ESCUELA SUPERIOR POLITECNICA DEL LITORAL
PROGRAMACION ORIENTADA A OBJETOS
EXAMEN TERCERA EVALUACION - 2025 - 2T

NOMBRE: PARALELO:
TEMA 1. Seleccione la respuesta correcta. (18 puntos)

Se tiene un sistema que maneja el pago para los empleados de una empresa con el diagrama de clases:

i\

«interface» .
Pagable <J---- Empleado Nomina

LT

EmpleadoTiempoCompleto EmpleadoPorHoras

El cédigo ya existe y funciona, pero tiene decisiones de disefio que se analizan.
1. El método calcularSalario() esta sobrescrito en las clases hijas. Si se invoca asi:

Empleado e= new EmpleadoPorHoras();
e. calcularSalario()

¢, Qué version del método se ejecuta?

A. La version definida en Empleado

B. La version correspondiente al tipo real del objeto

C. La version que se ejecuta primero en memoria

D. Ninguna, porque el método es abstracto en Empleado.

2. Si se modifica la definicién del método calcularSalario() en la clase Empleado y el método es declarado como
static ¢ Cual es la principal consecuencia de esta decision?

A. Mejora el rendimiento del programa
B. Se pierde el polimorfismo

C. Se evita la herencia

D. Se mejora la encapsulacién

3. La clase Empleado incluye implementacion especifica para el método calcularPagoPorHoras(). Desde el punto
de vista de POO, esto implica que:

A. La abstraccién es correcta

B. Se viola el principio de abstraccion
C. Se mejora la reutilizacién

D. No tiene ningun impacto

4. Algunos atributos de Empleado son publicos. Seleccione todas las consecuencias de esta decision.

O Se pierde control sobre el estado del objeto
[0 Se rompe la encapsulacion

[0 El cédigo deja de compilar

O Se dificulta el mantenimiento futuro

5. Usar herencia e interfaces al mismo tiempo siempre es una mala practica. Verdadero Falso

6. Si un método no esta sobrescrito, no puede existir polimorfismo. Verdadero Falso

TEMA 2. El siguiente cédigo contiene 4 errores de compilaciéon. Para cada error indique la linea, clase y
explique el motivo. (12 puntos)

1 package com.example; class Revista extends Material {

2 public Revista(String titulo) {

3 interface Prestamo { super(titulo);

4 int diasMaximos(); }

5

6 default boolean esUrgente() { @Override

7 return diasMaximos() <= 3; public int diasMaximos() {

8 } return 2;

9 }

10 static String politicaGeneral() {

11 return "Renovacion permitida una vez."; boolean esUrgente(String valor) {

12 } return valor.equals("Si");

13} }

14

15 abstract class Material implements Prestamo { @~Override

16 protected String titulo; public static String politicaGeneral() {
17 return "Politica especial de revista.";
18 public Material(String titulo) { }

19 this.titulo = titulo; }

20 }

21 public class Main {

22 public void mostrarFicha() { public static void main(String[] args) {
23 System.out.printin(titulo + " | urgente=" +

esUrgente()); Prestamo p = new Revista("Ciencia Hoy");
24 '}

25} System.out.printin(p.esUrgente("Si"));
26

27 class Libro extends Material { System.out.printin(Prestamo.politicaGeneral());
28 public Libro(String titulo) { }

29 super(titulo); }

30 }

31

32 @Override

33 public int diasMaximos(int extra) {

34 return 7;

35 }

36

37 protected boolean esUrgente() {

38 return false;

39 }

40}

TEMA 3. DESARROLLO

Se requiere implementar un juego de consola en el que el jugador interactua con 5 cofres numerados (1 a 5). Cada
cofre contiene un premio generado aleatoriamente al inicio del juego. Los premios pueden ser simples (valor directo)
y premios compuestos (valor base + coleccion de artefactos secundarios). El jugador acumula puntaje al abrir cofres,
y al finalizar debe mostrar su ganancia total.

Se le proporciona el siguiente diagrama de clases:

Premio <abstract=

Cofre Juego
- premio: Premio

- valorBase: double - jugador: String
- descripcion: String

- abierto: boolean - premioTotal: double

+ Premio(v: double, d:String) + Cofre(p: Premio) - cobres: Cofre[1..%]

+ toString() - String

+ obtenerPremio() : Premio + Juego(j:String)
* obtenerValorTotal(): double + estaAbierio(): boolean + inicializarCofres(). void
I/ getters + abrirCofre(posicion: int): void
PremioSimple PremioCompuesto Artefacto
- color: String - objetosSecundarios: Artefacto[1.*] - nombre: String
. . - valor: double
+ PremioSimple(v: double, d:String + PremioCompuesto(v: double, d:String)
c: String) + toString() : String rareza: String
+toString() : String + obtenerValorTotal(): double + Artefacto(n:String, v: double,
+ obtenerValorTotal(): double r. String)
+ agregarObjeto(a: Artefacto).void) o
+ getColor() : String + getObjetosSecundarios(): Artefacto[1..”] + tostring() - String
I/l getiers

De acuerdo al diagrama implementar lo solicitado a continuacion:

1. Clase Premio. Esta clase esta parcialmente implementada. Complete lo siguiente en esta clase:
O Definicién de la clase.
O Método abstracto obtenerValorTotal().
O Los demas miembros de la clase ya estan implementados y los puede utilizar:
O Atributos privados valorBase y descripcion.
O Constructor para inicializar variables de instancia.
O Getters para sus atributos.
O método toString que retorna:

Descripcion [descripcion] | Valor base: [valorBase]

2. Clase PremioSimple (NO IMPLEMENTAR)
O Atributo color
Constructor para inicializar las variables de instancia
Getter para color
obtenerValorTotal() retorna unicamente el valor de la variable valorBase.

