CÁLCULO VECTORIAL PAO2 2021 SOLUCIÓN Y RÚBRICA PRIMERA EVALUACIÓN

PRIMER TEMA (a)

Dada la siguiente función

$$f(x,y) = \begin{cases} \frac{y}{x+y}, & x \neq y \\ 0, & x = y \end{cases}$$

- a) Estudie la continuidad de f en el punto (0, 0)
- b) Hallar las derivadas direccionales de f en el punto (0,0).
- c) De acuerdo al resultado obtenido en (b), que puede decir respecto a las derivadas parciales de f en el punto (0,0).
- d) De acuerdo a los resultados obtenidos en (a) y (c), que puede decir respecto a la diferenciabilidad de f en el punto (0,0).

Solución: (a)

- Estudiemos la continuidad de f en (0,0). Observemos que:
- 1. f(0,0) = 0 existe.
- 2. Ahora estudiemos $\lim_{(x,y)\to(0,0)} \frac{y}{x+y}$, para ello utilicemos coordenadas polares:

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \text{, as i tenemos que:} \\ r^2 = x^2 + y^2 \end{cases}$$

$$\lim_{(x,y)\to(0,0)} \frac{y}{x+y} = \lim_{r\to 0} \frac{r \operatorname{sen} \theta}{r \cos \theta + r \operatorname{sen} \theta} = \lim_{r\to 0} \frac{\operatorname{sen} \theta}{\cos \theta + \operatorname{sen} \theta} = \frac{\operatorname{sen} \theta}{\cos \theta + \operatorname{sen} \theta}$$
Por lo que, el $\lim_{(x,y)\to(0,0)} \frac{y}{x+y}$ no existe. Así, f NO es continua en $(0,0)$.

• (b) Calculemos las derivadas direccionales en el punto (0,0). Sea $v = (v_1, v_2)$ un vector unitario,

$$D_{v}f(0,0) = \frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(v_{1}, v_{2})) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tv_{1}, tv_{2})}{t} = \lim_{t \to 0} \frac{f(tv_{1}, tv_{2})}{t} = \lim_{t \to 0} \frac{f(tv_{1}, tv_{2})}{t} = \begin{cases} 0, & \text{si } (v_{1}, v_{2}) = (\pm 1, 0) \\ \text{No existe en otro caso} \end{cases}$$
Por lo tanto, la derivada direccional de f en el punto $(0,0)$, sólo existe en dos

direcciones, es decir, para $v = (v_1, v_2) = (\pm 1, 0)$.

- (c) Usando el resultado obtenido en (b), podemos afirmar que la derivada parcial de f respecto a x existe, y está dada por $\frac{\partial f}{\partial x}(0,0) = 0$, mientras que la derivada parcial de f respecto a y no existe, pues la derivada direccional de f en el punto (0,0), sólo existe en las direcciones de v = (1,0) y u = (-1,0).
- (d) Sabemos por teorema que: f diferenciable en un punto $x_0 \implies f$ es continua en x_0 y todas las derivadas direccionales existen es x_0 .

Ahora, usando el contrarrecíproco de dicho teorema, concluimos que: Como f No es continua en el punto (0,0) (por (a)), f No es diferenciable en el punto (0,0).

Por otro lado, usando (c) podemos concluir también, que f No es diferenciable en el punto (0,0), ya que una de las derivadas parciales de f no existe en el punto (0,0).

