
 

 

COMPROMISO DE HONOR 

Yo, ………………………………………………………………………………………………………………..…………… al firmar este 

compromiso, reconozco que el presente examen está diseñado para ser resuelto de manera individual, que puedo usar 

un lápiz o esferográfico; que solo puedo comunicarme con la persona responsable de la recepción del examen. No 

debo, consultar libros, notas, ni apuntes adicionales a las que se entreguen en esta evaluación y NO USARE calculadora 

alguna o cualquier instrumento de comunicación ajena al desarrollo del examen. Los temas debo desarrollarlos de 

manera ordenada.    

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior. 

"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni 

dejo copiar". 

FIRMA: ____________________________________              NÚMERO DE MATRÍCULA: _____________________           PARALELO: ________ 

1. (18 Puntos) 

A continuación, encontrará 3 afirmaciones, donde debe determinar si estas son verdaderas o 

falsas. En cada caso debe justificar su elección, bien sea presentando alguna demostración, 

contraejemplo o cálculo.  

 

a. Si 𝑉  es un espacio vectorial sobre un campo 𝐾 y 𝐴 = {𝑣1, 𝑣2, … , 𝑣𝑛} es un subconjunto finito de 

𝑉, entonces el conjunto 𝑔𝑒𝑛({𝑣1, 𝑣2, … , 𝑣𝑛}) es un subespacio vectorial de 𝑉. 

 

b. Para cualesquiera 𝑊 y 𝐻 subespacios de un espacio vectorial 𝑉 se cumple: 

 

 𝑑𝑖𝑚(𝑊 ∩ 𝐻) < 𝑑𝑖𝑚(𝐻). 

 

c. Sean 𝛽1 y 𝛽2 bases ordenadas de un espacio vectorial 𝑉 y 𝑣 ∈ 𝑉. 

 

Si [𝑣]𝛽1
= [𝑣]𝛽2

 , entonces 𝛽1 = 𝛽2. 
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2. (20 Puntos) 

En un experimento de laboratorio de zoología, Carol desea modelar el movimiento de un 

insecto en una pared que se mueve siguiendo la trayectoria que depende de los parámetros 

𝐶, 𝑀 𝑦  𝐴, definida por la ecuación: 

𝑦(𝑥) = 2𝑥𝐶 + 𝑀 sin(𝜋𝑥) + 12𝐴𝑥2 

Se tomaron datos y se detectó que el insecto atravesó por los siguientes puntos: 

(1 2⁄ , −5), (1,10), (3 2⁄ , 27). Con base en estos datos determine los valores de los parámetros 

𝐶, 𝑀 𝑦 𝐴  que satisfacen el modelo. ¿Cuántas trayectorias distintas posibles detectó Carol? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. (21 Puntos) 

Sea 𝑉 el espacio vectorial real de las matrices diagonales 2𝑥2 con las siguientes operaciones: 

(
𝑥1 0
0 𝑦1

) ⊕ (
𝑥2 0
0 𝑦2

) = (
𝑥1 + 𝑥2 + 1 0

0 𝑦1 + 𝑦2 − 2
), 

                                                     𝛼 ⊙ (
𝑥 0
0 𝑦

) = (
𝛼𝑥 + 𝛼 − 1 0

0 𝛼𝑦 + 2 − 2𝛼
). 

a. Determine el vector nulo 𝑂𝑉. 

b. Para 𝑢 = (
−3 0
  0 5

), determine el inverso aditivo 𝑢̅. 

c. Sea el conjunto 𝑆 = {(
1 0
0 1

) , (
2 0
0 2

)}. 

Determine si los vectores de 𝑆 son linealmente independientes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. (21 Puntos) 

Considere los siguientes subespacios del espacio vectorial real de las matrices cuadradas 2𝑥2 

 (𝑉 = 𝕄2×2(ℝ)) 

𝑊1 = {(
𝑎 𝑏
𝑐 𝑑

) ∈ 𝑀2𝑥2(ℝ) ;  𝑎 + 𝑑 = 𝑏 + 𝑐} , 

𝑊2 = 𝑔𝑒𝑛 {(
1 0
0 −1

) , (
0 0
1 1

)} . 

a. Determine una base para el subespacio 𝑊1 ∩ 𝑊2. 

b. ¿Es 𝑊1 ∪ 𝑊2 un subespacio vectorial de 𝑉?. En caso de serlo determine una base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. (20 Puntos) 

Sean 𝛽1 = {1 − 𝑥, 3𝑥, 𝑥2 − 𝑥 − 1} y 𝛽2 = {3 − 2𝑥 , 1 + 𝑥 , 𝑥 + 𝑥2}, dos bases del espacio vectorial real 

de los polinomios de grado menor o igual a 2 (𝑉 = 𝑃2). 

a. Determinar las coordenadas de 𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  con respecto a la base 𝛽2. 

b. Determinar la matriz cambio de base de 𝛽1 a 𝛽2. 

c. Si  [𝑝(𝑥)]𝛽1
= (

2
1
3

), utilizando la matriz del literal b. Obtenga [𝑝(𝑥)]𝛽2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


