito debe**
ser siempre aplicado de manera uniforme en todos los proyectos; el equipo de manejo de proyecto es el responsable de determinar que es apropiado para cada situación" (Institute, 2004). En este caso esa responsabilidad recae sobre los tesistas, quienes fueron los encargados de definir los marcos de referencia y sus alcances. Para mayor detalle revisar referencia “1.2 Metodologías seleccionadas”.

2.1.4. Definición del Cronograma de Proyecto

Durante las fases iniciales del proyecto, se procedió a realizar un cronograma del proyecto en el cual se tuviera un estimado de los entregables principales, las actividades a realizar y fechas tentativas de trabajo. Dicho cronograma fue enviado para su revisión al Director de Informática de la empresa (¡Error! No se encuentra el origen de la referencia.) con el objetivo de obtener la respectiva retroalimentación y aceptación de las actividades planificadas.

Se debe tomar en cuenta que para este proyecto no se definieron jornadas de trabajo fijas, es decir que no fue posible definir jornadas de ocho horas, ni de cuatro horas, ni nada parecido. Esto se debe a que todos los miembros del equipo de trabajo, definidos en el Capítulo 1, desempeñan sus funciones regulares en sus respectivos trabajos. En
consecuencia no fue posible definir fechas precisas de arranque y finalización de actividades, y con más razón, fechas de culminación de entregables.

El enfoque primario del cronograma fue tener un control sobre el estimado de duración en la fabricación de entregables. El “Gráfico 2-4 Duración estimada de las fases del proyecto” muestra la duración estimada de cada fase del proyecto, las mismas que están alineadas con MSF v3.

<table>
<thead>
<tr>
<th>Nombre de fases</th>
<th>Duración</th>
<th>Comienzo</th>
<th>Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC - EEMCA</td>
<td>101 días</td>
<td>lun 02.03</td>
<td>mar 21.07</td>
</tr>
<tr>
<td>Envisionamiento</td>
<td>29 días</td>
<td>lun 02.03</td>
<td>vie 10.04</td>
</tr>
<tr>
<td>Planificación</td>
<td>23 días</td>
<td>vie 10.04</td>
<td>mie 13.05</td>
</tr>
<tr>
<td>Desarrollo</td>
<td>23 días</td>
<td>mie 13.05</td>
<td>lun 15.06</td>
</tr>
<tr>
<td>Estabilización</td>
<td>11 días</td>
<td>lun 15.06</td>
<td>mar 30.06</td>
</tr>
<tr>
<td>Puesta en Producción</td>
<td>15 días</td>
<td>mar 30.06</td>
<td>mar 21.07</td>
</tr>
</tbody>
</table>

Gráfico 2-4 Duración estimada de las fases del proyecto

Se observa que los esfuerzos para aprobar las definiciones y la planeación del proyecto es un 126% superior a los días estimados para el desarrollo. Este hecho reafirma el alineamiento de la gestión de este proyecto con los marcos de trabajo de aceptación mundial.
En el cronograma del proyecto, cuya referencia es "¡Error! No se encuentra el origen de la referencia.", se definieron los hitos de aprobación para cada fase. A continuación la "Tabla 2-5 Hitos incluidos en el cronograma" muestra el listado de estos hitos:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Hito</th>
<th>No. Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envisionamiento</td>
<td>Revisión y aprobación de Visión y Alcance</td>
<td>7</td>
</tr>
<tr>
<td>Planificación</td>
<td>Revisión y aprobación de Especificaciones Funcionales</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Revisión y aprobación de Especificaciones Técnicas</td>
<td>19</td>
</tr>
<tr>
<td>Desarrollo</td>
<td>Pruebas funcionales con Usuarios</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Finalizar construcción de alcance</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Elaboración de guiones de pruebas</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Elaboración de Manual de Instalación y Operación</td>
<td>37</td>
</tr>
<tr>
<td>Estabilización</td>
<td>Aceptación final por parte del</td>
<td>*</td>
</tr>
<tr>
<td>Puesta en Producción</td>
<td>Acta de reunión de cierre de proyecto</td>
<td>*</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>

Tabla 2-5: Hitos incluidos en el cronograma

Los hitos cuya referencia es un asterisco (*), son aquellos que no constan en el cronograma, sin embargo se los documenta como un hito ya que son actividades que se ejecutaron a fin de generar las constancias documentales de la finalización apropiada de las fases del proyecto.

2.1.5. Configurar Ambiente de Desarrollo/Pruebas

Como última actividad de planeación, se procedió a configurar el equipo correspondiente al ambiente de desarrollo y pruebas. Este equipo fue proporcionado por parte de CNEL Milagro, y únicamente aloja al producto final de este proyecto. La “Tabla 2-6 Características de Equipo de Ambiente de Desarrollo/Pruebas” presenta el resumen de las características del equipo:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Plataforma</th>
<th>Hardware/Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesador</td>
<td>Xeon E3110 3.00 GHZ</td>
<td>HW</td>
</tr>
<tr>
<td>RAM</td>
<td>2 GB</td>
<td>HW</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>Unidad de Disco Duro</td>
<td>232 GB NTFS</td>
<td>HW</td>
</tr>
<tr>
<td>Sistema Operativo</td>
<td>Windows Server 2003 SP2</td>
<td>HW</td>
</tr>
<tr>
<td>Sistema de Base de Datos</td>
<td>SQL Server 2005</td>
<td>SW</td>
</tr>
<tr>
<td>Sistema de Gestión Documental y Trabajo</td>
<td>SharePointServices 2007</td>
<td>SW</td>
</tr>
<tr>
<td>Colaborativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de Indicadores de Gestión</td>
<td>Performance Point Server 2007</td>
<td>SW</td>
</tr>
</tbody>
</table>

Tabla 2-6 Características de Equipo de Ambiente de Desarrollo/Pruebas

El detalle de las plataformas instaladas se encuentra en la referencia "¡Error! No se encuentra el origen de la referencia.". Adicionalmente se instaló un acceso remoto para el equipo mediante el aplicativo LogMeIn. Esta acción fue necesaria debido a los siguientes motivos:

- Se prefirió no emular el ambiente de producción fuera de la Compañía, para mitigar el riesgo de incidentes de compatibilidad, parches, entre otros con la instalación y el funcionamiento de las plataformas.
• La ubicación de la Compañía es a una hora desde la ciudad de Guayaquil, y de esta manera se mitigó el riesgo de retrasos en el avance del proyecto causados por falta de disponibilidad del personal de la Dirección de Informática.

• Este equipo posteriormente se convirtió en ambiente de producción.

La instalación de los componentes de software se la realizó por parte de los tesistas en coordinación el Director de Informática. Para este efecto se coordinó una visita a las instalaciones de la Compañía. El detalle de la coordinación de esta reunión se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”.
CAPITULO 3
II. Desarrollo

En este capítulo se cubre el análisis a detalle técnica de las especificaciones de la aplicación partir del documento de Especificaciones Funcionales y No Funcionales del proyecto aprobado en el capítulo anterior. El entregable que semeja estos criterios es el documento de Especificaciones Técnicas.

Posteriormente, en base a este entregable se inician las actividades de desarrollo de la solución, liberando una primeraversión funcional que sirve para validar tempranamente la funcionalidad del diseño en base a las especiaciones funcionales aprobadas, obteniendo la retroalimentación necesaria por parte del usuario. Finalmente se continúa con el desarrollo hasta entregar una versión con funcionalidad completa lista para entrar en la fase de certificación (estabilización) de la solución.

Cabe recalcar que un hito crítico para ingresar en esta fase del proyecto es la definición y aprobación de las especificaciones funcionales, pues las mismas son la base para definir las especificaciones técnicas y determinar las actividades de desarrollo de la solución, dichas especificaciones funcionales no se modifican y de darse cualquier cambio en ellas cambian el alcance del proyecto deben pasar por un proceso de revisión y aceptación por parte del equipo del proyecto, lo cual en la metodología se denomina Control de Cambios.
Las temas desarrollados durante este capítulo son:

- Definición de Especificaciones Técnicas del proyecto.
- Ejecución de prueba de concepto. (primera versión)
- Liberación de versión funcional completa de la aplicación para certificación.

En MSF v3 las especificaciones técnicas, cuyo entregable es un documento de Especificaciones Técnicas del proyecto, se contempla dentro de la fase de Planeación, sin embargo, por las particularidades y circunstancias del proyecto, la versión final de este documento se incluyó dentro de las actividades de esta fase, lo cual se detalla en la sección 3.2 de este documento.

3.1. Actividades de desarrollo

En esta fase del proyecto, la totalidad de las horas se invirtieron en la construcción de los distintos componentes de software que contempla la solución, esto incluyó tanto la configuración de las herramientas de plataforma como el desarrollo de código nuevo en aquellos componentes que así lo requirieron.
El objetivo principal de esta fase fue "Completar la construcción de las funcionalidades, componentes y otros elementos descritos en las especificaciones técnicas de la solución y que permitan implementar los alcances del proyecto" (Microsoft Corporation, 2002).

El "Gráfico 3-1 Fase de Desarrollo dentro del Ciclo de Vida propuesto por MSF v3", muestra cuál es la ubicación de la fase de Desarrollo dentro de la metodología de Gestión de Proyectos.

![Gráfico 3-1 Fase de Desarrollo dentro del Ciclo de Vida propuesto por MSF v3](image)

La ejecución de actividades e hitos se siguió según lo sugerido por MSFv3, como lo muestra el "Gráfico 3-2 Hitos de la Fase de Desarrollo".
Gráfico 3-2 Hitos de la Fase de Desarrollo

Dentro de los hitos ejecutados en esta fase del proyecto se encuentran los siguientes:

- **Ejecución de prueba de concepto:** Consiste en probar con un grupo definido de usuarios aquellos elementos claves de la solución en una ambiente de pruebas, y con datos similares a los que se utilizarán en el ambiente de producción. El objetivo de esta actividad es validar los requerimientos funcionales definidos para el proyecto y obtener la retroalimentación temprana de los usuarios con respecto a la solución que se está construyendo.

- **Liberación internas de n versiones de la solución:** Debido a que la fase de Desarrollo se enfoca principalmente en la construcción de la
solución, cada cierto periodo, establecido por el equipo de desarrollo, se efectúa la liberación interna de una versión funcional de la aplicación que vaya incorporando en cada una de ellas un grupo definido de funcionalidades para validar internamente su correcto funcionamiento en base a los requerimientos del proyecto y efectuar el correspondiente control y seguimiento de todas las actividades de construcción. Dichas liberaciones no se ponen a disposición de los usuarios de la aplicación, sino internamente al equipo de desarrollo, y, dependiendo de la estrategia de pruebas, también se ponen a disposición del equipo que realizará la certificación de la solución en la siguiente fase de Estabilización.

3.2. Especificaciones Técnicas

Esta sección se enfoca en revisar cada uno de los requerimientos funcionales y no funcionales del proyecto, y posterior a ello proceder a diseñar la solución técnica que permitirá implementar dichos requerimientos.