Capacidades deseadas		Deser	mpeño	
El estudiante	Inicial	En desarrollo	Desarrollado	Excelente
sabe cómo	No sabe cómo	No plantea el	Plantea el	Plantea el
plantear el	plantear el	criterio de	criterio de	criterio de
criterio de	criterio de	continuidad,	continuidad,	continuidad,
continuidad en	continuidad, no	pero muestra	muestra que el	muestra que el
un punto y	calcula el límite,	que el límite no	límite no existe,	límite no existe,
estudiar la	no calcula las	existe,	concluyendo	concluyendo
existencia o no	derivadas	concluyendo	que la función	que la función
del límite. Sabe	direccionales ni	que la función	no es continua	no es continua
calcular las	las derivadas	no es continua	en dicho punto.	en dicho punto.
derivadas	parciales y no	en dicho punto.	Calcula las	Calcula las
direccionales de	concluye	Plantea las	derivadas	derivadas
la función en un	respecto a la	derivadas	direccionales y	direccionales y
punto y deducir	diferenciabilidad	direccionales	concluye para	concluye para
de éstas las	de la función en	pero no	que vectores	que vectores
derivadas	un punto usando	concluye para	existen, calcula	existen, calcula
parciales. Sabe	los teoremas	que vectores	las derivadas	las derivadas
utilizar los	adecuados.	existen y no	parciales pero	parciales
teoremas para		logra relacionar	no logra	relacionándolas
concluir		las derivadas	relacionarlas	con las
respecto a la		parciales con las	con las	derivadas
diferenciabilidad		derivadas	derivadas	direccionales.
de la función en		direccionales.	direccionales.	Utiliza los
un punto.		No utiliza los	Utiliza los	teoremas
		teoremas para	teoremas pero	adecuadamente
		concluir	comete errores	para concluir
		respecto a la	al concluir	respecto a la no
		diferenciabilidad	respecto a la	diferenciabilidad
		de la función.	diferenciabilidad	de la función.
			de la función.	
	0-5	6-10	11-20	21-25

PRIMER TEMA (b)

Sea
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right); si(x,y) \neq (0,0) \\ 0; si(x,y) = (0,0) \end{cases}$$

- a. Determinar si f es de clase C^1
- b. Determinar si f es diferenciable en (0,0)
- a. Para determinar si f es de clase C^1 , calculemos las derivadas parciales Para $(x, y) \neq (0,0)$ tenemos que

$$f_x(x,y) = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) + (x^2 + y^2) \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \frac{-x}{\sqrt{(x^2 + y^2)^3}}$$
$$= 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

De forma análoga

$$f_y(x,y) = 2y \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) + (x^2 + y^2) \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \frac{-y}{\sqrt{(x^2 + y^2)^3}}$$
$$= 2y \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{y}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

Para (x, y) = (0,0) tenemos que

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{\sqrt{h^2}}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{|h|}\right) = 0$$

Ya que $\left| \text{hsin} \left(\frac{1}{|h|} \right) \right| \le |h|$ y $\lim_{h \to 0} |h| = 0$, de forma análoga $f_y(0,0) = 0$.

Por tanto

$$f_x(x,y) = \begin{cases} 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

$$f_{y}(x,y) = \begin{cases} 2y \sin\left(\frac{1}{\sqrt{x^{2} + y^{2}}}\right) - \frac{y}{\sqrt{x^{2} + y^{2}}} \cos\left(\frac{1}{\sqrt{x^{2} + y^{2}}}\right) & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

Se observa que las derivadas parciales son continuas en todo punto $(x, y) \neq (0,0)$. Estudiemos la continuidad en (x, y) = (0,0), para ello calculemos $\lim_{(x,y)\to(0,0)} f_x(x,y)$ y $\lim_{(x,y)\to(0,0)} f_y(x,y)$.

Considerando el camino x = 0, se tiene que $\lim_{y \to 0} f_x(0, y) = 0$,

Considerando el camino y = x con x > 0, se tiene que

$$\lim_{x \to 0} f_x(x, x) = \lim_{x \to 0} \left[2x \sin\left(\frac{1}{\sqrt{2x^2}}\right) - \frac{x}{\sqrt{2x^2}} \cos\left(\frac{1}{\sqrt{2x^2}}\right) \right]$$
$$= \lim_{x \to 0} \left[2x \sin\left(\frac{1}{\sqrt{2}x}\right) - \frac{1}{\sqrt{2}} \cos\left(\frac{1}{\sqrt{2}x}\right) \right]$$

El primer límite es cero y el segundo límite no existe, por lo que $\lim_{(x,y)\to(0,0)} f_x(x,y)$ no existe, así $f_x(x,y)$ no es continua en (0,0) y análogamente $f_y(x,y)$ no es continua en (0,0). Por tanto, f no es de clase C^1 en (0,0).

