ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad De Ingeniería En Ciencias De La Tierra

Diseño de un sistema de conducción y zona de captación de agua para riego en la parroquia San Simón del cantón Guaranda

PROYECTO INTEGRADOR

Previo a la obtención del Título de:

Ingeniero Civil

Presentado por:

Jhonny Danilo Pino Gadvay

Richard Santiago Lara Medina

GUAYAQUIL- ECUADOR

2022

DEDICATORIA

Este proyecto se lo dedico a mis padres Victor Hugo Pino Ande y Martha Fabiola Gadvay Yambay quienes han sido mi sustento y apoyo en las primeras etapas de mi vida estudiantil, los cuales también son mi más grande ejemplo de esfuerzo, perseverancia, responsabilidad y solidaridad. A mi amada pareja Andrea Katherine Paladines Erique la cual ha sido mi apoyo incondicional en toda mi etapa universitaria. A mis compañeros, amigos y familiares que no han sido mencionados en esta dedicatoria pero que en algún momento fueron de mucha ayuda para mí.

Jhonny Danilo Pino Gadvay

DEDICATORIA

Este proyecto va dedicado a mi familia, en especial a mis padres Cristóbal Bolívar Lara Silva y Carmen del Pilar Medina Rivera, quienes siempre han velado por mi bienestar y han sido el pilar fundamental para que yo pueda estudiar mi carrera, y también a mi abuela Mercedes Adriana Rivera Mora, quien me acompaño desde muy pequeño y siempre soñó con verme graduado, sé que lo estará haciendo desde el cielo.

Richard Santiago Lara Medina

DECLARACION EXPRESA

"Los derechos de titularidad y explotación, me(nos) corresponde conforme al reglamento de propiedad intelectual de la institución; *Richard Santiago Lara Medina* y Jhonny Danilo Pino Gadvay damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Harmond Level Backer

Richard Santiago Lara Medina Jhonny Danilo Pino Gadvay

EVALUADORES

Nombre del Profesor

Nombre del tutor

PhD. Miguel Ángel Chávez

M.Sc. Fernanda Mejía

RESUMEN

El presente proyecto tiene como propósito el diseño de un sistema de conducción de agua

para riego, así como una obra de captación y tanques de almacenamiento, como elementos

complementarios y fundamentales para el funcionamiento integral del sistema. Esto con la

finalidad de satisfacer las necesidades de agua para riego del sector agrícola de la parroquia

de San Simón del cantón Guaranda.

Previo al diseño, se planteó tres alternativas, las cuales variaban en mayor importancia por

el tipo de captación a considerar (lateral, sumergida o tipo dique). Sobre estas alternativas

se realizó un análisis de selección considerando parámetros como el impacto ambiental, el

costo de construcción y mantenimiento. De esta manera y a la luz de los resultados, se

estableció a la alternativa de captación tipo dique, como la idónea para el proyecto.

Es así como, el diseño de la captación mediante una presa tipo dique se logró una estructura

que logre embalsar y captar el volumen de agua demandada por los sistemas de riego.

Seguido de esto, el diseño de la red de conducción fue concebido para conducir el flujo de

agua a gravedad, el dimensionamiento y evaluación hidráulica se realizó mediante el

software libre Ephanet. De esta manera, se obtuvo una red de 14 km de tubería BIAX de

diámetros entre 200 y 100 mm, misma que permite conducir 30 l/s, y cumple con los

parámetros establecidos por la normativa ecuatoriana vigente.

Por otro lado, de manera complementaria se diseñó 4 tanques de almacenamiento de agua

cruda de 2000 m3 de capacidad en total, mismos que además de funcionar como reserva,

serán la fuente para el sistema de distribución del líquido vital a las distintas parcelas

agrícolas del sector.

La propuesta de diseño obtenida supone un presupuesto referencial de 900019,74 USD.

obtenido mediante precios referenciales en el sector de la obra.

Por tanto, el presente trabajo desarrolla una propuesta de diseño que aporta de manera

positiva y determinante al progreso económico y disminución del hambre de la parroquia San

Simón, apegándose así al desarrollo de los objetivos 1,4, y 6 de la ONU.

Palabras Clave: Conducción, Captación, Reservorio, Riego, Agua cruda

I

ABSTRACT

The purpose of this project is the design of a water conduction system for irrigation, as well

as a collection work and storage tanks, as complementary and fundamental elements for the

integral operation of the system. This to meet the water needs for irrigation of the agricultural

sector of the parish of San Simón of the canton Guaranda.

Prior to the design, three alternatives were proposed, which varied in greater importance by

the type of catchment to be considered (lateral, submerged or dam type). On these

alternatives, a selection analysis was conducted considering parameters such as

environmental impact, construction, and maintenance cost. In this way and in the light of the

results, the alternative of dam-type catchment was established as the ideal one for the

project.

Thus, the design of the catchment by means of a dam type dam achieved a structure that

manages to reservoir and capture the volume of water demanded by the irrigation systems.

Following this, the design of the conduction network was conceived to conduct the flow of

water to gravity, the hydraulic sizing and evaluation was conducted using the free software

Ephanet. In this way, a network of 14 km of Biax pipe of diameters between 200 and 100 mm

was obtained, which allows to drive 30 l/s, and complies with the parameters established by

current Ecuadorian regulations.

On the other hand, in a complementary way, four raw water storage tanks of 2000 m3 of

capacity in total were designed, which in addition to functioning as a reserve will be the source

for the distribution system of the vital liquid to the different agricultural plots of the sector.

The design proposal obtained represents a reference budget of 900019.74 USD. Obtained

through reference prices in the sector of the work.

Therefore, the present work develops a design proposal that contributes in a positive and

decisive way to the economic progress and reduction of hunger of the parish of San Simón,

thus adhering to the development of objectives 1, 4, and 6 of the UN.

Keywords: Conduction, Catchment, Reservoir, Irrigation, Raw water

Ш

ÍNDICE GENERAL

EVALUADO	DRES	П
RESUMEN		.
ABSTRACT	Г	II
ÍNDICE GE	NERAL	Ш
ABREVIAT	URASV	Ш
SIMBOLOG	SÍA	ΙX
ÍNDICE DE	FIGURAS	ΧI
ÍNDICE DE	TABLASX	Ш
ÍNDICE DE	ANEXOS	1
ÍNDICE DE	PLANOS	3
CAPITULO	1	4
1. INTRO	DUCCIÒN	4
1.1 Ant	tecedentes	5
1.2 Ubi	icación geográfica	6
1.3 Info	ormación Básica	7
1.3.1	Actividades económicas	7
1.3.2	Clima	7
1.3.3	Tipos de cultivo en la zona	8
1.3.4	Uso de suelo	9
1.4 Alc	ance1	10
1.4.1	Obra de toma1	l C
1.4.2	Línea de conducción1	l 1
1.4.3	Tanque de almacenamiento1	1

	1.5	Obj	jetivos	.12
	1.5	.1	Objetivo general	.12
	1.5	.2	Objetivos específicos	.12
	1.6	Jus	tificación del proyecto	.12
C	APITU	JLO	2	.14
2.	DE	SAR	ROLLO DEL PROYECTO	.14
	2.1	Me	todología	.14
	2.2	Ма	rco teórico y Normativo	.15
	2.2	.1	Intensidad	.15
	2.2	.2	Duración (minutos)	.15
	2.2	.3	Período de Retorno (TR)	.16
	2.2	.4	Captación	.16
	2.2	.5	Muro en voladizo	.20
	2.2	.6	Azud	.21
	2.2	.7	Diseño de conducciones	.22
	2.2	.8	Tanque de almacenamiento	.25
	2.2	.9	Análisis de diseño propuestas	.26
	2.2	.10	Análisis de restricciones y opciones	.27
	2.2	.11	Definiciones generales	.30
C	APITU	JLO	3	.33
3.	DIS	SEÑ(O DE LA SOLUCIÓN	.33
	3.1	Bas	ses de diseño	.33
	3.1	.1	Período de diseño	.33
	3.1	.2	Área servida	.33
	3.1	.3	Caudales de diseño para el tanque de almacenamiento	.34
	3.2	Dis	eño de la obra de captación	.34

3.2.1	Topografía	34
3.2.2	Hidrología	36
3.2.3	Geología	39
3.2.4	Dimensiones de la captación	46
3.3 Dis	seño de la línea de conducción	56
3.3.1	Cálculo para la conducción	56
3.3.2	Beneficios del material seleccionado	60
3.3.3	Instalación de la red de conducción	60
3.4 Dis	seño del tanque de almacenamiento	61
3.4.1	Cálculo del tanque de almacenamiento por el método analítico	61
3.4.2	Tiempo de Llenado del Tanque de Reserva:	63
3.4.3	Dimensionamiento del tanque de almacenamiento	64
3.4.4	Diseño final del tanque de almacenamiento	65
3.5 Cu	antificación de materiales	65
3.5.1	Captación tipo Dique	65
3.5.2	Línea de conducción	67
3.5.3	Tanque de almacenamiento	68
CAPITULO	4	70
4. GESTI	ON AMBIENTAL	70
4.1 Es	tudio de impacto ambiental	70
4.2 Ob	jetivos	70
4.2.1	Objetivo general	70
4.2.2	Objetivos específicos	70
4.3 Sit	uación actual	71
44 Re	aistro Amhiental	72

		bol de acciones del Diseño de un sistema de conducción de agua para riego o	
	parroquia	a San Simón del cantón Guaranda	73
	4.6 Me	edidas de protección contra impactos ambientales	73
	4.7 Ide	entificación de impactos ambientales	74
	4.7.1	MEDIO ABIÓTICO	74
	4.7.2	MEDIO BIÓTICO	75
	4.7.3	MEDIO SOCIAL	76
	4.8 Va	loración mediante la matriz de Leopold	76
	4.9 An	aálisis de resultados de Matriz de Leopold	78
	4.9.1	Impactos negativos relevantes	78
	4.9.2	Impactos positivos relevantes	79
	4.10 ľ	Medidas de mitigación de impactos ambientales	79
	4.10.1	Calidad del aire	79
	4.10.2	Calidad del agua	80
	4.10.3	Calidad del suelo	80
	4.10.4	Flora y Fauna	80
	4.10.5	Salud	81
	4.10.6	Estética	81
	4.10.7	Aceptación Social	81
	4.11	Conclusiones y Recomendaciones	82
	4.11.1	Conclusiones	82
	4.11.2	Recomendaciones	82
C	APITULC) 5	84
5.	GESTI	ÓN DEL PROYECTO	84
	5.1 De	escripción de Rubros	84
	511	Caseta de oficina, bodega y guardianía	84

	5.1.2	Desbroce y limpieza	84
	5.1.3	Trazado y Replanteo	85
	5.1.4	Excavación con maquina (1 m de profundidad)	85
	5.1.5	Acarreo, desalojo y transporte de material	85
	5.1.6	Grava y Arena	86
	5.1.7	Relleno con material de sitio	86
	5.1.8	Cerramientos	86
	5.1.9	Encofrados	86
	5.1.10	Hormigón:	87
	5.1.11	Acero de refuerzo:	87
	5.1.12	Elementos de tubería y dique	88
	5.1.13	Instalaciones	88
	5.1.14	Suministro e instalación de tubería	88
	5.1.15	Válvulas	88
	5.1.16	Mejoramiento de suelo	89
5	.2 Cr	onograma de actividades de obra	89
5	.3 An	álisis de costos unitarios	89
5	.4 Pre	esupuestos por sector	89
5	.5 Co	sto total del proyecto	89
CA	PITULO	6	90
6.	CONC	LUSIONES Y RECOMENDACIONES	90
6	.1 Co	nclusiones	90
6	.2 Re	comendaciones	91
BIE	BLIOGR	AFIA	92
Λ N I	EVOS		ΩE

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

FICT Facultad de Ingeniería en Ciencias de la Tierra

INEN Servicio Ecuatoriano de Normalización

NEC Normativa Ecuatoriana de la Construcción

SIMBOLOGÍA

n: Número asignado a cada intensidad
m: metro
kg: kilogramo
m: Cantidad total de valores de intensidad
Y: Variable reducida en función del período de retorno
Yn: Media de la variable reducida
Ar = Área de riego [m2]
g = aceleración de la gravedad [m/s2]
Q = Caudal de diseño [m3/s]
b = Ancho del canal recolector [m]
Yc = profundidad critica [m]
emuro = Espesor del muro [m]
Za = Profundidad de caída de agua [m]
y1 = conjugada mayor [m]
f = Coeficiente de rugosidad de Darcy Weisbach
m = pendiente del terreno [m/m]
$\gamma^2=$ peso especifico del suelo bajo la losa de base y frente al talon
$Kp = coeficiente\ de\ presion\ pasiva\ de\ Rankie$
$C_2' = cohesion$
Ø' = Angulo de fricción interna del suelo (°)
L = Longitud de la cimentación [m]
Df = Profundidad de desplante de la cimentación [m]

Imp= Valor de la importancia del impacto ambiental.

E= *Criterio de* "Extensión"

We= Peso del criterio de "Extensión"

D= Valor del criterio de "Duración"

Wd= Peso del criterio de "Duración"

R= Criterio de "Reversibilidad"

Wr= Peso del criterio de "Reversibilidad"

G = Porcentaje mas fino que el tamiz No 200 (%)

F = Masa de la muestra que paso el tamiz No 200 (g)

C = Masa de la muestra seca antes del lavado(g)

ÍNDICE DE FIGURAS

Figura 1.1 Ubicación geográfica de la parroquia de San Simón	7
Figura 1.2 Mapa de cambio climático de la provincia de Bolívar	8
Figura 1.3 Cultivos frecuentes en la zona	9
Figura 1.4 Obra de toma tipo dique	11
Figura 2.1 Distribución y componentes en una captación por bombeo	18
Figura 2.2 Captación lateral en un río	19
Figura 2.3 Ejemplo de componentes básicos en captación tipo dique	20
Figura 2.4 Ejemplo de construcción de Azud.	22
Figura 2.5 Instalación de Azud en Rio	22
Figura 2.6 Elementos de básicos en una línea de conducción	23
Figura 2.7 Esquema de conducción a presión	24
Figura 2.8 Tanques de almacenamiento.	26
Figura 3.1 Imagen ráster de niveles de la zona.	35
Figura 3.2 Área de influencia para cálculo de caudal	36
Figura 3.3 Curvas IDF de la parroquia San Simón	37
Figura 3.4 Intensidades y duración de precipitaciones	38
Figura 3.5 Intensidades Máximas para distintos periodos de retorno	38
Figura 3.6 Identificación de las muestras de suelo	40
Figura 3.7 Toma de peso de la muestra seca	41
Figura 3.8 Lavado de material con tamiz 200	43
Figura 3.9 Lavado del material sobre el tamiz 40	45
Figura 3.10 Cuchara casa grande.	45
Figura 3.11 Longitud de cresta del dique	47
Figura 3.12 Longitud de la lámina de agua	48
Figura 3.13 Perfil de la lámina de agua	49

Figura 3.14 Disposicion de dimensiones del muro	51
Figura 3.15 Sección transversal del muro en metros	53
Figura 3.16 Coordenadas del azud	55
Figura 3.17 Obra de toma tipo dique	55
Figura 3.18 Propiedades de primera válvula rompe presiones	57
Figura 3.19 Propiedades de segunda válvula rompe presiones	57
Figura 3.20 Propiedades de tercera válvula rompe presiones	58
Figura 3.21 Propiedades de cuarta válvula rompe presiones	58
Figura 3.22 Propiedades de quinta válvula rompe presiones	58
Figura 3.23 Propiedades de válvula de regulación	59
Figura 3.24 Presiones en los nodos de la línea de conducción	60
Figura 3.25 Detalle de zanja	61
Figura 3.27 Diagrama de distribución de agua para riego	64
Figura 3.28 Tanque de almacenamiento de 500m3	65
Figura 4.1 Actividad y proceso al que pertenece el provecto.	72

ÍNDICE DE TABLAS

Tabla 1.1 Uso del suelo	9
Tabla 2.1 Matriz de Likert para evaluación de impacto ambiental	29
Tabla 3.1 Cálculo de caudal de diseño en la tubería	39
Tabla 3.2 Porcentaje de humedad del suelo	42
Tabla 3.3 Granulometría del suelo	44
Tabla 3.4 Propiedades del suelo del cantón Guaranda	46
Tabla 3.5 Perfil de la lámina de agua	48
Tabla 3.6 Datos para la altura del muro	49
Tabla 3.7 Dimensiones del muro en voladizo	50
Tabla 3.8 Fuerza activa según Rankine	51
Tabla 3.9 Fuerzas y momentos que actúan en el muro	51
Tabla 3.10 Cálculo de factor de seguridad al volteo	52
Tabla 3.11 Cálculo de factor de seguridad al desplazamiento	52
Tabla 3.12 Ubicación de la resultante en la base	52
Tabla 3.13 Cálculo de la presión del suelo	52
Tabla 3.14 Distribución de caudales requeridos	62
Tabla 3.15 Volúmenes para los tanques de almacenamiento	63
Tabla 3.16 Dimensiones del tanque de almacenamiento	64
Tabla 3.17 Calculo de Solera	66
Tabla 3.18 Calculo de colchón disipador	66
Tabla 3.19 Cálculos de muro en voladizo	66
Tabla 3.20 Calculo de dimensiones de Azud	67
Tabla 3.21 Calculo de excavación y relleno	67
Tabla 3.22 Longitudes de sección de tuberías	67
Tabla 3.23 Cantidades de tubería	68

Tabla 3.24 Dimensiones de tanque y cubierta	.68
Tabla 3.25 Dimensiones de cuarto de válvulas	.69
Tabla 4.1 Árbol de acciones para el proyecto	73
Tabla 4.2 Criterios de puntuación	78
Tabla 4.3 Resultados de matriz de Leopold	78

ÍNDICE DE ANEXOS

Anexo 1	Catálogo de tubería tipo Biax con diámetros comerciales	95
Anexo 2	MATRIZ DE LEOPOLD	96
Anexo 3	MATRIZ DE LEPOLD	97
Anexo 4	Coordenadas del azud, tomadas desde la cresta del dique	98
Anexo 5	Tabla de datos de la línea de conducción (NODOS)	99
Anexo 6	Tabla de datos de la línea de conducción (TUBERÍA)	110
Anexo 7	Rubro: Relleno de zanja con material de sitio	121
Anexo 8	Rubro: Desalojo de material	122
Anexo 9	Rubro: Relleno con arena	123
Anexo 10	Rubro: Limpieza y desbroce	124
Anexo 11	Rubro: Hormigón	125
Anexo 12	Rubro: Laminas de PRFV	126
Anexo 13	Rubro: Mampostería de bloque	127
Anexo 14	Rubro: Caja de revisión	128
Anexo 15	Rubro: Acero de refuerzo	129
Anexo 16	Rubro: Cruz de PVC 4"	130
Anexo 17	Rubro: Tapón PVC 6"	131
Anexo 18	Rubro: YEE PVC 6"	132
Anexo 19	Rubro: Codo PVC 6" 90°	133
Anexo 20	Rubro: Válvula compuerta 6"	134
Anexo 21	Rubro: Union Flexible tipo Dresser 6"	135
Anexo 22	Rubro: Mejoramiento de suelo	136
Anexo 23	Rubro: Muro de piebra bola	137
Anexo 24	Rubro: Relleno con arena	138
Anexo 25	Rubro: Tubería BIAX d: 200mm	139

Anexo 26	Rubro: Tubería BIAX d: 160mm	140
Anexo 27	Rubro: Tubería BIAX d: 100mm	141
Anexo 28	Rubro: Excavación de zanjas	142
Anexo 29	Rubro: Relleno de zanja con material de sitio	143
Anexo 30	Rubro: Válvula reductora de presión	144
Anexo 31	Rubro: Cama de arena	145
Anexo 32	Rubro: Codo PVC	146
Anexo 33	Presupuesto	147
Anexo 34	CRONOGRAMA DE OBRA	148

ÍNDICE DE PLANOS

Plano 1	Obra de captación tipo dique (vista en planta)	.171
Plano 2	Obra de captación cortes	.172
Plano 3	Tanque de almacenamiento (vistas)	.173
Plano 4	Cuarto de válvulas del tanque de almacenamiento	.174
Plano 5	Línea de conducción (Vista General) general	.175
Plano 6	Línea de conducción abscisa 0+000 a 1+000	.176
Plano 7	Línea de conducción abscisa 1+000 a 2+000	.177
Plano 8	Línea de conducción abscisa 2+000 a 3+000	.178
Plano 9	Línea de conducción abscisa 3+000 a 4+000	.179
Plano 10	Línea de conducción abscisa 4+000 a 5+000	.180
Plano 11	Línea de conducción abscisa 5+000 a 6+000	.181
Plano 12	Línea de conducción abscisa 6+000 a 7+000	.182
Plano 13	Línea de conducción abscisa 7+000 a 8+000	.183
Plano 14	Línea de conducción abscisa 8+000 a 9+000	.184
Plano 17	Línea de conducción abscisa 9+000 a 10+000	.185
Plano 18	Línea de conducción abscisa 10+000 a 11+000	.186
Plano 19	Línea de conducción abscisa 11+000 a 12+000	.187
Plano 20	Línea de conducción abscisa 12+000 a 13+000	.188
Plano 21	Línea de conducción abscisa 13+000 a 13+427	.189

CAPITULO 1

1. INTRODUCCIÓN

La parroquia de San Simón del cantón Guaranda, basa una gran parte sus ingresos en las actividades agropecuarias, por tanto, necesitan un flujo continuo de agua para realizar actividades agrícolas, no obstante, la zona de San Simón presenta un déficit hídrico de 146 mm de agua pluvial, según lo presentado en el PDYOT de la parroquia de San Simón realizado por el municipio de Guaranda. (GAD Guaranda, 2020)

Para esto, la comunidad utilizaba durante mucho tiempo sistemas de riego tradicionales, sin embargo estos al no tener la suficiente eficiencia no aprovechaban los recursos de la mejor manera, con el paso de los años se implementaron proyectos de riego para mejorar el aprovechamiento del agua, pero a lo largo de este periodo las fuentes de agua fueron disminuyendo considerablemente, pues la comunidad tomaba agua de cualquier fuente cercana, como arroyos o manantiales cercanos, que por el uso de suelo, reducción de precipitaciones, o circunstancias varias, cambiaron su curso o redujeron su caudal, estableciendo un desabastecimiento en diferentes zonas de la parroquia.

Para cubrir dicha necesidad resulta imperativo establecer una fuente adicional de abastecimiento de agua, que sea continua y estable durante todo el año, siendo capaz de disponer de agua aún en las épocas menos lluviosas, y a su vez carezca de contaminación que afecte los cultivos, o contamine los productos subsecuentes. Para el efecto, se identificó como apta la quebrada "Huaytallug" que forma parte de la subcuenca del Río Chimbo. A partir de la cual, se proyecta conducir el agua cruda hacia el sistema de almacenamiento y distribución a las parcelas de cultivos.

De este modo, el presente proyecto busca integrarse, con un sistema existente de riego en la parroquia y así potenciar su capacidad para cubrir con el 100% de demanda de agua para riego en la zona y afectar de manera positiva y determinante al crecimiento económico de la zona. Lo cual aporta al cumplimiento de los Objetivos de Desarrollo Sostenible (ODS) planteados por la Organización de las Naciones Unidas (ONU) en 2015; específicamente de cara a la meta 1.4 del objetivo 1 que busca garantizar el acceso a todos los hombres y mujeres a los recursos naturales y la meta 2.3 del ODS número 2, la cual habla sobre duplicar la productividad agrícola y los ingresos de los productores de alimentos en pequeña escala.

Sobre esta base, cabe mencionar que al buscar el acceso al agua para uso exclusivo de riego, el proyecto también se alinea con la meta 6.4 del ODS número 6, que se enfoca en "aumentar considerablemente el uso eficiente de los recursos hídricos en todos los sectores y asegurar la sostenibilidad de la extracción y el abastecimiento de agua dulce para hacer frente a la escasez de agua".(ONU, 2015), al permitir a zonas que sufren de escasez, tener acceso a una fuente de agua dulce para riego, y evitar que el agua potable tenga que suplir en las necesidades agrícolas y pecuarias, lo cual es una práctica poco eficiente y recurrente en zonas rurales.(MAATE, 2021)

1.1 Antecedentes

El agua es un recurso escaso y debe utilizarse de la forma más eficiente y eficaz posible. Por ello, la agricultura es uno de los sectores productivos más desarrollados en diversas técnicas de optimización del agua. Por un lado, utilizamos solo el agua que necesitamos y, por otro lado, la utilizamos para que la producción agrícola sea lo más rentable posible. Los aspectos sociales y ecológicos también deben tenerse en cuenta al evaluar el sistema de riego. (AQUAE FUNDACION, 2022)

Económicamente en el cantón Guaranda los cultivos de maíz suave constituyen los principales componentes de la actividad agrícola, con un aproximado de 11.063 ha que representan el 50,38% de la misma y se encuentran sobre todo al suroeste del cantón, en las parroquias Santa Fe, al oeste de San Simón y San Lorenzo y al suroeste de Guaranda.(GAD Guaranda, 2020)

En la parroquia San Simón además de los cultivos de maíz suave existen otros cultivos representativos como: la papa, haba y cebada. En menor cantidad se encuentra cultivos de mora, banano, naranja, orito, maíz duro, naranjilla, entre otros. Además, existen cultivos que no se pueden especificar individualmente (quinua, melloco, café, oca, frutales), pero forman parte de los cultivos dentro del cantón. .(GAD Guaranda, 2020)

La microcuenca del río Blanco, que atraviesa la parroquia San Simón, pertenece a la subcuenca alta del Río Chimbo. Este río nace en los deshielos del Chimborazo; razón por la cual, un factor importante que se debe considerar son las pendientes pronunciadas que tiene el terreno lo que provoca una gran velocidad del flujo. Por ello, en época invernal se debe tener en cuenta la protección de la obra. Es un río anastomosado, más conocido como joven o trenzado. Por este motivo se debe considerar que el cauce podría cambiar de posición o variar el flujo.(Catalina & Sandoval, 2009)

Todo esto para lograr un buen diseño de la zona de captación y de la línea de conducción para el sistema de riego de la parroquia San Simón del cantón Guaranda.

1.2 Ubicación geográfica

La Parroquia de San Simón (Lugar poblado), se ubica en las coordenadas –1.65 y-78.9833 Latitud y longitud de manera correspondiente, pertenece al cantón Guaranda de la provincia de Bolívar. Como se indica en la Figura 1.1.