El entregable de esta actividad es el documento “Especificaciones Técnicas del Proyecto”, el cual fue elaborado por los tesistas y puesto a revisión por parte del Director de Tecnología de la empresa. Para mayor detalle ver referencia “¡Error! No se encuentra el origen de la referencia.”
Se documentó una primera versión de este entregable en la fase de Planeación con el fin de evaluar la factibilidad tecnológica de la solución acorde al entendimiento de las capacidades del ambiente de TI y el levantamiento de Especificaciones Funcionales y No Funcionales. Esta primera versión se completó en una segunda entrega durante la fase de Desarrollo, en la cual ya se requirió una definición más detallada de los componentes a implementar.

A diferencia del documento de Especificaciones Funcionales y No Funcionales, el cual delimitó el alcance del proyecto y debió ser aprobado y revisado desde el punto de vista netamente funcional del negocio, el documento de “Especificaciones Técnicas del Proyecto” sólo se distribuyó a los interesados de la empresa cuyo cargo y conocimiento de tecnología les permitía evaluar y analizar la información que este contenía.

Previo al arranque de las actividades de Desarrollo, se realizó una revisión final de este entregable, y se lo actualizó con el objetivo de reflejar cualquier cambio realizado a la infraestructura o las reglas del negocio. Como resultado se liberó una versión final que se puso a disposición del Director de Informática para su revisión y aprobación (Revisar “Aprobación del Documento de Especificaciones Técnicas”). Los cambios incorporados a este documento no representaron riesgos significativos al alcance del proyecto.
Durante las especificaciones técnicas del proyecto se definieron los siguientes puntos:

- Arquitectura técnica de la aplicación.
- Infraestructura física e interacción con otros sistemas.
- Requerimientos del sistema.
- Diseño lógico/físico de base de datos.
- Diseño de carga de información y esquema de procesamiento.

3.2.1. Arquitectura técnica de la aplicación

El "Gráfico 3-3 Arquitectura conceptual de la aplicación" muestra la arquitectura conceptual de la aplicación en un formato de diagramas de bloque.
Gráfico 3-3 Arquitectura conceptual de la aplicación

Conceptualmente la solución se compone de dos grandes componentes lógicos: El servidor de base de datos y el servidor de aplicación. Esta característica arquitectónica permite separar las implementaciones de requerimientos funcionales (servidor de aplicación) y de requerimientos técnicos (servidor de base de datos) en equipos diferentes. Para nuestro proyecto, ambos servidores se implementaron en un mismo equipo.
A continuación se detalla cada uno de los componentes que conforman la aplicación:

Servidor de Aplicación:

- **Microsoft PerformancePoint Server 2007 – Monitoring Server:** Contiene las plantillas de los reportes y tablero de indicadores que componen la interfaz gráfica que muestra la información de los índices de gestión a los usuarios de la aplicación. Los datos son obtenidos del cubo de información EEMCA_CUBE que reside en el servidor de base de datos.

- **Windows SharePointServices v3.0:** Plataforma Web de Microsoft para el trabajo colaborativo, que en este caso es utilizado como el portal Web Intranet en la empresa para publicar y poner a disposición de los usuarios el cuadro de mando integral y los reportes de gestión.

- **Internet InformationServices v6.0:** Plataforma de Microsoft para los distintos servicios de Internet o Intranet basados en Web. SharePoint Services se basa en IIS como plataforma para el acceso Web de su contenido.
Servidor de Base de datos:

- **Paquete SSIS CargaBSC:** Paquete de SQL Server 2005 IntegrationServices\(^8\), que realiza la extracción de información de las bases de datos de origen y de los archivo Excel que contienen información de aquellos indicadores cuyos datos no se encuentran en los sistemas informáticos de la Compañía. Este paquete se encarga de extraer los datos, transformarlos, calcular los valores de los indices y almacenar la información en la base de datos EEMCA_RCUBE. Además de las hojas en Excel, los datos son obtenidos de las bases de datos EEMCA_DW (DataWareHouse de la empresa), EEMCA (Base de datos del sistema comercial ZEUS), NOMINA (Base de datos del sistema NOMINA) y XNEARDB (Base de datos del sistema XNEAR).

El detalle de este componente se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.” sección “2.2.5.2 Diseño del paquete SSIS CargaBSC”.

\(^8\)SQL Server 2005 IntegrationServices: Producto de Microsoft perteneciente a SQL Server 2005 que implementa capacidades para crear y administrar paquetes de extracción, conversión y almacenamiento entre distintas fuentes de datos de distintas tecnologías.
• **Base de datos relacional EEMCA_RCUBE:** Base de datos que contiene la información de los índices de gestión que serán utilizados en el Cuadro de Mando Integral, agrupada por tipo de índice y periodo (mes) de la información. Esta base de datos sirve como fuente para el procesamiento del cubo EEMCA_CUBE.

El detalle de este componente se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”

• **Cubo de información EEMCA_CUBE:** Cubo de información que posee los datos de los indicadores de gestión. La información que reside en el cubo ha sido validada y procesada y está lista para ser explotada en la presentación de indicadores y reportes del Cuadro de Mando Integral. El cubo es accedido a través del motor “AnalysisServices” de Sql Server 2005. El detalle de este componente se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.”
- SQL Reporting Services 2005: Motor de generación de reportes de SQL Server 2005 utilizado para publicar los reportes de gestión.

El "Gráfico 3-4 Fluo de información desde las fuentes de datos hasta el cuadro de mando integral" muestra la siguiente secuencia:

1. A través del paquete SSIS CargaBSC (Ver (1) en el Gráfico 3-4) se realiza la extracción de datos de las distintas fuentes de origen, conversión de formatos, cálculo de los índices de gestión y almacenamiento de los resultados en la base de datos relacional EEMCA_RCUBE.

2. La información en la base de datos EEMCA_RCUBE es procesada y almacenada en el cubo de información EEMCA_CUBE (Ver (2) en el Gráfico 3-4) que posee la estructura de datos necesaria para que la información sea consolidada en el cuadro de mando integral.

3. PerformancePoint Server utiliza el cubo de información EEMCA_CUBE (Ver (3) en el Gráfico 3-4) para agrupar, consolidar y dar formato a los datos que se presentan en el cuadro de mando integral y reportes relacionados y ponerlos a
disposición de los usuarios a través de un WebPart previamente publicado en Windows SharePoint Services.

4. Los usuarios ingresan al portal SharePoint de la empresa y navegan hasta el cuadro de mando integral o a la página web (Ver (4) en el Gráfico 3-4) que permite acceder a los reportes de gestión para los entes reguladores (Tabla 2-2).
3.2.2. **Infraestructura física e interacción con otros sistemas**

En esta sección se presenta de manera detallada cuáles son los componentes de la solución a nivel de servidores. El "Gráfico 3-5 Diagrama de Infraestructura Física" muestra al servidor "GIS-Troncal"
el cual agrupa los componentes de aplicación y los repositorios de datos descritos anteriormente.

Gráfico 3-5 Diagrama de Infraestructura Física

A continuación el detalle de los servidores que componen la solución:

- **Servidor de Aplicación y Base de datos**: Servidor GIS-TRONCAL. Este servidor implementa los siguientes componentes:

 - IIS (Internet Information Services)
 - Windows SharePoint Services
- **Servidor de Base de Datos EEMCA**: Servidor que posee la base de datos del sistema comercial Zeus.

- **Servidor de Base de Datos NOMINA**: Servidor que posee la base de datos del sistema Nómina.

- **Servidor de Base de Datos XNEARDB**: Servidor que posee la base de datos del sistema XNEAR.

La “Tabla 3-1 Interacción de Aplicaciones con la Solución” lista y describe a los aplicativos que se interrelacionan con la solución.

<p>| Descripción de los Sistemas |</p>
<table>
<thead>
<tr>
<th>Sistema</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD: EEMCA</td>
<td>Obtiene información de los siguientes índices de gestión:</td>
</tr>
<tr>
<td></td>
<td>• Gestión de cobranzas.</td>
</tr>
<tr>
<td></td>
<td>• Depuración de cartera.</td>
</tr>
<tr>
<td></td>
<td>• Recaudación Vs. Facturación Total.</td>
</tr>
<tr>
<td></td>
<td>• Pérdidas de Energía.</td>
</tr>
<tr>
<td></td>
<td>• Calidad del Servicio Comercial (Parte de la información, las demás son de hojas Excel).</td>
</tr>
<tr>
<td>BD: NOMINA</td>
<td>Obtiene información de los siguientes índices de gestión:</td>
</tr>
<tr>
<td></td>
<td>• Coeficientes de empleados.</td>
</tr>
<tr>
<td>BD: XNEARDB</td>
<td>Obtiene información de los siguientes índices de gestión:</td>
</tr>
<tr>
<td></td>
<td>• Calidad del Servicio Comercial (Parte de la información, las demás son de hojas Excel).</td>
</tr>
</tbody>
</table>

Tabla 3-1 Interacción de Aplicaciones con la Solución
3.2.3. Requerimientos del sistema

La presente sección presenta cuáles son los requerimientos de hardware y software necesarios para la adecuada operación de la Solución.

Esta información se definió en base a los requerimientos que poseen los dos principales componentes que conforman la arquitectura de la aplicación:

- Microsoft Office PerformancePoint Server 2007
- SQL Server 2005

Los demás componentes, a excepción de Windows SharePointServices, se ejecutan dentro del contexto de dichas aplicaciones.

Requerimientos de Sistema Operativo:

Los siguientes sistemas operativos se encuentran soportados:

- Microsoft Windows Server 2003 (SP2 and R2), 32-bit and 64-bit.
Requerimientos de Microsoft Office PerformancePoint Server:

- Sólo es necesario instalar el componente “Monitoring Server”.

Requerimientos de Servidor de Base de Datos:

- Microsoft SQL Server 2005 SP2 (Standard o Enterprise) con los siguientes componentes:
 - DataBaseEngine
 - AnalysisServices
 - ReportingServices
 - IntegrationServices

Otros componentes:

- Microsoft Internet Information Services 6.0
- Microsoft .NET Framework 2.0 y Microsoft ASPNet 2.0
- Microsoft ASPNet AJAX 1.0
- SQL Server 2005 Analysis Management Objects 9.0 SP2
- SQL Server 2005 Native Client 9.0 SP2
- SQL ADOMD.NET 9.0 SP2
- msxml6.msi + últimos updates
- SQL Server 2005 SP2 Analysis Server OLEDB 9.0 Provider
- Windows SharePoint Services 3.0 o Microsoft Office SharePoint Server 2007
- Internet Explorer 6.0 o superior.

Para mayor información acerca de pre-requisitos y procedimientos de instalación de PerformancePoint Server 2007 consulte la siguiente dirección web en TechNet de Microsoft:

Para mayor información acerca de pre-requisitos y procedimientos de instalación de SQL Server 2005 consulte la siguiente dirección web en TechNet de Microsoft:

Se presenta la información en la “Tabla 3-2 Requerimientos de Hardware de Microsoft Office PerformancePoint 2007” y la “Tabla 3-3 Requerimientos de Hardware de Microsoft SQL Server 2005” sobre los requerimientos de estos componentes. Se detallan los requerimientos de ambas plataformas por separado, ya que la
arquitectura permite dividir la aplicación en dos servidores, en caso de poseer un solo servidor aplicaría la configuración de Hardware más alta.