b. Por la parte anterior no podemos concluir que es diferenciable en (0,0). Estudiemos la diferenciabilidad por definición,

$$\lim_{(h_1,h_2)\to(0,0)} \frac{f(h_1,h_2) - f(0,0) - h_1 f_x(0,0) - h_2 f_y(0,0)}{\sqrt{h_1^2 + h_2^2}}$$

$$= \lim_{(h_1,h_2)\to(0,0)} \frac{\left(h_1^2 + h_2^2\right) \sin\left(\frac{1}{\sqrt{h_1^2 + h_2^2}}\right)}{\sqrt{h_1^2 + h_2^2}}$$

$$= \lim_{(h_1,h_2)\to(0,0)} \sqrt{h_1^2 + h_2^2} \sin\left(\frac{1}{\sqrt{h_1^2 + h_2^2}}\right) = 0$$

$$\text{Ya que}$$

$$\left|\sqrt{h_1^2 + h_2^2} \sin\left(\frac{1}{\sqrt{h_1^2 + h_2^2}}\right)\right| \leq \sqrt{h_1^2 + h_2^2} \text{ y } \lim_{(h_1,h_2)\to(0,0)} \sqrt{h_1^2 + h_2^2} = 0..$$

Este es una función que no es de clase C^1 , pero es diferenciable en (0,0).

Capacidades		Dese	empeño	
Deseadas El estudiante debe estar en capacidad de determinar que una función sea de clase C¹ y que sea diferenciable	Insuficiente Intenta proar que la función es de clase C^1 , pero resuelve de forma incorrecta las derivadas parciales y no estudia la diferenciabilidad	En Desarrollo Resuelve las derivadas parciales de forma correcta para los puntos $(x, y) \neq (0,0)$ Y para el punto $(0,0)$, pero no prueba que las derivadas parciales son continuas en $(0,0)$, ni estudia la diferenciabilidad	Desarrollo Resuelve las derivadas parciales de forma correcta para los puntos $(x,y) \neq (0,0)$ Y para el punto $(0,0)$, prueba que las derivadas parciales son continuas en $(0,0)$, y concluye que la función es de clase C^1 , pero no estudia la diferenciabilidad	Excelente Resuelve las derivadas parciales de forma correcta para los puntos $(x, y) \neq (0,0)$ Y para el punto $(0,0)$, prueba que las derivadas parciales son continuas en $(0,0)$, y concluye que la función es de clase C^1 , prueba que la función es diferenciabilidad
	0-5	6-12	13-20	21-25

SEGUNDO TEMA (a)

De un campo escalar diferenciable z=f(x,y) en el punto P(1,2) se tiene la siguiente información sobre sus derivadas direccionales:

- En la dirección al punto A(2,2) es igual a 2.
- En la dirección al punto B(1,1) es igual a -2.

Determine el vector gradiente en el punto P y calcule la derivada direccional en P en la dirección al punto C(4,6)

Sea
$$\overrightarrow{\nabla f}(P) = (a, b)$$
,

Vector dirección de P a A: $\vec{u} = (2,2) - (1,2) = (1,0)$

Vector dirección de P a B:
$$\vec{v} = (1,1) - (1,2) = (0,-1)$$

$$\frac{\partial f}{\partial \overline{u}}(P) = \overrightarrow{\nabla f}(P) \cdot (1,0) = 2$$

$$\frac{\partial f}{\partial \overline{v}}(P) = \overrightarrow{\nabla f}(P) \cdot (0,-1) = -2$$

$$\begin{cases} (a,b)(1,0) = a = 2 \\ (a,b)(0,-1) = -b = -2 \end{cases} \Rightarrow a = 2, b = 2 \Rightarrow \overrightarrow{\nabla f}(P) = (2,2)$$

Vector dirección de P a C:
$$\vec{w} = (4.6) - (1.2) = (3.4) \Rightarrow |\vec{w}| = \sqrt{9 + 16} = 5$$

Por lo tanto
$$\frac{\partial f}{\partial \vec{w}}(P) = (2,2) \frac{(3,4)}{5} = \frac{14}{5}$$

Capacidades deseadas	Desempeño			
	Insuficiente	En Desarrollo	Desarrollado	Excelente
El estudiante debe ser capaz de identificar la derivada direccional utilizando la fórmula del gradiente.	No sabe cómo plantear el problema	Esboza la fórmula calculando el gradiente, pero no interpreta bien el problema	Aplica el concepto de derivada direccional utilizando la fórmula del gradiente y expresa el sistema	El estudiante aplica la fórmula y calcula el sistema en forma correcta y expresa la derivada en dirección de w.
	0	1-3	4-8	9-10

SEGUNDO TEMA (b)