Figura 1.1 Ubicación geográfica de la parroquia de San Simón. [Fuente: Google Earth (Modificado)]

1.3 Información Básica

1.3.1 Actividades económicas

La parroquia se sitúa en una altitud promedio de 3 100 msnm su economía tiene diversas fuentes siendo las principales: la cebada, el maíz, quinua, siendo así que la mayor parte de sus habitantes se dedica a labores agropecuarias, otro sector al comercio y gran parte migra a grandes ciudades de la costa, principalmente al comercio.(GAD Guaranda, 2020)

1.3.2 Clima

Según los datos proporcionados (GAD Guaranda, 2020) La temperatura promedio en la ciudad de Guaranda y sectores aledaños como la parroquia de San Simón ronda los 13° Celsius. Y el clima varía desde los páramos fríos, entre 4° C a 7° C, hasta subtropical cálido, de 18° C a 24° C. cómo se puede observar en la Figura 1.2

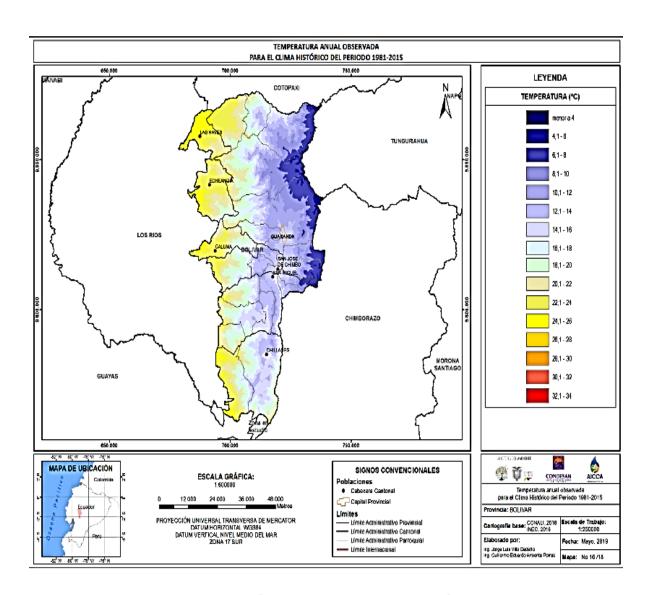


Figura 1.2 Mapa de cambio climático de la provincia de Bolívar. [G.A.D. Guaranda, 2020]

Según el registro del municipio (GAD Guaranda, 2020) en la parroquia de San Simón la época lluviosa es en los periodos enero y julio. Los rangos para San Simón, en "su pluviometría van desde los 500 mm hasta los 1250 mm, en las siguientes proporciones: De 500 a 750 mm, el 2,65%; de 750 a 1000 mm, el 91,99% como predominante y, de 1000 a 1250 mm, el 5,37%".

1.3.3 Tipos de cultivo en la zona

La parroquia San Simón se caracteriza por su gran producción agrícola, donde destacan sembríos de cebada, maíz, quinua, papas, legumbres, hortalizas, pasto, frutales. Según (GAD Guaranda, 2020) el cultivo de mayor presencia y cobertura, es el maíz con un 52% como se puede apreciar en la Figura 1.3, la papa representa el 23%, y haba con un 11%, sin

embargo estos cultivos suelen rotarse dependiendo de la temporada y la cantidad de agua. Existiendo también, ciertas frutas, y varios cereales como la cebada y la Quinoa, con referencia a las actividades pecuarias, existe variedad de pastos cultivados donde predominan mezclas de Rye Grass, Trébol Blanco, y pasto Azul, sin embargo estos pastos no poseen ningún sistema de riego, ni tecnificación de algún tipo, así como tampoco se utilizan fertilizantes.

Figura 1.3 Cultivos frecuentes en la zona. [GAD Guaranda, 2020]

1.3.4 Uso de suelo

San Simón posee una extensión total de terreno correspondiente a 8318 Ha, sin embargo, de esa extensión 3314 Ha son se encuentran registradas como terreno para conservación y protección, esta extensión representa el 40% del suelo disponible.

Tabla 1.1 Uso del suelo [GAD Guaranda, 2020]

Uso de suelo	Has	%
Agrícola	1733	21%
Agropecuario mixto	2079	25%
Agrícola – conservación y protección	1191	14%
Conservación y protección	3313	40%
Total	8316	100%

Si bien los datos como se muestra en la Tabla 1.1, indican que el 60% del suelo se encuentra en uso la realidad es que la clasificación, "agropecuario mixto" y "agrícola-conservación y protección", pueden tener combinaciones de cultivos con vegetación natural. Por otro lado, es una buena aproximación para determinar la cantidad de terreno dedicada a actividades que requieren riego.

1.4 Alcance

El presente proyecto tiene como finalidad el diseño de una línea de conducción de agua para riego. Adicionalmente, para complementar y asegurar la funcionalidad del sistema, se plantea también el diseño hidráulico de, una obra de toma o captación como fuente de abastecimiento de agua de la red de conducción, y un tanque o reservorio de almacenamiento.

1.4.1 Obra de toma

En la Figura 1.4 se muestra un dique, el cual está compuesto por una pantalla que se usó para formar una mini represa para el abastecimiento de agua, los muros laterales sirven como obra de contención y un azud para garantizar que el agua siga su cauce, además evita posibles erosiones aguas debajo de la obra de toma.

Figura 1.4 Obra de toma tipo dique

1.4.2 Línea de conducción

Trazado de la línea de tuberías

Diámetro de la tubería

Cálculo de presiones

Accesorios de la línea de conducción

1.4.3 Tanque de almacenamiento

Dimensionamiento del tanque

Accesorios del tanque

1.5 Objetivos

1.5.1 Objetivo general

Diseñar un sistema de captación, conducción y almacenamiento de agua para cubrir la demanda de riego en la comunidad de San Simón, del cantón Guaranda en la provincia de Bolívar, mediante estudios topográficos e hidráulicos basados en la normativa ecuatoriana vigente y bibliografía afín.

1.5.2 Objetivos específicos

- Ubicar la línea de conducción y zona de captación en base a la topografía del terreno proporcionada por el municipio de Guaranda utilizando herramientas digitales.
- Plantear tres alternativas de diseño para realizar un análisis de selección y establecer la alternativa idónea para el proyecto.
- Realizar el diseño hidráulico de la obra de captación de la alternativa seleccionada.
- Determinar el dimensionamiento de la línea de conducción, según los requerimientos de agua para riego de las parcelas agrícolas registradas para el uso de la obra, haciendo uso del software libre Ephanet.
- Elaborar el presupuesto referencial de la obra total diseñada, según los valores actuales de mercado, y salarios vigentes.

1.6 Justificación del proyecto

Las actividades económicas predominantes en la parroquia se desarrollan en el área agropecuaria, estas actividades dependen en gran medida de una continua disponibilidad de agua, en los últimos años las fuentes naturales que utilizaba la comunidad han sido disminuidas, sin embargo, las parcelas cultivadas han incrementado, debiendo racionar el agua, para que se accedan a ciertos horarios según la cantidad de terreno, y el tipo de cultivo. Sin embargo, las plantaciones solo se benefician del líquido vital durante época invernal. Por tanto, resulta necesario proveer de un suministro de agua constante de una fuente con mayor capacidad como lo es la quebrada "Huaytallug", para lo cual es necesaria la construcción y diseño de un sistema de conducción de agua, que transporte este recurso hacia los canales de riego existentes, y los futuros canales a implementarse. Esto sería de gran aporte para el desarrollo social y económico, aportando un mejor estilo de vida.

La matriz productiva de la parroquia se basa en actividades agropecuarias, estas actividades requieren en gran medida de una adecuada disponibilidad de agua, en los últimos años las fuentes naturales que utilizaba la comunidad han sido reducidas, sin embargo, las parcelas cultivadas han incrementado, debiendo racionar el agua, para que se accedan a ciertos horarios según la cantidad de terreno, y el tipo de cultivo. Sin embargo, las plantaciones solo se benefician del líquido vital durante época invernal. Por tanto, resulta necesario proveer de un suministro de agua constante de una fuente con mayor capacidad como lo es la quebrada "Huaytallug", para lo cual es necesaria la construcción y diseño de un sistema de conducción de agua, que transporte este recurso hacia los canales de riego existentes, y los futuros canales a implementarse. Esto sería de gran aporte para el desarrollo social y económico, aportando un mejor estilo de vida

CAPITULO 2

2. DESARROLLO DEL PROYECTO

2.1 Metodología

Para el diseño de obras que se encuentra en el cauce de los ríos como es el caso de una obra de captación de agua y una línea de conducción, se debe considerar su vida útil y el período de retorno de los caudales máximos del río. El primero representa el tiempo que una estructura deberá funcionar apropiadamente. Luego se evaluará su restauración integral, reemplazo o retiro del lugar de construcción. El período va desde 25 a 50 años según la normativa ecuatoriana. El segundo es el número de años en el cual se cree que un evento extremo se igualará o excederá. Para tal fin, se utilizarán los períodos de retorno de 25, 50 y 100 años. (CPE INEN 5, 1992)

El desarrollo de este proyecto se dividió en etapas:

- En la primera etapa se recopila información sobre las ventajas, desventajas, actividades y componentes de las diversas obras de captación en la actualidad, además, en esta etapa se debe realizar una valoración bibliográfica. Trabajo de recolección tradicional. Incluye el uso de nuevas tecnologías, para estudiar la posibilidad de proponer una solución innovadora y eficaz. Durante esta fase también se recopilará información sobre el área de estudio, informes técnicos vigentes, planos, informes y otros datos que permitirán un conocimiento amplio del problema, problemática a obtener y su potencial solución. (Rivas et al., 2005)(Orozco Coello, 2010)
- La segunda etapa comprende la recolección de datos proporcionados por el GAD municipal a través de visitas de campo que permitan un mejor conocimiento del área de estudio, así como la revisión de la topografía y del muestreo del suelo de la zona, para obtener datos más precisos en el proceso de diseño de las soluciones propuestas.

 La tercera etapa consiste en una propuesta inicial de tres alternativas de diseño con cálculos básicos de ingeniería, entre las que se realizó un análisis objetivo de los aspectos técnicos, económicos, sociales y ambientales con la finalidad de seleccionar la idónea.

• En la cuarta etapa, se diseña en detalle la alternativa seleccionada en el paso anterior, con base en la normativa nacional vigente y bibliografía afín, para asegurar la efectividad y funcionalidad de la solución.

Finalmente, se realizará la correspondiente evaluación de los impactos ambientales
del proyecto, así como la elaboración de los planos y presupuestos de las obras. En
esta etapa también se detallan las conclusiones y recomendaciones realizadas luego
de desarrollado el proyecto.

2.2 Marco teórico y Normativo

2.2.1 Intensidad

Se define como el volumen de agua de lluvia que cae en un punto, en un intervalo de tiempo determinado, este es inversamente proporcional al tiempo de duración de la tormenta, esta intensidad puede ser instantánea o promedio, sobre la duración de la lluvia. Generalmente se utiliza la intensidad promedio, que puede expresarse como (INAMHI, 2015):

Dónde:

i= Intensidad (mm/h)

P= Precipitación (mm)

T= Duración (h)

2.2.2 Duración (minutos)

La duración de la tormenta es el tiempo que transcurre desde que inicia la precipitación hasta que ésta cesa. Se considera a la duración de la lluvia de diseño igual al tiempo de concentración del área en estudio, debido que al cabo de dicho tiempo la escorrentía alcanza su valor máximo, al contribuir toda el área aportante al flujo de salida.(INAMHI, 2015)

2.2.3 Período de Retorno (TR)

El número de años que en promedio se presenta un evento determinado de igual o mayor intensidad se llama periodo de retorno, intervalo de recurrencia o simplemente frecuencia. El periodo de retorno es un parámetro muy importante al momento de diseñar una obra hidráulica de cualquier índole.(INAMHI, 2015)

2.2.4 Captación

Según el (CPE INEN 5 Parte 9-2, 1997), para el diseño y elaboración de la estructura de captación de fuentes de aguas superficiales se debe tener una capacidad tal, que sea posible derivar al sistema de agua un caudal mínimo equivalente a 1,2 veces el caudal máximo diario. Además, se requiere el análisis de información básica como:

 Plano topográfico del sector, niveles máximo y mínimo de la fuente, estudios de suelos de la zona, datos sobre acarreo de material sólido y flotante de la fuente, además localización de las posibles fuentes de contaminación.

El (CPE INEN 5 Parte 9-2, 1997) recomienda tener en consideración los siguientes criterios de diseño para la elaboración óptima de una obra de captación.

- En cursos de agua con poco transporte de sólidos y bajas pendientes, se podrán utilizar captaciones localizadas en forma perpendicular al sentido de flujo.
- En cursos de agua con gran pendiente y transporte de sólidos, son adecuadas las captaciones laterales.
- Cuando la corriente arrastra muchos sólidos, es adecuado considerar desarenadores.
- Para las tomas laterales en fuentes superficiales, se debe ubicar la rejilla de captación en el lado cóncavo de una curva de la corriente.

- La ubicación de la toma no puede ser inferior a 0,50 m por debajo del nivel mínimo de la fuente.
- Cuando el nivel mínimo de la fuente sea muy reducido, deberán ser previstas estructuras que permitan elevar el nivel de agua y minimizar la entrada de sólidos.
- En captaciones de lagos o reservorios, donde se acumula material sedimentable con gran facilidad, la captación se ubicará por lo menos a 1,0 m por encima del fondo.
- La entrada de agua contará con rejillas de protección que permitan captar el caudal de diseño aun cuando ésta se encuentre obstruida en un 50% del área.
- Antes de la entrada a la conducción, deberá prepararse una estructura adecuada para el aforo del caudal.
- El diseño preverá elementos que faciliten el desalojo de material sedimentado, sea este grueso o fino.
- Las estructuras serán diseñadas para las condiciones más críticas, tanto en el aspecto hidráulico como estructural, tomando en cuenta que se pueden localizar en zonas de alto riesgo sísmico.
- La velocidad en la línea de conducción no deberá ser inferior a 0,6 m/s, además las obras de protección contra inundaciones se elevarán al menos 1.0 m por encima del nivel máximo de crecida.

2.2.4.1 Captación por bombeo

Como indica (Tomalá De La Cruz & Vera López, 2021), dado el caso de que el rio no disponga de una carga hidráulica aceptable para ofrecer una conducción adecuada, se tiene una mínima cantidad de arrastre de sedimentos, por otra parte (Orozco Coello, 2010) indica que, es recomendable utilizar una captación por bombeo en los casos de que se tenga un reducido volumen de agua y en el transcurso del año la amplitud de las variaciones en los niveles de agua se mantengan entre 3 y 4 metros, caso contrario se deben implementar

orificios de captación, ubicados a niveles distintos con el propósito, de obtener niveles mayores con una cantidad inferior de sedimentos, en la Figura 2.1 se observa una captación por bombeo.

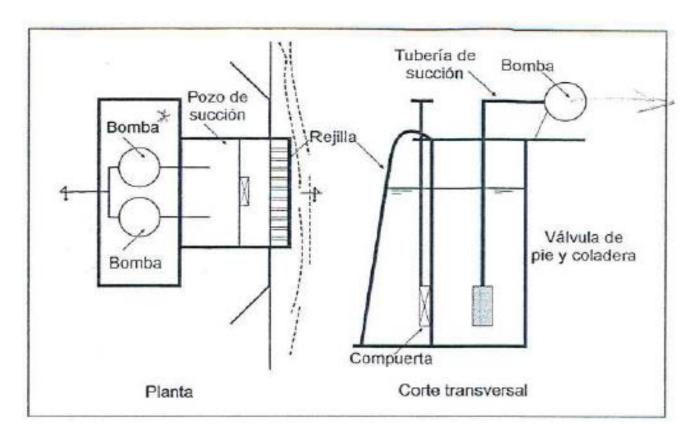


Figura 2.1 Distribución y componentes en una captación por bombeo. [López Cualla, 1995]

2.2.4.2 Captaciones laterales

En la **Figura** 2.2 se observó una toma lateral la cual se realizó con la finalidad de excluir, en la mayor cantidad posible, el ingreso de sedimento cuando los caudales no son muy elevados. Estas tomas tienen un ángulo de inclinación correspondiente con la dirección del flujo. Los azudes de derivación deberán estar ubicados frontalmente al flujo del cauce y a la captación de las orillas. La ubicación adecuada se encuentra a los costados del rio, con especial preferencia en los tramos rectos en ríos de llanuras o pie de montaña. (Orozco Coello, 2010) (CPE INEN 5 Parte 9-2, 1997)

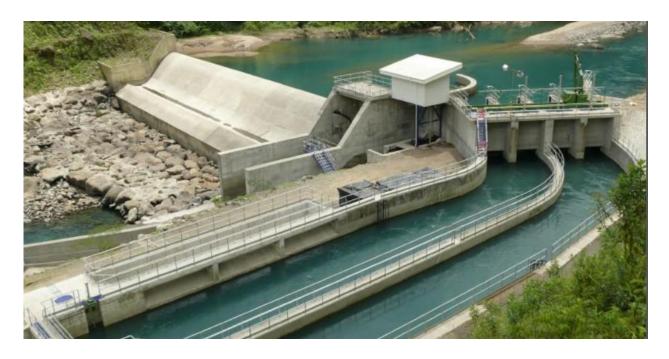


Figura 2.2 Captación lateral en un río. [Ramiro & Erazo, 2017]

2.2.4.3 Captación tipo dique

En la Figura 2.3 se observó una obra tipo dique, esta obra consiste en construir transversalmente al cauce del río, un dique de represamiento, el área de captación se ubicará sobre la cresta del vertedero central y para su protección se emplean rejas que permiten el paso del agua. (Paniagua & Báez, 2011)

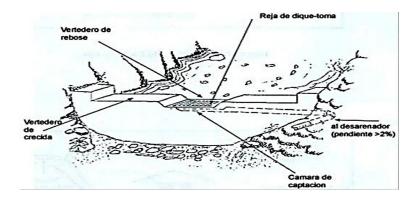


Figura 2.3 Ejemplo de componentes básicos en captación tipo dique. [Paniagua & Báez, 2011]

2.2.5 Muro en voladizo

Según (Das, 2012) para el diseño de muros en voladizo se utilizó en la ecuación (2.1) de teoría de la presión activa de tierra de Rankine para calcular la presión lateral de la tierra en las revisiones de estabilidad del muro.

$$P_{P} = \frac{1}{2} K p \gamma^{2} D^{2} + 2C_{2}' \sqrt{K_{P} D}$$
 (2.1)

Donde:

 $\gamma^2=$ peso especifico del suelo bajo la losa de base y frente al talon

Kp = coeficiente de presion pasiva de Rankie

 $C_2' = cohesion$

Adicional (Das, 2012) detalla que un muro en voladizo puede fallar y para ello se determina factores de seguridad para las siguientes fallas:

2.2.5.1 Contra el volcamiento

Para el factor de seguridad contra el volcamiento con respecto a la puntera la ecuación (2.2) consideró los mementos de las fuerzas que tienden a volcar el muro $\sum M_R$ y la suma de los momentos de las fuerzas que tienden a resistir $\sum M_o$.(Das, 2012)

$$FS(Volc) = \frac{\sum M_R}{\sum M_O}$$
 (2.2)

2.2.5.2 Contra el deslizamiento

Para evitar el deslizamiento del muro se consideró las sumatoria de las fuerzas horizontales resistentes y la suma de fuerzas horizontales de empuje expresadas en la ecuación (2.3):

$$FS(Desl) = \frac{\sum F_R}{\sum Fd}$$
 (2.3)

2.2.5.3 Suelo de cimentación es estable

Para que el suelo de cimentación sea estable debe de cumplir la ecuación (2.4):

$$R = Fv/B (1 \pm 6e/B)$$
 (2.4)

Donde:

R = presión a la cual está expuesta el suelo

Fv = fuerzas verticales que actúan sobre el muro

E = excentricidad

B = base del muro

2.2.6 Azud

Este tipo de estructura sirve para que el cauce del rio continue después de una obra de toma, evitando de esta manera las posibles socavaciones que pueden ocasionar los resaltos hidráulicos, como los ejemplos de las **Figura** 2.4 y Figura 2.5, el cual va a ser diseñado en el ámbito hidráulico para el proyecto.

Figura 2.4 Ejemplo de construcción de Azud. [Ramiro & Erazo, 2017]

Figura 2.5 Instalación de Azud en Rio. [Ramiro & Erazo, 2017]

2.2.7 Diseño de conducciones

Según el (CPE INEN 5 Parte 9-2, 1997). La información que se analiza para el diseño de una línea de conducción es la siguiente.

 Topografía del terreno, estudios geológicos del suelo y estudio de Plano topográfico y Calidad fisicoquímica del agua a ser conducida. Una vez tabulada la información de la línea de conducción continuamos con el diseño, el cual deberá contar con válvulas rompe presión, de regulación, de aire, de purga y además accesorios que garanticen un funcionamiento continuo y permitan, de forma eficiente, su operación y mantenimiento. Sumado a esto, para mantener la estabilidad física de la tubería, se deben diseñar estructuras como anclajes, tensores, etc. (CPE INEN 5 Parte 9-2, 1997)

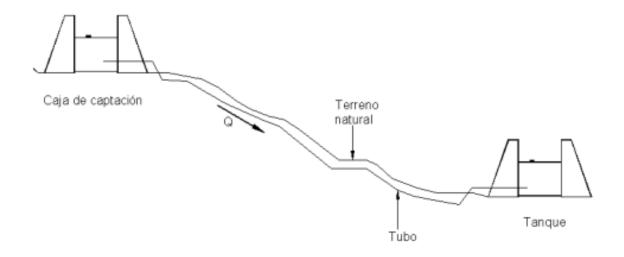


Figura 2.6 Elementos de básicos en una línea de conducción.[SAGARPA, n.d.]

2.2.7.1 Selección de tubería

Al seleccionar la tubería de conducción de agua para riego, se estableció en base a las especificaciones de material establecidas, como en recomendaciones de códigos aplicables y estándares dimensionales. Por este motivo se consideró también los parámetros y requerimientos de servicio como lo son: resistencia mecánica, corrosión. Costo, vida útil y facilidad de instalación. El criterio económico se determinó por el tipo de tubería, así como por su diámetro y espesor. (SAGARPA, 2020)

2.2.7.2 Ecuación de Darcy-Weisbach

La ecuación (2.5) es de uso universal (válida para todos los fluidos) y posibilita el cálculo de conducciones unidimensionales vinculando las variables Diámetro de la Conducción D, pérdida de energía o de "Carga" y Caudal Q. (PÉREZ FARRÁS, 2013).

$$\Delta J_{1-2}^* = \Delta J_{1-2} = f \frac{\Delta L_{1-2} U^2}{D * 2g}$$
 (2.5)

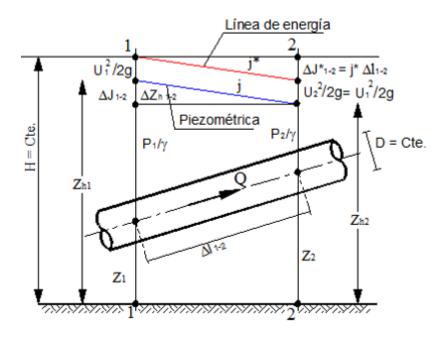


Figura 2.7 Esquema de conducción a presión. [PÉREZ FARRÁS, 2013]

En la expresión, las variables intervinientes son las que se indican Figura 2.7, en donde se apreció el esquema de una conducción a presión, de sección constante, que escurre de forma permanente y uniforme un caudal Q. en la misma se apreció también el diámetro de la conducción, el caudal, las líneas de energía total y la piezométrica, que permiten definir las variables hidrodinámicas de la ecuación de referencia. (PÉREZ FARRÁS, 2013)

A continuación, se muestra un resumen.

 ΔJ_{1-2}^* es la "Pérdida de Energía Hidráulica" entre las secciones 1-1 y 2-2.

 ΔJ_{1-2} es la "Pérdida de carga" entre las secciones 1-1 y 2-2.

f es el "Coeficiente de Fricción", el desarrollo del cual pretendemos narrar a través de los distintos autores y consecuentes tiempos.

zi son las "alturas" respecto a un plano arbitrario de comparación (expresión de Bernoulli).

zhf son las "alturas" suma de las alturas topográficas" y de "presión" en cada sección transversal.

D es el "Diámetro" de la conducción

Q es el "Caudal" que escurre

U es la "Velocidad media" del escurrimiento.

 Δ L (1-2) es la "longitud" del tramo de conducción considerado.

2.2.7.3 Estaciones reductoras de presión.

Cumplen la función de fragmentar la línea piezométrica, establecen un nuevo nivel estático y reducen la altura de presión, lo que da lugar al uso de tuberías de menor espesor y, en consecuencia, menor costo. En caso de aparecer depresiones muy profundas, puede resultar económico colocar depósitos intermedios, conocidos como cajas rompedoras de presión. (SAGARPA, 2020)

Su empleo esta recomendado cuando se quiere mantener las presiones máximas de servicio dentro de una red de distribución, también cuando la calidad de las tuberías, válvulas y accesorios no permiten soportar presiones muy elevadas. (SAGARPA, 2020)

2.2.8 Tanque de almacenamiento

 Según el (CPE INEN 5 Parte 9-2, 1997) para diseñar el tanque de almacenamiento se debe considerar el plano topográfico detallado del sitio y los estudios de suelos del lugar.

Según el (CPE INEN 5 Parte 9-2, 1997). Al terminar de recopilar y obtener toda la información se toman en cuenta los siguientes criterios de diseño.

 El tanque se debe diseñar de tal manera que su forma proporcione la máxima economía, al considerar los costos de cimentación, estructura y utilización de área, adicional el fondo del tanque se localizará como mínimo a 0,50 m sobre la cota del nivel freático o de la máxima cota de inundación.

- En la construcción, total o parcialmente, bajo el nivel del suelo, la distancia mínima a una alcantarilla de aguas servidas debe ser de 30 m, además el área de implantación del almacenamiento se debe proteger del escurrimiento superficial.
- La entrada y salida de agua será dada por tuberías independientes y de preferencia localizadas en extremos opuestos, adicional se debe preverse un paso directo (baipás).
- Las tuberías de entrada y salida estarán provistas de sendas válvulas de compuerta.
- Las tuberías de rebose descargarán libremente y su diámetro deberá tener la capacidad de evacuar el caudal máximo de alimentación, además en la tubería de desagüe estará incorporada una válvula de compuerta y la descarga funcionará libre.
- Sobre el nivel máximo se proyectará una cámara de aire que cuente, por lo menos, con 0,30 m de altura, además se debe restringir de forma permanente. La entrada de luz natural

Figura 2.8 Tanques de almacenamiento. [Industrial Plastirrey, 2022]

2.2.9 Análisis de diseño propuestas

Para el diseño se realizó 3 propuestas en base a la obra de captación, la cual es el elementó más sensible en el proyecto, ya que el trazo de la línea de conducción se diseñó según la

topografía, y el diseño del tanque de almacenamiento se optó por uno de similares características a los que se encuentran en la zona.

2.2.10 Análisis de restricciones y opciones

Para un correcto análisis se consideran los criterios de evaluación tales como: espacio, impacto social, presupuesto, nivel del rio y caudal además del transporte de sedimentos.