Microsoft Office PerformancePoint Server 2007:

<table>
<thead>
<tr>
<th>Mínimo</th>
<th>Recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pentium 4 CPU: 2.5 GHz</td>
<td>- 2 Dual-Core 64-bit CPUs (x64)</td>
</tr>
<tr>
<td>- 2 GB RAM</td>
<td>- 4 GB RAM</td>
</tr>
<tr>
<td>- 1 GB Available Disk Space</td>
<td>- 5 GB Available Disk Space</td>
</tr>
<tr>
<td>- 100 Mb Network Interface</td>
<td>- 7200 RPM IDE Drive</td>
</tr>
<tr>
<td></td>
<td>- 1000 Mb Network Interface</td>
</tr>
</tbody>
</table>

Tabla 3-2 Requerimientos de Hardware de Microsoft Office PerformancePoint 2007

Microsoft SQL Server 2005:

<table>
<thead>
<tr>
<th>Mínimo</th>
<th>Recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pentium 3 CPU: 600 MHZ</td>
<td>- Pentium 4 CPU: 1 GHZ</td>
</tr>
<tr>
<td>- 512 MB RAM</td>
<td>- 1 GB RAM</td>
</tr>
<tr>
<td>- 100 Mb Network</td>
<td>- 1000 Mb Network Interface</td>
</tr>
</tbody>
</table>
3.2.4. Diseño lógico/psíquico de base de datos

La base de datos EEMCA_RCUBE consolida los datos extraídos de las fuentes de información descritas anteriormente, para luego servir de insumo en el cálculo de los indicadores de gestión.

La base de datos es poblada de información a través de la ejecución del paquete SSIS CargaDatosBSC (ver detalles en siguiente sección “Diseño de carga de información y esquema de procesamiento”), el cual alimenta el cubo de información EEMCA_CUBE que a su vez sirve como origen de datos a PerformancePoint Server para la generación del cuadro de mando integral diseñado para la empresa.

En la referencia “¡Error! No se encuentra el origen de la referencia.” se encuentra el modelo lógico de entidad-relación de la base de datos EEMCA_RCUBE, y el diccionario de datos se encuentra en la referencia “¡Error! No se encuentra el origen de la referencia.” sección
3.2.5. Diseño de carga de información y esquema de procesamiento

Una de las características principales de un cuadro de mando integral es resumir datos que residen en distintas fuentes, estén o no soportadas en aplicativos informáticos, con el objetivo de presentar información consolidada a través de indicadores claves (índices), los cuales reflejan la situación del Negocio con respecto a sus objetivos estratégicos.

En vista de lo descrito, inicialmente se requirió diseñar e implementar un proceso de carga de información que extraiga los datos de los repositorios de otros aplicativos y hojas Excel, y los consolide en un solo repositorio para que sea insumo de información por parte del cuadro de mando integral. En la siguiente sección se describen con más detalle las fuentes de información utilizadas.
3.2.5.1. Fuentes de datos

Para el caso particular del alcance definido en CNEL Milagro, las siguientes son las fuentes de datos contempladas en el proyecto:

- **Hojas en Excel**

Los datos de los siguientes índices son obtenidos a través de plantillas Excel que son manualmente actualizadas de manera mensual por los respectivos funcionarios de la compañía:

 - Calidad del servicio comercial
 - Perdidas de energía.
 - Calidad del servicio técnico - Tiempo total de interrupción
 - Calidad del servicio técnico - Frecuencia de interrupción
 - Calidad del producto - Nivel de voltaje
 - Calidad del producto - Factor de potencia
 - Calidad del producto - Flicker y armónicos

- **Bases de Datos SQL Server**
La “Tabla 3-4 Fuentes de Datos: Bases de Datos y Tablas” presenta las bases de datos y tablas que servirán como fuente de información para los índices definidos en el Cuadro de Mando Integral:

<table>
<thead>
<tr>
<th>Servidor</th>
<th>Base de datos</th>
<th>Tablas</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMERCIAL</td>
<td>EEMCA</td>
<td>• rerepmes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• fareptot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• reamofra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• farepval</td>
</tr>
<tr>
<td>COMERCIAL</td>
<td>XNEARDB</td>
<td>• Historia</td>
</tr>
<tr>
<td>FINANZAS</td>
<td>NOMINA</td>
<td>• calendarioroles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nominacab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nominaxdet</td>
</tr>
</tbody>
</table>

Tabla 3-4 Fuentes de Datos: Bases de Datos y Tablas

Vale la pena anotar que el servicio SQL Server 2005 IntegrationServices (SSIS), soporta fuentes de datos que no se limitan a las acedidas en este proyecto, por lo que el Negocio podría muy bien extender la extracción de información hacia fuentes de datos de otra naturaleza en caso de requerir el cálculo de otros indicadores acorde a las necesidades del momento.
3.2.5.2. Herramienta utilizada para la implementación del componente

Para la carga de información desde las distintas fuentes hacia la base de datos EEMCA_RCUBE se implementó un paquete en “SQL Server 2005 IntegrationServices” (SSIS), denominado “CargaBSC”, y cuya ejecución es automática con periodicidad de una vez por mes. Esta ejecución se automatizó a través de la programación de una tarea en el servicio de la base de datos denominado “SQL Server Agent”.

Las ventajas de utilizar una herramienta de alto nivel como “SSIS” para este componente fundamental en toda la arquitectura de la aplicación se detallan a continuación:

- Proporciona una herramienta que soporta la construcción de esquemas de extracción de datos en tiempo diseño, llamada SISS Designer, la cual permite una administración mucho más eficiente desde el punto de vista de costo operativo, ya que posee características de usabilidad, como la visibilidad en las fuentes de datos involucradas, tanto para el diseño de
los esquemas de extracción, como para la depuración de los datos que procesan.

• La herramienta es lo suficientemente flexible como para manejar en un mismo paquete, es decir en un mismo conjunto de extracción, transformación y carga de datos, varias fuentes heterogéneas de información, desde un archivo plano hasta un modelo de entidad-relación existente en un servidor de base de datos.

• El paquete permite una fácil administración de su configuración a partir de un archivo XML, en el cual los parámetros disponibles de configuración se encuentran en un formato de duplas clave/valor, que pueden ser modificadas sin mayor esfuerzo en relación a otro tipo de esquema de configuración.

• La ejecución del paquete se enmarca dentro del modelo de tareas programadas (Jobs) de Sql Server Agent 2005, y por lo tanto proporciona el nivel de automatización necesario para el proyecto.
• El manejo de Log es más detallado y proporciona información a nivel de eventos y tareas específicas del paquete. El detalle de los eventos a ser registrados en las pistas de auditoría (Logs) se encuentran en la referencia “¡Error! No se encuentra el origen de la referencia.” sección “2.2.5.3 Log de ejecución”.

En resumen, las ventajas de mantenimiento y administración que se obtiene al implementar la carga de datos a través de SSIS, es lo más apropiado de acuerdo a las circunstancias del ambiente tecnológico del cliente, tanto en la naturaleza sus plataformas informáticas, como en la complejidad de las fuentes de datos necesarias para la fabricación del producto final.

3.2.5.3. Diseño del proceso de carga de datos

El detalle del diseño enlazcucuencia de pasos, y las fuentes de datos referenciadas, se encuentran en la referencia “¡Error! No se encuentra el origen de la referencia.” sección “2.2.5.2 Diseño del paquete SSIS CargaBSC”
Ejecución de prueba de concepto

Como parte de las actividades de la fase de Desarrollo del proyecto, se procedió a construir una prueba de concepto de la solución, la cual consistió en liberar una primera versión funcional del producto que cubriera en su totalidad un conjunto definido de requerimientos y ponerlos a prueba con un usuario de la empresa que pudiera validar, a más de la funcionalidad, la integridad de los datos que consolida la aplicación, tanto a nivel del cuadro del mundo integral como a nivel de los reportes de gestión.

A continuación la “Tabla 3-5 Requerimientos Funcionales probados en el proyecto” presenta el detalle de la ejecución de esta actividad:

Usuario de pruebas: Ing. Marlene Heredia. Administradora del sistema ZEUS.

Requerimientos funcionales probados:

<table>
<thead>
<tr>
<th>Requerimiento</th>
<th>Descripción</th>
</tr>
</thead>
</table>

Presentar indicador mensual de Gestión de Cobranzas de los últimos 12 meses, aplicando la fórmula:

\[
\text{Valor mensual recaudado de cartera vencida} \times 100 / \text{Valor mensual de cartera vencida}.
\]

El valor se presentará en porcentaje.

Poder establecer una meta mensual (Target) contra la cual se evaluará el indicador anterior, presentando una alerta gráfica que indique a través de colores el desempeño del indicador en base a la siguiente definición:

- Verde: Target <= Indicador
- Amarillo: Target * 0,9 <= Indicador
- Rojo: Target * 0,9 > Indicador

Presentar indicador mensual de Depuración de Cartera de los últimos 12 meses, aplicando la fórmula:

\[
\text{Valor mensual recuperado a clientes libro} \times 100 / \text{Valor mensual facturado a clientes no enrutados en libro}
\]

El valor se presentará en porcentaje.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF4.</td>
<td>Poder establecer una meta mensual (Target) contra la cual se evaluará el indicador anterior, presentando una alerta gráfica que indique a través de colores el desempeño del indicador en base a la siguiente definición:</td>
</tr>
<tr>
<td></td>
<td>- Verde: Target <= Indicador</td>
</tr>
<tr>
<td></td>
<td>- Amarillo: Target * 0,9 <= Indicador</td>
</tr>
<tr>
<td></td>
<td>- Rojo: Target * 0,9 > Indicador</td>
</tr>
<tr>
<td>RF5.</td>
<td>Presentar indicador mensual de Recaudación vs. Facturación total de los últimos 12 meses, aplicando la fórmula:</td>
</tr>
<tr>
<td></td>
<td>[\text{Valor total recaudado en mes} \times 100 / \text{Valor total facturado mes}]</td>
</tr>
<tr>
<td></td>
<td>El valor se presentará en porcentaje e incluye en su cálculo la cartera vencida.</td>
</tr>
<tr>
<td>RF6.</td>
<td>Poder establecer una meta mensual (Target) contra la cual se evaluará el indicador anterior, presentando una alerta gráfica que indique a través de colores el desempeño del indicador en base a la siguiente definición:</td>
</tr>
<tr>
<td></td>
<td>- Verde: Target <= Indicador</td>
</tr>
<tr>
<td></td>
<td>- Amarillo: Target * 0,9 <= Indicador</td>
</tr>
<tr>
<td></td>
<td>- Rojo: Target * 0,9 > Indicador</td>
</tr>
<tr>
<td>N°</td>
<td>Requerimiento</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| RF7.| Presentar reporte gráfico de los valores de Facturación de la empresa durante los últimos 12 meses, en el formato:
| | X: Mes
| | Y: Valor mensual de facturación($) |
| RF13.| Generar el reporte mensual de Recaudación/Facturación Neta Mes, Indicador 23 del Fondo de Solidaridad, según el formato establecido por dicho ente gubernamental. Además, incluir un reporte con los datos utilizados en el reporte. |
| RF14.| Generar el reporte mensual de Recaudación/Facturación Total, Indicador 24 del Fondo de Solidaridad, según el formato establecido por dicho ente gubernamental. Además, incluir un reporte con los datos utilizados en el reporte. |

Tabla 3-5 Requerimientos Funcionales probados en el proyecto

Durante la construcción de la prueba de concepto se recibieron observaciones sobre los requerimientos RF1, RF5, RF13 y RF14. El alcance de las observaciones fue el modo de cálculo, pues durante la etapa de especificaciones técnicas del proyecto se definió que al momento de comparar la recaudación con la facturación esta se realizaba contra el mes anterior, es
desde la recaudación del mes N se comparaba contra la facturación del mes N-1, pero durante la prueba de concepto el usuario nos manifestó que el modo de cálculo cambió a comprar tanto la recaudación como la facturación en el mismo mes. En base a lo anterior se implementó el correspondiente cambio en el modo de cálculo de los índices 23 y 24 así como de sus respectivos reportes de gestión.