La ecuación $cos(\pi x) - x^2y + e^{xz} + yz = 4$ define implícitamente la función z = f(x, y), suponiendo que se cumplen todas las condiciones adecuadas de diferenciabilidad, calcular:

- a) La ecuación del plano tangente a la superficie dada en el punto $P_0(0, 1)$ de su dominio.
- b) La ecuación de la recta normal a la superficie dada en el punto (0, 1, 2)

a)
$$F(x, y, z) = cos(\pi x) - x^2 y + e^{xz} + yz - 4 = 0$$

Para $x = 0, y = 1$, se obtiene: $1 - 0 + 1 + z - 4 = 0 \Rightarrow z = 2$
El plano $\pi \equiv \left(\frac{\partial F}{\partial x}\right)_{P_0} (x - x_0) + \left(\frac{\partial F}{\partial y}\right)_{P_0} (y - y_0) + \left(\frac{\partial F}{\partial z}\right)_{P_0} (z - z_0) = 0$

tenemos

$$F_{x}(x, y, z) = -\pi \operatorname{sen}(\pi x) - 2xy + e^{xz}Z \Rightarrow F_{x}(0, 1, 2) = 2$$

$$F_{y}(x, y, z) = -x^{2} + z \Rightarrow F_{y}(0, 1, 2) = 2$$

$$F_{z}(x, y, z) = e^{xz}x + y \Rightarrow F_{z}(0, 1, 2) = 1$$

Luego tenemos

$$\pi \equiv 2(x-0) + 2(y-1) + 1(z-2) = 0 \Leftrightarrow 2x + 2y + z - 4 = 0$$

b) La recta normal está dada por

$$\frac{x-0}{2} = \frac{y-1}{2} = \frac{z-2}{1}$$

Capacidades deseadas	Desempeño			
El estudiante debe	Insuficiente	En Desarrollo	Desarrollado	Excelente
ser capaz de identificar y aplicar las fórmulas del plano tangente y la recta normal para una superficie de una función representada	No sabe cómo plantear el problema	Esboza la fórmula del plano tangente, pero no calcula los valores correctamente	Calcula directamente las derivadas desde la superficie y expresa la ecuación del plano, pero no la de la recta normal	El estudiante aplica la fórmula y calcula en forma correcta el plano y la recta normal.
implícitamente.	0	1-3	4-8	9-10

TERCER TEMA (a)

Determine las ecuaciones paramétricas de la curva C que se obtiene intersecando las siguientes superficies:

$$4x^2 + y^2 - 6y + 5 = 0$$
; $y + z = 7$

Completamos cuadrados en el cilindro elíptico

$$4x^{2} + y^{2} - 6y + 5 = 0 \Leftrightarrow 4x^{2} + (y - 3)^{2} = 4$$
$$\Leftrightarrow \frac{x^{2}}{1} + \frac{(y - 3)^{2}}{4} = 1$$

La proyección de este cilindro sobre el plano XY es la elipse

$$\frac{x^2}{1} + \frac{(y-3)^2}{4} = 1$$

Parametrizamos esta elipse usando coordenadas polares:

$$\begin{cases} x = \cos t \\ y = 3 + 2 \sin t \end{cases}; 0 \le t \le 2\pi$$

La parametrización para la variable z lo obtenemos mediante la ecuación del plano y del valor de la variable y en la parametrización anterior:

$$y + z = 7 \Leftrightarrow z = 7 - y \Rightarrow z = 7 - (3 + 2 \operatorname{sen} t) \Rightarrow z = 4 - 2 \operatorname{sen} t$$

En consecuencia, una parametrización para la curva determinada por la intersección de las dos superficies es:

C:
$$\begin{cases} x = \cos t \\ y = 3 + 2 \operatorname{sen} t, \quad 0 \le t \le 2\pi \\ z = 4 - 2 \operatorname{sen} t \end{cases}$$

TERCER TEMA (b)

Parametrice el arco σ contenido en el primer octante $(x, y, z \ge 0)$ dado por la intersección de las superficies:

$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x^2 + y^2 = R^2 \end{cases}$$

En el sentido de α que va desde el punto (0,0,R) hasta el punto (0,R,0)

Nota: la segunda ecuacion debió escribirse como $x^2 + y^2 = Ry$, como no se hizo así y se deslizó el error de tipear R^2 , por lo tanto, no es posible cumplir la trayectoria de (0,0,R) hasta (0,R,0).