Espacio

El tamaño de la obra afecta de forma directa y considerable al espacio que esta ocupa. Algunas ocupan menor espacio que otras, lo que delimita su factibilidad. (CPE INEN 5 Parte 9-2, 1997)

2.2.10.1 Impacto social

La captación de agua para riego en temporada seca representa un prominente beneficio para la economía de los habitantes. Cada proyecto relacionado a la captación de agua afecta a los pueblos contiguos, debido a la envergadura del proyecto y su incidencia en el espacio de las personas, la influencia o la percepción social puede ser tanto positiva como negativa dependiendo del caso. (Tomalá De La Cruz & Vera López, 2021)

2.2.10.2 Presupuesto

Según el (CPE INEN 5 Parte 9-2, 1997) se debe analizar la disponibilidad y precios de los materiales de construcción principales y la mano de obra, en la misma localidad del proyecto o en otra desde la cual se realizaría el abastecimiento para la etapa de construcción. Los costos de mantenimiento, compensación y construcción llegan a influir de manera imperativa en la elección del tipo específico de captación que se elige, dependiendo de la obra, se necesita el uso de bombas, tuberías de succión, presas y muros de contención, entre otra infraestructura, lo que incrementa el presupuesto inicial del proyecto. (CPE INEN 5 Parte 9-2, 1997)

2.2.10.3 Impacto ambiental

El tamaño del diseño de proyecto es un factor de enorme relevancia, pues no solo afecta al ecosistema, sino que además se debe considerar que el caudal del que se obtiene debe ser suficiente para mantener la vida acuática del rio. La cantidad de agua que se va a extraer de la cuenca es fundamental. Al juntar estos factores podemos notar lo crucial que es analizar el impacto ambiental que representa el proyecto.

2.2.10.4 Caudales y niveles del río

Para determinar la cantidad, tipo, ubicación y tamaño de la rejilla u orificio que se va a emplear en la captación, debemos considerar diversos factores que experimenta el rio durante el periodo seco, como lo serian el caudal, los tirantes y la capacidad de instalación. (Bautista, 2014) (Tomalá De La Cruz & Vera López, 2021)

2.2.10.5 Transporte de sedimentos

La cantidad de sedimentos que se trasladan en un río es otro factor importante para determinar el tipo de obra de captación. Por esto se puede cambiar las dimensiones de los principales elementos de capación como serían los orificios, rejillas, ductos, canales de limpieza entre otros.(Bravo-Espinosa et al., 2001) (Tomalá De La Cruz & Vera López, 2021)

2.2.10.6 Selección de la alternativa de diseño

De acuerdo con la importancia de cada proyecto se realizó una valoración mediante una serie de alternativas las cuales fueron descritas anteriormente y serán evaluadas con puntajes del 1 al 5 según la importancia. Siendo 5 muy viable, 4 viable, 3 ni tan viable ni tan difícil, 2 difícil y 1 muy difícil. En la Tabla 2.1 se indican las calificaciones asignadas para cada alternativa, según los parámetros establecidos.

Elaboración de matriz de Likert según las alternativas escogidas.

Tabla 2.1 Matriz de Likert para evaluación de impacto ambiental

	Espacio	Impacto Social	Presupuesto	Impacto Ambiental	Niveles Y Caudales Del Rio	Según El Transporte De Sedimentos	Total
Captación Por Bombeo	5	3	1	1	5	1	16
Captación Con Flujo Transversal	1	5	2	1	5	4	18
Captación Tipo Dique	4	5	4	4	3	3	22

- Para las captaciones de bombeo, se debe considerar un grado alto en el espacio y
 los niveles y caudales del rio, ya que el espacio que ocupa es pequeño. En impacto
 social no afecta de manera, pero en el transporte de sedimentos si afecta
 considerablemente ya que se debe considerar la bomba capaz de evitar la entrada de
 sedimentos. Y el impacto ambiental y presupuesto van de la mano ya que implica
 dañar el ecosistema con la construcción de torres que generen electricidad y por ende
 aumentaría el presupuesto de la obra.
- Para las captaciones con flujo transversal debido al gran tamaño de la obra se debe considerar un puntaje bajo con respecto al presupuesto, el espacio y el impacto ambiental. Aunque la obra tiene el mayor puntaje con respecto al transporte de sedimentos ya que es la más adecuada ya que se encuentra aún lado del rio. Y los niveles del rio no afecta mucho, en este caso con la elaboración de una rejilla móvil se solucionará el problema.
- Para las captaciones tipo dique debido a que no necesitan de mucho espacio para su construcción tiene una valoración alta con respecto al impacto social, espacio, presupuesto y a su vez no tiene incidencia en el impacto ambiental. Además, el transporte de sedimentos y el nivel del rio no afecta de manera significativa ya que con el uso de rejillas y un buen diseño se da solución a esto.

Una vez hecho el análisis de las distintas obras que se pueden emplear en el proyecto se elige la de captación tipo dique la cual se adaptó a nuestra zona de estudio y que mayor puntaje obtuvo con respecto a las otras.

2.2.11 Definiciones generales

2.2.11.1 Afluente

Es el líquido que ingresa a una planta de tratamiento, cuerpo receptor, reservorio de agua o cuerpo de agua receptor.(Ministerio Del Ambiente, 2015)

2.2.11.2 Agua superficial

Es el cuerpo de agua que se encuentran sobre la superficie de la tierra, por ejemplo, un manantial.(Ministerio Del Ambiente, 2015)

2.2.11.3 Autoridad Ambiental Competente

Es el encargado de llevar los procesos de control, seguimiento y prevención de la contaminación ambiental, en donde destaca el Ministerio del Ambiente y por delegación los gobiernos autónomos metropolitanos y descentralizados provinciales acreditados. ((Ministerio Del Ambiente, 2015)

2.2.11.4 Canales

Construcciones utilizadas para el transporte de fluidos, las cuales están destinadas para múltiples propósitos. ((Ministerio Del Ambiente, 2015)

2.2.11.5 Captación.

Obra civil que permite aportar el caudal necesario, desde la fuente o manantial hacia el sistema de abastecimiento.(CPE INEN 5 Parte 9-2, 1997)

2.2.11.6 Conducción.

Obra que permite el transporte del líquido desde una obra de captación hasta la zona de tratamiento en condiciones óptimas.(CPE INEN 5 Parte 9-2, 1997)

2.2.11.7 Contaminación del agua

Alteración en altas concentraciones en el ecosistema acuático, ya sea físicas, químicas o biológicas, tales que causan un efecto adverso al ambiente, consumo humano que la hacen no apta para el uso deseado. ((Ministerio Del Ambiente, 2015)

2.2.11.8 Cuerpo receptor

Cuerpo de agua que recibe directa o indirectamente el vertido de aguas residuales. ((Ministerio Del Ambiente, 2015)

2.2.11.9 Dotación de riego.

Caudal necesario para regar una hectárea en promedio.

2.2.11.10 Estudios ambientales

Es el conocimiento contenido en informes, publicaciones u otros documentos y es el resultado de la observación, la práctica, la aplicación y experimentos, done se utiliza de otro modo para identificar e interpretar el estado actual de un área o componente definido por el medio ambiente. y sus componentes o se conviertan en herramientas para medidas preventivas, integrales y de seguimiento.(Ministerio Del Ambiente, 2015)

2.2.11.11 Norma (estándar) de calidad del agua

Documento que estipula reglamentos o leyes de control de la contaminación del agua, a nivel gubernamental.(CPE INEN 5 Parte 9-2, 1997)

2.2.11.12 Tanque de almacenamiento

Reservorio o deposito destinado a cubrir la demanda de agua debido a las variaciones horarias de consumo, ya sea de riego, agua potable.(CPE INEN 5 Parte 9-2, 1997)

CAPITULO 3

3. DISEÑO DE LA SOLUCIÓN

3.1 Bases de diseño

Para el presente diseño, se tomó en cuenta la topografía como factor predominante, es así como, para el sector San Simón con topografía eminentemente montañosa. Todas las redes están diseñadas para trabajar a gravedad con tuberías a presión, por la ubicación de los tanques de reserva nos ha permitido realizar este diseño. Como parámetro de diseño se consideró los siguientes datos proporcionados por el (GAD Guaranda, 2020)

- Áreas de regadíos.
- Porcentaje (%) de siembra de los terrenos.
- Caudales mínimos para el funcionamiento de los aspersores.

3.1.1 Período de diseño

Período de diseño adoptado: 25 años.

Los requerimientos del caudal de diseño fueron solicitados por el GAD municipal, en base a ese caudal se realizó una aproximación hacia el periodo. Este período, no contempla el tiempo efectivo dedicado a la planificación, financiamiento, ni construcción de la red de agua para riego, debido a que el período de diseño empieza desde su funcionamiento.(INAMHI, 2015)(CPE INEN 5 Parte 9-2, 1997)

3.1.2 Área servida

Según el (GAD Guaranda, 2020) el área total en la parroquia San Simón a la cual se dará servicio, es de 230 Ha. Siendo 490 lotes de terreno agrícola a servir. No se contemplan áreas futuras u conexión a otras comunidades, por no contar con nuevas fuentes que provean de agua para regadío.

3.1.3 Caudales de diseño para el tanque de almacenamiento

Según el (GAD Guaranda, 2020) el caudal de cada aspersor es de 0.42 l/s por cada Hectárea, además según la información que obtuvo el GAD Guaranda el porcentaje de siembra por cada hectárea en la parroquia San Simón es de aproximadamente 68% y el área que se beneficiara de este proyecto es de 230 hectáreas. Debido a lo antes expuesto Cada ramal cubrirá la demanda de agua para riego de un cierto sector o área de aportación, debido a esto se plantea la ecuación (3.3) para conocer el caudal necesario para riego en la parroquia San simón.

$$Qnec = Qaspesor(\frac{lt}{s}) * Area(ha) * \% de siembra$$

$$Qnec = 0.42 \left(\frac{lt}{s}\right) * 230 ha * 0.68$$

$$Qnec = 66 \frac{lt}{s}$$
(3.1)

3.2 Diseño de la obra de captación

Para el diseño de la obra se tomó en cuenta diferentes factores como:

3.2.1 Topografía

La topografía se realizó mediante la cuenca de drenaje, con la ayuda del software Earth Explorer para la obtención de datos como se muestra en la ¡Error! No se encuentra el origen de la referencia. para delimitar la ubicación de la obra de toma y el nivel de afectación de la cuenca de estudio.

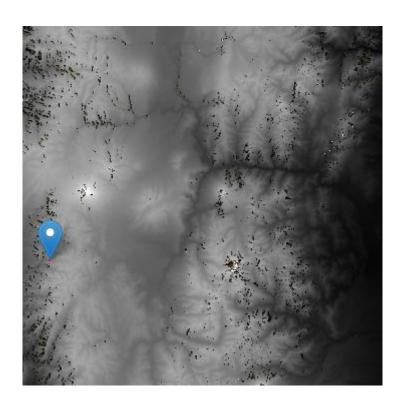


Figura 3.1 Imagen ráster de niveles de la zona. [Earthexplorer, 2022]

A continuación, con la ayuda del software ArcGIS se delimitó el área de afectación de la cuenca de estudio aguas arriba de la zona de captación como se indica en la **Figura 3.1**, con la ayuda del software ArcGIS, con el fin de poder aplicar el método racional para encontrar el caudal en la cuenca según el periodo de retorno.

Figura 3.2 Área de influencia para cálculo de caudal, realizada en ArcGIS

Mediante la topografía del terreno, dato proporcionado por el (GAD Guaranda, 2020) se delimitó la pendiente del terreno. Tomando en cuenta el punto inicial de la captación, y el punto final el sitio de construcción de los tanques de almacenamiento se utilizó la ecuación (3.2 para determinar la pendiente del terreno.

$$m = \frac{Y2 - Y_1}{X_2 - X_1}$$

$$m = \frac{23724.2 - 3394.3}{13427.2091}$$

$$m = 0.0246$$
(3.2)

Obteniendo como pendiente un 2,5% según la altimetría de todo el terreno.

3.2.2 Hidrología

Para la recolección de información hidrológica, se obtuvo información proporcionada por el (INAMHI, 2015). De las cuales se seleccionó la estación San Simón M0030, que está más cercana a la zona de estudio, y la cual posee ecuaciones de curvas IDF mostradas en la Figura 3.3:

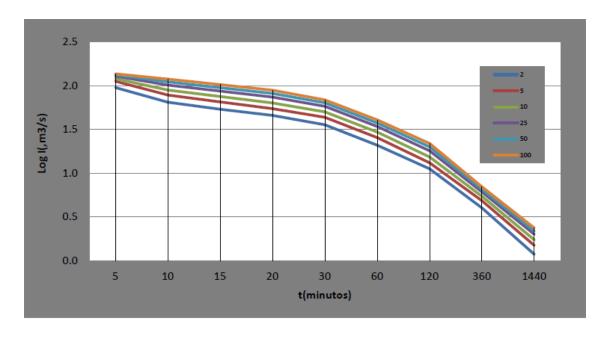


Figura 3.3 Curvas IDF de la parroquia San Simón. [INAMHI, 2015]

Mediante experiencias de campo se sabe que una tormenta dura aproximadamente 120 minutos, pero se necesita saber el tiempo donde el tiempo de mayor intensidad, del cual se consultó a los habitantes de la parroquia San Simón y manifestaron que dicha lluvia tiene un aproximado de 15 minutos. Una vez obtenido estos datos se procede al cálculo de la intensidad máxima para el tiempo de 15 minutos y periodo de retorno de la obra que es 25 años según la normativa ecuatoriana, información obtenida del (INAMHI, 2015), que se detalla en la Figura 3.3 mediante la ecuación (3.3) para el intervalo de 5 a 30 min:

$$i = 174.8695 * T^{0.1457} * t^{-0.459}$$
 (3.3)

Donde:

T: periodo de retorno, años

t: tiempo de duración de la tormenta, min

i: intensidad de lluvia, mm/h

ESTACIÓN		INTERVALOS DE TIEMPO	ECHACIONES		
CÓDIGO	NOMBRE	(minutos)	ECUACIONES	R	R ²
		5<30	$i = 174.8695 * T^{0.1457} * t^{-0.459}$	0.9851	0.9704
M0030 SAN SIMÓN	30<120	$i = 589.2026 * T^{0.1703} * t^{-0.8441}$	0.9978	0.9957	
		120<1440	$i = 695.4409 * T^{0.1622} * t^{-0.885}$	0.9981	0.9963

Figura 3.4 Intensidades y duración de precipitaciones. [INAMHI, 2015]

Según la información obtenida del (INAMHI, 2015). Mediante la ecuación (3.3) nos da como resultado una intensidad máxima de 80.64 mm/h la cual se detalla en la Figura 3.4. Con estos datos se emplea la fórmula del método racional para la obtención del caudal de diseño.

		Períod	lo de Retor	no T (años)		
(min)	2	5	10	25	50	100
5	92.4	105.6	116.8	133.5	147.7	163.4
10	67.2	76.8	85.0	97.1	107.5	118.9
15	55.8	63.8	70.6	80.6	89.2	98.7
20	48.9	55.9	61.8	70.7	78.2	86.5
30	37.6	43.9	49.4	57.7	65.0	73.1
60	20.9	24.5	27.5	32.2	36.2	40.7
120	11.2	13.0	14.6	16.9	19.0	21.2
360	4.3	4.9	5.5	6.4	7.2	8.0
1440	1.2	1.4	1.6	1.9	2.1	2.4

INTENSIDAD MAXIMA (mm/h)

Figura 3.5 Intensidades Máximas para distintos periodos de retorno. [INAMHI, 2015]

3.2.2.1 Caudal de diseño

Según(INAMHI, 2015) .Para el cálculo del caudal de diseño se utilizó el método racional, el cual asume una precipitación uniforme en el tiempo y en el espacio, este método no puede ser empleado en cuencas mayores a 200 Ha. La ecuación (3.4) del método racional se presenta a continuación:

$$Q = \frac{CIA}{3.6} \tag{3.4}$$

Donde:

Q = Caudal [m3/s];

C = Coeficiente de escorrentía;

I = Intensidad de precipitación [mm/h];

A = Superficie de la cuenca [km2]

Los datos obtenidos son los siguientes:

Área: 0.013 Km2

Intensidad: 80.6 mm/h

Debido a que la zona de estudio se trata de una cuenca virgen, se utilizó un coeficiente de escorrentía de 0.4

C = 0.4

Una vez obtenido los datos, se procedió al cálculo del caudal mostrado en la Tabla 3.1.

Tabla 3.1 Cálculo de caudal de diseño en la tubería

	CIA/3.6	
Q (m3/s)	0,22497222	
С	0,4	
I (mm/h)	80.6	25 años
A (km2)	0,013	
Q(L/S)	224,972222	

La ¡Error! No se encuentra el origen de la referencia. dio como resultado un caudal aproximado de 225 L/S, el cual es el caudal máximo que se va a producir en base al periodo de retorno, el caudal se empleará en el cálculo de los muros del dique.

3.2.3 Geología

La toma de muestras del suelo se realizó mediante calicatas cada 2 km aproximadamente alrededor de la línea de conducción la cual tiene una longitud aproximada de 14 km, en cada punto se obtuvo 3 muestras las cuales se las identificó como **S2** para una profundidad de 0.7m, **F** para una profundidad de 0.8m y **F1** para una profundidad de 1m.

Figura 3.6 Identificación de las muestras de suelo

3.2.3.1 Porcentaje de humedad

El porcentaje de humedad se realizó con cada muestra llevada al laboratorio este consiste en pesar la muestra húmeda tomada en campo, a su vez esta muestra debe ser almacenada en un recipiente con su respectiva identificación.

Una vez realizado este proceso se procede a introducir al horno por un lapso de 24 horas, para luego tomar el peso seco más el recipiente de cada muestra, con el fin de saber el porcentaje de humedad de cada muestra.

Figura 3.7 Toma de peso de la muestra seca

A continuación, mediante la ecuación (3.5) se determinó el porcentaje de humedad de cada muestra.

% de humdad =
$$\frac{Pagua de la muestra}{P seco de la muestra} x 100$$
 (3.5)

Los resultados se observan en la Tabla 3.2.

Tabla 3.2 Porcentaje de humedad del suelo

		HUM	EDAD		
	REC+MUEST	REC+MUEST		PESO SECO	
MUESTRA	RA SECA	RA HUM	PESO REC	MUESTRA	HUMEDAD
P1F	473.5	583.88	111.38	362.12	30.5
P1F1	431	534.73	98.09	332.91	31.2
P1S2	326.7	418.28	81.95	244.75	37.4
P2F	315.8	442.42	93.99	221.81	57.1
P2F1	264.7	363.44	91.64	173.06	57.1
P2S2	264	357.56	93.91	170.09	55.0
P5F	666.7	752.66	99.13	567.57	15.1
P5F1	448.6	509.44	93.49	355.11	17.1
P5S2	449	526.43	91.03	357.97	21.6
P7F	592.5	657.82	95.16	497.34	13.1
P7F1	613.4	675.46	91.43	521.97	11.9
P7S2	502.8	542.38	93.99	408.81	9.7
P11F	353.4	476.49	83.3	270.1	45.6
P11F1	271.7	358.68	86.3	185.4	46.9
P11S2	335.7	389.18	89.18	246.52	21.7
P12F	326.6	457.28	95.5	231.1	56.5
P12F1	250.5	336.08	97.87	152.63	56.1
P12S2	265.4	362.94	93.91	171.49	56.9
PR1F	263.1	355.05	100.56	162.54	56.6
PR1F1	259.8	352.87	97.05	162.75	57.2
PR1S2	346.6	468.2	107.53	239.07	50.9

3.2.3.2 Granulometría

La granulometría se la determinó para saber el porcentaje de finos que tienen cada una de las muestras, este proceso se lo realiza después de secar las muestras al horno, este lapso de secado tiene un tiempo de duración aproximado de 24 horas.

Luego se realiza un lavado del material mediante el tamiz 200 como observa en la Figura 3.8, después de este lavado todo el excedente sobre el tamiz 200 se lo almacena en un recipiente, del cual se toma los datos de la masa del recipiente más la masa del excedente de material sobre el tamiz 200.

Figura 3.8 Lavado de material con tamiz 200.

Una vez realizado esto se procede a dejar en el horno un lapso de 24 horas. Para luego realizar una nueva toma de datos ya con la muestra seca más el recipiente y así poder identificar las muestras que tengan un porcentaje mayor al 50 por ciento de finos.

A continuación, se determina el porcentaje de finos de cada muestra, mediante la ecuación (3.6):

$$G = \left(\frac{F}{C}\right) * 100 \tag{3.6}$$

Donde:

G = Porcentaje mas fino que el tamiz No 200 (%)

F = Masa de la muestra que paso el tamiz No 200 (g)

C = Masa de la muestra seca antes del lavado(g)

Los resultados de la granulometría se detallan en la Tabla 3.3.

Tabla 3.3 Granulometría del suelo

	GR	ANULOMET	RÍA	
MUESTRA	PESO REC	С	F	G
P1F	111.38	116.92	33.7	28.82
P1F1	98.09	112.91	34.9	30.91
P1S2	81.95	117.85	54.8	46.50
P2F	93.99	101.21	53.8	53.16
P2F1	91.64	100.26	54.5	54.36
P2S2	93.91	108.29	66.6	61.50
P5F	99.13	111.47	18.5	16.60
P5F1	93.49	114.11	21.1	18.49
P5S2	91.03	114.87	21.6	18.80
P7F	95.16	105.74	24.2	22.89
P7F1	91.43	113.67	19.1	16.80
P7S2	93.99	110.91	18.7	16.86
P11F	83.3	106.8	57.1	53.46
P11F1	86.3	104	63.8	61.35
P11S2	89.18	112.92	63.9	56.59
P12F	95.5	113.1	64.1	56.68
P12F1	97.87	111.25	64.3	57.80
P12S2	93.91	102.79	57.8	56.23
PR1F	100.56	100.64	70.3	69.85
PR1F1	97.05	100.75	71	70.47
PR1S2	107.53	130.07	95.7	73.58

3.2.3.3 Límites de Atterberg

El ensayo de límites se realizó luego de haber obtenido la granulometría de cada muestra, de estas muestras se eligió solo las que tengan un porcentaje de finos mayor a 50%. las muestras que cumplen con el porcentaje de finos mayor al 50% son las ubicadas en los puntos P2, P11, P12 Y PR1.

El ensayo de limites se realizó lavando del material mediante el tamiz 40 como se observa en la Figura 3.9, después de este lavado todo el pasante sobre el tamiz 40 se lo almacena en un recipiente, del cual se toma los datos de la masa del recipiente más la masa del material pasante sobre el tamiz 40.

Figura 3.9 Lavado del material sobre el tamiz 40

El ensayo consiste en saturar la muestra hasta un punto de equilibrio, para determinar el límite líquido y límite plástico de las muestras, luego por medio de la cuchara de Casagrande (Figura 3.10) mediante el número de golpes determinar lo estados antes mencionados.

Figura 3.10 Cuchara casa grande.

Debido a que el suelo se situó en una zona montañosa y con cercanías de actividad volcánica. Se observó que es este tipo de suelo contiene una gran cantidad de cenizas, por lo cual no se puedo realizar el ensayo de límites.

Debido a esto se tomó como referencia los resultados de (Zúñiga & Víctor, 2020).

3.2.3.4 Resultados de análisis de la geotecnia de la ciudad de Guaranda

La geotecnia del suelo del cantón Guaranda según (Zúñiga & Víctor, 2020), da como resultado una arena limosa, con las propiedades que se indican en la Tabla 3.4:

Tabla 3.4 Propiedades del suelo del cantón Guaranda [Zúñiga & Víctor, 2020]

Peso volumétrico	γ= 1.7 ton/m3
Resistencia a compresión no confinada	Qu= 27 ton/m2
Ángulo de fricción interna	Ø= 49
Cohesión	C= 1Ton/m2

3.2.4 Dimensiones de la captación

3.2.4.1 Longitud de la cresta

Mediante el software H-canales se diseñó la longitud de la cresta, tomando como referencia el caudal que cruzara por el vertedero dado por el GAD Guaranda de 42 L/S el cual se obtuvo por el método volumétrico, el diseño se realizó para un perfil tipo Creager, mediante la ecuación (3.7):

$$Q = C_d(L - 0.1nh)h^{1.5} (3.7)$$

Donde:

Q = caudal de diseño en L/S

L = longitud de la cresta del vertedero en m

h = carga sobre el vertedero en m

n = número de contracciones

Cd = coeficiente de descarga

A continuación, en la Figura 3.11 se muestra los resultados obtenidos por el programa para el perfil tipo Creager.

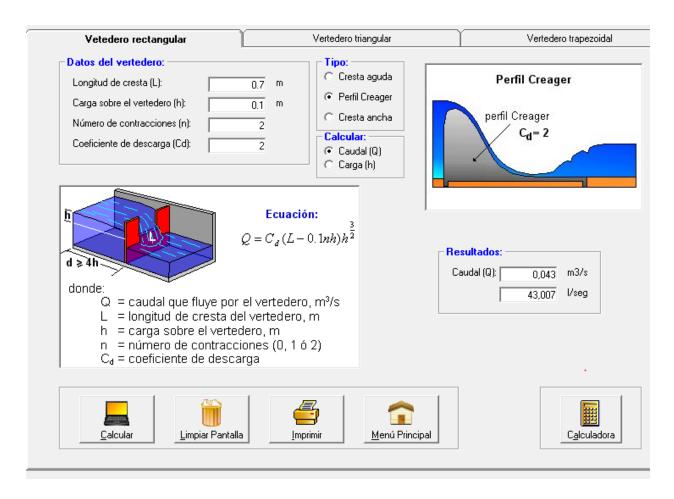


Figura 3.11 Longitud de cresta del dique, mediante el uso del software (H-CANALES)

Dando como resultado lo siguiente:

Una longitud de cresta del vertedero de 0.7 m.

3.2.4.2 Diseño del perfil de la lámina de agua

A continuación, en la Figura 3.12 se muestra los resultados obtenidos mediante el software HCANALES para el diseñó del perfil de la lámina de agua de la toma, con los datos de estudio.

