

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Año: 2018-2019	Período: Segundo Término
Materia: Cálculo de Varias Variables	Profesores: Geovanny Argüello, Nelson Córdova, David
	De Santis, Rosa Díaz, Jorge Medina, Alex Moreno, Heydi
	Roa, Pedro Ramos, Luz Rodríguez, Soraya Solís, Xavier
	Toledo, José Vera.
Evaluación: Tercera	Fecha: 11 de febrero de 2019

COMPROMISO DE HONOR		
Al firmar este compromiso, reconozco que el presente examen está diseñado para ser resuelto de manera individual, que no puedo usar calculadora ni equipos electrónicos, que sólo puedo usar un lápiz o esferográfico; que sólo puedo comunicarme con la persona responsable de la recepción del examen; y, cualquier instrumento de comunicación que hubiere traído, debo apagarlo y depositarlo en la parte anterior del aula, junto con algún otro material que se encuentre acompañándolo. No debo además, consultar libros, notas, ni apuntes adicionales a las que se entreguen en esta evaluación. Los temas debo desarrollarlos de manera ordenada. Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.		
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni copiar".		
Firma: NÚMERO DE MATRÍCULA: PARALELO:		

1. (20 p.) Considere la función
$$f(x,y)=\left\{\begin{array}{ll} \frac{x^2+y^2}{x} & ; x\neq 0 \\ 0 & ; x=0 \end{array}\right.$$

- a) Determine si f es continua en (0,0).
 - Plantea criterio de continuidad......2 p.
 - Justifica que el límite no existe en (0,0)......4 p.
- b) Calcule $\frac{\partial f}{\partial x}(0,0)$ y $\frac{\partial f}{\partial y}(0,0)$.
 - Escribe definición de límite de la derivada parcial en el punto (0,0) (1 p. c/u).....2 p.
 - Calcula correctamente el límite y especifica valor (3 p. c/u).......6 p.
- c) Justifique si f es diferenciable en (0,0).
 Justifica por el hecho que f no es continua o justifica calculando el límite de diferenciabilidad y muestra que no es cero...........4 p.

Nota: Si sólo plantea definición de diferenciabilidad se asigna 1 punto

a) Los puntos de S donde el plano tangente es paralelo al plano $x+2y-2z=0$.		
\blacksquare Plantea vector gradiente de $S2$ p.		
■ Plantea ecuación de paralelismo entre vectores2 p.		
Resuelve sistema de ecuaciones4 p.		
■ Esecifica puntos (1 p. c/u) 2 p.		
b) La distancia del origen de coordenadas a uno de los planos tangentes a S obtenidos en a)		
■ Calcula ecuación general de uno de los planos4 p.		
■ Plantea distancia de un punto a un plano2 p.		
Reemplaza datos y calcula la distancia correcta4 p.		
\blacksquare Plantea función f de dos variables2 p.		
■ Especifica punto $(x_0, y_0) = (0, 1) \dots 1$ p.		
■ Plantea fórmula de Taylor de 2do orden2 p.		
■ Plantea fórmula de Taylor de 2do orden2 p.		
 Plantea fórmula de Taylor de 2do orden2 p. Calcula f(0,1)1 p. 		
\blacksquare Calcula $f(0,1)1$ p.		
■ Calcula $f(0,1)$		
■ Calcula $f(0,1)$		

4.	(20 p.) Considere el sólido Q acotado por los planos coordenados, los planos $Au + x = 20$: $Au + x = 40$, $x = 5$: $x = 20$
	4y + z = 20; $4y + z = 40$, $x = 5$; $z = 20$.
	a) Realice un bosquejo gráfico de Q .
	■ Dibuja los cuatro planos dados (1 p. c/u)4 p.
	\bullet Acota región y especifica sólido $Q2$ p.
b) Evalúe la integral de la función $f(x,y,z)=x+y+z$ en Q , emple orden $dy\ dz\ dx$.	
	■ Plantea límites de la integral triple en el orden dado (2 p. c/u)6 p.
	\blacksquare Resuelve integral en $y2$ p.
	\blacksquare Resuelve integral en z 2 p.
	\blacksquare Resuelve integral en x y especifica respuesta4 p.
5. (20 p.) Sea C la curva intersección entre las superficies $x^2+4y^2=1; z=x^2+z$ orientada positivamente. Evalúe $\int_C (y-z)dx + (z-x)dy + (x-y)dz$ emplean el Teorema de Stokes.	
	■ Grafica superficies2 p.
	■ Selecciona superficie adecuada para Stokes2 p.
	\blacksquare Identifica proyección R de la superficie en un plano adecuado2 p.
	■ Calcula rotacional del campo2 p.
■ Calcula diferencial de flujo2 p.	
\blacksquare Plantea límites de R en la integral doble4 p.	
	■ Calcula integral y especifica respuesta correcta