En todo caso, se trata de la interseccion de una esfera con un cilindro:

$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x^2 + y^2 = R^2 \end{cases} \rightarrow z^2 + R^2 = R^2 \rightarrow z = 0$$

$$x^2 + y^2 = R^2 \rightarrow \begin{cases} x = R \cos(t) \\ y = R \operatorname{sen}(t) \end{cases}; \quad 0 \le t \le 2\pi$$

Una posible parametrización sería:

$$\begin{cases} x = R \cos(t) \\ y = -R \sin(t) ; -\frac{\pi}{2} \le t \le 0 \\ z = 0 \end{cases}$$

En este caso, seria desde (0, R, 0) hasta (R, 0, 0)

Para este ejercicio hay que revisar la estructura de la parametrización realizada por el estudiante y verificar que esté de acuerdo con la trayectoria indicada por él y en función de eso ponderar la rúbrica.

Rúbrica (para ambos temas):

Capacidades deseadas	Desempeño			
	Insuficiente	En Desarrollo	Desarrollado	Excelente
El estudiante debe ser capaz de parametrizar intersecciones de superficies en el espacio.	No sabe cómo plantear el problema	El estudiante interpreta la intersección, pero comete errores en el proceso.	El estudiante parametriza la variable x, parametriza la variable y pero deja inconclusa la descripción para la variable z	El estudiante parametriza correctamente la curva intersección.

0-2	3 7	Q 12	12 15
0-2	J-/	0-12	13-13

CUARTO TEMA (a)

Sea z = f(x, y) de clase C^2 , con $x = u e^v$ y $y = u e^{-v}$. Hallar $\frac{\partial^2 z}{\partial u^2}$

Solución: Tenemos que:

$$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} = \frac{\partial f}{\partial x} e^{v} + \frac{\partial f}{\partial y} e^{-v}$$

así, aplicando regla de la cadena a la función $\frac{\partial z}{\partial u}(x,y)$:

•
$$\frac{\partial^{2}z}{\partial u^{2}} = \frac{\partial}{\partial u} \left(\frac{\partial z}{\partial u} \right) = \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \right) = \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial u} \right) + \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \right)$$

$$= \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \right) \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial x} \cdot \frac{\partial^{2}x}{\partial u^{2}} + \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \right) \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial^{2}y}{\partial u^{2}}$$

$$= \left[\frac{\partial^{2}f}{\partial x^{2}} \frac{\partial x}{\partial u} + \frac{\partial^{2}f}{\partial y \partial x} \frac{\partial y}{\partial u} \right] \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial x} \cdot 0$$

$$+ \left[\frac{\partial^{2}f}{\partial x \partial y} \frac{\partial x}{\partial u} + \frac{\partial^{2}f}{\partial y^{2}} \frac{\partial y}{\partial u} \right] \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial y} \cdot 0$$

$$= \left[\frac{\partial^{2}f}{\partial x^{2}} e^{v} + \frac{\partial^{2}f}{\partial x \partial y} e^{-v} \right] \cdot e^{v} + \left[\frac{\partial^{2}f}{\partial y \partial x} e^{v} + \frac{\partial^{2}f}{\partial y^{2}} e^{-v} \right] \cdot e^{-v}$$

$$= \frac{\partial^{2}f}{\partial x^{2}} e^{2v} + 2 \frac{\partial^{2}f}{\partial x \partial y} + \frac{\partial^{2}f}{\partial y^{2}} e^{-2v}.$$

CUARTO TEMA (b)

Sea z = f(x, y) de clase C^2 , con $x = u e^v$ y $y = u e^{-v}$. Hallar $\frac{\partial^2 z}{\partial v^2}$

$$\frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} = \frac{\partial f}{\partial x} u e^{v} + \frac{\partial f}{\partial y} (-ue^{-v})$$

así, aplicando regla de la cadena a la función $\frac{\partial z}{\partial v}(x, y)$:

