

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2016	PERIODO:	PRIMER TÈRMINO
MATERIA:	Cálculo Integral	PROFESORES:	R. Díaz, J. Castro, N. Córdova, M. Pastuizaca, D. Pinzón, M. Ramos, S. Solís, X. Toledo, L. Vargas
EVALUACIÓN:	TERCERA	FECHA:	Lunes 12 de septiembre del 2016

	COMPROMISO DE HONOR
Yo,	
Firma	NÚMERO DE MATRÍCULA: PARALELO:

TEMA 1 (20 puntos)

Califique como Verdadera o Falsa cada una de las siguientes proposiciones. Justifique su respuesta formalmente.

a) El área de la región. $R = \{(x,y) \in \Re^2 / 0 \le y \le e^{-x}, \ x \geqslant 0\}$ es 1.

CRITERIO	VALOR
Grafica la región de integración	1
Plantea una integral para calcular el área	1
Evalúa la integral usando límites	2
compara y especifica el valor de verdad, en este caso verdadero	1

b) El intervalo de convergencia de la serie $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{n5^n}$ es (0,10).

CRITERIO	VALOR
Aplicando el criterio de la razón determina el intervalo de conver-	3
gencia absoluta de la serie	
Evalúa los extremos del intervalo de convergencia	1
Establece el intervalo de convergencia incluyendo uno de los extre-	1
mos compara y especifica el valor de verdad, en este caso falso	

c) Sea
$$n \in \mathbb{N}$$
, entonces $\int_0^n [|x|] dx = \frac{n(n+1)}{2}$.

CRITERIO	VALOR
Grafica la región de integración	1
Plantea la integral definida como la serie aritmética $1+2+3+\cdots+$	1
(n-1)	
Determina el valor de la suma	2
Compara y especifica el valor de verdad, en este caso falso	1

$$d) \lim_{n \to \infty} \left[\sum_{i=1}^{n} sen^{2} \left(\frac{\pi i}{n} \right) \frac{\pi}{n} \right] = \frac{\pi}{2}$$

CRITERIO	VALOR
Identifica los parámetros de la definición de la integral definida y	2
expresar la sumatoria como una integral	
Antideriva y evalúa la integral definida	2
Compara y especifica el valor de verdad, en este caso verdadero	1

TEMA 2 (20 puntos)

Obtenga las siguientes antiderivadas o evalúe según corresponda:

a)
$$\int_{-1}^{2} (x [|x|] + 1) dx$$
.

CRITERIO	VALOR
Aplica propiedades de linealidad	1
Aplica la definición de la función entero mayor	1
Antideriva y evalúa la integral definida	2
Expresa el resultado de forma correcta	1

$$b) \int e^{2x + \ln(x)} dx$$

CRITERIO	VALOR
Reescribe la función del integrando utilizando propiedades de los	1
logaritmos	
Realiza una sustitución adecuada	1
Antideriva y evalúa la integral definida	2
expresa el resultado de forma correcta	1

$$c) \int_{1}^{+\infty} \frac{1}{x\sqrt{x^2 - 1}} dx$$

CRITERIO	VALOR
Reescribe la integral impropia utilizando límites	1
Realiza una sustitución adecuada	1
Antideriva y evalúa la integral definida	2
Toma el límite y expresa el resultado de forma correcta	1

$$d) \sum_{n=1}^{\infty} ln\left(\frac{n}{n+1}\right)$$

CRITERIO	VALOR
Desarrolla el sumatorio	1
Mediante propiedades de logaritmos obtiene la suma de los n	2
$t\acute{e}rminos(S_n = ln\left(\frac{1}{n+1}\right))$	
Plantea la suma de la serie infinita como el límite cuando n tiende	1
a infinito de S_n	
Toma el límite y expresa el resultado de forma correcta en este caso	1
especificando que diverge	

TEMA 3 (20 puntos)

Considere la región plana $R=\{(x,y)\epsilon\Re^2 \ /\ 0\leqslant y\leqslant ln(x);\ 1\leqslant x\leqslant e\}.$ Calcule:

a) El área de R

CRITERIO	VALOR
Grafica la región	2
Especifica el diferencial de área y expresa el área como una integral	3
definida	
Antideriva	2
Evalúa la integral definida y especifica el valor del área	3

b) El volumen del sólido que se genera cuando R gira alrededor del eje x=e

CRITERIO	VALOR
Grafica el sólido de revolución	2
Especifica el diferencial de volumen y expresa el volumen como una	3
integral definida	
Antideriva	2
Evalua la integral definida y especifica el valor del volumen	3

TEMA 4 (20 puntos)

Determine el área y el perímetro de la región común a las curvas:

$$r = 2cos(\theta), \; r = 2sen(\theta) \; \text{y} \; r = 1$$

CRITERIO	VALOR
Grafica la región en el plano polar	2
Especifica el diferencial de área y expresar el área como una integral	3
definida	
Antideriva	2
Evalúa la integral definida y especificar el valor del área	3
Escribe el perímetro como la suma de tres longitudes de arco de	1
una curva.	
Especifica el diferencial de la longitud de una curva y expresa la	3
longitud de la curva como una integral definida para cada uno de	
los tramos identificados	
Antideriva las integrales planteadas	3
Evalúa la integral definida y especificar el valor del perímetro	3

TEMA 5 (20 puntos)

Dada la función f(x) = arctan(x):

a) Obtenga su representación en serie de potencias de Maclaurin.

CRITERIO	VALOR
Expresa la serie de Maclaurin de $\frac{1}{1-x}$	2
Realiza la composición para determinar la serie de $\frac{1}{1+x^2}$	2
Integra término a término el resultado anterior para obtener la serie	2
de la función dada	

b) Determine el intervalo de convergencia de la serie obtenida en el literal anterior.

CRITERIO	VALOR
Aplica el criterio de la razón	2
Determina el intervalo de convergencia absoluta	2
Analiza la serie en los extremos del intervalo	2
Expresa el intervalo de convergencia	1

c) Integrando término a término la serie del literal a), obtenga
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+2)}$$

CRITERIO	VALOR
Integra término a término la serie anterior	2
Especifica el punto donde evaluar	2
Evalúa y especifica el valor de la suma de la serie numérica	3