Método toString() que retorna (implementa reutilizacion de cédigo):
Premio Simple: Descripcién [descripcion] | Valor base: [valorBase] | Color: [color]

O O O O

3. Clase PremioCompuesto (Implementar esta clase completamente)
O Atributo: Lista privada objetosSecundarios de tipo ArrayList<Artefacto>.
Constructor que recibe valorBase, descripcion e inicializa la lista de artefactos.
Getter para la lista objetosSecundarios.
método obtenerValorTotal() que retorna valorBase + la suma de los valores de los artefactos.

Método agregarObjeto(a: Artefacto) que recibe un objeto de tipo Artefacto para agregar a la lista
objetosSecundarios.

O Meétodo toString() que retorna (implementar reutilizacién de cédigo):

o O O O

Premio Compuesto: Descripcién [descripcion] | Valor base: [valorBase] | Contiene [N] artefactos

4. Clase Artefacto (NO IMPLEMENTAR)
O Atributos privados nombre, valor, rareza.
O Constructor y getters.
O toString que devuelve: [nombre] ([rarezal): [valor] Ejemplo:

Varita Magica (Epico): 60.0

5. Clase Cofre (NO IMPLEMENTAR)
O Variable de instancia de tipo Premio.
O Constructor para inicializar la variable de instancia.

O obtenerPremio(), cambia la variable abierto a true y retorna la referencia al Premio almacenado en
ese cofre.

O estaAbierto() retorna true si el cofre ya esta abierto (valor de variable abierto).

6. Clase Juego
Esta clase esta parcialmente implementada. Desarrolle so6lo los métodos abrirCofree y main.

Asuma que el constructor de la clase ya esta implementado y asigna el contenido a la variable jugador. No escriba
este método, sdlo utilicelo.

El método inicializarCofres() también esta implementado y llena la lista de cofres generando aleatoriamente 5
premios (mezcla de PremioSimple y PremioCompuesto). No escriba este método, solo utilicelo.

Los getters de las variables de instancias también estan implementados y disponibles para ser utilizados.
El método mostrarPremioTotal() también esta implementado e imprime el premio acumulado con formato:

PREMIO TOTAL ACUMULADO: [premioTotal] monedas.
Implemente los siguientes métodos:

- abrirCofre(posicion: int)
- Obtiene el premio del cofre que se encuentra en la posicidn recibida en el parametro.
- Muestra la informacion del premio contenido. No olvide el uso de toString().
- Acumula el valor total del premio en premioTotal.
- Si el premio es PremioCompuesto, realiza casting explicito para:
- Acceder a la lista de artefactos.
- Imprimir el detalle de los artefactos que contiene junto con el valor total del premio de ese
cofre.

- [nombre1] ([rareza1]): [valor1]

- [nombre2] ([rarezaZ2)): [valor2]

Valor total del premio: [valorTotal]

Método main en la clase Juego
Solicitar el nombre del jugador
Crear la instancia de Juego
Llame al método inicializarCofres()
Mientras el premioTotal no haya superado las 300 monedas
o Mostrar los cofres numerados (los que no han sido abiertos).
o Solicitar al usuario el numero de cofre. Asuma que el usuario va a ingresar un nimero valido.
o Abrir el cofre de acuerdo con la opcidn del usuario (usando el método ya implementado)
o Mostrar el premio total acumulado (usando el método ya existente)
Mostrar el mensaje “No puede abrir mas cofres.” cuando haya acumulado, al menos, 300 monedas.
Escribir en el archivo resultados.txt el nombre del jugador, total de cofres abiertos y total de premio

acumulado con el siguiente formato:

Pedro,3,325.5

Ejemplo de ejecucion:

iBienvenido a Cofres del Destino!
Ingrese nombre de jugador: Gladys
Cofres disponibles: [1] [2] [3] [4] [5]
Elige un cofre para abrir (1-5): 3

Premio Compuesto: Cofre Ancestral | Valor base: 75.0 | Contiene 3 artefactos:
- Amuleto de Fuego (Raro): 22.5
- Capa de Sombras (Epico): 45.0
- Daga Afilada (Comun): 8.0
Valor total del premio: 150.5
PREMIO TOTAL ACUMULADO: 150.5 monedas

Cofres disponibles: [1][2] [4] [5]
Elige un cofre para abrir (1-5): 1

Premio Simple: Bolsa de Monedas | Color: Dorado | Valor: 30.0
PREMIO TOTAL ACUMULADO: 180.5 monedas

Cofres disponibles: [2] [4] [5]
Elige un cofre para abrir (1-5): 5

Premio Compuesto: Cofre Encantado | Valor base: 50.0 | Contiene 2 artefactos:
- Varita Magica (Epico): 60.0
- Escudo Runico (Raro): 35.0
Valor total del premio: 145.0

PREMIO TOTAL ACUMULADO: 325.5 monedas

No puede abrir mas cofres.