•
$$\frac{\partial^{2}z}{\partial v^{2}} = \frac{\partial}{\partial v} \left(\frac{\partial z}{\partial v} \right) = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \right) = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial v} \right) + \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \right)$$

$$= \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial x} \cdot \frac{\partial^{2}x}{\partial v^{2}} + \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial y} \right) \cdot \frac{\partial y}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial^{2}y}{\partial v^{2}}$$

$$= \left[\frac{\partial^{2}f}{\partial x^{2}} \frac{\partial x}{\partial v} + \frac{\partial^{2}f}{\partial y} \frac{\partial y}{\partial v} \right] \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial x} \cdot \frac{\partial^{2}x}{\partial v^{2}}$$

$$+ \left[\frac{\partial^{2}f}{\partial x^{2}} \frac{\partial x}{\partial v} + \frac{\partial^{2}f}{\partial y^{2}} \frac{\partial y}{\partial v} \right] \cdot \frac{\partial y}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial^{2}y}{\partial v^{2}}$$

$$= \left[\frac{\partial^{2}f}{\partial x^{2}} u e^{v} + \frac{\partial^{2}f}{\partial x} \frac{\partial y}{\partial y} \left(-u e^{-v} \right) \right] \cdot u e^{v} + \frac{\partial f}{\partial x} \cdot u e^{v}$$

$$+ \left[\frac{\partial^{2}f}{\partial y \partial x} u e^{v} + \frac{\partial^{2}f}{\partial y^{2}} \left(-u e^{-v} \right) \right] \cdot \left(-u e^{-v} \right) + \frac{\partial f}{\partial y} \cdot u e^{-v}$$

$$= \frac{\partial^{2}f}{\partial x^{2}} u^{2} e^{2v} - 2u^{2} \frac{\partial^{2}f}{\partial x \partial y} + \frac{\partial^{2}f}{\partial y^{2}} u^{2} e^{-2v} + \frac{\partial f}{\partial x} \cdot u e^{v} + \frac{\partial f}{\partial y} \cdot u e^{-v}$$

$$= u^{2} \left(\frac{\partial^{2}f}{\partial x^{2}} e^{2v} - 2 \frac{\partial^{2}f}{\partial x \partial y} + \frac{\partial^{2}f}{\partial y^{2}} e^{-2v} \right) + u \left(\frac{\partial f}{\partial x} e^{v} + \frac{\partial f}{\partial y} e^{-v} \right).$$

Rúbrica (para ambos temas):

Capacidades deseadas	Desempeño			
El estudiante sabe cómo aplicar correctamente la regla de la cadena.	Inicial No sabe cómo aplicar la regla de la cadena.	En desarrollo Aplica la regla de la cadena para las primeras derivadas, pero tiene problemas para calcular las segundas derivadas y no logra demostrar lo planteado.	Desarrollado Aplica la regla de la cadena para las primeras y segundas derivadas, pero comete errores algebraicos y esto impide llegar al resultado planteado.	Excelente Aplica la regla de la cadena para las primeras y segundas derivadas, llegando al resultado de forma lógica y correcta.
	0-3	4-8	9-16	17-20

QUINTO TEMA (a)

La superficie de una colina es descrita por la ecuación: $Z = 500, 5 - \frac{x^2}{80} - \frac{y^2}{160}$, donde x,y,z están dados en metros. El eje positivo Y señala hacia el norte y el eje positivo X hacia el este. Un hombre está parado en el punto (40,60,458).

- a) Si el hombre camina hacia el este: el hombre asciende o desciende?, a qué razón de cambio lo hace?
- b) Si el hombre camina hacia el suroeste: el hombre asciende o desciende?, a qué razón de cambio lo hace?
- c) Si el hombre quiere ascender siguiendo la máxima pendiente: qué dirección debe tomar?, cuál es la razón de cambio en esta dirección?
- a. Tenemos que $\nabla f(x,y) = \left(-\frac{x}{40}, -\frac{y}{80}\right)$ y $\nabla f(40,60) = \left(-1, -\frac{3}{4}\right)$. La dirección hacia el este corresponde corresponde al vector unitario $\mathbf{u} = i = (1,0)$, luego $D_{\mathbf{u}}f(40,60) = \nabla f(40,60)$. $\mathbf{u} = \left(-1, -\frac{3}{4}\right)$. (1,0) = -1. Así, si el hombre camina en dirección este, él está descendiendo a razón de 1 metros.
- b. La dirección hacia el suroeste corresponde al vector unitario

$$\boldsymbol{u} = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
, luego
$$D_{\boldsymbol{u}}f(40,60) = \nabla f(40,60). \, \boldsymbol{u} = \left(-1, -\frac{3}{4}\right). \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = \frac{7}{8} = 0.875. \quad \text{Asi, si el hombre camina en dirección suroeste, él está ascendiendo a razón de 0.875 metros.$$

c. La dirección de máxima pendiente es $\nabla f(40,60) = \left(-1, -\frac{3}{4}\right)$ y la razón de cambio de esta dirección es $\|\nabla f(40,60)\| = \frac{5}{4} = 1,25$, por lo que, caminando en esta dirección se asciende a 1,25 metros.