Se recibió una recomendación sobre el requerimiento RF3, el cual consistió en cambiar el nombre del índice por “Gestión de recuperación de pérdidas de energía”, ya que este nombre se encuentra más relacionado al origen de la información, la cual se obtiene a partir de los registros de recaudación y facturación de fraudes cometidos por clientes de la empresa. Los cambios mencionados se evaluaron por parte del equipo del proyecto y el Director de Informática, y se concluyó que no tendrían un impacto significativo en el alcance y la complejidad de la prueba de concepto, por lo cual se decidió acogerlos e implementarlos.

3.4. Construcción de la solución

El desarrollo de la solución se efectuó en el servidor “GIS-Troncal” proporcionado por el área de Informática de la Empresa, cuyas características
Se alinearon a lo indicado en la referencia "2.1.5 Configurar Ambiente de Desarrollo/Pruebas" en este documento.

Las actividades de construcción de la solución se definieron en base a los principales componentes que conforman la aplicación, a continuación el listado de los mismos:

- Construcción del paquete SSIS de carga de datos.
- Construcción del Cubo de Información.
- Diseño y construcción de los reportes de gestión.
- Diseño y configuración del Cuadro de Mando Integral utilizando PerformancePointDashboardDesigner.
- Configuración de Seguridad

A continuación se detalla la construcción de cada uno de los componentes anteriores.

3.4.1. Construcción del Paquete SSIS de carga de datos

Como primera actividad en la construcción del paquete de carga de datos, se procedió a implementar la base de datos relacional
EEMCA_RCUBE. Para detalles de este componente revisar la referencia “Arquitectura técnica de la aplicación” en este documento.

Con el objetivo de acceder a las fuentes de datos de origen, necesarios para alimentar el cubo de información, se solicitó al área de Informática de la empresa los respaldos desde el mes de Septiembre del 2008 a Septiembre del 2009. El detalle de la información requerida es el siguiente:

- EEMCA (Sistema comercial ZEUS)
- XNearDB (Sistema XNEAR)
- ROLES (Sistema NOMINA)

Con la disponibilidad de la información listada, fue posible establecer la precisión y exactitud de los resultados generados por parte del producto final, ya que durante la fase de construcción se realizaron pruebas internas en paralelo respecto a las bases de datos de origen. En el siguiente capítulo se detalla la extensión y naturaleza de esta prueba.

Para la construcción del paquete SSIS se creó el proyecto ‘BSCCargaDatos’ del tipo SQL IntegrationServicesProject en la herramienta Visual Studio 2005, el cual incluyó un único archivo
"CargaBSC.dtsx" contiene las tareas descritas a continuación. En la referencia "¡Error! No se encuentra el origen de la referencia." se puede observar gráficamente la secuencia de ejecución de cada una de las tareas del paquete y la relación entre cada uno de ellas:

- **Crear Periodo**: Tarea de tipo ‘Script’ que se encarga de determinar el periodo de carga e insertar el correspondiente registro en la base de datos relacional EEMCA_Rcube.

- **Carga – Índice 24 – Recaudación vs. Facturación**: Tarea del tipo ‘Flujo de Datos’ que se encarga de realizar la carga de datos de los siguientes índices del cuadro de mando integral:
 - Recaudación vs. Facturación.
 - Gestión de cobranzas.
 - Gestión de control de pérdidas por fraude.

Además, carga los datos para la generación mensual de los siguientes reportes:

 - Índice 23 – Recaudación / Facturación Neta Mes.
 - Índice 24 – Recaudación / Facturación Total.

- **Carga – Índice 27 – Clientes vs. Trabajador**: Tarea del tipo ‘Flujo de Datos’ que se encarga de realizar la carga de datos del
índice ‘Clientes por Trabajador’ del cuadro de mando integral. Además, carga los datos para la generación del reporte mensual ‘Índice 27 – Clientes por Trabajador’.

- **Procesar EEMCA_CUBE**: Tarea que se encarga de procesar el Cubo de Información luego de realizada la carga de los índices del Cuadro de Mando Integral.

En conjunto con las Tareas el paquete posee los siguientes Contenedores de Secuencia, los cuales son componentes de SSIS que engloban varias tareas que en su conjunto ejecutan un solo proceso de carga de datos que puede representarse como una operación atómica dentro del paquete:

- **Secuencia – Carga – Calidad Servicio Comercial**: Secuencia encargada de cargar la información de Calidad del Servicio Comercial, el cual incluye los siguientes índices:

 - Calidad del Servicio Comercial – Conexiones de Servicio Urbano

 - Calidad del Servicio Comercial – Conexiones de Servicio Rural
- Calidad del Servicio Comercial – Satisfacción de consumidores

Además, carga a la base de datos la información necesaria para la ejecución del reporte ‘Calidad del Servicio Comercial’.

- Secuencia – Carga – Servicio Técnico: Secuencia encargada de cargar la información de Calidad del Servicio Técnico, el cual incluye los siguientes índices:
 - Calidad del Servicio Técnico – Tiempo Total de Interrupción.
 - Calidad del Servicio Técnico – Frecuencia de Interrupción.

Además, carga a la base de datos la información necesaria para la ejecución del reporte ‘Calidad del Servicio Técnico – Frecuencia y Tiempo de Interrupción’.

- Secuencia – Carga – Calidad del Producto: Secuencia encargada de cargar la información de Calidad del Producto, el cual incluye los siguientes índices:
 - Calidad del Producto – Nivel de Voltaje.
 - Calidad del Producto – Factor de Potencia.
o Calidad del Producto – Flicker y Armónicos.

Además, carga los datos para la generación mensual de los siguientes reportes:

 o Calidad del Producto – Nivel de Voltaje.
 o Calidad del Producto – Factor de Potencia.
 o Calidad del Producto – Flicker y Armónicos.

En síntesis, la ejecución comienza con la tarea ‘Crear Periodo’, la cual luego de finalizar correctamente, da paso a la ejecución en paralelo de cada una de las Tareas y Contenedores que cargan la información de los índices y reportes, y finalmente se ejecuta la Tarea ‘Procesar EEMCA_CUBE’.

No es necesario que todas las Tareas de carga se ejecuten correctamente para que comience el procesamiento del cubo, sólo es
necesario que todas las tareas completen su ejecución, ya sea con o sin errores, de esta manera se asegura que a pesar de que una tarea no se ejecute correctamente, esto no afecte a la ejecución de las demás. Sin embargo, el impacto de la carga errónea de ciertas tareas, se verá reflejado en la información presentada en su indicador correspondiente.

Adicionalmente en este paquete se configuró el registro de ejecución (Log), el cual escribe en un archivo de texto el resultado de la ejecución de cada Tarea, así como de cualquier error que se presente en el paquete. El nombre y ubicación del archivo Log es configurado por el usuario, así como otros parámetros del paquete. Para mayor detalle revisar el anexo "¡Error! No se encuentra el origen de la referencia."

3.4.2. Construcción del Cubo de Información

Para la construcción del Cubo de Información EEMCA_CUBE se creó el proyecto ‘BSCCube’ del tipo SQL AnalysisServices Project en Visual Studio 2005, el cual se compone de los siguientes ítems:

- **Fuente de datos (Data Source) EEMCA_RCUBE.ds:**
 Conexión a la base de datos EEMCA_RCUBE utilizando
autenticación integrada de Windows, dicha base de datos es la única fuente de datos para la generación del cubo.

- **Vista de Fuente de datos (Data Source View)**

 EEMCA_RCUBE.dsv: Vista que se encarga de definir y limitar la información de la base para crear el subconjunto de datos que alimentará el cubo EEMCA_CUBE. La vista selecciona las tablas y establece los filtros sobre ellas para obtener los datos necesarios para el cubo. Revisar anexo “¡Error! No se encuentra el origen de la referencia.” en el cual se muestra el diseño de la Vista de Fuente de datos.

- **Cubo de Información EEMCA_CUBE.cube**: Definición del Cubo de Información EEMCA_CUBE, el cual incluye las siguientes Medidas y Dimensiones:

 - Grupo de medidas: Índice Recaudación Facturación

 Medidas:
 - Cantidad de clientes
 - Monto facturado
 - Energía facturada
 - Monto recaudado en caja
o Monto total amortizado
o Monto recaudado APU (Alumbrado Público)
o Monto recaudación compensación
o Monto recaudación emisión
o Monto facturación fraude
o Monto recaudación fraude
o Monto facturación servicio directo
o Monto recaudación total
o Índice Facturación vs. Recaudación total
o Índice Gestión de Cobranzas
o Índice Gestión Pérdidas Fraude

❖ Grupo de medidas: Índice Clientes Trabajador

Medidas:

o Cantidad de trabajadores
o Índice Clientes Trabajador

❖ Grupo de medidas: Índice Pérdida Energía

Medidas:

o Energía grandes consumidores
o Energía comprada clientes regulados
o Energía total del sistema
- Facturación clientes regulados
- Pérdida de energía mensual

- Grupo de medidas: Medición de Servicio Técnico
 Medidas:
 - Índice Acumulado de Frecuencia de Interrupción
 - Índice Acumulado de Tiempo Total de Interrupción

- Grupo de medidas: Medición de Producto
 Medidas:
 - Cantidad Barras fuera de límite permitido
 - Cantidad Bajo Voltaje fuera de límite permitido
 - Cantidad Alto Voltaje fuera de límite permitido
 - Cantidad Flickers fuera de límite permitido

- Grupo de medidas: Índice Servicio Comercial
 Medidas:
 - Conexiones servicio urbano
 - Conexiones servicio rural
 - PEF (Porcentaje de errores en la facturación)
 - PRUI (Porcentaje de reclamos por interrupciones de servicio)
- PRUT (Porcentaje de reclamos por variaciones en los niveles de voltaje)
- PRUC (Porcentaje de reclamos por problemas comerciales)
- TPR (Tiempo promedio de procesamiento de reclamos comerciales)
- PRR (Porcentaje de resolución de reclamos y quejas)
- rehabilitaciones suministros urbano
- rehabilitaciones suministros rural
- respuestas consultas consumidores
- Consumidores re conectados urbano
- Consumidores re conectados rural
- Índice de satisfacción de consumidores

- Dimensión: Período Medición

Atributos:
- Año
- Mes
- Año Mes
Revisar el diagrama del modelo implementado para el cubo EEMCA_CUBE en el anexo “¡Error! No se encuentra el origen de la referencia.”.

