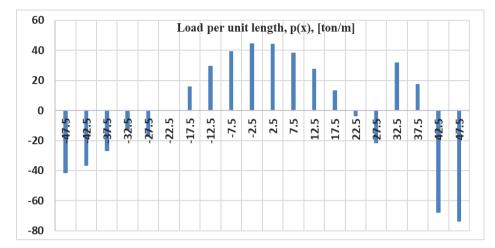
Faculty of Maritime Engineering and Marine Sciences

Ship's Structure


Quiz #4 – Plate bending & Hull structure analysis	August, 29 th , 2023
Student:	ID:

Part 1. Closed books

1.- Equilibrium of a differential element of a plate with uniform thickness t is established by taking summatory of forces and moments. Resulting differential equation from summatory of moments in the *y*-direction is: (10)

$\frac{\partial M_{yx}}{\partial y} + \frac{\partial M_x}{\partial x} - Q_x = 0 \qquad \frac{\partial M_{xy}}{\partial x} + \frac{\partial M_y}{\partial y} + Q_y = 0$	$\frac{\partial M_{xy}}{\partial x} - \frac{\partial M_y}{\partial y} + Q_y = 0$	$-\frac{\partial M_{xy}}{\partial x} + \frac{\partial M_y}{\partial y} + Q_y = 0$
--	--	---

2.- In the following figure, it is shown the loading on a barge hull (*L*: 100 m, *B*: 18 m, *D*: 9 m, Δ : 9000 tons, *LCG*: -0.694 m), considered as a beam. Calculate the extreme value of the shear force in the region aft from midships of the hull. (10)

580 tons -750 tons 680 tons -825 tons

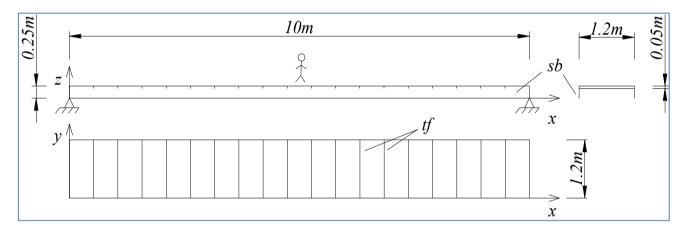
3.- For the design of Side structures of a ship, DNV rules in Section 6, proposes the following equation for the section modulus requirement of stiffeners, in cm^3 :

$$Z = \frac{C l^2 s p}{\sigma} \quad (\text{cm}^3)$$

where: *l* is the stiffener span in m, *s* is the stiffener spacing in m, *p* is the pressure acting on the panel in kN/m², and σ is the allowable stress in MPa. Assuming that the stiffeners are much smaller than the girders, what would be an adequate value for C applying concepts from our course Ship's Structure? (10)

C=15.8	<i>C</i> =83	<i>C</i> =5	<i>C</i> =32.0
--------	--------------	-------------	----------------

4.- Suppose you have a rectangular plate, simply supported on all its edges, while supports a pressure of 10 kN/m². After doing calculations, the required thickness is 8 mm so the allowable maximum stress is reached. What would be the recommended thickness if the pressure acting on the plate is now 12500 N/m²? (10)


10.02 mm 8.94 mm 8.53 mm 9.32 mm

Ship's Structure

Quiz 4 – Ship hull stress analysis	August 29 th , 2023
Student:	

Part 2. Closed books

You have to analyze a 10-m long steel pedestrian bridge, all of it built from steel plating, 3 mm thick. The structure has a width of 1.2 m, and is designed to support 22 "standard Ecuadorian" pedestrians plus its own structural weight (γ_{steel} : 76440 N/m³). The structure has two longitudinal side beams, *sb*, and 18 transversal frames, *tf*, strengthening the walking surface. The longitudinal on the sides and the transverse frames are 25 and 5 cm in height, respectively. Keep the directional system shown in the figure.

For this simplified analysis, load may be assumed as uniformly distributed on the bridge.

- i. Analyze the "girders" located on the sides of the bridge. In a simplified way, take the plate as a flange, with 60% of effectivity. (20)
- ii. Analyze the "stiffeners", aligned in the transverse y-direction. (15)
- iii. Analyze the plating between reinforcements, considering the combination of stresses acting on it. Use von Mises equivalent stress: $\sigma_{eq} = \sqrt{\sigma_x^2 + \sigma_y^2 \sigma_x \sigma_y + 3\tau_{xy}^2}$. (25)

	TAI	BLE 35. DEFLECT Rectang	ULAR PLATE W	$\begin{array}{l} \text{DING MOMENTS} \\ \text{ITH BUILT-IN } \\ \mu = 0.3 \end{array}$		
J.	b/a	$(w)_{x=0,y=0}$	$(M_x)_{x=a/2,y=0}$	$(M_y)_{x=0,y=b/2}$	$(M_x)_{x=0,y=0}$	$(M_y)_{x=0,y=0}$
4 4 4 4 4 4 4 4 4 4 9	1.0	0.00126qa4/D	-0.0513qa2	-0.0513qa ²	0.0231qa ²	0.0231qa2
mmmin t	1.1	0.00150ga4/D	$-0.0581qa^{2}$	$-0.0538qa^2$	0.0264qa2	0.0231qa ²
	1.2	0.00172ga4/D	$-0.0639ga^2$	$-0.0554qa^2$	0.0299qa ²	0.0228qa ²
	1.3	0.00191qa4/D	-0.0687qa2	-0.0563qa2	0.0327qa2	0.0222qa2
- OK	1.4	$0.00207 ga^4/D$	$-0.0726qa^2$	$-0.0568qa^2$	0.0349qa ²	0.0212qa2
	1.5	$0.00220 ga^4/D$	$-0.0757ga^2$	$-0.0570qa^2$	0.0368qa ²	0.0203qa ²
	1.6	$0.00230 qa^4/D$	$-0.0780ga^{2}$	$-0.0571qa^2$	$0.0381qa^2$	0.0193qa ²
->	1.7	0.00238qa4/D	-0.0799qa ²	$-0.0571qa^{2}$	0.0392qa ²	0.0182qa ²
y — —	1.8	$0.00245qa^4/D$	-0.0812qa2	-0.0571qa ²	0.0401qa ²	0.0174qa2
	1.9	$0.00249qa^4/D$	$-0.0822qa^2$	$-0.0571qa^2$	$0.0407 qa^2$	0.0165qa ²
	2.0	0.00254qa4/D	$-0.0829qa^2$	$-0.0571qa^{2}$	0.0412qa ²	0.0158qa ²
	00	$0.00260 q a^4/D$	$-0.0833qa^2$	$-0.0571qa^2$	0.0417ga ²	0.0125qa ²