Renewable Energy - Professor: Ing. Msc. Douglas Aguirre H. ESCUELA SUPERIOR POLITECNICA DEL LITORAL "ESPOL" FIRST EXAMEN

Guayaquil, July 04, 2024

- 1. ¿ What is the most used material in the manufacture of solar cells?
 - a) Germanium
 - b) Silicon

Name of Student: _

- c) Cadmium
- d) Gallium
- Which of the following turbines does NOT have cavitation problems:
 - a) Francis
 - b) Kaplan;
 - c) Pelton;
 - d) Helice;
- 3. What is measured in watt-peak (Wp) in a solar cell?
 - a) The efficiency of the cell
 - b) The nominal power
 - c) The nominal current
 - d) The nominal voltage
- 4. In what month does an equinox occur:
 - a) June
 - b) December
 - c) March
 - d) August
- 5. If we have several batteries of 24 Volts and 6 Amps each, in what combination could we obtain 72V and 6 A.
 - a) 3 batteries in parallel
 - b) 2 batteries in series
 - c) 3 batteries in series
 - d) 2 batteries in parallel
 - 6. What does open circuit voltage (Voc) mean in a solar panel?
 - a) The voltage when the panel is short-circuited
 - b) The maximum voltage when there is no current
 - c) The maximum current when there is no voltage
 - d) The maximum power of the panel
- 7. What effect does the variation in solar radiation have on the short circuit current of a solar panel?
 - a) The current decreases with radiation
 - b) The current remains constant
 - c) The current increases with radiation
 - d) The current is not affected
- 8. What is meant by solar tracking capture?
 - a) Increase the number of solar cells in the panel
 - b) Adjust the position of the panel according to the time of day and season of the year
 - c) Increase the output voltage of the panel
 - d) Use higher efficiency solar cells

- 9. The coriolis force is produced:
 - a) Due to the appearance of water compression that generates overpressure in the penstock, as a result of suddenly closing the pipe valve.
 - b) Due to corrosion of the forced pipe.
 - c) By the movement of the earth
 - d) All of the above
- 10. If in a river the average flow recorded in 40 years is 50.5 m3/s, how much should the ecological flow value be?
 - a) 50.5 m3/s
 - b) 24.25 m3/s
 - c) 5.05 m3/s
 - d) 2,425 m3/s
- Calcule la declinación Solar para el 28 de febrero

$$\delta = 23.45 * sen \left(\frac{360 * (284 + n)}{365} \right)$$

- 12. From the Energy vs flow graph, indicate what the design flow should be, if you want to make the most of the hydrological resource of the place.
 - a) 32
 - b) 38
 - c) 40
 - d) 48
- 13. If an electrical generating plant delivers 800MWH to the system and it is known that its installed power is 500kW, how much are the annual equivalent hours:
 - a) 8760 H
 - b) 1.6 H
 - c) 800 H
 - d) 1600H

If a house has the following characteristics, calculate:

carcarate.								
Aparatos	Cant.	Pot. Unitaria (W)	Pot. Total (kW)	Horas de Utilización diaria	Energía (kW H)			
Focos	10	20		4				
Refrigera dora	1	500		4				
Plancha	1	1000		0.5				
Televisor	2	250		8				
		Pot. Total		Energia Total				

 $E_{AC} = E_{AC} / n_{inv}$; $n_{inv} = 0.9$

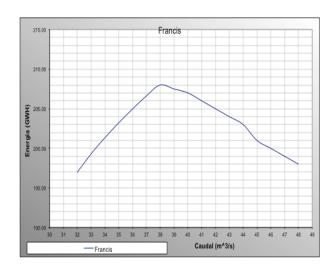
 $E_D = (E_{AC} + E_{DC})^* 1.25$

 $Pmax = FS*E_D*1kW/m2 / (E_{Disponible}) ; FS = 0.5$

Npaneles = 1.1* Pmax /C ; C = 200 W

Renewable Energy - Professor: Ing. Msc. Douglas Aguirre H. ESCUELA SUPERIOR POLITECNICA DEL LITORAL "ESPOL" FIRST EXAMEN

Guayaquil, July 04, 2024


Name of Student:

DAILY INCLINAND SOLAR RADIATION [kWH/m2]					
β [Grados]	5				
En	5				
Feb	5.5				
Mar	5.6				
Abr	5.7				
May	5.8				
Jun	5.7				
Jul	5.6				
Ago	5.5				
Sept	5.4				
Oct	5.3				
Nov	5				
Dic	4				

- 14. What is the total power_____
- 15. What is the Total energy_____
- 16. How Many Panels _____
- 17. There is a hydroelectric project with a design flow of 10 m3/s, for the entire year, and it is known that the power delivered to the system is 15 MW. Using the following data, calculate the gross head:
 - Turbine performance 85%
 - Generator performance 95%
 - Losses due to self-consumption 1%
 - Losses due to penstock 2% of the gross head

$$P_{_{(KW)}} = \frac{9.8*\rho^* H_{_N} * Q_{_D} * \eta_{_{TURB}} * \eta_{_{gen}} * (1-autocons\%)}{1000}$$

- 18. If the annual equivalent hours that the plant operates from the previous year is 4,500 hours, how much energy would the plant deliver per year.
- 19. Electrical energy is considered:
 - a) Primary Energy
 - b) Secondary Energy
 - c) Energy Vector
 - d) None of the above
- 20. What are the main components of a hydroelectric plant?
 - a) Solar panels and batteries
 - b) Wind turbines and transformers
 - c) Weir, intake work, channel, forebay, pipe and building
 - d) Nuclear reactor and cooling tower

	ANSWERS					
	а	b	С	d		
1						
2						
3						
4						
1 2 3 4 5						
6 7						
7						
8						
9						
9 10						
11 12 13						
12						
13						
14						
14 15						
16						
17						
18						
16 17 18 19 20						
20						

ACADEMIC INTEGRITY DECLARATION: I have not given, nor have I received unauthorized assistance to complete this exam.