3.4.3. Diseño y construcción de los Reportes de Gestión

Para la construcción de los reportes de gestión se creó el proyecto ‘BSCReportes’ del tipo SQL ReportingServices en Visual Studio 2005 y se desarrollaron los siguientes reportes:

- Calidad Producto-Bajo Voltaje.rdl
- Calidad Producto-Barras.rdl
- Calidad Producto-Factor Potencia.rdl
- Calidad Producto-Flicker.rdl
- Indice22-Datos.rdl
- Indice22-Reporte.rdl
- Indice23-Datos.rdl
- Indice23-Repote.rdl
- Indice24-Datos.rdl
- Indice24-Reporte.rdl
- Indice27-Datos.rdl
- Indice27-Reporte.rdl
- Servicio Comercial-Datos.rdl
Cada uno de los reportes anteriores corresponde a cada uno de los vínculos habilitados dentro de la página web publicada para acceder a los reportes de gestión, tal como se visualiza en el "Gráfico 3-6 Cuadro de Reportes Disponibles":

Índices de gestión

<table>
<thead>
<tr>
<th>Índice</th>
<th>Reporte</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pérdidas de energía</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recaudación / Facturación Neta Mes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recaudación / Facturación total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clientes por trabajador</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control de calidad

Calidad del servicio comercial	Datos
Calidad del servicio técnico - Frecuencia y Tiempo de interrupción	Datos
Calidad del producto - Nivel de voltaje - Barras	Datos
Calidad del producto - Nivel de voltaje - Usuarios Bajo Voltaje	Datos
Calidad del producto - Factor de potencia	Datos
Calidad del producto - Flicker y armónicos	Datos

Gráfico 3-6 Cuadro de Reportes Disponibles

Para la publicación de los reportes se creó dentro de SQL Server ReportingServices la carpeta ‘EEMCA_BSC’, de esta manera todos los reportes se encuentran debidamente agrupados en una sola carpeta del sitio de reportes.
3.4.4. Construcción del Cuadro de Mando Integral utilizando el diseñador de tableros de Microsoft Office

PerformancePoint Server

Para la implementación del Cuadro de Mando Integral se utilizó la aplicación “DashboardDesigner” que es parte del producto “PerformancePoint Server” y que proporciona todas las herramientas necesarias para la construcción de Indicadores, Reportes, y Cuadros de Indicadores, así como de su publicación en un servidor SharePoint Server.

Al igual que con los componentes anteriores, para la configuración del Cuadro de Mando Integral se creó un proyecto en DashboardDesigner con nombre ‘EEMCA.bsx’ que está compuesto por los siguientes ítems:

- **Fuente de datos (Data Source) EEMCA_CUBE**: Conexión al cubo de información EEMCA_CUBE utilizando autenticación integrada de Windows, el cubo es la fuente de datos de todo el cuadro de mando integral.

- **KPI (Key Performance Indicators)**: Los indicadores de cada uno de los índices de gestión del cuadro de mando integral,
cada uno de estos corresponden a una medida del cubo de información. A continuación se listan los KPIs configurados para el proyecto:

- Calidad Producto – Bajo voltaje
- Calidad Producto – Barras
- Calidad Producto – Factor Potencia
- Calidad Producto – Flicker
- Clientes por Trabajador
- Gestión Cobranzas
- Pérdida Energía
- Recaudación vs. Facturación
- Recuperación Fraude
- Servicio Comercial – Conexiones Servicio Urbano
- Servicio Comercial – Conexiones Servicio Rural
- Servicio Comercial – Satisfacción Consumidores
- Servicio Técnico – FMIK
- Servicio Técnico - TTIK

Cada KPI representa el estado actual de cada área de negocio sobre la cual la empresa desea llevar un seguimiento, y es representado a través de una cantidad numérica o porcentaje que es comparado con una meta que la empresa definió para
cada uno de ellos. La comparación del valor actual (KPI) contra el valor meta se visualiza a través de un gráfico indicador que toma el color de Rojo, Amarillo o Verde dependiendo de lo cerca o no que se encuentre de la meta el valor actual.

En el “Gráfico 3-7 Umbrales de Indicadores” se detalla por cada KPI cuál fue el valor configurado como meta, así como cuáles son los límites de rango para el cambio de color del indicador gráfico, estos límites también se denominan ‘Treshholds’. El valor de la meta, así como el de cada uno de los KPIs, es medido mensualmente.

<table>
<thead>
<tr>
<th>KPI</th>
<th>Meta</th>
<th>Treshholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Best</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst</td>
</tr>
<tr>
<td>Reduciendo es mejor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KPI</th>
<th>Meta</th>
<th>Treshholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Best</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst</td>
</tr>
<tr>
<td>Reduciendo es mejor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calidad</td>
<td>1</td>
<td>Best:</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst:</td>
</tr>
</tbody>
</table>

Reduciendo es mejor

<table>
<thead>
<tr>
<th>Calidad</th>
<th>1</th>
<th>Best:</th>
<th>-50,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Threshold 2</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
<td>10,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst:</td>
<td>120,0%</td>
</tr>
</tbody>
</table>

Reduciendo es mejor

<table>
<thead>
<tr>
<th>Clientes</th>
<th>por 400</th>
<th>Worst (High):</th>
<th>200%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajador</td>
<td></td>
<td>Threshold 5</td>
<td>110,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 4</td>
<td>105,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 3</td>
<td>100,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 2</td>
<td>95,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
<td>90,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst (Low)</td>
<td>0%</td>
</tr>
</tbody>
</table>

Cerca de la meta es mejor

<table>
<thead>
<tr>
<th>Gestión</th>
<th>90%</th>
<th>Best:</th>
<th>120,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobranzas</td>
<td></td>
<td>Threshold 2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
<td>90,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst</td>
<td>0%</td>
</tr>
</tbody>
</table>

Incrementando es mejor

<table>
<thead>
<tr>
<th>Pérdida</th>
<th>33%</th>
<th>Best:</th>
<th>-50,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía</td>
<td></td>
<td>Threshold 2</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold 1</td>
<td>10,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worst</td>
<td>120,0%</td>
</tr>
<tr>
<td>Reduciendo es mejor</td>
<td>95%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Servicio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Comisiones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Servicio Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>120,0%</td>
<td>120,0%</td>
<td></td>
</tr>
<tr>
<td>Threshold 2</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>90,0%</td>
<td>90,0%</td>
<td></td>
</tr>
<tr>
<td>Worst</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Incrementando es mejor:

<table>
<thead>
<tr>
<th>Servicio</th>
<th>95%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Comercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Satisfacción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Consumidores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>120,0%</td>
<td>120,0%</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>90,0%</td>
<td>90,0%</td>
</tr>
<tr>
<td>Worst</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Servicios</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Best</td>
<td>-100%</td>
<td>-100%</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Threshold 1</td>
<td>10,0%</td>
<td>10,0%</td>
</tr>
<tr>
<td>Worst</td>
<td>120,0%</td>
<td>120,0%</td>
</tr>
</tbody>
</table>

Reduciendo es mejor

Gráfico 3-7 Umbrales de Indicadores

Todos los Tresholds se calculan en base al porcentaje de cercanía del valor actual sobre el valor meta, y el resultado de que tan cerca o no se encuentre el indicador de la meta se puede determinar de 3 maneras:

1. Incrementando es mejor: La meta es alcanzada cuando el valor actual del KPI es igual o mayor al valor de la meta, lo cual se ilustra en el “Gráfico 3-8 Indicador "Incrementando es mejor"";
Band by Normalized Values (Increasing is Better)

The values are determined by dividing the distance of Actual from Worst by the distance of Target from Worst.

1. Target value
2. Actual value
3. Worst value
4. Distance of Target from Worst
5. Distance of Actual from Worst

\[
\text{Band by } = \frac{\text{Distance of Actual from Worst}}{\text{Distance of Target from Worst}}
\]

Band by value shown as percentage.

Gráfico 3-8 Indicador "Incrementando es mejor"

- Reduciendo es mejor: La meta es alcanzada cuando el valor actual del KPI es igual o menor al valor de la meta, lo cual se ilustra de mejor manera en el “Gráfico 3-9 Indicador "Reduciendo es mejor"”:

Band by Normalized Values (Decreasing is Better)

The values are determined by dividing the distance of Actual from Worst by the distance of Target from Worst subtracted from one.

1. Target value
2. Actual value
3. Worst value
4. Distance of Actual from Worst
5. Distance of Target from Worst

\[
\text{Band by } = 1 - \left(\frac{\text{Distance of Actual from Worst}}{\text{Distance of Target from Worst}}\right)
\]

Band by value shown as percentage.

Gráfico 3-9 Indicador "Reduciendo es mejor"
- **Scorecard:** Consolida todos los Índices de gestión (KPIs) en un solo cuadro de mando integral para la rápida visualización por parte del usuario. El Scorecard agrupa los KPIs por la dimensión “Año Mes” para los últimos 12 meses de información. Cabe recalcar que la consolidación de la información se la realiza para el inmediato mes
anterior, por lo tanto la información se presentará desde el mes anterior y sus anteriores 11 meses. En el “Gráfico 3-11 Cuadro de Indicadores” se puede apreciar cómo se visualiza el conjunto de indicadores desde la página web publicada en el servidor SharePoint de la empresa con información real hasta el mes de septiembre de 2009.

Gráfico 3-112 Cuadro de Indicadores

- **Reportes:** Además del Scorecard, como parte del Cuadro de Mando Integral se incluyeron los siguientes reportes para que el usuario tenga una vista gráfica del comportamiento de la recaudación y facturación de la empresa por cada mes. A continuación el “Gráfico 3-12 Reportes Varios Anuales” muestra el detalle:

 - Carta de Control de facturación de los últimos 12 meses.
- Carta de Control de recaudación de los últimos 12 meses.
- Carta de Control de Gestión de cobranzas (recaudación más cartera vencida) de los últimos 12 meses.