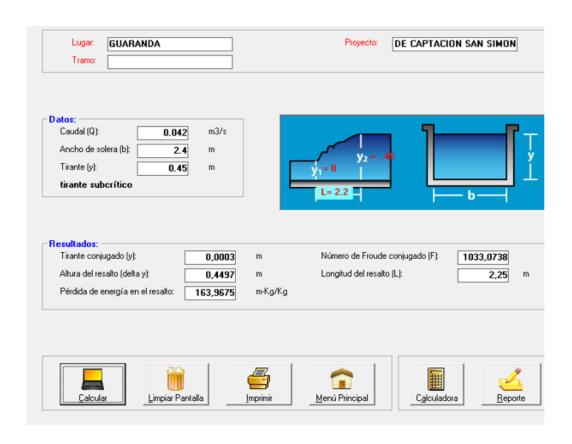


Figura 3.12 Longitud de la lámina de agua mediante el uso de HCANALES

Dando como resultado:

Tabla 3.5 Perfil de la lámina de agua

Lugar: GUARANDA
Proyecto: OBRA DE CAPTACION SAN SIMON
Caudal (Q): 0.042 m3/s
Ancho de solera (b): 2.4 m
Tirante (y): 0.45, es el tirante subcrítico
Tirante conjugado (y): 0,0003 m
Número de Froude conjugado (F): 1033,0738
Altura del resalto (delta y): 0,4497 m
Longitud del resalto (L): 2,25 m
Pérdida de energía en el resalto (delta E): 163,9675 m-Kg/Kg

Los valores presentados en la Tabla 3.5, serán utilizados en el diseño de la obra de captación.

A continuación, Figura 3.13 se detalla el perfil de la lámina de agua que produce la obra de toma.

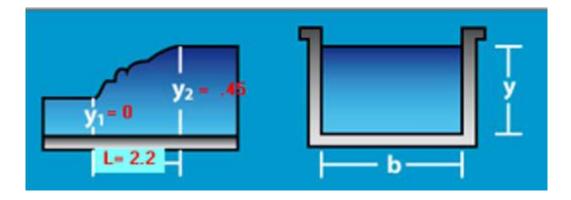


Figura 3.13 Perfil de la lámina de agua realizado en H-Canales

En el ¡Error! No se encuentra el origen de la referencia. se especifican los detalles. Donde se tomará como opción un colchón disipador de aproximadamente 2.25 m, elaborado con piedra bola, el cual servirá para evitar posibles erosiones en el suelo del cauce del rio aguas abajo, el cual se detalla en el **Plano 2** del apartado anexos.

3.2.4.3 Diseño de los muros

El diseño de la obra de contención se realizó en base al máximo caudal que se va a producir tomando en consideración el periodo de retorno recomendado por la normativa ecuatoriana para obras de captación, el caudal es de 225 L/S, con una longitud de 2.4m. Por lo cual se utilizó la ecuación (3.8).

$$H = \left(\frac{Q}{1.84L}\right)^{2/3}$$

$$H = 0.16m$$
(3.8)

Dando como resultado de 0.16m por encima de la cresta del dique.

Para la altura total del muro se tomó en consideración los datos mostrados en la Tabla 3.6:

Tabla 3.6 Datos para la altura del muro

Altura de la lámina de agua sobre la cresta	0.16m
Altura del dique	0.45m
Mejoramiento de solera	0.5m
Contención de agua	0.4m
Borde libre	0.4m

3.2.4.3.1 Diseño del muro en voladizo

Para el diseño del muro se tomaron en cuenta los parámetros de la geotecnia del suelo del cantón Guaranda según (Zúñiga & Víctor, 2020). Los parámetros utilizados para el diseño para el diseño del muro se presentan en la Tabla 3.7.

Tabla 3.7 Dimensiones del muro en voladizo

DISEÑO DE MURO EN VOLADIZO							
		ATOS:					
Altura total del muro:		H=	1,90		m		
Base (2H/3)	1,27	B =	1,70		m		
Corona (H/12 > 0.30)	0,30	D=	0,30		m		
Espesor zapata (H/6 > 0.30)	0,32	T =	0,40		m		
Punta (H/8)	0,24	p =	0,25		m		
Base de la pantalla		J =	0,40		m		
Base trasera pantalla		K =	0,40		m		
Talón		t =	0,35		m		
Altura de pantalla		h =	1,50	m			
Base delantera	M =	0,65	m				
Base trasera	N =	0,75	m				
Tipo de suelo		Arena limosa					
Peso específico del sue	lo	Ps =	1700,00	Kg/m3			
Peso específico del mur	0	Pm=	2400,00	Kg	/m3		
Angulo de fricción interr	na	Ø=	49,00	° =	0,8552		
Angulo terraplén encima del m	nuro	æ=	0,00	° =	0,0000		
Angulo pared posterior del mu	ıro	ß =	14,93	° =	0,2606		
Coef. de Empuje activo del su	elo	Ka =	0,24				
Capacidad portante del su	d =	1,00	Kg/cm2				
Sobrecarga		q =	0,00	Kg	/m2		
Factor de Seguridad al Volteo	ı	FSV =	2,00				
Factor de Seguridad al Desliza	amiento	FSD=	1,50				
Coeficiente de Rozamiento (0.	.9 Tan æ	e) f =	1,04				

3.2.4.3.2 Cálculo de la estabilidad del muro

La Figura 3.14 detalla las fuerzas y momentos que interactúan en un muro en voladizo, se calculó de la estabilidad del muro mediante la ecuación (3.8.

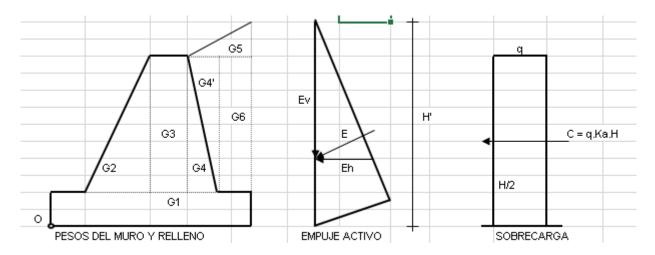


Figura 3.14 Disposición de dimensiones del muro

A continuación, la Tabla 3.8 muestra el valor de la fuerza activa.

Tabla 3.8 Fuerza activa según Rankine

Fuerza Activa:	E = 0.5 * Ps * Ka * (H')^2 =	735.79	Kg
Componentes:	Eh = E * Cos æ =	735.79	Kg

3.2.4.3.3 Cálculo de fuerzas y momentos que actúan en el muro.

Se tomo en cuenta todas las fuerzas verticales y horizontales, además se obtuvo los momentos que actúan en el muro.

Tabla 3.9 Fuerzas y momentos que actúan en el muro

Fuerz	Fuerzas				Momentos			
G1 = T * B * Pm	Ш	1632,00	Kg	M1 = G1 * B/2	=	1387,20	Kg-m	
G2 = 0.5 *J * h * Pm	=	720,00	Kg	M2 = G2 * (M-J/3)	=	372,00	Kg-m	
G3 = D * h * Pm	=	1080,00	Kg	M3 = G3 * (M+D/2)	=	864,00	Kg-m	
G4 = 0.5 * K * h * Pm	II	720,00	Kg	M4 = G4 * (M+D+K/3)	=	780,00	Kg-m	
G4' = 0.5 * K * h * Ps	=	540,00	Kg	M4' = G4 * (M+D+2K/3)	=	657,00	Kg-m	
G5 = 0.5 * N ² * Tan æ * Ps	=	0,00	Kg	M5 = G5 * (M+D+2N/3)	=	0,00	Kg-m	
G6 = t * h * Ps	=	945,00	Kg	M6 = G6 * (B-t /2)	=	1441,13	Kg-m	

El cálculo de fuerzas y momento actuantes sobre el muro son representados en la Tabla 3.9 indicando una fuerza cortante total de 5637kgf, y un momento de 5501 kgf-m.

3.2.4.3.4 Cálculo de los factores de seguridad y determinación si el suelo es estable

Tabla 3.10 Cálculo de factor de seguridad al volteo

FACTOR DE SEGURIDAD AL VOL	(respecto a O)						
Momento de Volteo:	Mv =	Mv = Eh * H' /3 + C * H/2 =			Kg-m		
Factor de Seguridad al Volteo	FSV.	= Mo/Mv	=	5,96	>	2,00	О.К.

El momento de volteo fue de 466 kgf-m, dando como resultado un factor de seguridad de 11.56 y asegura que el muro es apto contra el volcamiento.

Tabla 3.11 Cálculo de factor de seguridad al desplazamiento

	FACTOR DE SEGURIDAD AL DESLIZAMIENTO.								
Fr	= f * Fv =	5750,75		Kg					
Fa	actor de Seg	uridadl Desliza	dl Deslizamiento FSD. = Fr / (Eh + C) = 7,82 > 1,50 O.K.						

El cálculo del factor de seguridad al deslizamiento toma en consideración la fuerza cortante, y los parámetros expresados en la Tabla 3.9, para el cálculo del factor de seguridad al deslizamiento se procede como se indica en la Tabla 3.11.

Tabla 3.12 Ubicación de la resultante en la base

UBICACIÓN DE LA RESULTANTE EN LA BASE.								
X = (Mo - Mv) / Fv > B/3	====>		X =	0,81	>	0,57	O.K	
Excentricidad: e = B/2 - X =	0,04	m.						

Para la ubicación de la resultante en la base, se toman en cuenta los momentos previamente calculados, y la fuerza cortante, de forma que se obtenga la excentricidad tal como se muestra en la Tabla 3.12.

Tabla 3.13 Cálculo de la presión del suelo

CALCULO DE LA PRESION DEL SUELO.									
Reacciones	ones del terrreno : $R = Fv/B(1 \pm 6 e/B)$ (*0.0001 Kg/cm²)						.0001 Kg/cm²)		
===>	R max.	=	0,376	Kg/cm²	٧	1,00	O.K.	El suelo de cimentación es estable	
	R min.	=	0,287	Kg/cm ²					

Se realizó la comprobación de estabilidad del suelo de cimentación, tomando en cuenta las reacciones del terreno, a los distintos esfuerzos, como se expresa en la Tabla 3.13.

3.2.4.3.5 Diseño final del muro

En la Figura 3.15 se observa el diseño final del muro en voladizo

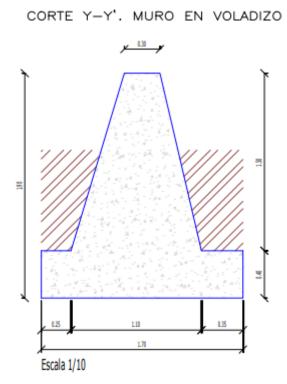


Figura 3.15 Sección transversal del muro en metros

3.2.4.4 Cálculo de la lámina de agua sobre la cresta.

Para el cálculo se utilizó la ecuación (3.9), con un caudal de 42L/s que cruzara el vertedero obtenido por el método volumétrico según el GAD Guaranda y una longitud de 2.4 m.

$$Hd = \left(\frac{Q}{1.84L}\right)^{2/3}$$
 (3.9) $Hd = 0.051m$

Dando como resultado una altura de lámina de agua sobre la cresta de 0.051m.

Para dar una mayor seguridad a la obra de captación, se dejó una altura de cresta del vertedero de 15cm, lo cual garantiza el libre tránsito del fluido.

3.2.4.5 Diseño del azud

Para el diseño de las coordenadas del azud, se tomó en consideración la altura del tirante normal del rio **Y**, la altura de lámina de agua sobre la cresta del dique **Hd**. Para ello se utilizó la ecuación (3.10).

$$\frac{Y}{Hd} = -K * \left(\frac{X}{Hd}\right)^n \tag{3.10}$$

- Donde X obtuvo un valor de 29 cm, para una altura de azud de 45 cm.
- Se diseña el azud con una coordenada en X de 29 cm.
- Las Coordenadas del azud se detalla en el Anexo 4.
- La Figura 3.16, ilustra el perfil Creager obtenido.

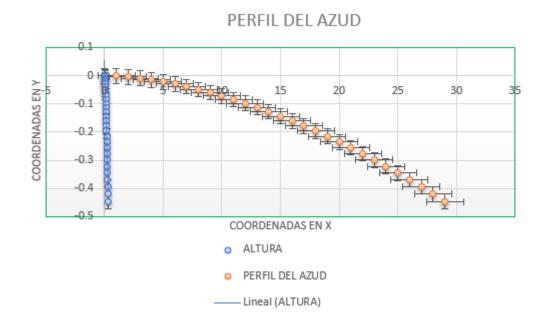


Figura 3.16 Coordenadas del azud con el software Excel

3.2.4.6 Diseño final de la captación

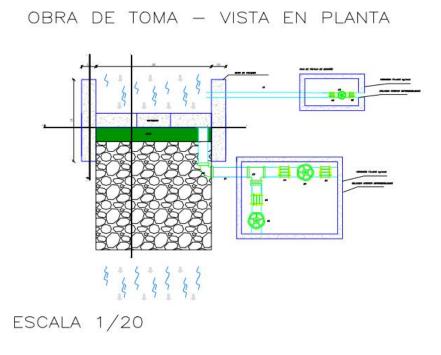


Figura 3.17 Obra de toma tipo dique

La Figura 3.17 ilustra la vista en planta de la obra de toma.

3.3 Diseño de la línea de conducción

El material seleccionado para la tubería de la línea de conducción es PVC Biax, debido a que el material permite a las tuberías no reducir sus diámetros interiores debido a posibles incrustaciones, además, la presión de trabajo de la tubería es de 1 MPa, dado que el diseño tiene una presión estática máxima de 0.5 MPa, manteniendo así del lado de la seguridad a la red de conducción.(Plastigama, 2022).

Debido a la topografía del terreno, la línea de conducción de la tubería tiene una longitud de 13427m.

3.3.1 Cálculo para la conducción

Para el diseño de la línea de conducción se tomó en consideración un diseño a presión (tubería llena), mediante la ecuación (3.11) dada a continuación.

$$\Delta J_{1-2}^* = \Delta J_{1-2} = f \frac{\Delta L_{1-2} U^2}{D * 2g}$$
 (3.11)

- Una rugosidad f de 0,0014mm/mm.
- Las longitudes son determinadas entre las distancias que existen entre cada nodo del diseño.

Se realizó el modelo hidráulico en el software Ephanet a través del cual se determinó las presiones y velocidades que tendrá la línea de conducción del proyecto, la cual se detalla en el Anexo 6.

En base a los resultados obtenidos por el software Ephanet se estableció que la tubería está compuesta por 3 diámetros comerciales que son 200mm, 160mm y 100mm, las cuales se calcularon y diseñaron en base a la topografía del terreno y las presiones estáticas de la red.

El diámetro de 200mm comenzó en la obra de captación y avanzó hasta la tubería p438 con una longitud de 12385 m, la tubería de 160mm comenzó en la tubería p439 y avanza hasta la tubería p479 con una longitud 958m y la tubería de 100mm comenzó en la tubería p480 y avanza hasta el tanque de almacenamiento con una longitud de 88m.

Para la llegada al tanque de almacenamiento se debe usar una válvula la cual regule el caudal de ingreso, esta funcionará al 90% abierta. Además, debido a la gran pendiente del terreno se debe implementar el uso de 5 válvulas rompe presiones las cuales están detalladas con sus coordenadas y cotas a continuación.

La Figura 3.18 ilustra la descripción de la válvula rompe presiones 1.

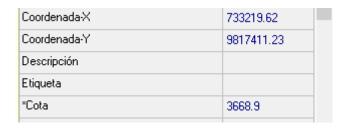


Figura 3.18 Propiedades de primera válvula rompe presiones

La Figura 3.19 ilustra la descripción de la válvula rompe presiones 2.

Coordenada-X	732206.82
Coordenada-Y	9817706.00
Descripción	
Etiqueta	
*Cota	3609

Figura 3.19 Propiedades de segunda válvula rompe presiones

La Figura 3.20 ilustra la descripción de la válvula rompe presiones 3.

Coordenada-X	732206.82
Coordenada-Y	9817706.00
Descripción	
Etiqueta	
*Cota	3609

Figura 3.20 Propiedades de tercera válvula rompe presiones

La Figura 3.21 ilustra la descripción de la válvula rompe presiones 4.

Coordenada-X	731326.22
Coordenada-Y	9818938.91
Descripción	
Etiqueta	
*Cota	3486.3

Figura 3.21 Propiedades de cuarta válvula rompe presiones

Figura 3.22 ilustra la descripción de la válvula rompe presiones 5.

L	
Coordenada-X	731690.10
Coordenada-Y	9819607.53
Descripción	
Etiqueta	
*Cota	3434.5

Figura 3.22 Propiedades de quinta válvula rompe presiones

La Figura 3.23 ilustra la descripción de la válvula de regulación.

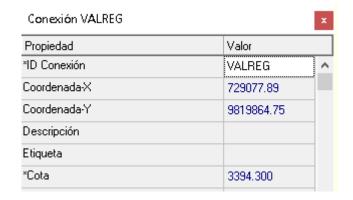


Figura 3.23 Propiedades de válvula de regulación

Una vez obtenido los resultados se organizan los datos y se presentan en el Anexo 6 del aparado de anexos, ya con las presiones y caudales. El caudal que pasa por la tubería es de 29,42 L/S.

La ilustra la Figura 3.24 descripción de la válvula rompe presiones se detalla las presiones de la red de conducción, basado en los siguientes parámetros:

- Azul para presiones menores a 25 m.c.a.
- Celestes para presiones menores a 50 m.c.a.
- Verde para presiones iguales a 50 m.c.a.

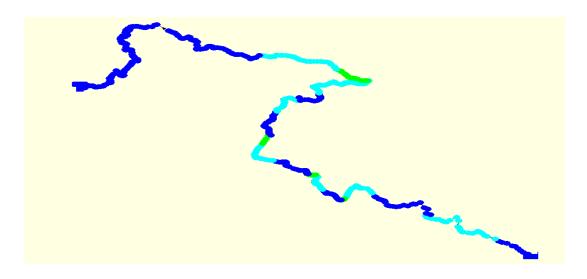


Figura 3.24 Presiones en los nodos de la línea de conducción calculados en Ephanet

Los resultados de presión y velocidad, caudal obtenido de la línea se encuentran en el **Anexo 5** y **Anexo 6**.

3.3.2 Beneficios del material seleccionado

Según (Plastigama, 2022) la tubería BIAX posee entre sus características, baja conductividad, alta resistencia a asentamientos diferenciales, resistencia al ataque de aguas y suelos, mayor longitud de fabricación y fácil transporte, manipulación e instalación.

3.3.3 Instalación de la red de conducción

La red de distribución es tubería de PVC-P Biax, esta red irá enterrada por los diferentes caminos, senderos. Capaz de abastecer a cada uno de los terrenos que forman parte del sistema.

Por seguridad y siguiendo las normas instalaciones de redes de agua se la colocará a 1.0 m. de profundidad, para lo cual se realizará la excavación de una zanja de 0.80 m de espesor.

La instalación de las tuberías se lo debe hacer siguiendo las recomendaciones del Fabricante, y no forzando a la tubería. Se propone un tipo de zanja, como se indica en la Figura 3.25. con una capa de mejoramiento de suelo, para protección de la tubería, el espesor de la capa de mejoramiento varía dependiendo de los requerimientos del suelo en los distintos tramos de la tubería.

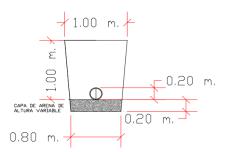


Figura 3.25 Detalle de zanja

3.4 Diseño del tanque de almacenamiento

3.4.1 Cálculo del tanque de almacenamiento por el método analítico

El diseño del tanque de almacenamiento se realizó por el método analítico, para un suministro de agua de 24 horas equivalente a 30 l/S y un abastecimiento de 12 horas de 62L/S. El diseño considera los déficits máximos y mínimos en valor absoluto para luego sumarlos y obtener el volumen de regulación, en la Tabla 3.14 se detalla el procedimiento.

Tabla 3.14 Distribución de caudales requeridos

un	idades	l/s	m3/h	tiempo	
caudal= galeı	ria (Q_maxDiario)	30	108		
abast	abastecimiento			24 horas	
	n del agua para riego			12 horas	
Horas	Entrada (m3)	Salida (m3)	Diferencia (m3)	diferencia acum (m3)	diferencia acum+ def
0a1	108	0	108	108	1015,2
1 a2	108	0	108	216	1123,2
2a3	108	0	108	324	1231,2
3a4	108	0	108	432	1339,2
4a5	108	0	108	540	1447,2
5a6	108	0	108	648	1555,2
6a7	108	237,6	-129,6	518,4	1425,6
7a8	108	237,6	-129,6	388,8	1296
8a9	108	237,6	-129,6	259,2	1166,4
9a10	108	237,6	-129,6	129,6	1036,8
10a11	108	237,6	-129,6	0	907,2
11a12	108	237,6	-129,6	-129,6	777,6
12a13	108	237,6	-129,6	-259,2	648
13a14	108	237,6	-129,6	-388,8	518,4
14a15	108	237,6	-129,6	-518,4	388,8
15a16	108	237,6	-129,6	-648	259,2
16a17	108	237,6	-129,6	-777,6	129,6
17a18	108	237,6	-129,6	-907,2	0
18a19	108	0	108	-799,2	108
19a20	108	0	108	-691,2	216
20a21	108	0	108	-583,2	324
21a22	108	0	108	-475,2	432
22a23	108	0	108	-367,2	540
23a24	108	0	108	-3E+02	648
Total	2592	2851,2	-259,2	-3240	

Para obtener el volumen total del tanque se debe considerar lo siguiente:

- Valor máximo y mínimo de la diferencia acumulada de agua, la suma de estos valores da el dato del volumen de regulación.
- Volumen de emergencia, el cual es igual al 25% de la suma en valores absolutos de la máxima y mínima diferencia acumulada de agua.
- No se consideró volumen contra incendio, debido a que la población es menos a 5000 habitantes.

Para la obtención del volumen total se suman los datos del volumen de regulación más el volumen de emergencia. En la Tabla 3.15 se detalló los cálculos realizados.

Tabla 3.15 Volúmenes para los tanques de almacenamiento

Max	648	m3
Min	-907,2	m3
V Regulación	1555,2	m3
V Emergencia	388,8	m3
V Incendio	0,00	m3
V Total	1944,0	m3

El volumen total obtenido es de 1944m3, debido a esto se estima un tanque de 2000 m3, que va a hacer divido en 4 tanques con capacidad de 500 m3 cada uno.

3.4.2 Tiempo de Llenado del Tanque de Reserva:

T lleno = V (m3) / Q ingre. (m3/s)

T (seg.) = 2000 m 3 / 0.03 m 3 / s

T (seg.) = 66667 seg.

A continuación, la Figura 3.26 detalla el diagrama de distribución que tiene el tanque en 24 horas.

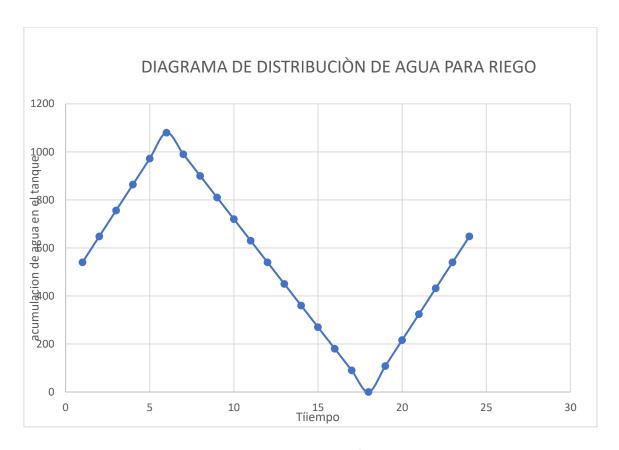


Figura 3.26 Diagrama de distribución de agua para riego

3.4.3 Dimensionamiento del tanque de almacenamiento

Para los 4 tanques de almacenamiento se establecen dimensiones similares de forma que cumplan con las necesidades del proyecto, las dimensiones elegidas para el diseño son expresadas en la Tabla 3.16.

Tabla 3.16 Dimensiones del tanque de almacenamiento

H para los 4 tanques	3,42
B para los 4 tanques	11,92
Radio	6,73
Diámetro	13,45
H regulación	2,74
Cota min	3395,46
Cota fondo	3394,78
Cota corona	3398,7
Área en m2	142,1

3.4.4 Diseño final del tanque de almacenamiento

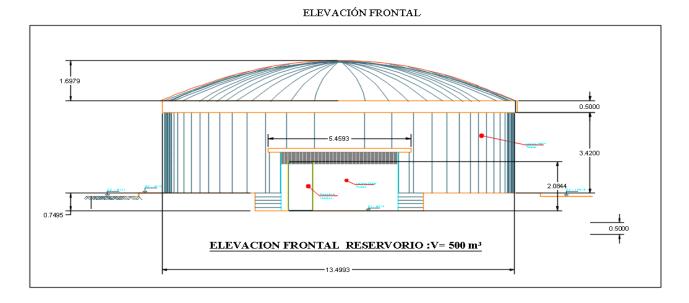


Figura 3.27 Tanque de almacenamiento de 500m3

La Figura 3.27 ilustra la elevación frontal y vista en planta de los tanques de almacenamiento.

3.5 Cuantificación de materiales

Los materiales necesarios se especifican de acuerdo con los planos diseñados, y dimensiones calculadas, para los distintos elementos que conforman el proyecto, tomando en cuenta volúmenes de obra y áreas de construcción.

3.5.1 Captación tipo Dique

El diseño de la captación se divide en cuatro secciones para facilitar el cálculo de los materiales necesarios.

3.5.1.1 Mejoramiento de Solera

Para el mejoramiento de la solera en la captación se utiliza como material piedra bola, para garantizar estabilidad en el suelo. Las dimensiones se especifican en la Tabla 3.17.

Tabla 3.17 Calculo de Solera

MEJORAMIENTO DE SOLERA				
Ancho Largo Espesor Volumen Piedra Bola				
m m m m³		m^3		
2.4 3.5 0.5 4.2				

3.5.1.2 Colchón disipador

El volumen de material para el colchón disipador para regularizar el comportamiento hidráulico del flujo aguas abajo, es calculado en base a las dimensiones determinadas en la Tabla 3.18.

Tabla 3.18 Calculo de colchón disipador

COLCHON DISIPADOR				
Ancho Largo Espesor Volumen Colchón Disipador				
m	m m m m³			
3	2.25	0.3	2.025	

3.5.1.3 Muro en voladizo

El muro en voladizo se compone de hormigón armado, la forma y estructura se especifica en la , y los cálculos para el volumen se indican en la Tabla 3.19.

Tabla 3.19 Cálculos de muro en voladizo

MURO EN VOLADIZO				
Ancho Inf 1	Ancho Inf 1 Ancho Inf 2 Ancho Sup Espe			
m	m	m	m	
1.7	1.1	0.3	0.3	
V1	V2	Espesor Base	Altura	
m	m	m	m	
0.35	0.25	0.4	1.5	
Área 1	Área 2	Área 3	Volumen Hormigón	
m²	m²	m²	m³	
0.45	0.45	0.68	0.948	

3.5.1.4 Azud

El azud se diseñó en hormigón armado, los cálculos para el volumen de materiales se indican en la Tabla 3.20.

Tabla 3.20 Calculo de dimensiones de Azud

AZUD				
Ancho Altura Espesor Volumen Hormigón				
m	m	m	m³	
2.40	0.85	0.60	1.22	

3.5.2 Línea de conducción

3.5.2.1 Excavación de zanja

La zanja tipo se utiliza para calcular el volumen de excavación, y el volumen de desalojo de material, con la consideración de un factor de esponjamiento típico de 1.1 para tierra, los cálculos se indican en la Tabla 3.21.