de aplicar el gradiente y la derivada direccional en problemas de la vida real. Description of the problem and the problem an	Capacidades Deseadas		Desempeño			
preguntas pues pues no puede interpretar interpretar la integramente la	Deseadas El estudiante debe ser capaz de aplicar el gradiente y la derivada direccional en problemas de la	No sabe como plantear el problema, ni esta claro con la teoría.	En Desarrollo Encuentra el vector gradiente y los vectores unitarios del caso a y b, pero no encuentra las derivadas direccionales ni responde	Desarrollo Encuentra el vector gradiente y los vectores unitarios del caso a y b, encuentra las derivadas direccionales y responde alguna	Encuentra el vector gradiente y los vectores unitarios del caso a y b, encuentra las derivadas direccionales y responde las preguntas de cada	
0-2 3-7 8-12 13-15		0.2	preguntas pues no puede interpretar la información.	pues no puede interpretar integramente la información.	12.15	

QUINTO TEMA (b)

Sean las funciones
$$f: R^3 \to R^2$$
 y $g: R^3 \to R^3$, tales que: $f(x,y,z) = (x^2+2,x+y^2+z^3)$; $g(x,y,z) = (x+y+z,xyz,x^2+y^3)$ Calcular $D[(f \circ g)](1,1,1)$

$$D[(fog)](1,1,1) = D[f]_{g(1,1,1)} \, D[g]_{(1,1,1)}$$

$$g(1,1,1) = (3,1,2)$$

$$D[f]_{g(1,1,1)} = \begin{pmatrix} 2x & 0 & 0\\ 1 & 2y & 3x^2 \end{pmatrix}_{(3,1,2)} = \begin{pmatrix} 6 & 0 & 0\\ 1 & 2 & 12 \end{pmatrix}$$

$$D[g]_{(1,1,1)} = \begin{pmatrix} 1 & 1 & 1 \\ yz & xz & xy \\ 2x & 3y^2 & 0 \end{pmatrix}_{(1,1,1)} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$

$$D[(fog)](1,1,1) = \begin{pmatrix} 6 & 0 & 0 \\ 1 & 2 & 12 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 6 & 6 \\ 27 & 39 & 3 \end{pmatrix}$$

Capacidades		Dese	mpeño	
Deseadas				
El estudiante	Insuficiente	En Desarrollo	Desarrollo	Excelente
debe ser capaz	No sabe como	Plantea bien el	Plantea bien el	Desarrolla todo el
de aplicar la	plantear el	ejercicio como	ejercicio como	ejercicio en forma
regla de la	problema como	producto de	producto de	lógica y ordenada o
cadena desde	producto de	matrices	matrices	comete erorres poco
una perspectiva	matrices	Jacobianas pero	Jacobianas,	significativos.
general y	Jacobianas.	comete errores	desarrolla las	
entender que el		en la derivacion	derivadas y/o	
resultado es el		y/o reemplazo	reemplazo de	
mismo que en el		de puntos.	puntos, pero	
método			comete errores	
tradicional.			en la	
			multiplicación	
			de matrices.	
	0-2	3-8	10-12	13-15

SEXTO TEMA (a)

Para la curva que resulta de la intersección de las superficies:

$$x^2 + y^2 + z^2 = 3$$
; $x^2 + y^2 = 2$

En el punto (1,1,1), determine:

- a) El vector tangente unitario
- b) La ecuación del plano normal
- c) La ecuación de la recta tangente