Gráfico 3-13 Reportes Varios Anuales

- **Cuadro de Mando Integral (Dashboard):** Finalmente el Dashboard se encarga de unir el Scorecard y los reportes en una sola pantalla web que es accedida por los usuarios a través del portal SharePoint de la empresa. El “Gráfico 3-13 Cuadro de Mando Integral” ilustra lo explicado:
3.45. Configuración de seguridad

La arquitectura de seguridad de la aplicación se basa en los siguientes factores:

- Autenticación de cada usuario contra el dominio de Active Directory de la empresa.
- Permisos de acceso a cada uno de los componentes de la aplicación otorgados a nivel de usuario o grupo de seguridad.
Los permisos de acceso se establecen independientemente en cada uno de los componentes de la aplicación, lo cual se detalla a continuación. Cabe recalcar que la autenticación de cada usuario en todos los casos se realiza a través de Autenticación Integrada de Windows:

- **Windows SharePoint Services:** SharePoint es el portal de intranet donde se encuentra publicado el Cuadro de Mando Integral (CMI), por lo tanto, es necesario que los funcionarios que utilizarán el cuadro sean configurados como usuarios dentro de SharePoint con los permisos necesarios para poder acceder a la sección de Documentos Compartidos del sitio web predeterminado. Esta configuración se realiza por cada usuario.

- **Microsoft Office PerformancePoint Server:** La configuración de seguridad del Cuadro de Mando Integral se la establece al momento de su diseño utilizando el DashboardDesigner y se la configura por cada uno de los siguientes componentes:
 - Dashboard
 - Scorecard
 - KPIs
- Reportes
- Fuente de datos (Data Source)

Por lo tanto, es posible llegar a un nivel de detalle de seguridad en la cual un usuario sólo posea acceso a visualizar una determinada cantidad de KPIs del Scorecard o sencillamente no se le dé acceso a este y únicamente pueda visualizar los reportes del Cuadro de Mando Integral.

En PerformancePoint se pueden otorgar permisos a nivel de usuario o grupo de usuarios. El esquema utilizado en esta solución fue a nivel de grupo de usuarios.

Por cada componente existen 2 roles de seguridad que se pueden asignar al usuario o grupo:

- Reader: Acceso de sólo lectura al componente
- Editor: Acceso de lectura y escritura, es decir, puede modificar el componente utilizando DashboardDesigner.

- Microsoft SQL Server 2005 ReportingServices: La configuración de seguridad se puede realizar a nivel de cada
reporte publicado o a nivel de la carpeta que los contiene, ya sea otorgando accesos a usuarios o grupos de usuarios. El esquema utilizado en esta solución fue a nivel de carpeta otorgando privilegios a grupos de usuario.

- **SQL Server 2005 DataBaseEngine:** Para que los usuarios de la aplicación puedan tener acceso a los reportes de gestión es necesario que posean acceso de lectura a las correspondientes tablas de la base de datos EEMCA_RECUBE, por lo tanto se otorgaron acceso de ‘Select’ sobre las tablas correspondientes a los respectivos grupos de usuario.

Al optar por una configuración de seguridad a nivel de grupos de seguridad (grupos de usuarios) se obtiene menores costos de administración y mantenimiento de la aplicación, ya que cada grupo representa un perfil de seguridad predefinido y los usuarios se agregan o quitan de él según las necesidades del negocio.

En base a lo anterior, se incorporaron los usuarios de la aplicación a 2 grupos de seguridad en Active Directory de la empresa con la siguiente configuración por cada componente de la aplicación
Grupode seguridad: **Administradores.**

Grupode seguridad que incorpora a los usuarios que darán mantenimiento a la aplicación. La “Tabla 3-6 Nivel de Acceso para grupo de usuarios “Administradores”” muestra los niveles de acceso configurados:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nivel de acceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformancePoint Server</td>
<td>Rol de ‘Editor’ en todos los componentes del Cuadro de Mando Integral.</td>
</tr>
<tr>
<td>SQL Server ReportingServices</td>
<td>Acceso de ‘Manejador de contenido’ en la carpeta de reportes ‘EEMCA_BSC’. Este acceso permite visualizar, modificar y publicar nuevos reportes en la carpeta.</td>
</tr>
<tr>
<td>SQL Server Database Engine: EEMCA_RCUBE</td>
<td>Acceso de SELECT en las siguientes tablas:</td>
</tr>
<tr>
<td></td>
<td>- Alimentador</td>
</tr>
<tr>
<td></td>
<td>- Barra</td>
</tr>
<tr>
<td></td>
<td>- Ciudad</td>
</tr>
<tr>
<td></td>
<td>- Indice_clientes_trabajador</td>
</tr>
</tbody>
</table>
Tabla 3-6 Nivel de Acceso para grupo de usuarios “Administradores”

- Indice_perdida_energia
- Indice_servicio_comercial
- Medicion_producto
- Medicion_servicio_tecnico
- Periodo_medicion
- Provincia
- Registro_carga
- Subestacion
- Transformador

- Grupo de seguridad: **Funcional.**

Grupo de seguridad que incorpora a los usuarios funcionales de la aplicación, tales como los directores de las distintas áreas de la empresa. La “Tabla 3-7 Nivel de Acceso para grupo de usuarios “Funcional”” muestra los accesos definidos:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nivel de acceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformancePoint</td>
<td>Rol de ‘Reader’ en todos los componentes del Cuadro de Mando</td>
</tr>
<tr>
<td>Server</td>
<td></td>
</tr>
<tr>
<td>SQL Server Reporting Services</td>
<td>Acceso de 'Browser' en la carpeta de reportes 'EEMCA_BSC'. Este acceso permite únicamente visualizar los reportes.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SQL Server Database Engine:</td>
<td>Acceso de SELECT en las siguientes tablas:</td>
</tr>
<tr>
<td>EEMCA_RCUBE</td>
<td>• Alimentador</td>
</tr>
<tr>
<td></td>
<td>• Barra</td>
</tr>
<tr>
<td></td>
<td>• Ciudad</td>
</tr>
<tr>
<td></td>
<td>• Indice_clientes_trabajador</td>
</tr>
<tr>
<td></td>
<td>• Indice_perdida_energia</td>
</tr>
<tr>
<td></td>
<td>• Indice_servicio_comercial</td>
</tr>
<tr>
<td></td>
<td>• Medicion_producto</td>
</tr>
<tr>
<td></td>
<td>• Medicion_servicio_tecnico</td>
</tr>
<tr>
<td></td>
<td>• Periodo_medicion</td>
</tr>
<tr>
<td></td>
<td>• Provincia</td>
</tr>
<tr>
<td></td>
<td>• Registro_carga</td>
</tr>
<tr>
<td></td>
<td>• Subestacion</td>
</tr>
<tr>
<td></td>
<td>• Transformador</td>
</tr>
</tbody>
</table>

Tabla 3-7 Nivel de Acceso para grupo de usuarios “Funcional”
CAPITULO 4
Capítulo correspondiente a la estabilización del producto final, se procedió a realizar las pruebas correspondientes a la perspectiva funcional, y la perspectiva técnica.

Dentro de las pruebas desde la perspectiva técnica, se realizó la verificación de los resultados generados por parte del producto final, es decir observar que los resultados numéricos producto del procesamiento de la información, concuerden con aquella información manejada por parte del Negocio a partir de los datos de nivel transaccional.

Dentro de las pruebas desde la perspectiva funcional, de aquí en más denominadas "Pruebas de Aceptación de Usuario" o "PAU", se realizó la verificación y validación de las especificaciones funcionales aprobadas por cada uno de los escenarios de la Empresa, en la etapa de Planeación.

Va la pena indicar que MSF v3 recomienda realizar actividades de estabilización de código, las cuales se focalizan en encontrar errores que aparecen durante el uso de la herramienta (bugs). Sin embargo, la gran mayoría de las horas dedicadas al desarrollo se invirtieron en configuración de plataformas, y no en la construcción de código para generar la funcionalidad de las especificaciones
funcionales. Por este motivo no se procedió a realizar las actividades referentes a
detección y erradicación de bugs, y este tiempo se dedicó a reforzar la validación
de las especificaciones funcionales.

Los temas desarrollados durante este capítulo son:

- Ejecutar las Pruebas de Aceptación de Usuario (PAU)
- Ejecución de Pruebas de Estabilización de Datos (Pre-Producción).

Los entregables principales de esta fase son las pruebas ejecutadas de manera
exitosa, y cuyo soporte es algún tipo de documentación por parte del usuario final
que respalde que el alcance planeado y desarrollado funciona de manera
apropiada y que están alineadas a las especificaciones aprobadas en la etapa de
Planeación del proyecto.

4.1. Actividades de Estabilización

En esta fase del proyecto el esfuerzo del equipo del proyecto se dedicó a la
elaboración de los guiones de prueba y a su posterior ejecución tanto para
pruebas de datos como para las pruebas funcionales con el usuario final.
El objetivo principal de esta fase fue “Asegurar la calidad de la solución para cumplir exitosamente con los criterios de aceptación que la certifican para su posterior puesta en producción” (Microsoft Corporation, 2002).

El “Gráfico 3-1 Fase de Desarrollo dentro del Ciclo de Vida propuesto por MSF v3”, muestra cual es la ubicación de la fase de Estabilización dentro de la metodología de Gestión de Proyectos.

Gráfico 4-1 Fase de Estabilización dentro del Ciclo de Vida propuesto por MSF v3

La ejecución de actividades e hitos se siguió según lo sugerido por MSFv3, como lo muestra el “Gráfico 3-2 Hitos de la Fase de Desarrollo”.
Dentro de los hitos ejecutados en esta fase del proyecto se encuentran los siguientes:

- **Detección y eliminación de errores (Bugs):** La gran mayoría de horas dedicadas al desarrollo en la fase de Construcción de la solución se invirtieron en configuración de plataformas y no en la construcción de código para generar la funcionalidad de las especificaciones funcionales. Por este motivo, no se procedió a realizar las actividades referentes a detección y erradicación de bugs, y este tiempo se dedicó a reforzar la validación de las especificaciones funcionales.
• **Ejecución de pruebas de aceptación de usuario:** Consiste en asegurar que el cliente, representado por los usuarios de prueba y personal del proyecto, aseguren en un ambiente de pruebas que la solución cumple con el alcance establecido y que todas sus características funcionan correctamente, lo cual certifica que la solución con respecto a cumplimiento de alcance y funcionalidades estará lista para el paso a su ambiente de producción.

• **Liberación de versiones candidatas para la puesta en producción:** Consiste en la liberación de una versión completamente funcional de la solución que puede utilizarse para iniciar los pilotos de pre-producción con un subconjunto del universo total de usuarios finales que probarán la aplicación en un ambiente real de uso diario. Debido a la naturaleza de la aplicación y al ambiente de infraestructura que se contó para el proyecto, no se consideró la realización de pilotos en pre-producción, y se realizó la certificación de la solución en el ambiente de pruebas preparado para dicho fin.

• **Certificación de la solución:** El cliente certifica que la solución cumple con el alcance establecido y con la calidad necesaria para su instalación en ambiente de producción.
4.2. Construcción de Guión de Pruebas

Previo a la realización de las prueba, se procedió a ejecutar la carga de datos para los diversos indicadores. La ventana de tiempo que se consideró para este ejercicio fue de un año, que se contabilizó desde Septiembre del 2008 a Septiembre del 2009.

Una vez realizada esta tarea se procedió a construir el guión de pruebas para la revisión del Producto Final. Los casos de prueba de este guión se originaron a partir del Documento de Especificaciones Funcionales y No Funcionales aprobado en la fase de Planeación.