Tabla 3.21 Calculo de excavación y relleno

Altura Lin.	Cama arena	Ancho de zanja	Longitud Línea	Altura zanja
m	m	m	m	m
1.00	0.20	0.80	13428.00	1.20
FE. Tierra	Vol. Excav.	Vol. Cama arena	Volumen tierra	Volumen Relleno
S/U	m3	m3	m3	m3
1.10	12890.88	2148.48	2363.33	10742.40

3.5.2.2 **Tubería**

Se calculan las cantidades de tubería de los distintos diámetros como se especifica en la Tabla 3.22 y la Tabla 3.23 .

Tabla 3.22 Longitudes de sección de tuberías

L Tubería U.	L Línea d=200mm	L Línea d=160mm	L Línea d=100mm
m	m	m	m
6.00	12384.64	957.61	88.41

Tabla 3.23 Cantidades de tubería

Cantidad T d=200mm	Cantidad T d=160mm	Cantidad T d=100mm
u	u	u
2064	160	15

3.5.3 Tanque de almacenamiento

Todos los cálculos realizados se multiplican por un factor de 4 debido a que se utilizan 4 tanques de almacenamiento.

3.5.3.1 Replantillo

Para el Replantillo se utiliza hormigón de 180 kg/cm² considerando las dimensiones del alrededor de los tanques de almacenamiento como se indica en la Tabla 3.24.

3.5.3.2 Mejoramiento de suelo

El área debajo del tanque se mejora de forma que el suelo pueda soportar las cargas producidas por el tanque y no se produzcan hundimientos.

3.5.3.3 Tanque y cubierta

Para la cubierta del tanque se utiliza un domo acrílico para lo cual se calcula el área tal como se indica en la Tabla 3.24, por otra parte se calcula el área lateral de los muros del tanque para las láminas de PRFV que componen las paredes del tanque.

Tabla 3.24 Dimensiones de tanque y cubierta

Diámetro	Altura	Largo	Ancho	Espesor
m	m	m	m	m
13.50	3.50	19.00	17.00	0.50
Perímetro	Área de Pared	Área de Cubierta	Vol. Hormigón Replantillo	Volumen Mejoramiento
m²	m²	m²	m³	m³
42.41	593.76	572.55	646.0	646.0

3.5.3.4 Cuarto de válvulas

Se diseñó una pequeña estructura para cada tanque con la finalidad de albergar las válvulas que permiten la operación del tanque y su mantenimiento, los cálculos se presentan en la Tabla 3.25.

Tabla 3.25 Dimensiones de cuarto de válvulas

Ancho	Largo	Altura	Longitud losa	Área de muro	Área de losa
m	m	m	m	m²	m²
4.00	4.65	2.10	5.50	26.57	25.58

CAPITULO 4

4. GESTION AMBIENTAL

4.1 Estudio de impacto ambiental

El estudio de impacto ambiental predice la situación del medio ambiente para el Proyecto Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda, este análisis incluye la identificación de impactos, la descripción de medio afectado, la predicción y estimación de impactos, El resumen y presentación de la información básica y confiable, para realizar el análisis y diseño de las medidas correctivas, planes y programas para mitigar los impactos ambientales antes y después de la ejecución del proyecto.(Garmendia, 2005)(GAD Guaranda, 2020)

El crecimiento poblacional y las diferentes obras que se construyen, además de cooperar con el desarrollo de la comunidad, alteran las condiciones del aire, agua, suelo, flora, fauna, factores socioeconómicos, provocando dos tipos de impactos ambientales, que son los negativos y los positivos, afectando estos en forma directa e indirecta al medio y a los habitantes.(Garmendia, 2005)(PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.2 Objetivos

4.2.1 Objetivo general

Evaluar el impacto ambiental relacionado a la implementación del Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda.

4.2.2 Objetivos específicos

- A través de la categorización ambiental determinar el impacto del proyecto con el fin de saber el grado de impacto que se generará.
- Evaluar cualitativamente el impacto ambiental de las alternativas del proyecto y compararlas.
- Establecer medidas de mitigación de impactos ambientales.

4.3 Situación actual

Actualmente las Comunidades no cuenta con un sistema de regadío, por lo que la gran mayoría de habitantes que cuentan con servicio de agua potable utilizan el agua para regar sus sembríos, en especial en época de verano, creándose una mala utilización, perjudicando directamente a las familias al disminuir la cantidad de agua para sus necesidades básica de saneamiento y alimentación.(GAD Guaranda, 2020)

La presencia de lluvias provoca lodazales en las partes bajas y planas de las comunidades, dificultando el tránsito peatonal volviéndose muy necesario la construcción de zanjas, lastrado o relastrado de las vías, para que las aguas lluvias puedan ser evacuadas rápidamente.(INAMHI, 2015)

La fauna original representada por aves silvestres debido a la intervención humana ha emigrado a otros lugares con mejores condiciones climáticas y con mayor presencia de flora, la misma que ha está desapareciendo, observándose en la actualidad animales domésticos introducidos como: ganado bovino, perros, gatos, cabras, cerdos, gansos, etc.(GAD Guaranda, 2020)

El suelo por ser un medio físico muy importante tiene varios usos, entre los que se destaca la construcción de vivienda, letrinas, jardineras y cultivos, además, la acción reforesta dora de sus habitantes para mejorar el suelo ha introducido especies forestales, como el eucalipto, el capulí y cultivos de maíz, arveja, fréjol, zapallo y sambo, así como también ha atraído diferentes especies de aves entre las que podemos señalar las siguientes: tórtolas, mirlos, colibríes, loros y fruteros entre otros; factores que han evitado la erosión del suelo.(Lexis, 2017)

El suelo está constituido por limos y arenas, los que debido a la acción del aire (viento), actualmente producen constante polvaredas, provocando la contaminación al ambiente, por lo que, podemos decir que durante el proceso constructivo habrá impacto ambiental en el aire.(GAD Guaranda, 2020)

La estética de los sectores en intervención se ve poco afectada debido a la mínima concentración de población, con vías sin material de recubrimiento adecuado y falta de aceras.(Lexis, 2017)

4.4 Registro Ambiental

El registro del proyecto, Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda se lo realizó en la página web del Sistema Único de Información Ambiental (SUIA), del Ministerio del Ambiente, Agua y Transición Ecológica. La Figura 4.1 ilustra que el proyecto está definido con el código F4220.11.01, como una construcción de obras de ingeniería civil relacionadas con: tuberías urbanas, construcción de conductos principales y acometidas de redes de distribución de agua de sistema de riego (canales), estaciones de bombeo, depósitos. actividad de Construcción y / u Operación de reservorios.(MAATE, 2021)

Código Nombre riegol A0161.04 Manejo de sistemas de riego con fines agricolas. A0161.04.01 Manejo de sistemas de riego con fines agricolas. E3600.03 Operación de canales de riego. E3600.03.01 Operación de canales de riego. Construcción de obras de ingeniería civil relacionadas con: tuberías urbanas, construcción de conductos principales y acometidas de redes de distribución de agua sistemas de riego (canales), estaciones de bombeo, depósitos.

CONSULTA DE ACTIVIDADES CIIU

Figura 4.1 Actividad y proceso al que pertenece el proyecto.[MAATE, 2021]

4.5 Árbol de acciones del Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

Tabla 4.1 Árbol de acciones para el proyecto

Fase	Labor	Acción		
		Desbosque y desbroce		
		del terreno		
	tierra	Desalojo del material		
Construcción		Emisión de polvo		
Construcción	Compactación	Uso del recurso agua		
	Compactación	Compactación del suelo		
	Limpieza del área	Tránsito de maquinaria		
	Limpieza dei alea	Emisión de Gases		
	Extracción de	Distribución de agua		
		Agricultura		
Operación	agua	Ganadería		
	Mantenimiento de	Limpieza		
	la obra de	Control de Erosión		
	Labores de	Restauración del terreno		
	restauración			
Abandono	Uso de suelo	Áreas revegetadas		
	Desmantelamiento	Reciclaje de piezas		
	de estructuras	estructurales		

El árbol de acciones representa el ciclo de vida del proyecto en la Tabla 4.1 se aprecian las distintas etapas que conlleva, la construcción, operación, y el abandono de la obra.

4.6 Medidas de protección contra impactos ambientales

Las obras hidráulicas deben ser diseñadas y planificadas teniendo en cuenta los factores que causan impactos ambientales en el lugar de emplazamiento de la obra, por lo que se debe prevenir, controlar, mitigar y rehabilitar la zona afectada.(Garmendia, 2005) (PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)(Lexis, 2017)

Para reducir los efectos ambientales negativos de las operaciones se emplean medidas de **Mitigación**.(Lexis, 2017)

Para evitar la mínima ocurrencia de imprevistos que inciden negativamente sobre el ambiente, se exige como una medida de **Control**.(Lexis, 2017)

La **Prevención** como medida ambiental se la analiza durante el proceso de planificación y diseño de la obra.(Lexis, 2017)

La **Comprensión** como medida ambiental, contrarresta y compensa el deterioro existente antes y durante la ejecución de la construcción, operación y mantenimiento de la red de agua para regadío.(Lexis, 2017)

La **Rehabilitación** minimiza el deterioro del ambiente y procura su mejoramiento durante y después de la ejecución del proyecto.(Lexis, 2017)

Para dar respuesta inmediata ante cualquier siniestro utilizamos las medidas de **Contingencia**.(Lexis, 2017)

4.7 Identificación de impactos ambientales

La identificación de impactos ambientales del proyecto Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón se basa en los siguientes factores: (Lexis, 2017)(Garmendia, 2005)

a) Medio Abiótico

Calidad del aire

Calidad del agua

Calidad del suelo.

b) Medio Biótico

Flora

Fauna.

c) Medio Social

Salud Pública.

Estética.

Aceptación Social.

4.7.1 MEDIO ABIÓTICO

4.7.1.1 Calidad del Aire

En la etapa de construcción, excavación de zanjas para la red de agua para regadío, ubicación de cajas para válvulas y transporte de materiales, ocasionarán impactos ambientales de considerable proporción, debido a que generalmente en la zona se producen fuertes vientos provocando así la contaminación del aire.(Garmendia, 2005)

En la etapa de operación y mantenimiento no se ocasionarán impactos ambientales, debido a que la red de agua se encuentra bajo la superficie del suelo no causa contaminación al aire.(Garmendia, 2005)

4.7.1.2 Calidad del Agua

En los procesos de construcción, operación y mantenimiento la calidad del agua no se verá afectada, pues sus moradores manifiestan la mínima presencia de pozos y manantiales en los sectores, el agua la obtienen de la red pública existente. (PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.7.1.3 Calidad del Suelo

En la etapa de construcción la variación de pendientes afectará la naturaleza propia del terreno, debido a la instalación de tuberías y accesorios de propios del sistema. (Garmendia, 2005)

En la etapa de operación se podrían dar impactos de carácter ocasional en la instalación de tuberías, por lo que la instalación no debe tener fugas y filtraciones hacia el suelo.

En la etapa de mantenimiento se podrían producir Impactos Ambientales por la disposición de lodos y material extraído durante la limpieza de las tuberías por medio de las válvulas de purga, material fácilmente depositable que es arrastrado por el agua. (PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.7.2 MEDIO BIÓTICO

4.7.2.1 Flora

En la etapa de construcción se verá afectada negativamente por la disposición de los materiales, acumulación de escombros y desalojo de tierra. En la etapa de mantenimiento,

se podría producir impactos de no efectuarse correctamente la disposición de los escombros, lodos, basura y el agua producto de los taponamientos.(Garmendia, 2005)

4.7.2.2 Fauna

En las etapas de construcción, operación y mantenimiento, se podrían ocasionar impactos de magnitud e importancia al no efectuarse correctamente la disposición de los escombros, lodos, basura y el agua producto de los taponamientos.

4.7.3 MEDIO SOCIAL

4.7.3.1 Salud

La construcción y operación de la red de agua no ocasionará impactos negativos que atenten contra la salud de los habitantes, debido a que las aguas serán evacuadas directamente a los sembríos por medio de la red. (Garmendia, 2005)

En la fase de mantenimiento se podrían presentar impactos negativos debido a la disposición de lodos.

4.7.3.2 Estética

El tiempo que tome la etapa de construcción la estética de los sectores estará afectada por la presencia de maquinarias, acumulación de materiales, interrupción y desvío de tráfico vehicular y peatonal.(Lexis, 2017)

4.7.3.3 Aceptación social

La construcción de la red de agua para regadío tiene gran aceptación por los habitantes de los sectores beneficiados, lo que se refleja en el desarrollo social y económico, sin omitir la posibilidad de impactos negativos, debido al cobró de tarifas mensuales por el costo del de la obra, servicio y mantenimiento. Luego de la identificación de los factores que afectan al ambiente, los clasificamos como impactos positivos e impactos negativos:(Lexis, 2017)

4.8 Valoración mediante la matriz de Leopold

Las actividades identificadas ayudaran a que se realice una evaluación, con los criterios y la puntación propuesta por Leopold, estos se encuentran en la tabla. Para realizar el cálculo del impacto se utilizará la ecuación (4.1)e. (TITO, 2020)

$$Imp = We * E + Wd + D + Wr + R \tag{4.1}$$

Donde:

Imp= Valor de la importancia del impacto ambiental.

E= *Criterio de* "Extensión"

We= Peso del criterio de "Extensión"

D= Valor del criterio de "Duración"

Wd= Peso del criterio de "Duración"

R= Criterio de "Reversibilidad"

Wr= Peso del criterio de "Reversibilidad"

Se utiliza la ecuación (4.2) finalmente para determinar el valor del impacto ambiental.(TITO, 2020)

$$IA = \pm (Imp * Mag)^{0.5} \tag{4.2}$$

Donde:

IA= Valor de la importancia del impacto ambiental.

Mag= Valor de la magnitud del impacto.

Los impactos se caracterizan cualitativamente mediante una matriz de Leopold. De acuerdo con los siguientes índices y escalas de valoración cualitativa expresados en la Tabla 4.2.

Tabla 4.2 Criterios de puntuación [TITO, 2020]

Calificación del impacto Ambiental	Valor del índice de impacto ambiental (IA)	
Altamente significativo (A.S)	$ IA \ge 6.5$	
Significativo (S)	$6,5 > IA \ge 4,5$	
Despreciable (D)	IA < 4.5	
Benéfico (B)	IA > 0	

4.9 Análisis de resultados de Matriz de Leopold

Tabla 4.3 Resultados de matriz de Leopold

	Positivos (+)	152,92	-178,87	-25,95
Impactos	Negativos (-)	-178,87		
	Total	-25,95		Totales

El análisis que utilizó la herramienta de la matriz de Leopold permitió identificar el impacto ambiental generado por el proyecto, de manera cualitativa, de forma que se visualizan los puntos desfavorables en nuestro proyecto y se puede enfocar esfuerzos en corregirlos, o minimizarlos de forma efectiva.

El valor obtenido, mostrado en la Tabla 4.3, para el impacto ambiental es de –25.95, el cual entra en el rango de bajo impacto ambiental indicando que existe un impacto negativo bajo, sin embargo, se pueden realizar cambios y medidas preventivas de bajo coste económico que permitan reducirlo aún más.

4.9.1 Impactos negativos relevantes

La principal incidencia causante de impacto negativos se refiere a la modificación del hábitat (-36,58), pues incurren sobre ella diversos objetivos afectados, principalmente en el efluente, más que en la zona circundante, estos impactos suceden por la alteración del terreno y la vida que lo rodea.

Por otro lado, la condición de la vida acuática como peces y crustáceos resulta la más afectada por el proyecto, siendo que se ve afectada por todas las etapas del proyecto tanto su construcción como su funcionamiento a largo plazo, factores como la reducción de caudal, cambios en la morfología del rio y la sedimentación, inciden directamente sobre la macro vida del efluente, por otra parte, los microorganismos se ven beneficiados de la etapa de funcionamiento del proyecto.

4.9.2 Impactos positivos relevantes

Los impactos más relevantes se encuentran en el área social, el empleo (20,10) es de las condiciones más beneficiadas por el proyecto, debido a que se requieren operadores de manera directa, y trabajadores para la obra, sin embargo, el mayor impacto se produce de manera indirecta, tomando en cuenta las incidencias contempladas, pues la generación de empleo por el crecimiento económico de la zona es un factor fundamental. También se ve beneficiada la red de servicios (24,77) al reducir carga de agua potable para actividades donde no es necesaria, como el riego. Las condiciones que se ven beneficiadas puntualmente de forma más relevante son la agricultura y la ganadería.

4.10 Medidas de mitigación de impactos ambientales

Al observar que el proyecto causa impactos ambientales negativos, se procede a solucionar o mitigar los daños causados durante los procesos de construcción, operación y mantenimiento, mientras que se esperan mantener la incidencia de los impactos positivos:(Garmendia, 2005)(PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.10.1 Calidad del aire

Durante la ejecución de excavaciones, apertura de zanjas y movimientos de tierra que se realice dentro del sector, deberá mantener húmedos los suelos, para lo cual podrá utilizar tanques y rociar con mangueras cantidades controladas de agua para así evitar la generación del polvo y lodo.(Garmendia, 2005)

El personal encargado de la limpieza deberá evacuar rápidamente los lodos, escombros, basuras extraídas durante el mantenimiento de la red de agua, ubicándolos en un sitio predestinado, donde no causen molestias a sus habitantes.(Lexis, 2017)

4.10.2 Calidad del agua

En la etapa de construcción, se deberá disponer adecuadamente los desechos de construcción y el desalojo de tierras se realizará en sitios donde las comunidades beneficiadas indiquen. Los lodos, escombros, basuras extraídas durante el mantenimiento de la red de agua, en ningún caso se verterán a cursos de agua de acequias o vertientes, para prevenir problemas de contaminación.(Garmendia, 2005)

En los sitios de cruce de tuberías de agua, se tendrá el cuidado respectivo señalando a fin de evitar el deterioro o accidentes al ser alcanzados por alguna de las máquinas de trabajo.(Lexis, 2017)

4.10.3 Calidad del suelo

En la construcción, la instalación de las tuberías y accesorios en la red de agua debe tener precaución de no contaminar el suelo sellando bien las uniones y observando que no existan fugas ni filtraciones. Esto se comprobará con la respectiva prueba hidráulica de la red de agua.(Garmendia, 2005)

Los residuos y escombros de obra deberán ser recolectados y transportados a sitios que las comunidades indiquen, evitando que se acumulen en las vías o sectores donde la limpieza sea obligatoria.(Garmendia, 2005)

Una vez finalizada la obra, el suelo deberá ser mejorado o por lo menos mantenerlo en condiciones similares de suelo natural como en un principio.(PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.10.4 Flora y Fauna

Para poder mitigar los impactos causados por el represamiento del rio, se tiene un plan de funcionamiento periódico, de forma que el caudal no se vea afectado constantemente, si no únicamente cuando se requiera llenar el reservorio. De igual forma que para el caso anterior, se deberá disponer adecuadamente los lodos de los diferentes componentes de la red.(Garmendia, 2005)

Por otra parte, los microorganismos beneficiosos para el rio, se ven beneficiados por la reducción de caudal, pudiendo desarrollarse de mejor manera al encontrar más zonas húmedas. Para evitar el desborde del agua, se deberá realizar un constante mantenimiento y así no causar molestias a sus habitantes.(Lexis, 2017)

4.10.5 Salud

Los problemas de salud por la evacuación de lodos se los puede solucionar transportando rápidamente a los sitios destinados como botaderos en cada comunidad.(Lexis, 2017)

4.10.6 Estética

Como medida de mitigación se recomienda realizar un adecuado y pronto traslado del material sobrante, no siendo así necesario recubrir con material vegetal debido a que estas son vías públicas, las mismas que a futuro serán lastradas.(Garmendia, 2005)

4.10.7 Aceptación Social

Para lograr la aceptación durante el proceso de construcción se debe elaborar un cronograma de trabajo, indicando donde se producirán las desviaciones e interrupciones, las cuales deberán tener avisos y señalizaciones colocando caballetes de 1,20 m de altura para impedir el paso de vehículos y peatones, señalando el peligro y la obra que se realiza. (Lexis, 2017)

En el mantenimiento de la red de agua se debe proveer a los jornaleros de equipo y materiales adecuados.

En lo que respecta a la administración, el organismo a cargo deberá informar y orientar a la población, acerca de la importancia de la red de agua, los costos por el servicio de construcción, operación y mantenimiento de la red los cuales deberán cubrirse a través de las tarifas mensuales para su funcionamiento. (Lexis, 2017)

Las excavaciones, apertura de zanjas, son obstáculos propios de la construcción de una red de agua, de tal manera, que se colocarán puentes de madera temporales para una normal circulación de los habitantes y permita el acceso a sus viviendas, en las intersecciones de las calles, en accesos y garajes o en terrenos afectados por la excavación; todos esos puentes

serán mantenidos en servicio para el paso de peatones hasta que los trabajos hayan sido concluidos, luego deben ser retirados.(Garmendia, 2005)(PRESIDENCIA DE LA REPUBLICA DEL ECUADOR, 2019)

4.11 Conclusiones y Recomendaciones

4.11.1 Conclusiones

La evaluación de impacto ambiental mostró que la mayoría de las afectaciones se dan en torno al proceso constructivo del proyecto, estas afectaciones son remediables de forma moderada sin afectar el presupuesto de la obra en mayor medida, por lo que se considera un protocolo que minimice la influencia de las actividades con el entorno, por otra parte, las afectaciones más importantes y de mayor relevancia son ocasionadas por el funcionamiento de la captación. Por lo que se plantea un funcionamiento periódico, según las necesidades del sistema, de forma que el caudal no se vea reducido de forma permanente, dando a la vida acuática un menor impacto negativo.

Se considera también el aporte positivo del proyecto a la parte social, otorgando un beneficio importante al sector y el entorno, en un balance general el proyecto tiene un impacto mayormente negativo hacia el ambiente, aun así, la magnitud de este impacto no posee una gran relevancia al estar dentro de los limites considerados como bajo impacto ambiental. Lo cual finalmente lleva a la conclusión de que los beneficios para los sectores económicos y sociales representan un beneficio importante dentro de la comunidad a pesar del ligero impacto negativo ambiental registrado.

4.11.2 Recomendaciones

Las afectaciones causadas pueden generar inconvenientes a largo plazo si no son tratadas adecuadamente, se recomienda tomar en consideración las flaquezas más importantes y diseñar planes progresivos, para corregir las falencias conforme vaya apareciendo.

Es importante también revisar a profundidad todos los factores externos e internos que pudieran tener que ver o verse influenciados por la ejecución de la obra, no solamente limitarse a la relación directa, se recomienda hacer una evaluación cualitativa completa del área de impacto no solo ambiental, para lograr una mejor ejecución de la evaluación, tomando los agentes reales, tanto los que son afectados como los que afectan, para no dejar pasar por alto zonas sin atender.

CAPITULO 5

5. GESTIÓN DEL PROYECTO

5.1 Descripción de Rubros

5.1.1 Caseta de oficina, bodega y guardianía

Para el proceso constructivo del proyecto se requiere de instalaciones provisionales como: caseta de oficina, bodega y guardianía, con el fin de optimizar tiempos al almacenar suministros y materiales de construcción de forma que estén disponibles de manera inmediata. Se deben ubicar en un sitio que no interfiera con actividades propias de la obra y en un terreno que debe ser preparado previamente. Estas instalaciones servirán para almacenar materiales y herramientas, y como vestidores para trabajadores, así también para la ocupación del guardia de obra.

El rubro se mide en metros cuadrados (m²).

5.1.2 Desbroce y limpieza

La actividad de desbroce y limpieza, comprende la remoción de cualquier recubrimiento vegetal o elemento que pudiera interferir con la construcción del proyecto, y se debe realizar dependiendo del tipo de terreno y la extensión del área a limpiar, siendo mecánica por medio de maquinaria, o en lugares de difícil acceso para la maquinaria por medio de obreros de forma manual, se requiere una inspección visual previo a la limpieza, tal que no se encuentren elementos no removibles como tuberías, mangueras o pozos, de ser el caso se deben tomar medidas alternas como mover el área de construcción o desplazar los mencionados elementos.

El rubro se mide en metros cuadrados (m²).

5.1.3 Trazado y Replanteo

Se refiere a la realización de topografía para referenciar de manera precisa el lugar donde se llevará acabo la obra, según los planos diseñados y aprobados para la ejecución del proyecto, este tipo de actividades requieren de sistemas precisos que permitan delimitar la obra, según los ejes de diseño y puntos establecidos, los cuales deben ser marcados con elementos físicos y visibles para ser usados como referencia.

El rubro se mide en metros cuadrados (m²).

5.1.4 Excavación con maquina (1 m de profundidad)

La ubicación por seguridad y conservación de la integridad de la tubería se realizará dentro de zanjas con la finalidad, de proteger de la intemperie y del ganado vacuno presente en la zona, estas zanjas requieren excavaciones a lo largo de toda la línea de conducción, con la finalidad de ubicar la línea un metro por debajo del nivel de suelo.

También se toma en consideración la excavación en las zonas de tanques y dique, en la medida descrita para su emplazamiento. La excavación se realizará por medio de maquinaria.

El rubro se mide en metros cúbicos (m³).

5.1.5 Acarreo, desalojo y transporte de material

El material producto de las excavaciones, nivelación, y desbroce, debe ser evacuado hacia una zona donde no cause un impacto negativo al entorno, o a su vez pueda ser aprovechada para otros fines, el transporte y acarreo se dará por medio de volquetas y cargadoras mecánicas respectivamente.

El rubro se mide en metros cúbicos (m³).

5.1.6 Grava y Arena

La arena y la grava se utilizan como mejoramiento de suelo tanto para los lugares de construcción de tanques y dique, de ser requerido, así como en la tubería de forma que se eviten hundimientos. La arena y la grava deben ser trasladadas desde la ciudad por medio de volquetas.

El rubro se mide en metros cúbicos (m3).

5.1.7 Relleno con material de sitio

La nivelación del suelo se realizará con material de sitio, en los casos donde se requiera relleno, a lo largo de la línea de conducción, evitando así desniveles innecesarios en la disposición de la tubería.

El rubro se mide en metros cúbicos (m³).

5.1.8 Cerramientos

El rubro se refiere a un cercado de malla con la finalidad de proteger la integridad de la zona de tanques, de forma que no puedan acceder a ella particulares, ni animales salvajes o domésticos que habitan en el sector, se emplea malla triple galvanizada para todo el cerramiento.

El rubro se mide en metros lineales (m).

5.1.9 Encofrados

Este rubro se refiere a elementos provisionales que permiten que la estructura adquiera la forma volumétrica y configuración deseada mientras se produce el secado del hormigón. El encofrado debe tener la capacidad de soportar todos los esfuerzos producidos, en el transcurso del vibrado y vertido del hormigón.