La curva que contiene (1,1,1) es: $x^2 + y^2 = 2$, z = 1

Si $x = t \Rightarrow y = \sqrt{2 - t^2}$. La expresión vectorial que describe esta curva es :

$$r(t) = t\hat{\imath} + \sqrt{2 - t^2}\hat{\jmath} + \hat{k}$$

a)
$$T(t) = \frac{r'(t)}{\|r'(t)\|} \Rightarrow T(t) = \frac{\left(1, \frac{-t}{\sqrt{2-t^2}}, 0\right)}{\sqrt{1^2 + \frac{t^2}{2-t^2}}}$$

De donde se obtiene $T(t) = \frac{\sqrt{2-t^2}}{\sqrt{2}} \left(1, \frac{-t}{\sqrt{2-t^2}}, 0\right)$

Como $r(1) = \hat{i} + \hat{j} + \hat{k} = (1, 1, 1),$

Evaluando T en t = (1, -1, 0) 1 se tiene:

$$T(1) = (1, -1, 0)$$
, vector tangente unitario en $(1, 1, 1)$.

b) Plano normal a la curva en (1,1,1) es:

$$1(x-1) + (-1)(y-1) + 0(z-1) = 0$$
 de donde se obtiene $x - y = 0$

c) Recta tangente : $r(t) = (x_0, y_0, z_0) + s(1, -1, 0)$,

Como
$$(x_0, y_0, z_0) = (1,1,1)$$
, se tiene $r(t) = (1 + s, 1 - s, 1)$

Capacidades deseadas	Desempeño			
	Insuficiente	En Desarrollo	Desarrollado	Excelente
El estudiante debe ser capaz calcular elementos asociados a curvas en el espacio.	No sabe cómo plantear el problema.	Esboza la fórmula calculando incorrectamente el vector tangente.	Calcula correctamente el vector tangente y el plano normal a la curva, pero no calcula la recta tangente.	El estudiante aplica las fórmulas y calcula correctamente los tres elementos pedidos.
	0-2	3-6	7-12	13-15

SEXTO TEMA (b)

Para una hélice cuya función vectorial está dada por:

$$\vec{r}(t) = (a \ cos(t), a \ sen(t), bt); \ a, b \ge 0 \ ; \ a^2 + b^2 \ne o$$
 Determine:

- a) La curvatura
- b) La torsión

$$\vec{v} = (-a \operatorname{sen}(t), a \cos(t), b) \; ; \; \vec{a} = (-a \cos(t), -a \operatorname{sen}(t), 0)$$

$$\vec{v} \times \vec{a} = \begin{vmatrix} i & j & k \\ -a \operatorname{sen}(t) & a \cos(t) & b \\ -a \cos(t) & -a \operatorname{sen}(t) & 0 \end{vmatrix} = (ab \operatorname{sen}(t), -ab \cos(t), a^2)$$

$$k = \frac{|\vec{v} \times \vec{a}|}{|v|^3} = \frac{\sqrt{a^2b^2 + a^4}}{(a^2 + b^2)^{3/2}} = \frac{a\sqrt{a^2 + b^2}}{(a^2 + b^2)^{3/2}} \rightarrow k = \frac{a}{a^2 + b^2}$$

$$\tau = \frac{\begin{vmatrix} x' & y' & z' \\ x''' & y'' & z'' \\ x''' & y''' & z''' \end{vmatrix}}{|\vec{v} \times \vec{a}|^2} = \frac{\begin{vmatrix} -a \operatorname{sen}(t) & a \operatorname{cos}(t) & b \\ -a \operatorname{cos}(t) & -a \operatorname{sen}(t) & 0 \\ a \operatorname{sen}(t) & -a \operatorname{cos}(t) & 0 \end{vmatrix}}{(a \sqrt{a^2 + b^2})^2}$$
$$= \frac{b(a^2 \cos^2(t) + a^2 \sin^2(t))}{a^2 (a^2 + b^2)}$$

$$\tau = \frac{b}{a^2 + b^2}$$

Capacidades deseadas	Desempeño			
	Insuficiente	En Desarrollo	Desarrollado	Excelente
El estudiante debe ser capaz calcular elementos asociados a curvas en el espacio.	No sabe cómo plantear el problema.	Determina los vectores velocidad y aceleración, pero comete errrores al determinar la curvatura.	Calcula correctamente la curvatura pero plantea mal la expresión de torsión o comete errores en su obtención.	El estudiante aplica correctamente los conceptos y determina los dos elementos solicitados o comete errores poco significativos.
	0-2	3-6	7-12	13-15