Con este objetivo, la primera tarea fue construir el formato del documento. La “Tabla 4.1 Estructura de casos de prueba para especificaciones funcionales” muestra la estructura propuesta:

<table>
<thead>
<tr>
<th>No.</th>
<th>Necesidad</th>
<th>R.F.</th>
<th>Prueba</th>
<th>Resultado</th>
<th>Observaciones</th>
</tr>
</thead>
</table>

Tabla 4-1 Estructura de casos de prueba para especificaciones funcionales

Cada fila del guión consta con un código secuencial (campo “No.”) con el cual se identifica cada caso de prueba, y para cada uno de ellos se corresponde una actividad de prueba (campo “Prueba”). La segunda y tercera columna
(campos “Necesidad” y “R.F.”), tiene como objetivo relacionar la actividad de prueba, con aquellas referencias de Necesidad y Requerimiento Funcional, que constan en el entregable aprobado durante la Planeación para así mantener la trazabilidad de cada requerimiento en el proyecto. Con las necesidades referenciadas a las actividades de prueba, se registran los resultados en la columna “Resultado”, la cual solo puede tener dos valores posibles: “Correcto” o “Incorrecto”. Cuando el resultado es “Incorrecto”, se procede a realizar el seguimiento a la observación. Si el resultado es “Correcto” se considera que el procedimiento de prueba:

- Se ha realizado de manera exitosa.

- Se considera explicado al usuario final y dominado por parte del mismo.

- En su naturaleza y extensión cubre la necesidad y el requerimiento funcional al cual se relaciona.

- En caso de existir alguna observación, esta no afecta el alcance del requerimiento y se considera como una recomendación o sugerencia.

Una vez conceptualizada la estructura del Guión de Pruebas, se prosiguió con la generación de las actividades de prueba propiamente dichas. En este punto
divergen dos tipos de prueba de validación y verificación, en primer lugar aquellas referentes a datos, y en segundo lugar aquellas referentes a especificaciones funcionales.

4.3. Guión de Pruebas de Datos

El enfoque seleccionado para las Pruebas de Datos fue la de comparación de resultados generados en forma paralela, es decir, realizar los cálculos en los aplicativos de la Organización, y compararlos con aquellos resultados generados por parte de la Solución o Producto Final.

Es necesario indicar que no todos los requerimientos aprobados en la fase de Planeación corresponden a un procesamiento de información para la obtención de un resultado final. Existen algunos requerimientos funcionales cuyo objetivo era generar listados de manera automática, este es el caso de los indicadores de Servicio Técnico, Recursos Humanos y Servicio Comercial para los cuales no existen aplicativos informáticos que soporten la operación de estos procesos, y en su defecto soportan su operación en archivos de Excel. Los principales entregables de estos indicadores son reportes que se generaban anteriormente en Excel y los cuales ahora la Solución generará de manera automática. Esta observación es importante acotarla, ya que soporta los
procedimientos de validación y verificación de los indicadores expuestos más adelante en esta sección.

Como contraparte del Negocio para la ejecución de la prueba, se delegó por parte del Director de Sistemas a la Ing. Marlene Heredia, quien desempeña el rol de Administradora de la Base de Datos del Sistema Administrativo Financiero Zeus. En reunión con este Funcionario se presentó el Guión de Pruebas de Datos, y se ejecutaron los procedimientos establecidos en paralelo. Por una parte se accedió a la Solución, la cual poseía datos cargados previamente, y se compararon los resultados generados con las consultas a la base de datos realizadas por parte del Funcionario. La verificación y validación de datos para los indicadores soportados en hojas de cálculo Excel, se realizó mediante a la observación de la información establecida en estos archivos, en comparación con lo generado por el Producto Final. El detalle del Guión de las Pruebas de Datos se encuentra en el anexo "¡Error! No se encuentra el origen de la referencia."

El resultado global de las pruebas realizadas arrojó un saldo positivo, ya que las observaciones generadas en este proceso correspondieron solamente a esquemas adicionales de cálculo a nivel de aplicaciones que no se informaron durante la fase de planeación, sin embargo las mismas no representaron un riesgo significativo para el proyecto, ya que no impactaron sobre la alineación
de los alcances fabricados en la Solución respecto a las especificaciones aprobadas.

El Director de Informática envió la confirmación escrita de la ejecución de Prueba de Datos, y la obtención del resultado mencionado. El detalle de este recurso se encuentra en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.

Lo descrito anteriormente soporta la definición de resultado “Satisfactorio” para la Prueba de Datos de la Solución.

4.4. Guión de Pruebas de Usuarios

Una vez realizada la Prueba de Datos, la cual aseguró que el proceso de carga, cálculo y presentación de información se realizara de manera apropiada por parte de la Solución, se procedió a diseñar el guión de pruebas correspondiente a la perspectiva funcional, validada por los usuarios finales.

El enfoque del formato de la prueba se definió según la sección “Construcción de Guión de Pruebas”, con la particularidad de que cada procedimiento de prueba se lo detalló a un nivel de granularidad de instructivo, es decir, que
esta prueba incluyen los criterios correspondientes a las acciones requeridas para ejecutar la acción desde el acceso a la opción hasta los criterios para obtener el resultado deseado, de acuerdo a lo definido en la especificación funcional.

Cabe indicar que la modalidad propuesta tiene como objetivo cubrir la segunda premisa indicada en sección 4.2 de este capítulo, la que propone que una vez ejecutada una prueba correctamente “Se considera explicada al usuario final y dominado por parte del mismo”. Esta propuesta metodológica es perfectamente viable debido a que la naturaleza de la herramienta es netamente de generación de reporte, y tiene un grado ínfimo de ingreso de datos. Por otro lado los comportamientos de la solución responden a especificaciones funcionales que fueron definidas por los mismos usuarios finales. Por lo expuesto, la ejecución de estas acciones por parte del usuario también sirvió como método de capacitación en la herramienta, con lo cual esta prueba sirvió para invertir tiempo necesario y suficiente en este rubro.

Una vez definido el alcance y el contexto del documento de Guión de Pruebas de Usuarios, se procedió a construir el contenido del guión. El detalle de este documento se encuentra en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.
Acorde a lo descrito en la versión aprobada del documento de Visión y Alcance, el rol que intervendrá en la verificación y validación de los requerimientos funcionales, es la del Auditor Interno de la Empresa, cuyas funciones recaen en el Ec. Ramón Mieles.

Se coordinó una reunión con el funcionario mencionado, y se procedió a ejecutar uno a uno cada procedimiento establecido. El resultado global de las pruebas fue satisfactorio, ya que la totalidad de la funcionalidad construida correspondía en objetivo y alcance a lo aprobado en la fase de Planeación. Se generaron observaciones mínimas cuya naturaleza recae en la apariencia del producto final.

El Auditor Interno envió la confirmación escrita de la ejecución de Prueba de Usuario y la obtención del resultado mencionado. El detalle de este recurso se encuentra en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.

Lo descrito anteriormente soporta la definición de resultado “Satisfactorio” para la Prueba de Usuario de la Solución.
4.5. Certificación de la Solución

En base a los resultados exitosos de las pruebas tanto de validación de datos como con los usuarios y de la entrega de la documentación necesaria para que la operación de la aplicación quede en total control de la dirección de informática de CNEL, el Ing. Galo Valverde, Director de Informática, dio su aceptación formal a la certificación que determina que la solución cumple correctamente con todos los requerimientos y necesidades planteadas al inicio del proyecto y definidas durante la etapa de Planificación. El detalle de esta aprobación se encuentra en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.

El paso siguiente en la ejecución del proyecto es la implantación de la solución, y en este punto se ratificó el 18 de Diciembre como fecha oficial para la puesta en producción del Cuadro de mando Integral y los Reportes de Gestión en la intranet de CNEL Milagro.
CAPITULO 5
5. Implantación

En el capítulo referente a la Implantación de la Solución se realizó la acreditación, puesta en producción y el cierre del proyecto.

Durante la acreditación del producto final se elaboró el correspondiente Manual de Instalación y Operación de la aplicación y se realizaron visitas de capacitación para el personal administrativo de la Solución, con la finalidad de traspasar el conocimiento hacia los funcionarios del área de Sistemas.

Una vez realizada la capacitación, el área de Sistemas procedió a ejecutar la puesta en producción de la solución, motivo por el cual se cargó la información necesaria a fin de poseer los recursos informáticos necesarios para la generación de los reportes.

Posteriormente, con el producto final funcionando de acuerdo a lo establecido en ambiente de producción, se procedió a realizar el cierre del proyecto, el cual consistió en obtener la aceptación final de la solución por parte del Director de Informática.

A grandes rasgos, las actividades desarrolladas durante la Implantación fueron las siguientes:
- Capacitación Técnica y Administrativa de la Solución.
- Elaboración de manual de Instalación y Operación de la Solución.
- Puesta en producción de la Solución.
- Acreditación de la Solución.
- Cierre del proyecto.

El entregable principal de esta fase del proyecto fue el producto final, lo que incluyó el código fuente, la publicación, las actas de traspaso de la operación al Área de Sistemas, sesiones de capacitación y aceptación final de la solución.

5.1. Actividades de Implantación

Durante la fase de Implantación, los esfuerzos fueron enfocados en realizar la entrega de la Solución y su respectiva aceptación por parte del cliente.

El objetivo principal de esta fase fue “Instalar en ambiente de producción la solución del proyecto” (Microsoft Corporation, 2002).

El “Gráfico 5-1 Fase de Implantación dentro del Ciclo de Vida propuesto por MSF v3”, muestra cual es la ubicación de la fase de Implantación dentro de la metodología de Gestión de Proyectos.
Gráfico 5-1 Fase de Implantación dentro del Ciclo de Vida propuesto por MSF v3

La ejecución de actividades e hitos se siguió según lo sugerido por MSFv3, como lo muestra el "Gráfico 5-2 Hitos de la Fase de Implantación".
Dentro de los hitos ejecutados en esta fase del proyecto se encuentran los siguientes:

- **Implantar el servidor de la Solución**: Este hito no se le ejecutó en esta fase del proyecto, debido a que por temas externos al proyecto, no se contó con un ambiente de desarrollo segregado del de pruebas y producción. Como consecuencia, el ambiente de desarrollo fue evolucionando junto con el proyecto, hacia ambientes de prueba, y en este punto, al ambiente de producción.

- **Completar la implantación de la Solución**: En este hito se realizó la transferencia de la administración y operación de la solución a la Dirección de Informática, lo cual incluyó la capacitación técnico-
operativa, la entrega de la documentación del proyecto y código fuente.

- **Concluir la implantación de la Solución**: Este hito correspondió a la aceptación final (acreditación) de la Solución en ambiente de producción por parte del cliente, representado por el Director de Informática de CNEL Milagro, con lo cual se concluyó con las actividades del proyecto, y se dio paso a la elaboración del cierre administrativo del mismo, lo que involucra la elaboración de las conclusiones y recomendaciones, que se cubre en detalle en el Capítulo 6 de este documento.