Es también necesario apuntalar los elementos del encofrado con el fin de fijarlos en la posición requerida, con la suficiente separación para que no se muevan durante el secado.

El rubro se mide en metros cuadrados (m²).

5.1.10 Hormigón:

El rubro de hormigón utilizado corresponde a los gastos para la movilización de los materiales para su preparación, y el trabajo de mezclado, según las proporciones necesarias para tener la resistencia solicitada en los planos (28 MPa), los agregados del hormigón deben ser del diámetro apropiado, y cuidar la limpieza, entendiéndose por limpieza, que la arena y otro tipo de agregados no contenga componentes dañinos para el hormigón, de forma similar el agua no debe afectar de manera negativa las propiedades del hormigón. Se utiliza para elementos estructurales, bases para estructuras, columnas y muros.

El rubro se mide en metros cúbicos (m3).

5.1.11 Acero de refuerzo:

En el apartado de este rubro se incluyen las actividades relacionadas con el acero además del coste de este como material, según las indicaciones presentadas en los planos estructurales, dimensiones, tipo y calidad. Así también se incluye el tratamiento de preparación y limpieza, teniendo en cuenta que el acero que se utilice se encuentre, libre de suciedad y sin defectos significativos que pudieran implicar una afectación directa a la vida útil o a la resistencia del acero.

A las actividades relacionadas con el acero se refiere al transporte y almacenamiento, siendo que el lugar donde se almacene no debe provocar alteraciones al acero, como corrosión y suciedad, así también actividades de doblado, soldadura y fijación durante el vertido del hormigón.

El rubro se mide en kilogramos (kg).

5.1.12 Elementos de tubería y dique

Este rubro incluye todos los componentes y accesorios necesarios para el funcionamiento adecuado de la tubería, tales como Tee, Yee, conexiones, teflón, válvulas, uniones, también los costos de instalación de los accesorios, la tubería solicitada en el diseño corresponde a una tubería Biax de 200 mm (1MPa).

El rubro se mide en unidades (u).

5.1.13 Instalaciones

El rubro de instalaciones corresponde a aquellos complementos que permiten alcanzar las capacidades necesarias a la tubería, por ejemplo, las presiones aplicadas en toda su longitud, o actividades de regulación, estas instalaciones son válvulas rompe-presión y cajas de revisión.

El rubro se mide en unidades (u).

5.1.14 Suministro e instalación de tubería

Este rubro comprende, la instalación de tuberías de toda la obra, con los distintos diámetros especificados, la tubería considerada en este rubro corresponde al tipo BIAX de 200, 160 y 100 mm. Se toma en cuenta el personal necesario y los elementos de conexión entre tuberías, así como el costo de transporte de las tuberías al sitio.

El rubro se mide en metros (m).

5.1.15 Válvulas

El rubro de válvulas se refiere, a las válvulas de compuerta o mariposa empleadas en distintos puntos de la obra con el propósito de interrumpir el flujo de forma controlada, o bien reducir el caudal, para obras de mantenimiento o por requisito de funcionamiento.

El rubro se mide en unidades (u).

5.1.16 Mejoramiento de suelo

Este rubro se refiere a la adición de material como arena o grava para mejorar las propiedades mecánicas del suelo, de forma que se vuelva estable, o que adquiera las características necesarias para el proyecto, para la tubería se coloca una capa de arena de 40 a 50 cm de espesor a lo largo del trazado de la línea.

El rubro se mide en metros cúbicos (m³).

5.2 Cronograma de actividades de obra

Para el cronograma de obra se toma en consideración los tiempos de obra aproximados, según las cantidades de material empleado, y el personal disponible, las actividades y la duración se detallan en el Anexo 34.

5.3 Análisis de costos unitarios

Los análisis de costos unitarios se encuentran a partir del 0, hasta el Anexo 32

5.4 Presupuestos por sector

El presupuesto se encuentra en el Anexo 33.

5.5 Costo total del proyecto

El costo estimado total del proyecto es de 819149,72 dólares.

CAPITULO 6

6. CONCLUSIONES Y RECOMENDACIONES

El proyecto impactará de forma positiva todo el sector beneficiado al aportar suficiente agua de riego para el funcionamiento de los sistemas implementados por el G.A.D. Municipal de Guaranda, provocando el crecimiento económico de la zona y la parroquia en general y servirá de precedente para futuras obras a realizarse en la parroquia y sectores aledaños.

6.1 Conclusiones

- La captación, sobre la quebrada "HUAYTALLUG", conformada por una presa tipo dique, se ubicó de forma que la elevación sea efectiva para una conducción por gravedad
- La línea de conducción se estableció en base al levantamiento topográfico proporcionado por el GAD Guaranda, sobre la cual se estableció un trazado de alrededor de 14 km de extensión, logrando la trayectoria más eficiente y corta debido a la morfología del terreno.
- El dimensionamiento de la línea de conducción fue establecido, tal que se logre trasegar el caudal demandado de 29.42 l/s para riego, cumpliendo con los parámetros establecidos por la normativa ecuatoriana vigente. Se estableció 3 diámetros en toda la red, 200mm, 160mm y 100 mm, a lo largo de 12.3km, 1km, 0.1km; respectivamente.
- Se dispuso la línea de conducción de forma que la tubería se encuentre 1 metro por debajo de la superficie del terreno natural, debido a que la zona que atraviesa es ganadera y podría interferir en la seguridad de la tubería.
- La red diseñada dispone de válvulas rompe presiones ubicadas en distintos puntos a lo largo de la línea, para evitar sobre presiones en la red.

6.2 Recomendaciones

- Para la construcción del proyecto es necesario realizar un estudio de suelo a profundidad que permita confirmar los resultados obtenidos o bien tomar las medidas pertinentes para el correcto funcionamiento de la tubería, durante su funcionamiento e instalación.
- Evaluar opciones de tubería que pudieran ponerse e a disposición en el mercado nacional al momento de construir el proyecto, que permitieran reducir los costos de la línea y accesorios de la tubería, con el fin de economizar gastos.
- Debido a la ampliación de beneficiarios continuo, y al crecimiento poblacional del sector evaluar si los tanques de almacenamiento satisfacen la nueva demanda de aquí al momento de implementación del proyecto.
- Según la capacidad máxima de la válvula reguladora a instalar se tendrá que corregir la línea piezométrica de la línea de conducción.
- De no ser factible la instalación u operación y mantenimiento, de válvulas reductoras de presión en el sitio, se debe considerar la instalación de cámaras rompe presiones o tanques, que cumplan esta finalidad.

BIBLIOGRAFIA

- AQUAE FUNDACION. (2022). Tipos de sistemas de riego: características Fundación Aquae. https://www.fundacionaquae.org/wiki/tipos-de-riego/
- Bautista, Q. M. (2014). *Tecnología y Ciencias del Agua*. 3, 33–40. http://www.redalyc.org/articulo.oa?id=353532521002
- Bravo-Espinosa, M., Osterkamp, W. R., & Lopes, V. L. (2001). TRANSPORTE DE SEDIMENTOS EN CORRIENTES NATURALES: REVISIÓN TÉCNICA DE ECUACIONES EMPÍRICAS DE PREDICCIÓN DEL ARRASTRE DE SEDIMENTOS DE FONDO. In *Publicado como ensayo en Terra Latinoamericana*.
- Catalina, E., & Sandoval, M. (2009). Balance hídrico para riego en la microcuenca del río Blanco.
- CPE INEN (1992).CÓDIGO ECUATORIANO DE LA CONSTRUCCIÓN. C.E.C. **NORMAS** PARA **ESTUDIO** DISEÑO DE SISTEMAS DE AGUA POTABLE DISPOSICIÓN DE **AGUAS** RESIDUALES PARA Υ POBLACIONES MAYORES A 1000 HABITANTES.
- CPE INEN 5 Parte 9-2. (1997). INSTITUTO ECUATORIANO DE NORMALIZACIÓN CÓDIGO DE PRÁCTICA ECUATORIANO CPE INEN 5 Parte 9.2:1997 Primera revisión CODE OF PRACTICE FOR THE DESIGN OF RUNNING WATER SUPPLY SYSTEMS, EXCRETA AND LIQUID RESIDUES DISPOSAL IN RURAL AREAS. First Edition. https://doi.org/10.07-610
- Das, B. M. (2012). Fundamentos de ingeniería de cimentaciones Séptima edición.
- GAD Guaranda. (2020). PLAN DE DESARROLLO Y ORDENAMIENTO TERRITORIAL.
- Garmendia, Alfonso. (2005). Evaluación de impacto ambiental. Pearson/Prentice Hall.
- INAMHI. (2015). DETERMINACIÓN DE ECUACIONES PARA EL CÁLCULO DE INTENSIDADES MÁXIMAS DE PRECIPITACIÓN.
- Industrial Plastirrey. (2022). Resistencia de tanques: Fibra de Vidrio vs Polietileno. https://www.tanquesfibradevidrio.com.mx/tanques-polietileno-vs-fibra-de-vidrio/

- Lexis, F. (2017). CODIGO ORGANICO DEL AMBIENTE. www.lexis.com.ec
- López Cualla. (1995). elementos-de-diseño-para-acueductos-y-alcantarillados-.
- MAATE. (2021). Ministerio del Ambiente, Agua y Transición Ecológica Ministerio del Ambiente, Agua y Transición Ecológica, velará por un ambiente sano y el respeto de los derechos de la naturaleza o pacha mama. https://www.ambiente.gob.ec/
- Materón, H. (1997). Obras Hidráulicas Rurales.
- Ministerio Del Ambiente. (2015). NORMA DE CALIDAD AMBIENTAL Y DE DESCARGA DE EFLUENTES AL RECURSO AGUA.
- Orozco Coello, D. (2010). ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL "PROYECTO HIDROLOGICO RIO CHIMBO" INFORME DE PROYECTO DE GRADUACION Previa a la obtención del Título de: Presentado por.
- Paniagua, E., & Báez, B. (2011). *Obras de captacion-Dique toma*. https://es.slideshare.net/MIA-CIEMA/obras-de-captaciondique-toma
- PÉREZ FARRÁS, L. (2013). "HIDRÁULICA APLICADA A LA INGENIERÍA SANITARIA" ENERO 2013 BREVE HISTORIA DE LA ECUACIÓN DE DARCY-WEISBACH (FANNING) Y CONSIDERACIONES DE INTERÉS SOBRE LA MISMA.
- Plastigama. (2022). *Tuberías de PVC Biorientado para Conduccion de Agua a Presión: BIAX*. https://www.wavin.com/es-ec/Catalogo/Infraestructura/Agua-Potable-a-Presion/Tubosistemas-para-Conduccion-de-Agua-a-Presion-BIAX
- PRESIDENCIA DE LA REPUBLICA DEL ECUADOR. (2019). Reglamento al Código Orgánico de Ambiente RO 507.
- Ramiro, W., & Erazo, S. (2017). *Tomas de Agua*. https://doi.org/10.13140/RG.2.2.27891.12321
- Rivas, S., Oballos, J., Ochoa, G., & Santiago, J. (2005). *ENSAYO METODOLÓGICO DE EVALUACIÓN DE TIERRAS PARA LA CAPTACIÓN DE AGUA EN DOS* (Vol. 30, Issue 6).
- SAGARPA. (2020). Líneas de Conducción por gravedad.
- TITO, B. (2020). *▷ Matriz de Leopold Modificada Impacto Ambiental 2020*. https://ingenieriaambiental.net/matriz-de-leopold/

- Tomalá De La Cruz, B. M., & Vera López, A. D. (2021). ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Ciencias de la Tierra PROYECTO INTEGRADOR Previo la obtención del Título de: Ingeniería Civil.
- Zúñiga, C., & Víctor, T. (2020). Diseño del puente sobre la quebrada Tomabela para cruzar la vía de desvío del tráfico pesado en la ciudad de Guaranda.

ANEXOS

ANEXO DE CATÁLOGOS Y TABLAS

Anexo 1 Catálogo de tubería tipo Biax con diámetros comerciales.

Diámetro Nominal	Espesor minimo de pared	Diametro Interior	PRESIDE OF TRADES			C Coef. de diseño	RDE
mm	mm	mm	MPa	lb/plg2			
90	1.80	86.40	0.63	91.37	315	2	51
	1.80	86.40	0.80	116.03	315	1.6	51
	2.20	85.60	1.00	145.04	315	1.6	41
	2.80	84.40	1.25	181.30	315	1.6	33
110	2.20	105.60	0.63	91.37	315	2	51
	2.40	105.20	0.80	116.03	355	2	46
	2.70	104.60	1.00	145.04	400	2	41
	2.70	104.60	1.25	181.30	400	1.6	41
	2.70	104.60	1.60	232.06	450	1.4	41
160	3.20	153.60	0.63	91.37	315	2	51
	3.50	153.00	0.80	116.03	355	2	46
	4.00	152.00	1.00	145,04	400	2	41
	4.00	152.00	1.25	181.30	400	1.6	41
	4.00	152.00	1.60	232.06	450	1.4	41
200	3.90	192.20	0.63	91.37	315	2	51
	4.40	191.20	0.80	116.03	355	2	46
	4.90	190.20	1.00	145.04	400	2	41
	4.90	190.20	1.25	181.30	400	1.6	41
	4.90	190.20	1.60	232.06	450	1.4	41
250	4.90	240.20	0.63	91.37	315	2	51
	5.50	239.00	0.80	116.03	355	2	46
	6.20	237.60	1.00	145.04	400	2	41
	6.20	237.60	1.25	181.30	400	1.6	41
	6.20	237.60	1.60	232.06	450	14	41

Anexo 2 MATRIZ DE LEOPOLD

		MATRIZ DE		OLD P								IENTA	LES					
			háb itat	cubierta terrestre	. hidrología	río y modificación del caudal	mes	S011	50	SOUS	superficial es		e el paisaje	80	aguas de riego		Impactos	
			C. Modificación del	D. Alteración de la c	E. Alteración de la h	G. Control del río y	M. Ruidos y vibracion	E. Carreteras y caminos	M. Presas y embalses	R. Desmontes y rellen os	B. Excavaciones su	E. Dragados	D. Actuaciones sobre	E. Dragado de cuerp	I. Vilización de agu	+	_	Total
MERRA	B. Mate	eriales de construcción	-1,00	-1,00	-1,73	-3,87	0,00	0,00	-1,41	0,00	5,92	0,00	0,00	0,00	0,00	5,92	-9,02	-3,10
1.1		C. Suelos	-1,00	1,41	0,00	-3,16	0,00	1,41	2,24	2,24	-1,41	0,00	0,00	3,16	0,00	10,46	-5,58	4,89
NES BIOLÓGICA S 2 AGUA		A. Continental	-3,87	-1,73	-3,16	-3,16	0,00	0,00	3,87	0,00	-1,41	-1,41	0,00	-1,00	-3,87	3,87	-19,63	-15,76
3. ATMÓS 2. FERA		D. Calidad	-2,00 -1,41	-1,41	0,00	0,00	0,00	0,00	-3,46 -2,65	0,00	-1,41	0,00	0,00	-1,00	0,00	0,00	-9,29	-9,29
CO		idad (gases, partícula) sición (Sedimentación y	-1,73	-1,41	-2,45	-3,87	0,00	0,00	-6,32	0,00	0,00	-1,41	0,00	4,90	6,48	0,00	-6,30	-6,30
B.		precipitación) npactación y asientos	-1,00	1,73	0,00	0,00	-1,00	0,00	2,00	2,00	-1,41	-1,00	0,00	0,00	0,00	11,38 5,73	-17,21 -4,41	-5,83 1,32
	F. Cor	G. Estabilidad	-1,41	1,00	0,00	0,00	-1,00	-1,00	2,00	2,00	-2,00	4,47	0,00	2,83	0,00	12,30	-5,41	6,89
ES BIOL 1. FLORA		D. Cosechas	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	8,37	9,37	0,00	9,37
CONDICION 2. FAUNA	С.	Peces y crustáceos	-4,47	-1,00	-3,16	-3,87	-2,00	0,00	3,16	0,00	-1,41	-1,73	0,00	-5,48	-3,46	3,16	-26,59	-23,43
œi e		F. Microfauna	-2,45	-1,41	-1,41	-3,16	-2,00	0,00	3,16	0,00	-1,00	-1,73	0,00	-2,45	4,24	7,40	-15,62	-8,22
1. USOS DEL TER		D. Pastos	0,00	0,00	0,00	0,00	0,00	0,00	5,92	-1,00	0,00	0,00	0,00	0,00	4,47 8,94	10,39	-1,00	9,39
TERÉ 1. US		E. Agricultura	-3,46	-1,00	-1,41	-3,87	-1,00	0,00	-2,00	-1,00	0,00	-1,41	-2.00	0,00	-3,46	14,86	-1,00	13,86
OS Y DEIN		B. Naturaleza	-4,47	-1,41	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	-3,87	0,00	0,00	0,00	-20,63	-20,63
FACTORES CULTURALES * NIVE. 3. ESTÉTICO CULTURAL HU	C.	Espacios abiertos D. Paisajes	-3,46	-1,00	0,00	0,00	0,00	0,00	0,00	3,87	-1,00	0,00	-4,47	0,00	-3,00	3,87	-10,76 -12,94	-10,76 -9,06
RES CUL		C. Empleo	0,00	0,00	0,00	0,00	0,00	0,00	2,83	3,87	0,00	6,32	0,00	0,00	7,07	20,10	0,00	20,10
15 4	D. De	nsidad de población	0,00	0,00	0,00	0,00	0,00	0,00	2,45	0,00	0,00	0,00	0,00	0,00	5,48	7,93	0,00	7,93
STRUCTUR		A. Estructuras	-1,41	1,41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,41	-1,41	0,00
SE INFRAE	В.	Red de transportes	-1,00	0,00	0,00	0,00	-1,00	-1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-3,00	-3,00
S. SERVICIOS E INFRAESTR UCTUR		Red de servicios	-1,41	-1,00	0,00	0,00	0,00	0,00	-2,24	-1,00	-1,00	-1,41	0,00	0,00	0,00	0,00	-1,41 -7.65	23,35 -7,65
		Positivos (+)	0,00	5,56	4,47	0,00	0,00	1,41	37,42	18,86	5,92	10,80	0,00	16,37	52,13	152,92	-178,87	
Imp	actos	Negativos (-) Total	-36,58 -36,58	-12,39 -6,83	-13,33 -8,86	-24,98 -24,98	-8,00 -8,00	-2,00 -0,59	-18,08 19,33	-5,00 13,86	-14,31 -8,39	-10,12 0,68	-10,35 -10,35	-9,93 6,44	-13,80 38,32	##### -25,95		Totales
		Impactos		Positivos Negativo Total	s (-)	152,92 -178,87 -25,95	-178,87	-25,95 Totales										

Anexo 3 MATRIZ DE LEPOLD

Section Sect	B. Materiales de construcción 1				1. A	CIONES	QULIU	LDLIVE	AUSAR EI	LUTUU	AWIDILIA	I ALLO				ı				
B. Materiales de construcción 1 1 1 1 1 1 5 5 5 1 5 1 5 7 7 7 7 7 7 7	Section Sect				lel hábitat	la cubierta terrestre	a hidrología	ı y modificación del cau	aciones	aminos	alses	ellenos	superficiales		obre el paisaje	ıerpos	용		Impactos	
E. Materiales de construcción 1 1 1 1 1 5 5 2 1 1 5 7 7 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8. Materiales de construccion 1 1 1 1 1 2 5 5 1 5 7 2 7 3 1 1 1 1 5 5 7 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				C. Modificación c	Alteración	E. Alteración de l	G. Control del río	M. Ruidos y vibra		M. Presas y emba	R. Desmontes y r	B. Excavaciones	E. Dragados		E. Dragado de cu	I. Utilización de a			
C. Suelos 1 1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. Suelos		1. TIERRA		1	1	-3 1	5		2	1	5	7			2				†
A. Calidad (gases, particula) A. Calidad (gases, particula) C. Deposición (Sedimentación y 3 1 2 1 3 3 3 5 5 8 2 1 1 1 3 8 8 6 2 6 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A. Calidad (gases, particula)	LOGICAS			5	1	-2 5	-2 5		1	5	1	1	-2 1		1	-3 5			
C. Deposition (Sadimentación y precipitación) 1	C. Deposition (Sedimentation y precipitation) F. Compactación y asientos G. Estabilidad G. Estabilidad C. Peces y crustáceos F. Microfauna F. Microfauna G. Pestos G. Peces y crustáceos G. Peces y c	CIONES BIO			1	-2 1					6		1			-1				1
G. Estabilidad D. Cosechas D. Cosechas C. Peces y crustáceos S. J.	G. Estabilidad 1	B. CONDIC		C. Deposición (Sedimentación y	1	1	-3 2	-3 5			8					3 8	7 6			1
D. Cosechas C. Peces y crustáceos F. Microfauna D. Pastos D. P	D. Cosechas D. Cosechas C. Peces y crustáceos F. Microfauna D. Pastos D. Pastos B. Naturaleza G. Espacios abiertos G. Espacios abiertos G. Espacios abiertos D. Paisajes D. Paisajes G. Empleo G. Empleo D. Densidad de población D. C. Red de servicios 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4. PROCE		1	1			1	-1	2	1	1	2 1		2				
C. Peces y crustáceos F. Microfauna F. Mic	C. Peces y crustáceos F. Microfauna C. Pastos D. Pastos F. Microfauna C. Pastos D. Pastos F. Microfauna C.	NES BIO	1. FLORA								2	1 1				4	10			1
F. Microtauna 2 1 1 5 1 7 5 1 1 1 6 6 2 8	P. Microtauna P. Mic	CONDICIO	2. FAUNA		5	1	5	5	1		5		1	1		6	4			1
B. Naturaleza B. Naturaleza B. Naturaleza C. Espacios abiertos C. Espacios abiertos D. Paisajes C. Empleo D. Densidad de población D. Densidad de población D. Densidad de población D. Densidad de transportes C. Red de servicios D. Densidad de población D. Densidad de población C. Red de servicios D. Densidad de población	B. Naturaleza B. Naturaleza C. Espacios abiertos D. Paisajes C. Empleo D. Densidad de población D. Densidad de población D. Densidad de población D. Densidad de población C. Red de servicios D. Vertederos de residuos 1 1 1 2 2 3 1 1 2 2 1 1 1 2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				2		1	5			5	1				6	10			1
C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l		E. Agricultura	-3	-1	-2	-3	-1		5	1		-2	-2		10	2	1	1
C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ES	TÉTICOS Y RÉS HUMA!		-5 4	-2 1	1	5	1		2	-1 1		1	-3 5		3		10	
C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. Empleo D. Densidad de población A. Estructuras 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CULTURAL		D. Paisajes	-3 4	-1					4	5	-1	4	-4 5		3	1	5	
A. Estructuras	A. Estructuras -2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FACTORES	4. NIVEL CULTURAL								3 2	5					10 3			1
	D. Vertederos de residuos 1 1 1 0	ن			1	2 1			-1	-1										1
	D. Vertederos de residuos 1 1 1 0		5. SERVICIC RAESTRUC		1		4 5		1	1	5 3	5 3								
	Positivos (+) 0 4 1 0 0 1 11 7 1 2 0 4 8 39		¥ EN		-1	-1 1					-1 5	-1 1	-1 1	-2 1						J

Anexo 4 Coordenadas del azud, tomadas desde la cresta del dique.

0,01 -0,00136145 0,02 -0,00448512 0,03 -0,00900846 0,04 -0,01477561 0,05 -0,02168855 0,06 -0,02967716 0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,44599163	х	У
0,03 -0,00900846 0,04 -0,01477561 0,05 -0,02168855 0,06 -0,02967716 0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,01	-0,00136145
0,04 -0,01477561 0,05 -0,02168855 0,06 -0,02967716 0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,02	-0,00448512
0,05 -0,02168855 0,06 -0,02967716 0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,03	-0,00900846
0,06 -0,02967716 0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,04	-0,01477561
0,07 -0,03868751 0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,05	-0,02168855
0,08 -0,04867623 0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,06	-0,02967716
0,09 -0,05960727 0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,07	-0,03868751
0,1 -0,07144999 0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,08	-0,04867623
0,11 -0,0841778 0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,09	-0,05960727
0,12 -0,09776736 0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,1	-0,07144999
0,13 -0,1121979 0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,11	-0,0841778
0,14 -0,12745074 0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,12	-0,09776736
0,15 -0,14350899 0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,13	-0,1121979
0,16 -0,16035722 0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,14	-0,12745074
0,17 -0,17798127 0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,15	-0,14350899
0,18 -0,19636806 0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,16	-0,16035722
0,19 -0,21550549 0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,17	-0,17798127
0,2 -0,23538227 0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,18	-0,19636806
0,21 -0,25598784 0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,19	-0,21550549
0,22 -0,27731232 0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,2	-0,23538227
0,23 -0,29934639 0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,21	-0,25598784
0,24 -0,32208128 0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,22	-0,27731232
0,25 -0,34550868 0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,23	-0,29934639
0,26 -0,36962072 0,27 -0,39440991 0,28 -0,41986915	0,24	-0,32208128
0,27 -0,39440991 0,28 -0,41986915	0,25	-0,34550868
0,28 -0,41986915	0,26	-0,36962072
	0,27	-0,39440991
0,29 -0,44599163	0,28	-0,41986915
	0,29	-0,44599163

Anexo 5 Tabla de datos de la línea de conducción (NODOS)

Detalles cota. Altura y presión.

	PRUEBA								
Tabla de Red - Nudos									
ID Nudo	COTA m	Altura	Presión						
Conexión n2	3722,2	3724.03	1.83						
Conexión n3	3720,2	3724.00	3.80						
Conexión n4	3718,2	3723.79	5.59						
Conexión n5	3716,2	3723.63	7.43						
Conexión n6	3714,2	3723.43	9.23						
Conexión n7	3711,34	3723.25	11.91						
Conexión n8	3708,48	3723.13	14.64						
Conexión n9	3705,62	3722.82	17.20						
Conexión n10	3702,76	3722.61	19.85						
Conexión n11	3699,91	3722.46	22.56						
Conexión n12	3697,05	3722.24	25.19						
Conexión n13	3694,19	3721.86	27.67						
Conexión n14	3691,33	3721.74	30.41						
Conexión n15	3688,56	3721.57	33.01						
Conexión n16	3688,65	3721.43	32.78						
Conexión n17	3688,74	3721.34	32.60						
Conexión n18	3688,84	3721.26	32.42						
Conexión n19	3688,93	3721.05	32.13						
Conexión n20	3689,02	3720.88	31.87						
Conexión n21	3689,11	3720.65	31.54						
Conexión n22	3689,2	3720.59	31.39						
Conexión n23	3687,98	3720.50	32.52						
Conexión n24	3686,75	3720.32	33.57						
Conexión n25	3685,53	3720.20	34.68						
Conexión n26	3684,3	3719.81	35.51						
Conexión n27	3683,08	3719.55	36.47						
Conexión n28	3681,85	3719.18	37.33						
Conexión n29	3680,63	3719.00	38.37						
Conexión n30	3679,4	3718.91	39.51						
Conexión n31	3677,9	3718.84	40.94						
Conexión n32	3676,4	3718.62	42.22						
Conexión n33	3674,9	3718.52	43.62						
Conexión n34	3673,4	3718.31	44.91						
Conexión n35	3671,9	3718.24	46.34						
Conexión n36	3670,4	3718.11	47.71						
Conexión n37	3668,9	3718.00	49.10						
Conexión n38	3667,4	3667.21	-0.19						
Conexión n39	3665,9	3666.92	1.02						

Conexión n40	3663,8	3666.76	2.96
Conexión n41	3662,9	3666.36	3.46
Conexión n42	3663,2	3666.13	2.93
Conexión n43	3662,4	3666.04	3.64
Conexión n44	3660,85	3665.98	5.13
Conexión n45	3659,29	3665.78	6.48
Conexión n46	3657,74	3665.60	7.86
Conexión n47	3656,19	3665.41	9.22
Conexión n48	3654,64	3665.26	10.62
Conexión n49	3653,08	3665.12	12.04
Conexión n50	3651,53	3664.99	13.47
Conexión n51	3649,98	3664.88	14.90
Conexión n52	3648,42	3664.83	16.41
Conexión n53	3646,87	3664.62	17.75
Conexión n54	3645,32	3664.52	19.20
Conexión n55	3643,77	3664.40	20.64
Conexión n56	3642,21	3664.25	22.03
Conexión n57	3640,66	3664.10	23.44
Conexión n58	3639,11	3663.99	24.89
Conexión n59	3637,55	3663.76	26.21
Conexión n60	3636	3663.58	27.58
Conexión n61	3634,6	3663.39	28.79
Conexión n62	3633,2	3663.20	30.00
Conexión n63	3632,8	3663.14	30.34
Conexión n64	3631,6	3663.06	31.46
Conexión n65	3631	3663.04	32.04
Conexión n66	3630,5	3662.90	32.40
Conexión n67	3630,2	3662.81	32.61
Conexión n68	3630	3662.75	32.75
Conexión n69	3630,1	3662.69	32.59
Conexión n70	3629,8	3662.66	32.86
Conexión n71	3628,1	3662.49	34.39
Conexión n72	3624	3662.32	38.32
Conexión n73	3620,2	3662.15	41.95
Conexión n74	3618,4	3662.06	43.66
Conexión n75	3615,5	3661.93	46.43
Conexión n76	3611,2	3661.77	50.57
Conexión n77	3610,6	3661.71	51.11
Conexión n78	3610,3	3661.65	51.35
Conexión n79	3609	3661.58	52.58
Conexión n80	3606,9	3608.89	1.99
Conexión n81	3605,75	3608.85	3.10
Conexión n82	3602,55	3608.74	6.19
Conexión n83	3601,5	3608.68	7.18
Conexión n84	3599	3608.62	9.62

Conexión n85	3597,5	3608.53	11.03
Conexión n86	3595,9	3608.46	12.56
Conexión n87	3594,9	3608.40	13.50
Conexión n88	3594,6	3608.34	13.74
Conexión n89	3593,75	3608.30	14.55
Conexión n90	3591,9	3608.22	16.32
Conexión n91	3590,7	3608.14	17.44
Conexión n92	3589,4	3608.12	18.72
Conexión n93	3587,4	3608.03	20.63
Conexión n94	3584,2	3607.92	23.72
Conexión n95	3581,4	3607.80	26.40
Conexión n96	3579,9	3607.72	27.82
Conexión n97	3578,2	3607.64	29.44
Conexión n98	3576,8	3607.57	30.77
Conexión n99	3575,4	3607.50	32.10
Conexión n100	3574,2	3607.44	33.24
Conexión n101	3572,35	3607.44	35.02
Conexión n102	3570	3607.32	37.32
Conexión n103	3570,4	3607.26	36.86
Conexión n104	3570	3607.20	37.19
Conexión n105	3568,9	3607.13	38.23
Conexión n106	3568,3	3607.12	38.82
Conexión n107	3565	3607.02	42.02
Conexión n108	3563	3606.91	43.91
Conexión n109	3561,25	3606.82	45.57
Conexión n110	3557,45	3606.73	49.28
Conexión n111	3552,9	3606.64	53.74
Conexión n112	3551,65	3606.54	54.89
Conexión n113	3552,95	3606.49	53.54
Conexión n114	3553,1	3606.43	53.33
Conexión n115	3551,8	3606.36	54.56
Conexión n116	3550,75	3606.32	55.57
Conexión n117	3549,9	3606.27	56.37
Conexión n118	3549,4	3549.87	0.47
Conexión n119	3548,6	3549.81	1.21
Conexión n120	3547,1	3549.73	2.63
Conexión n121	3545,7	3549.66	3.96
Conexión n122	3545,25	3549.62	4.37
Conexión n123	3544,25	3549.56	5.31
Conexión n124	3543,65	3549.51	5.86
Conexión n125	3541,45	3549.41	7.96
Conexión n126	3540,1	3549.35	9.25
Conexión n127	3538,7	3549.30	10.60
Conexión n128	3537	3549.23	12.23
Conexión n129	3536,25	3549.16	12.91

Conexión n130	3535,3	3549.09	13.79
Conexión n131	3530,4	3548.83	18.43
Conexión n132	3527,8	3548.70	20.90
Conexión n133	3528,3	3548.66	20.36
Conexión n134	3529,8	3548.56	18.76
Conexión n135	3530,5	3548.47	17.97
Conexión n136	3530,4	3548.43	18.03
Conexión n137	3528,3	3548.31	20.01
Conexión n138	3527,6	3548.27	20.67
Conexión n139	3526,3	3548.27	21.87
Conexión n140	3525,8	3548.15	22.34
Conexión n141	3525,7	3548.14	22.44
Conexión n142	3524,2	3548.14	23.86
Conexión n143	3523,25	3547.98	
Conexión n144	3523,23		24.73
Conexión n145		3547.87	26.37
	3519,35	3547.74	28.39
Conexión n146 Conexión n147	3517,8	3547.65	29.85
	3516,15	3547.53	31.38
Conexión n148	3513,85	3547.38	33.53
Conexión n149	3513,3	3547.33	34.03
Conexión n150	3511,9	3547.23	35.33
Conexión n151	3509	3547.11	38.11
Conexión n152	3507,95	3547.04	39.09
Conexión n153	3506,8	3546.97	40.17
Conexión n154	3506,3	3546.91	40.61
Conexión n155	3506	3546.87	40.87
Conexión n156	3504,4	3546.80	42.40
Conexión n157	3502,9	3546.72	43.82
Conexión n158	3500,8	3546.60	45.80
Conexión n159	3499,15	3546.47	47.32
Conexión n160	3498,4	3546.40	48.00
Conexión n161	3497	3546.25	49.25
Conexión n162	3494,75	3546.07	51.32
Conexión n163	3492,7	3545.90	53.20
Conexión n164	3489,8	3545.69	55.89
Conexión n165	3486,3	3545.48	59.18
Conexión n166	3483,7	3486.13	2.43
Conexión n167	3482,85	3486.08	3.23
Conexión n168	3481,1	3485.99	4.89
Conexión n169	3479,4	3485.86	6.46
Conexión n170	3479,1	3485.82	6.72
Conexión n171	3476,6	3485.67	9.07
Conexión n172	3475,35	3485.62	10.27
Conexión n173	3474,4	3485.58	11.18
Conexión n174	3473,9	3485.54	11.64

Conexión n175	3473,1	3485.47	12.37
Conexión n176	3471,75	3485.35	13.60
Conexión n177	3471,65	3485.32	13.67
Conexión n178	3470,5	3485.24	14.74
Conexión n179	3469,95	3485.18	15.23
Conexión n180	3469,8	3485.15	15.35
Conexión n181	3469,8	3485.13	15.33
Conexión n182	3469,65	3485.06	15.41
Conexión n183	3469,1	3485.01	15.91
Conexión n184	3468,35	3484.96	16.61
Conexión n185	3465,9	3484.87	18.97
Conexión n186	3465,05	3484.83	19.78
Conexión n187	3464,1	3484.78	20.68
	•		
Conexión n188 Conexión n189	3463,7	3484.74	21.04
Conexión n190	3463,4	3484.73	21.33
	3463	3484.70	21.70
Conexión n191	3462,05	3484.62	22.57
Conexión n192	3460,7	3484.54	23.84
Conexión n193	3459,5	3484.43	24.93
Conexión n194	3458,9	3484.36	25.46
Conexión n195	3458,5	3484.32	25.82
Conexión n196	3458,3	3484.31	26.01
Conexión n197	3457,2	3484.28	27.08
Conexión n198	3455,9	3484.23	28.33
Conexión n199	3453	3484.03	31.03
Conexión n200	3451,55	3483.93	32.38
Conexión n201	3451,05	3483.88	32.83
Conexión n202	3449,55	3483.81	34.26
Conexión n203	3447,7	3483.71	36.01
Conexión n204	3446,7	3483.60	36.90
Conexión n205	3445,5	3483.52	38.02
Conexión n206	3444,3	3483.48	39.18
Conexión n207	3443	3483.44	40.44
Conexión n208	3442,5	3483.42	40.92
Conexión n209	3442,1	3483.39	41.29
Conexión n210	3441,8	3483.36	41.56
Conexión n211	3440,15	3483.19	43.04
Conexión n212	3439,6	3483.12	43.52
Conexión n213	3439,45	3483.08	43.63
Conexión n214	3437,3	3482.91	45.61
Conexión n215	3435,6	3482.83	47.23
Conexión n216	3435,15	3482.80	47.65
Conexión n217	3434,5	3482.75	48.25
Conexión n218	3433,05	3434.41	1.36
Conexión n219	3431,95	3434.35	2.40

Conexión n220	3428,5	3434.21	5.71
Conexión n221	3425,9	3434.11	8.21
Conexión n222	3424,9	3434.05	9.15
Conexión n223	3421,75	3433.92	12.17
Conexión n224	3419,85	3433.83	13.98
Conexión n225	3418,75	3433.77	15.02
Conexión n226	3416,5	3433.68	17.18
Conexión n227	3413,5	3433.55	20.05
Conexión n228	3412,15	3433.50	21.35
Conexión n229	3411,5	3433.45	21.95
Conexión n230	3413,35	3433.39	20.04
Conexión n231	3412,29	3433.34	21.05
Conexión n232	3411,24	3433.29	22.05
Conexión n233	3410,18	3433.22	23.05
Conexión n234	3409,12	3433.16	24.04
Conexión n235	3408,06	3433.10	25.04
Conexión n236	3407	3432.98	25.97
Conexión n237	3405,95	3432.90	26.95
Conexión n238	3404,89	3432.81	27.92
Conexión n239	3403,83	3432.70	28.87
Conexión n240	3402,77	3432.60	29.83
Conexión n241	3401,72	3432.58	30.87
Conexión n242	3400,66	3432.56	31.90
Conexión n243	3399,6	3432.53	32.93
Conexión n244	3398,16	3432.38	34.22
Conexión n245	3396,72	3432.31	35.59
Conexión n246	3395,28	3432.20	36.92
Conexión n247	3393,84	3432.10	38.26
Conexión n248	3392,41	3431.99	39.59
Conexión n249	3390,97	3431.87	40.90
Conexión n250	3389,53	3431.78	42.25
Conexión n251	3388,09	3431.68	43.59
Conexión n252	3386,65	3431.63	44.98
Conexión n253	3385,53	3431.59	46.07
Conexión n254	3384,4	3431.51	47.11
Conexión n255	3383,28	3431.37	48.09
Conexión n256	3382,15	3431.29	49.14
Conexión n257	3381,65	3431.22	49.57
Conexión n258	3383,75	3431.15	47.40
Conexión n259	3384,62	3431.06	46.44
Conexión n260	3385,48	3430.99	45.51
Conexión n261	3386,35	3430.89	44.54
Conexión n262	3385,92	3430.86	44.94
Conexión n263	3385,49	3430.78	45.29
Conexión n264	3385,06	3430.68	45.62
		1 2 .30.30	.5.52

Conexión n265	3384,64	3430.64	46.00
Conexión n266	3384,21	3430.55	46.34
Conexión n267	3383,78	3430.46	46.68
Conexión n268	3383,35	3430.38	47.03
Conexión n269	3384,85	3430.32	45.47
Conexión n270	3384,91	3430.27	45.37
Conexión n271	3384,97	3430.25	45.28
Conexión n272	3385,03	3430.17	45.14
Conexión n273	3385,08	3430.09	45.01
Conexión n274	3385,14	3430.06	44.92
Conexión n275	3385,2	3429.99	44.79
Conexión n276	3381,15	3429.94	48.79
Conexión n277	3381,13	3429.90	49.20
Conexión n278			
	3378,45	3429.86	51.41
Conexión n279	3376,2	3429.80	53.60
Conexión n280	3373,95	3429.74	55.79
Conexión n281	3371,7	3429.63	57.93
Conexión n282	3369,45	3429.39	59.94
Conexión n283	3367,2	3429.32	62.12
Conexión n284	3366,1	3429.30	63.20
Conexión n285	3365	3429.26	64.26
Conexión n286	3363,9	3429.20	65.30
Conexión n287	3364,23	3429.16	64.93
Conexión n288	3364,55	3429.11	64.56
Conexión n289	3364,88	3429.04	64.16
Conexión n290	3365,2	3428.97	63.77
Conexión n291	3366,55	3428.86	62.31
Conexión n292	3367,9	3428.78	60.88
Conexión n293	3369,25	3428.72	59.47
Conexión n294	3371,73	3428.54	56.81
Conexión n295	3374,2	3428.49	54.29
Conexión n296	3376,68	3428.35	51.67
Conexión n297	3379,15	3428.26	49.11
Conexión n298	3380,86	3428.18	47.32
Conexión n299	3382,58	3428.04	45.47
Conexión n300	3384,29	3427.81	43.52
Conexión n301	3386	3427.72	41.72
Conexión n302	3386,65	3427.59	40.94
Conexión n303	3387,3	3427.47	40.17
Conexión n304	3387,95	3427.33	39.38
Conexión n305	3388,6	3427.18	38.58
Conexión n306	3389,25	3427.05	37.80
Conexión n307	3389,9	3426.94	37.04
Conexión n308	3390,55	3426.87	36.32
Conexión n309	3391,2	3426.75	35.55

Conexión n310	3392	3426.63	34.63
Conexión n311	3393	3426.51	33.51
Conexión n312	3394	3426.43	32.43
Conexión n313	3394,3	3426.38	32.07
Conexión n314	3394,61	3426.30	31.69
Conexión n315	3394,91	3426.19	31.28
Conexión n316	3395,22	3426.10	30.88
Conexión n317	3395,52	3426.04	30.52
Conexión n318	3395,82	3425.96	30.14
Conexión n319	3396,13	3425.85	29.72
Conexión n320	3396,43	3425.75	29.32
Conexión n321	3396,74	3425.63	28.89
Conexión n322	3397,04	3425.53	28.49
Conexión n323	3397,34	3425.36	28.02
Conexión n324	3397,65	3425.23	27.58
Conexión n325	3397,95	3425.12	27.17
Conexión n326	3398,25	3425.06	26.81
Conexión n327	3398,56	3424.97	26.41
Conexión n328	3398,86	3424.79	25.93
Conexión n329	3399,17	3424.76	25.59
Conexión n330	3399,47	3424.60	25.13
Conexión n331	3399,77	3424.56	24.79
Conexión n332	3400,08	3424.38	24.30
Conexión n333	3400,38	3424.27	23.89
Conexión n334	3400,69	3424.15	23.46
Conexión n335	3400,99	3424.11	23.13
Conexión n336	3401,29	3424.03	22.74
Conexión n337	3401,6	3423.89	22.30
Conexión n338	3401,9	3423.79	21.89
Conexión n339	3403,2	3423.62	20.42
Conexión n340	3403,45	3423.50	20.05
Conexión n341	3403,71	3423.43	19.72
Conexión n342	3403,96	3423.33	19.37
Conexión n343	3404,21	3423.21	18.99
Conexión n344	3404,47	3423.13	18.66
Conexión n345	3404,72	3423.04	18.32
Conexión n346	3404,98	3422.96	17.98
Conexión n347	3405,23	3422.83	17.60
Conexión n348	3405,48	3422.67	17.19
Conexión n349	3405,74	3422.57	16.83
Conexión n350	3405,99	3422.45	16.46
Conexión n351	3406,24	3422.32	16.08
Conexión n352	3406,5	3422.26	15.77
Conexión n353	3406,75	3422.18	15.43
Conexión n354	3406,55	3422.09	15.54

Conexión n355	3406,36	3422.01	15.66
Conexión n356	3406,16	3421.98	15.82
Conexión n357	3405,96	3421.90	15.94
Conexión n358	3405,77	3421.78	16.02
Conexión n359	3405,57	3421.66	16.09
Conexión n360	3405,37	3421.55	16.18
Conexión n361	3405,18	3421.41	16.24
Conexión n362	3404,98	3421.35	16.37
Conexión n363	3404,78	3421.18	16.40
Conexión n364	3404,58	3421.10	16.52
Conexión n365	3404,39	3420.94	16.55
Conexión n366	3404,19	3420.92	16.73
Conexión n367	3403,99	3420.89	16.89
Conexión n368	3403,8	3420.78	16.99
Conexión n369	3403,6	3420.66	17.06
Conexión n370	3403,71	3420.59	16.88
Conexión n371	3403,83	3420.41	16.58
Conexión n372	3403,94	3420.36	16.42
Conexión n373	3404,05	3420.25	16.20
Conexión n374	3404,17	3420.23	15.96
Conexión n375	3404,28	3420.02	15.74
Conexión n376	3404,39	3419.98	15.59
Conexión n377	3404,5	3419.78	15.28
Conexión n378	3404,62	3419.68	15.06
Conexión n379	3404,73	3419.54	14.81
Conexión n380	3404,84	3419.46	14.61
Conexión n381	3404,96	3419.35	14.39
Conexión n382	3405,07	3419.24	14.17
Conexión n383	3405,18	3418.59	13.40
Conexión n384	3405,3	3418.48	13.19
Conexión n385	3405,41	3418.33	12.92
Conexión n386	3405,52	3418.15	12.63
Conexión n387	3405,64	3418.04	12.41
Conexión n388	3405,75	3417.97	12.22
Conexión n389	3405,86	3417.88	12.02
Conexión n390	3405,97	3417.78	11.81
Conexión n391	3406,09	3417.68	11.59
Conexión n392	3406,2	3417.60	11.40
Conexión n393	3406,17	3417.49	11.32
Conexión n394	3406,13	3417.38	11.25
Conexión n395	3406,1	3417.30	11.20
Conexión n396	3406,07	3417.20	11.13
Conexión n397	3406,03	3417.08	11.04
Conexión n398	3406	3417.04	11.04
Conexión n399	3405,89	3416.95	11.06

Conexión n400	3405,77	3416.91	11.13
Conexión n401	3405,66	3416.78	11.12
Conexión n402	3405,55	3416.69	11.15
Conexión n403	3405,43	3416.59	11.16
Conexión n404	3405,32	3416.54	11.22
Conexión n405	3405,21	3416.43	11.22
Conexión n406	3405,09	3416.40	11.31
Conexión n407	3403,09		
Conexión n408	3404,98	3416.29	11.31
	 	3416.19	11.33
Conexión n409	3404,75	3416.12	11.36
Conexión n410	3404,64	3416.03	11.39
Conexión n411	3404,53	3415.94	11.41
Conexión n412	3404,41	3415.88	11.47
Conexión n413	3404,3	3415.79	11.49
Conexión n414	3404,19	3415.71	11.53
Conexión n415	3404,07	3415.62	11.55
Conexión n416	3403,96	3415.54	11.58
Conexión n417	3403,84	3415.47	11.62
Conexión n418	3403,73	3415.34	11.61
Conexión n419	3403,62	3415.15	11.53
Conexión n420	3403,5	3415.11	11.60
Conexión n421	3403,39	3415.03	11.64
Conexión n422	3403,28	3414.96	11.69
Conexión n423	3403,16	3414.85	11.68
Conexión n424	3403,05	3414.77	11.72
Conexión n425	3403,01	3414.64	11.63
Conexión n426	3402,98	3414.52	11.54
Conexión n427	3402,94	3414.42	11.48
Conexión n428	3402,91	3414.33	11.43
Conexión n429	3402,87	3414.21	11.34
Conexión n430	3402,83	3414.10	11.27
Conexión n431	3402,8	3414.05	11.25
Conexión n432	3402,76	3413.97	11.21
Conexión n433	3402,73	3413.79	11.06
Conexión n434	3402,69	3413.72	11.03
Conexión n435	3402,66	3413.64	10.98
Conexión n436	3402,62	3413.56	10.94
Conexión n437	3402,58	3413.51	10.93
Conexión n438	3402,55	3413.44	10.89
Conexión n439	3402,51	3413.33	10.82
Conexión n440	3402,48	3413.10	10.63
Conexión n441	3402,44	3412.91	10.47
Conexión n442	3402,4	3412.68	10.27
Conexión n443	3402,37	3412.41	10.04
Conexión n444	3402,33	3412.10	9.77
	,	1	1

Conexión n445	3402,3	3411.83	9.54
Conexión n446	3402,26	3411.52	9.27
Conexión n447	3402,22	3411.43	9.21
Conexión n448	3402,19	3411.28	9.09
Conexión n449	3402,15	3411.07	8.91
Conexión n450	3402,12	3410.82	8.70
Conexión n451	3402,08	3410.54	8.46
Conexión n452	3402,04	3410.25	8.20
Conexión n453	3402,01	3409.94	7.93
Conexión n454	3401,97	3409.22	7.25
Conexión n455	3401,94	3408.92	6.98
Conexión n456	3401,9	3408.64	6.74
Conexión n457	3401,89	3408.47	6.58
Conexión n458	3401,89	3408.31	6.42
Conexión n459	3401,88	3408.13	6.25
Conexión n460	3401,88	3407.83	5.95
Conexión n461	3401,87	3407.57	5.70
Conexión n462	3401,86	3407.24	5.38
Conexión n463	3401,86	3407.14	5.28
Conexión n464	3401,85	3406.99	5.14
Conexión n465	3401,84	3406.51	4.67
Conexión n466	340,18	3406.29	4.46
Conexión n467	3401,83	3406.06	4.23
Conexión n468	3401,83	3405.96	4.14
Conexión n469	3401,82	3405.71	3.89
Conexión n470	3401,81	3405.54	3.73
Conexión n471	3401,81	3405.39	3.59
Conexión n472	3401,8	3405.23	3.43
Conexión n473	3401,15	3405.04	3.89
Conexión n474	3400,5	3404.97	4.47
Conexión n475	3399,85	3404.80	4.95
Conexión n476	3399,2	3404.54	5.34
Conexión n477	3398,55	3404.34	5.79
Conexión n478	3397,9	3404.17	6.27
Conexión n479	3397,25	3403.78	6.53
Conexión n480	3396,6	3403.40	6.80
Conexión n481	3395,95	3401.46	5.51
Conexión n482	3395,3	3400.29	4.99
Conexión n483	3394,65	3397.87	3.22
Conexión VALREG	3394,3	3394.52	0.22
Embalse TOMA	3724,2	3724.20	0.00
Depósito TANQUE	3394,3	3394.50	0.20

Anexo 6 Tabla de datos de la línea de conducción (TUBERÍA)

Detalles de longitud, diámetro, rugosidad, caudal, perd. unit, factor de fricción

			prueb	a			
			Tabla de Red	- Líneas			
ID LINEA	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Pérd, Unit,	Factor de Fricción
UNIDADES	b	mm	mm	LPS	m/s	m/km	
Tubería p1	49,18	200	0,0015	29,42	0,94	3,54	0,016
Tubería p2	7,207	200	0,0015	29,42	0,94	3,55	0,016
Tubería p3	58,45	200	0,0015	29,42	0,94	3,54	0,016
Tubería p4	45,24	200	0,0015	29,42	0,94	3,55	0,016
Tubería p5	56,53	200	0,0015	29,42	0,94	3,54	0,016
Tubería p6	52,15	200	0,0015	29,42	0,94	3,54	0,016
Tubería p7	34,24	200	0,0015	29,42	0,94	3,55	0,016
Tubería p8	85,56	200	0,0015	29,42	0,94	3,54	0,016
Tubería p9	59,85	200	0,0015	29,42	0,94	3,55	0,016
Tubería p10	41,64	200	0,0015	29,42	0,94	3,54	0,016
Tubería p11	64,51	200	0,0015	29,42	0,94	3,54	0,016
Tubería p12	106,00	200	0,0015	29,42	0,94	3,54	0,016
Tubería p13	34,03	200	0,0015	29,42	0,94	3,54	0,016
Tubería p14	48,67	200	0,0015	29,42	0,94	3,55	0,016
Tubería p15	38,98	200	0,0015	29,42	0,94	3,54	0,016
Tubería p16	24,57	200	0,0015	29,42	0,94	3,54	0,016
Tubería p17	23,37	200	0,0015	29,42	0,94	3,54	0,016
Tubería p18	58,46	200	0,0015	29,42	0,94	3,54	0,016
Tubería p19	47,12	200	0,0015	29,42	0,94	3,54	0,016
Tubería p20	66,14	200	0,0015	29,42	0,94	3,54	0,016
Tubería p21	15,86	200	0,0015	29,42	0,94	3,55	0,016
Tubería p22	27,88	200	0,0015	29,42	0,94	3,54	0,016
Tubería p23	50,41	200	0,0015	29,42	0,94	3,54	0,016
Tubería p24	32,73	200	0,0015	29,42	0,94	3,55	0,016
Tubería p25	109,30	200	0,0015	29,42	0,94	3,54	0,016
Tubería p26	74,96	200	0,0015	29,42	0,94	3,54	0,016
Tubería p27	103,90	200	0,0015	29,42	0,94	3,54	0,016
Tubería p28	51,94	200	0,0015	29,42	0,94	3,54	0,016
Tubería p29	24,50	200	0,0015	29,42	0,94	3,55	0,016
Tubería p30	18,70	200	0,0015	29,42	0,94	3,55	0,016
Tubería p31	61,44	200	0,0015	29,42	0,94	3,54	0,016
Tubería p32	30,06	200	0,0015	29,42	0,94	3,54	0,016
Tubería p33	58,35	200	0,0015	29,42	0,94	3,54	0,016
Tubería p34	19,32	200	0,0015	29,42	0,94	3,54	0,016