5.2. Capacitación Técnica y Administrativa de la Solución

Como parte de la entrega formal de la solución al área de Informática de CNEL Milagro y como requerimiento previo para la puesta en producción de la aplicación, se procedió a dictar la correspondiente capacitación técnica en los temas administrativos y operativos de la aplicación a uno de los Ingenieros del área de Informática con el objetivo de que dicha área obtenga el conocimiento suficiente para lograr una independencia del equipo de proyecto en lo que respecta a la administración y manejo de la solución.
Además, previo a la ejecución de la capacitación, se elaboró el correspondiente manual de instalación y operación de la solución para cumplir con los lineamientos de documentación propuestos por MSF y que el mismo se convierta en el documento principal de consulta acerca de cualquier inquietud que se llegara a presentar con respecto a la administración de la aplicación. Dicho documento comprende a grandes rasgos los siguientes capítulos:

- **Instalación de la aplicación**: Capítulo que detalla todos los requerimientos tanto de Hardware como de Software de la solución, así como todos los pasos necesarios para su exitosa instalación en cualquier infraestructura de servidores que cumpla con los requisitos establecidos.

- **Operación del sistema**: Capítulo que detalla la arquitectura conceptual de la solución y la infraestructura de servidores sobre la cual se ejecuta en producción. Además, documenta los procesos administrativos y de configuración para su correcta operación y mantenimiento. Para mayor información consulte el documento “Instalacion y Operacion_PRY_Medidores desempeño CNEL V1.0.docx” en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.
La capacitación técnica fue impartida a la Ing. Roxana Albuja del área de Informática y junto a ella se revisaron los siguientes temas:

- Revisión de infraestructura de servidores.
- Entendimiento de la arquitectura conceptual de la solución.
- Ejecución de tareas operativas y administrativas como manejo de usuarios, ejecución manual y automática de la carga de datos, monitoreo de la aplicación.
- Configuración de la aplicación.
- Preparación de los archivos Excel para la carga mensual de datos.
- Procesos de respaldo.

El Director de Informática confirmó su aceptación y aprobación de la transferencia de conocimiento al personal de su área en base a la capacitación recibida. El detalle de esta aprobación se encuentra en el anexo “¡Error! No se encuentra el origen de la referencia.” de este documento.

5.3. Puesta en producción de la Solución

Habiendo cumplido con el requerimiento de traspasar el conocimiento técnico de la solución al área de Informática de CNEL Milagro, se procedió a
configurar la aplicación para su ejecución en ambiente de producción y a efectuar la carga de datos inicial. Con respecto a la habilitación de la aplicación para los usuarios, se procedió a crear un vínculo HTML a la aplicación dentro del sitio Web de la compañía, vínculo que sólo está disponible desde la Intranet.

Como parte de la configuración para la puesta en producción se procedió a ejecutar los siguientes puntos:

- Crear en el servidor de producción la base de datos relacional y el cubo de información de la aplicación.

- Instalar y configurar el paquete SQL Server IntegrationServices de carga de datos ‘CargaBSC’ en el servidor de producción para que se execute el día 16 de cada mes.

- Configurar los nombres y ubicaciones de las carpetas y archivos para la carga de datos.

- Configurar el nombre y ubicación del archivo log de la carga de datos.

- Verificación de las cadenas de conexión a las distintas bases de datos de los otros sistemas de la compañía.
- Publicar en el sitio web intranet SharePoint el Cuadro de Mando Integral y los Reportes de Gestión.

- Configurar los correspondientes grupos de seguridad en la solución y crear dentro de ella a cada uno de los usuarios que la utilizarán.

Como parte de la carga de datos inicial se procedió a subir al sistema información desde Octubre del 2008 hasta Octubre del 2009. La carga de información de los meses de Noviembre y Diciembre sería efectuada directamente por el área de informática de la compañía.

5.4. Acreditación de la Solución

Luego de la puesta en producción de la aplicación, se verificó junto al Director de Informática de la compañía el correcto funcionamiento de la aplicación en la intranet de CNEL Milagro, con lo cual, y en base a las actividades descritas en las secciones anteriores de este documento, se acreditó la satisfactoria puesta en producción de la solución.

5.5. Cierre del proyecto

A esta altura del proyecto los siguientes son los hitos que se han obtenido:
• Visión y alcance establecido y comprendido por todo el equipo del proyecto.
• Requerimientos funcionales y no funcionales definidos.
• Diseño técnico y funcional de la solución.
• Cronograma definitivo del proyecto.
• Piloto de la solución puesto a prueba por el usuario.
• Construcción finalizada.
• Pruebas técnicas y de usuario que certificaron la correcta construcción de la solución.
• Puesta en producción de la solución.

En base a lo anterior y con aceptación del cliente CNEL Milagro, representado por el Ing. Galo Valverde, Director de Informática, se procedió a cerrar formalmente el proyecto con la satisfacción tanto del cliente como del equipo del proyecto acerca del trabajo realizado.
CONCLUSIONES Y RECOMENDACIONES
Conclusiones y Recomendaciones

Una vez realizado el cierre del proyecto, se procedió a realizar este capítulo dedicado a las conclusiones, recomendaciones y nuevas oportunidades.

Las conclusiones del proyecto se han generado a partir de su alineamiento con los objetivos definidos en la fase de Envisionamiento, y se soportan con argumentos metodológicos construidos a lo largo de este documento.

Según las conclusiones generadas, se dio paso a retomar la hipótesis planteadas en capítulos anteriores, y se evaluó conforme a las indagaciones, observaciones y selección de evidencia realizadas.

Con el mismo criterio, se incluyeron recomendaciones y oportunidades para proyectos futuros, ya que la ejecución de este proyecto abre un abanico de iniciativas que pueden ser explotadas por la CNEL a nivel nacional, y cuyos efectos positivos de mejorar la eficiencia del Negocio repercutirán en última instancia en la Sociedad.
Conclusiones

1. La solución es un elemento importante en el apoyo de toma de decisiones para niveles jerárquicos medios y altos, ya que es capaz de presentar en una sola pantalla y de manera sencilla la información consolidada e histórica de cada uno de los indicadores seleccionados por la empresa como parte de su enfoque estratégico, permitiendo conocer rápidamente cuál es su estado actual y, de ser necesario, tomar las medidas oportunas para tomar cualquier correctivo en su gestión.

2. La solución apoya la mitigación de riesgos en el cumplimiento de los plazos para la generación de los reportes a los entes regulatorios, ya que automatiza la obtención y cálculo de muchos de ellos y formaliza los demás, proporcionando datos mucho más precisos que a través de su generación manual.

3. La solución permite la gestión de futuros objetivos y planes estratégicos, porque desde un punto de vista organizacional, existe la flexibilidad de soportar la creación de nuevas perspectivas de negocio, nuevos esquemas de medición, y nuevos formatos de reporte, ya que la plataforma utilizada es orientada a la presentación de datos consolidados en ambiente gráfico de manera colaborativa.
Se observó que la solución logró la optimización de gestión para la Alta Dirección ya que abrió la oportunidad de automatizar la consolidación de datos totalmente heterogéneos, tanto en su naturaleza organizacional como en la tecnológica; y que en el pasado no se realizaba de manera oportuna, transparente y exacta.

La utilización de una plataforma web para la publicación de los datos permitió incluir el cuadro de mando integral dentro del sitio intranet de la empresa, habilitando su acceso a todos los usuarios de la empresa, y no sólo a los mandos medios y altos, lo cual permite que cualquier empleado pueda conocer no sólo el estado actual en la gestión, sino como se ha comportado durante el último año, permitiendo de esta manera masificar el enfoque estratégico deseado por la alta directiva en toda su organización.

La utilización de una plataforma tecnológica ya conocida por los usuarios impactó de manera positiva el esquema de usabilidad, ya que se sirvió de metáforas y esquemas mentales utilizados en el sistema operativo y los utilitarios que se operaban hacía muchos años atrás, por lo cual la línea de aprendizaje tendió a ser casi plana.

Desde el punto de vista tecnológico, la selección de herramientas de desarrollo y plataformas tecnológicas de un mismo fabricante permitió obtener menores
tiempos de construcción e integración nativa entre cada uno de los componentes, lo cual permitió reducir de manera considerable los tiempos de pruebas de integración y mejorar la calidad del producto final.

Y como punto final, y no por eso menos importante a los anteriores, la utilización de la metodología MSF produjo los siguientes beneficios en la ejecución del proyecto:

- Permitió establecer un esquema de ejecución de proyecto ordenado, con fases definidas e hitos verificables que permitieron evaluar de una manera más precisa y objetiva el estado actual del proyecto en cualquier punto de su ciclo de vida y obtener una estimación más acertada de las acciones y tareas a realizar para la completar los alcances definidos en la visión del proyecto.

- La repartición de funciones y responsabilidades definidas por cada integrante del equipo de trabajo sin perder la visibilidad y responsabilidad total de todo el proyecto como tal.

- La acotación de las funcionalidades y expectativas de la solución en la etapa de visión y alcance, así como el levantamiento de información a detalle en la etapa de Planificación y las correspondientes revisiones y aprobaciones escritas por parte del cliente (la empresa CNEIL Milagro)
permitieron reducir considerablemente los riesgos del proyecto en las fases posteriores durante la ejecución del ciclo de vida del proyecto.

Recomendaciones y Oportunidades para Proyectos Futuros

Durante el ciclo de vida del proyecto se identificaron recomendaciones y oportunidades de nuevas iniciativas, las cuales los tesistas, basados en su criterio profesional, creyeron necesario agregarlas como un valioso aporte a este documento.

1. En primer lugar, este proyecto abre las puertas para la implementación de aplicaciones para aquellas áreas que no poseen herramientas automatizadas para su operación diaria, ya que los resultados presentados en el entregable de este proyecto proporcionan un punto de comparación para evaluar la razonabilidad de los resultados que eventualmente generarán las nuevas aplicaciones.

2. Otra oportunidad de mejora es que se podrán justificar las futuras inversiones de TI para soportar la operación del negocio, ya que estas necesidades se verán reflejadas en los valores de los indicadores de gestión. De la misma manera, se podrán enfocar los recursos actuales para el mejoramiento de la infraestructura existente de acuerdo a la prioridad reflejada en los indicadores.
3. Oportunidad para enfocar los medidores de desempeño de la empresa a objetivos no tangibles como el de personas y clientes, pues la ejecución de este proyecto permite a la alta dirección tomar experiencia en la utilización de una metodología de gestión orientada a la evaluación de desempeño alineado al plan estratégico, por lo que posteriormente se puede extender este concepto a índices no tangibles que pueden mejorar el desempeño tanto interno como a percepción de los clientes de la empresa, para esto se deberían desarrollar métodos para recolectar este tipo de información de manera fiable dentro y fuera de la empresa.

4. Como resultado de la medición de objetivos de negocio, la CNEL estará en posibilidad de apalancar su gestión de tecnología en marcos referenciales de objetivos de control, como lo es COBIT. A medida de que esta práctica vaya madurando a nivel organizacional, será mucho más alta la probabilidad de introducir el concepto de Gobierno Corporativo.