Tubería p35	36,33	200	0,0015	29,42	0,94	3,55	0,016
Tubería p36	31,64	200	0,0015	29,42	0,94	3,54	0,016
Tubería p37	54,71	200	0,0015	29,42	0,94	3,54	0,016
Tubería p38	80,91	200	0,0015	29,42	0,94	3,55	0,016
Tubería p39	46,05	200	0,0015	29,42	0,94	3,54	0,016
Tubería p40	112,00	200	0,0015	29,42	0,94	3,54	0,016
Tubería p41	65,94	200	0,0015	29,42	0,94	3,54	0,016
Tubería p42	23,33	200	0,0015	29,42	0,94	3,55	0,016
Tubería p43	18,12	200	0,0015	29,42	0,94	3,53	0,016
Tubería p44	56,70	200	0,0015	29,42	0,94	3,54	0,016
Tubería p45	49,26	200	0,0015	29,42	0,94	3,55	0,016
Tubería p46	54,74	200	0,0015	29,42	0,94	3,54	0,016
Tubería p47	43,56	200	0,0015	29,42	0,94	3,55	0,016
Tubería p48	37,22	200	0,0015	29,42	0,94	3,54	0,016
Tubería p49	36,26	200	0,0015	29,42	0,94	3,55	0,016
Tubería p50	32,40	200	0,0015	29,42	0,94	3,54	0,016
Tubería p51	13,03	200	0,0015	29,42	0,94	3,54	0,016
Tubería p52	59,17	200	0,0015	29,42	0,94	3,55	0,016
Tubería p53	29,11	200	0,0015	29,42	0,94	3,54	0,016
Tubería p54	33,99	200	0,0015	29,42	0,94	3,55	0,016
Tubería p55	43,42	200	0,0015	29,42	0,94	3,54	0,016
Tubería p56	41,71	200	0,0015	29,42	0,94	3,54	0,016
Tubería p57	30,11	200	0,0015	29,42	0,94	3,55	0,016
Tubería p58	65,39	200	0,0015	29,42	0,94	3,54	0,016
Tubería p59	51,33	200	0,0015	29,42	0,94	3,54	0,016
Tubería p60	53,40	200	0,0015	29,42	0,94	3,55	0,016
Tubería p61	53,41	200	0,0015	29,42	0,94	3,54	0,016
Tubería p62	17,79	200	0,0015	29,42	0,94	3,53	0,016
Tubería p63	20,77	200	0,0015	29,42	0,94	3,55	0,016
Tubería p64	7,32	200	0,0015	29,42	0,94	3,54	0,016
Tubería p65	37,58	200	0,0015	29,42	0,94	3,54	0,016
Tubería p66	27,25	200	0,0015	29,42	0,94	3,55	0,016
Tubería p67	17,60	200	0,0015	29,42	0,94	3,53	0,016
Tubería p68	14,98	200	0,0015	29,42	0,94	3,54	0,016
Tubería p69	10,30	200	0,0015	29,42	0,94	3,55	0,016
Tubería p70	45,99	200	0,0015	29,42	0,94	3,55	0,016
Tubería p71	48,99	200	0,0015	29,42	0,94	3,54	0,016
Tubería p72	48,94	200	0,0015	29,42	0,94	3,54	0,016
Tubería p73	25,15	200	0,0015	29,42	0,94	3,55	0,016
Tubería p74	36,04	200	0,0015	29,42	0,94	3,54	0,016
Tubería p75	44,74	200	0,0015	29,42	0,94	3,54	0,016
Tubería p76	16,46	200	0,0015	29,42	0,94	3,54	0,016
Tubería p77	18,97	200	0,0015	29,42	0,94	3,55	0,016
Tubería p78	18,61	200	0,0015	29,42	0,94	3,55	0,016
Tubería p79	29,73	200	0,0015	29,42	0,94	3,53	0,016

Tubería p80	12,72	200	0,0015	29,42	0,94	3,56	0,016
Tubería p81	30,71	200	0,0015	29,42	0,94	3,54	0,016
Tubería p82	15,98	200	0,0015	29,42	0,94	3,56	0,016
Tubería p83	17,46	200	0,0015	29,42	0,94	3,55	0,016
Tubería p84	24,87	200	0,0015	29,42	0,94	3,54	0,016
Tubería p85	21,02	200	0,0015	29,42	0,94	3,54	0,016
Tubería p86	16,08	200	0,0015	29,42	0,94	3,54	0,016
Tubería p87	16,65	200					
Tubería p88			0,0015	29,42	0,94	3,54	0,016
Tubería p89	13,68 21,87	200	0,0015	29,42	0,94	3,55	0,016
Tubería p89		200	0,0015	29,42	0,94	3,55	0,016
	20,65	200	0,0015	29,42	0,94	3,53	0,016
Tubería p91	7,83	200	0,0015	29,42	0,94	3,57	0,016
Tubería p92	23,89	200	0,0015	29,42	0,94	3,54	0,016
Tubería p93	30,72	200	0,0015	29,42	0,94	3,55	0,016
Tubería p94	35,14	200	0,0015	29,42	0,94	3,54	0,016
Tubería p95	21,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p96	23,03	200	0,0015	29,42	0,94	3,54	0,016
Tubería p97	20,66	200	0,0015	29,42	0,94	3,54	0,016
Tubería p98	19,83	200	0,0015	29,42	0,94	3,54	0,016
Tubería p99	15,87	200	0,0015	29,42	0,94	3,54	0,016
Tubería p100	19,42	200	0,0015	29,42	0,94	3,54	0,016
Tubería p101	16,04	200	0,0015	29,42	0,94	3,54	0,016
Tubería p102	16,84	200	0,0015	29,42	0,94	3,55	0,016
Tubería p103	19,08	200	0,0015	29,42	0,94	3,54	0,016
Tubería p104	16,23	200	0,0015	29,42	0,94	3,54	0,016
Tubería p105	4,60	200	0,0015	29,42	0,94	3,56	0,016
Tubería p106	28,36	200	0,0015	29,42	0,94	3,54	0,016
Tubería p107	29,38	200	0,0015	29,42	0,94	3,55	0,016
Tubería p108	24,88	200	0,0015	29,42	0,94	3,54	0,016
Tubería p109	26,22	200	0,0015	29,42	0,94	3,54	0,016
Tubería p110	26,08	200	0,0015	29,42	0,94	3,55	0,016
Tubería p111	28,32	200	0,0015	29,42	0,94	3,54	0,016
Tubería p112	14,45	200	0,0015	29,42	0,94	3,54	0,016
Tubería p113	15,68	200	0,0015	29,42	0,94	3,55	0,016
Tubería p114	19,86	200	0,0015	29,42	0,94	3,54	0,016
Tubería p115	11,96	200	0,0015	29,42	0,94	3,53	0,016
Tubería p116	13,64	200	0,0015	29,42	0,94	3,56	0,016
Tubería p117	9,68	200	0,0015	29,42	0,94	3,54	0,016
Tubería p118	15,80	200	0,0015	29,42	0,94	3,54	0,016
Tubería p119	21,89	200	0,0015	29,42	0,94	3,55	0,016
Tubería p120	20,69	200	0,0015	29,42	0,94	3,54	0,016
Tubería p121	9,81	200	0,0015	29,42	0,94	3,55	0,016
Tubería p122	19,04	200	0,0015	29,42	0,94	3,53	0,016
Tubería p123	13,69	200	0,0015	29,42	0,94	3,54	0,016
Tubería p124	27,29	200	0,0015	29,42	0,94		0,016
Tancila h124	21,23	200	0,0015	25,42	0,94	3,54	0,016

Tubería p125	16,09	200	0,0015	29,42	0,94	3,55	0,016
Tubería p126	14,77	200	0,0015	29,42	0,94	3,55	0,016
Tubería p127	20,14	200	0,0015	29,42	0,94	3,53	0,016
Tubería p128	20,80	200	0,0015	29,42	0,94	3,55	0,016
Tubería p129	19,92	200	0,0015	29,42	0,94	3,54	0,016
Tubería p130	72,33	200	0,0015	29,42	0,94	3,54	0,016
Tubería p131	36,47	200	0,0015	29,42	0,94	3,54	0,016
Tubería p132	10,97	200	0,0015	29,42	0,94	3,55	0,016
Tubería p133	28,52	200	0,0015	29,42	0,94	3,54	0,016
Tubería p134	24,37	200	0,0015	29,42	0,94	3,55	0,016
Tubería p135	12,90	200	0,0015	29,42	0,94	3,53	0,016
Tubería p136	34,25	200	0,0015	29,42	0,94	3,55	0,016
Tubería p137	9,31	200	0,0015	29,42	0,94	3,55	0,016
Tubería p138	28,60	200	0,0015	29,42	0,94	3,54	0,016
Tubería p139	8,01	200	0,0015	29,42	0,94	3,53	0,016
Tubería p140	1,15	200	0,0015	29,42	0,94	3,62	0,016
Tubería p141	23,91	200	0,0015	29,42	0,94	3,55	0,016
Tubería p142	21,56	200	0,0015	29,42	0,94	3,53	0,016
Tubería p143	30,34	200	0,0015	29,42	0,94	3,55	0,016
Tubería p144	36,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p145	26,70	200	0,0015	29,42	0,94	3,55	0,016
Tubería p146	33,64	200	0,0015	29,42	0,94	3,54	0,016
Tubería p147	43,67	200	0,0015	29,42	0,94	3,54	0,016
Tubería p148	13,49	200	0,0015	29,42	0,94	3,55	0,016
Tubería p149	27,61	200	0,0015	29,42	0,94	3,55	0,016
Tubería p150	33,07	200	0,0015	29,42	0,94	3,54	0,016
Tubería p151	19,33	200	0,0015	29,42	0,94	3,54	0,016
Tubería p152	21,77	200	0,0015	29,42	0,94	3,55	0,016
Tubería p153	16,61	200	0,0015	29,42	0,94	3,53	0,016
Tubería p154	10,58	200	0,0015	29,42	0,94	3,54	0,016
Tubería p155	21,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p156	20,69	200	0,0015	29,42	0,94	3,54	0,016
Tubería p157	34,75	200	0,0015	29,42	0,94	3,55	0,016
Tubería p158	36,50	200	0,0015	29,42	0,94	3,55	0,016
Tubería p159	20,87	200	0,0015	29,42	0,94	3,54	0,016
Tubería p160	40,14	200	0,0015	29,42	0,94	3,54	0,016
Tubería p161	52,18	200	0,0015	29,42	0,94	3,54	0,016
Tubería p162	47,46	200	0,0015	29,42	0,94	3,54	0,016
Tubería p163	59,08	200	0,0015	29,42	0,94	3,54	0,016
Tubería p164	59,44	200	0,0015	29,42	0,94	3,55	0,016
Tubería p165	47,33	200	0,0015	29,42	0,94	3,54	0,016
Tubería p166	14,25	200	0,0015	29,42	0,94	3,55	0,016
Tubería p167	27,26	200	0,0015	29,42	0,94	3,55	0,016
Tubería p168	34,79	200	0,0015	29,42	0,94	3,54	0,016
Tubería p169	13,14	200	0,0015	29,42	0,94	3,53	0,016

Tubería p170	42,14	200	0,0015	29,42	0,94	3,55	0,016
Tubería p171	13,20	200	0,0015	29,42	0,94	3,54	0,016
Tubería p172	11,91	200	0,0015	29,42	0,94	3,55	0,016
Tubería p173	11,01	200	0,0015	29,42	0,94	3,54	0,016
Tubería p173	18,87	200	0,0015	29,42	0,94		0,016
Tubería p175	33,51					3,53	
· · · · · · · · · · · · · · · · · · ·		200	0,0015	29,42	0,94	3,54	0,016
Tubería p176	8,86	200	0,0015	29,42	0,94	3,56	0,016
Tubería p177	22,64	200	0,0015	29,42	0,94	3,54	0,016
Tubería p178	16,89	200	0,0015	29,42	0,94	3,54	0,016
Tubería p179	7,79	200	0,0015	29,42	0,94	3,55	0,016
Tubería p180	7,60	200	0,0015	29,42	0,94	3,53	0,016
Tubería p181	19,32	200	0,0015	29,42	0,94	3,54	0,016
Tubería p182	12,99	200	0,0015	29,42	0,94	3,55	0,016
Tubería p183	14,26	200	0,0015	29,42	0,94	3,55	0,016
Tubería p184	26,35	200	0,0015	29,42	0,94	3,55	0,016
Tubería p185	10,75	200	0,0015	29,42	0,94	3,54	0,016
Tubería p186	13,42	200	0,0015	29,42	0,94	3,53	0,016
Tubería p187	12,79	200	0,0015	29,42	0,94	3,56	0,016
Tubería p188	3,04	200	0,0015	29,42	0,94	3,53	0,016
Tubería p189	7,41	200	0,0015	29,42	0,94	3,53	0,016
Tubería p190	22,49	200	0,0015	29,42	0,94	3,55	0,016
Tubería p191	23,79	200	0,0015	29,42	0,94	3,54	0,016
Tubería p192	29,00	200	0,0015	29,42	0,94	3,54	0,016
Tubería p193	20,44	200	0,0015	29,42	0,94	3,54	0,016
Tubería p194	11,72	200	0,0015	29,42	0,94	3,56	0,016
Tubería p195	2,37	200	0,0015	29,42	0,94	3,52	0,016
Tubería p196	10,11	200	0,0015	29,42	0,94	3,53	0,016
Tubería p197	12,55	200	0,0015	29,42	0,94	3,56	0,016
Tubería p198	55,92	200	0,0015	29,42	0,94	3,54	0,016
Tubería p199	28,45	200	0,0015	29,42	0,94	3,55	0,016
Tubería p200	13,81	200	0,0015	29,42	0,94	3,56	0,016
Tubería p201	21,46	200	0,0015	29,42	0,94	3,54	0,016
Tubería p202	26,51	200	0,0015	29,42	0,94	3,55	0,016
Tubería p203	31,12	200	0,0015	29,42	0,94	3,54	0,016
Tubería p204	23,31	200	0,0015	29,42	0,94	3,55	0,016
Tubería p205	10,08	200	0,0015	29,42	0,94	3,54	0,016
Tubería p206	13,47	200	0,0015	29,42	0,94	3,54	0,016
Tubería p207	4,72	200	0,0015	29,42	0,94	3,53	0,016
Tubería p208	8,86	200	0,0015	29,42	0,94	3,53	0,016
Tubería p209	8,08	200	0,0015	29,42	0,94	3,57	0,016
Tubería p210	49,32	200	0,0015	29,42	0,94	3,54	0,016
Tubería p210	18,94	200	0,0015	29,42	0,94	3,54	0,016
Tubería p212	10,12	200	0,0015	29,42	0,94	3,54	0,016
Tubería p212	48,29	200			-		
			0,0015	29,42	0,94	3,54	0,016
Tubería p214	22,40	200	0,0015	29,42	0,94	3,53	0,016

Tubería p215	10,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p216	11,81	200	0,0015	29,42	0,94	3,55	0,016
Tubería p217	24,22	200	0,0015	29,42	0,94	3,55	0,016
Tubería p218	17,47	200	0,0015	29,42	0,94	3,54	0,016
Tubería p219	40,48	200	0,0015	29,42	0,94	3,54	0,016
Tubería p220	29,00	200	0,0015	29,42	0,94	3,55	0,016
Tubería p221	15,95	200	0,0015		0,94	3,55	0,016
Tubería p222	37,41	200	·	29,42			
Tubería p223	24,90		0,0015	29,42	0,94	3,54	0,016
Tubería p223	17,56	200	0,0015	29,42	0,94	3,54	0,016
-	+	200	0,0015	29,42	0,94	3,54	0,016
Tubería p225	24,91	200	0,0015	29,42	0,94	3,55	0,016
Tubería p226	35,90	200	0,0015	29,42	0,94	3,54	0,016
Tubería p227	13,29	200	0,0015	29,42	0,94	3,54	0,016
Tubería p228	14,31	200	0,0015	29,42	0,94	3,56	0,016
Tubería p229	16,99	200	0,0015	29,42	0,94	3,54	0,016
Tubería p230	14,73	200	0,0015	29,42	0,94	3,54	0,016
Tubería p231	14,96	200	0,0015	29,42	0,94	3,54	0,016
Tubería p232	17,85	200	0,0015	29,42	0,94	3,55	0,016
Tubería p233	18,36	200	0,0015	29,42	0,94	3,55	0,016
Tubería p234	16,42	200	0,0015	29,42	0,94	3,53	0,016
Tubería p235	35,07	200	0,0015	29,42	0,94	3,54	0,016
Tubería p236	22,36	200	0,0015	29,42	0,94	3,55	0,016
Tubería p237	26,14	200	0,0015	29,42	0,94	3,54	0,016
Tubería p238	30,30	200	0,0015	29,42	0,94	3,54	0,016
Tubería p239	27,44	200	0,0015	29,42	0,94	3,55	0,016
Tubería p240	5,02	200	0,0015	29,42	0,94	3,55	0,016
Tubería p241	5,82	200	0,0015	29,42	0,94	3,53	0,016
Tubería p242	8,64	200	0,0015	29,42	0,94	3,55	0,016
Tubería p243	43,47	200	0,0015	29,42	0,94	3,55	0,016
Tubería p244	19,82	200	0,0015	29,42	0,94	3,54	0,016
Tubería p245	29,14	200	0,0015	29,42	0,94	3,53	0,016
Tubería p246	29,60	200	0,0015	29,42	0,94	3,55	0,016
Tubería p247	29,90	200	0,0015	29,42	0,94	3,54	0,016
Tubería p248	35,67	200	0,0015	29,42	0,94	3,54	0,016
Tubería p249	25,04	200	0,0015	29,42	0,94	3,54	0,016
Tubería p250	27,63	200	0,0015	29,42	0,94	3,54	0,016
Tubería p251	15,53	200	0,0015	29,42	0,94	3,55	0,016
Tubería p252	9,41	200	0,0015	29,42	0,94	3,54	0,016
Tubería p253	23,93	200	0,0015	29,42	0,94	3,55	0,016
Tubería p254	39,12	200	0,0015	29,42	0,94	3,55	0,016
Tubería p255	21,63	200	0,0015	29,42	0,94	3,54	0,016
Tubería p256	20,76	200	0,0015	29,42	0,94	3,54	0,016
Tubería p257	20,17	200	0,0015	29,42	0,94	3,54	0,016
Tubería p258	23,99	200	0,0015	29,42	0,94	3,54	0,016
Tubería p259	20,48		·				
Tuberia h239	20,40	200	0,0015	29,42	0,94	3,55	0,016

Tubería p260	27,69	200	0,0015	29,42	0,94	3,55	0,016
Tubería p261	9,91	200	0,0015	29,42	0,94	3,51	0,016
Tubería p262	21,82	200	0,0015	29,42	0,94	3,55	0,016
Tubería p263	27,10	200	0,0015	29,42	0,94	3,55	0,016
Tubería p264	13,27	200	0,0015	29,42	0,94	3,54	0,016
Tubería p265	25,38	200	0,0015	29,42	0,94	3,54	0,016
Tubería p266	24,32	200	0,0015	29,42	0,94	3,54	0,016
Tubería p267	21,94	200	0,0015	29,42	0,94	3,55	0,016
Tubería p268	16,80	200	0,0015	29,42	0,94	3,54	0,016
Tubería p269	13,77	200	0,0015	29,42	0,94	3,52	0,016
Tubería p270	7,54	200	0,0015	29,42	0,94	3,55	0,016
Tubería p271	21,90	200	0,0015	29,42	0,94	3,55	0,016
Tubería p272	22,15	200	0,0015	29,42	0,94	3,55	0,016
Tubería p273	8,30	200	0,0015	29,42	0,94	3,52	0,016
Tubería p274	18,83	200	0,0015	29,42	0,94	3,56	0,016
Tubería p275	16,44	200	0,0015				
Tubería p276	9,13	200	0,0015	29,42 29,42	0,94	3,53	0,016 0,016
Tubería p277	13,66	200	-		0,94	3,55	
Tubería p277	16,04		0,0015	29,42	0,94	3,55	0,016
Tubería p279	16,87	200	0,0015	29,42	0,94	3,53	0,016
	+	200	0,0015	29,42	0,94	3,55	0,016
Tubería p280	31,36	200	0,0015	29,42	0,94	3,55	0,016
Tubería p281	68,41	200	0,0015	29,42	0,94	3,54	0,016
Tubería p282	17,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p283	6,40	200	0,0015	29,42	0,94	3,54	0,016
Tubería p284 Tubería p285	11,95	200	0,0015	29,42	0,94	3,56	0,016
•	15,47	200	0,0015	29,42	0,94	3,54	0,016
Tubería p286	13,07	200	0,0015	29,42	0,94	3,53	0,016
Tubería p287	12,55	200	0,0015	29,42	0,94	3,56	0,016
Tubería p288	22,21	200	0,0015	29,42	0,94	3,54	0,016
Tubería p289	18,85	200	0,0015	29,42	0,94	3,55	0,016
Tubería p290	31,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p291	22,04	200	0,0015	29,42	0,94	3,54	0,016
Tubería p292	17,74	200	0,0015	29,42	0,94	3,54	0,016
Tubería p293	50,06	200	0,0015	29,42	0,94	3,54	0,016
Tubería p294	13,94	200	0,0015	29,42	0,94	3,54	0,016
Tubería p295	39,45	200	0,0015	29,42	0,94	3,55	0,016
Tubería p296	25,19	200	0,0015	29,42	0,94	3,54	0,016
Tubería p297	23,02	200	0,0015	29,42	0,94	3,54	0,016
Tubería p298	39,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p299	65,28	200	0,0015	29,42	0,94	3,54	0,016
Tubería p300	25,53	200	0,0015	29,42	0,94	3,54	0,016
Tubería p301	37,49	200	0,0015	29,42	0,94	3,54	0,016
Tubería p302	32,85	200	0,0015	29,42	0,94	3,54	0,016
Tubería p303	38,57	200	0,0015	29,42	0,94	3,54	0,016
Tubería p304	42,25	200	0,0015	29,42	0,94	3,54	0,016

Tubería p305	36,42	200	0,0015	29,42	0,94	3,55	0,016
Tubería p306	33,25	200	0,0015	29,42	0,94	3,55	0,016
Tubería p307	17,81	200	0,0015	29,42	0,94	3,54	0,016
Tubería p308	34,11	200	0,0015	29,42	0,94	3,54	0,016
Tubería p309	34,92	200	0,0015	29,42	0,94	3,54	0,016
Tubería p310	32,27	200	0,0015	29,42	0,94	3,54	0,016
Tubería p311	24,95	200	0,0015	29,42	0,94	3,54	0,016
Tubería p312	13,42	200	0,0015	29,42	0,94	3,55	0,016
Tubería p313	22,89	200	0,0015	29,42	0,94	3,55	0,016
Tubería p314	29,25	200	0,0015	29,42	0,94	3,54	0,016
Tubería p315	26,35	200	0,0015	29,42	0,94	3,55	0,016
Tubería p316	17,28	200	0,0015	29,42	0,94	3,53	0,016
Tubería p317	21,06	200	0,0015	29,42	0,94	3,55	0,016
Tubería p318	32,88	200	0,0015	29,42	0,94	3,54	0,016
Tubería p319	26,16	200	0,0015	29,42	0,94	3,55	0,016
Tubería p320	35,33	200	0,0015	29,42	0,94	3,54	0,016
Tubería p321	27,44	200	0,0015	29,42	0,94	3,55	0,016
Tubería p322	47,27	200	0,0015	29,42	0,94	3,55	0,016
Tubería p323	39,42	200	0,0015	29,42	0,94	3,54	0,016
Tubería p324	30,81	200	0,0015	29,42	0,94	3,55	0,016
Tubería p325	16,10	200	0,0015	29,42	0,94	3,53	0,016
Tubería p326	24,48	200	0,0015	29,42	0,94	3,55	0,016
Tubería p327	51,61	200	0,0015	29,42	0,94	3,54	0,016
Tubería p328	8,34	200	0,0015	29,42	0,94	3,57	0,016
Tubería p329	45,22	200	0,0015	29,42	0,94	3,54	0,016
Tubería p330	10,69	200	0,0015	29,42	0,94	3,54	0,016
Tubería p331	51,15	200	0,0015	29,42	0,94	3,54	0,016
Tubería p332	31,12	200	0,0015	29,42	0,94	3,54	0,016
Tubería p333	34,24	200	0,0015	29,42	0,94	3,55	0,016
Tubería p334	10,02	200	0,0015	29,42	0,94	3,54	0,016
Tubería p335	22,29	200	0,0015	29,42	0,94	3,55	0,016
Tubería p336	39,93	200	0,0015	29,42	0,94	3,54	0,016
Tubería p337	27,71	200	0,0015	29,42	0,94	3,54	0,016
Tubería p338	50,00	200	0,0015	29,42	0,94	3,54	0,016
Tubería p339	32,49	200	0,0015	29,42	0,94	3,55	0,016
Tubería p340	21,68	200	0,0015	29,42	0,94	3,54	0,016
Tubería p341	25,70	200	0,0015	29,42	0,94	3,54	0,016
Tubería p342	35,68	200	0,0015	29,42	0,94	3,55	0,016
Tubería p343	22,74	200	0,0015	29,42	0,94	3,53	0,016
Tubería p344	24,27	200	0,0015	29,42	0,94	3,54	0,016
Tubería p345	23,29	200	0,0015	29,42	0,94	3,54	0,016
Tubería p346	36,28	200	0,0015	29,42	0,94	3,54	0,016
Tubería p347	45,02	200	0,0015	29,42	0,94	3,54	0,016
Tubería p348	29,55	200	0,0015	29,42	0,94	3,55	0,016
Tubería p349	34,10	200	0,0015	29,42	0,94	3,54	0,016

Tubería p350	35,28	200	0,0015	29,42	0,94	3,54	0,016
Tubería p351	15,94	200	0,0015	29,42	0,94	3,55	0,016
Tubería p352	25,06	200	0,0015	29,42	0,94	3,54	0,016
Tubería p353	22,83	200	0,0015	29,42	0,94	3,55	0,016
Tubería p354	23,08	200	0,0015	29,42	0,94	3,53	0,016
Tubería p355	9,63	200	0,0015	29,42	0,94	3,56	0,016
Tubería p356	22,59	200	0,0015	29,42	0,94	3,54	0,016
Tubería p357	32,56	200	0,0015	29,42	0,94	3,55	0,016
Tubería p358	35,20	200	0,0015	29,42	0,94	3,54	0,016
Tubería p359	29,39	200	0,0015	29,42	0,94	3,53	0,016
Tubería p360	39,38	200	0,0015	29,42	0,94	3,54	0,016
Tubería p361	19,36	200	0,0015	29,42	0,94	3,55	0,016
Tubería p362	47,59	200	0,0015	29,42	0,94	3,54	0,016
Tubería p363	20,79	200	0,0015	29,42	0,94	3,55	0,016
Tubería p364	45,82	200	0,0015	29,42	0,94	3,54	0,016
Tubería p365	5,27	200	0,0015	29,42	0,94	3,56	0,016
Tubería p366	10,28	200	0,0015	29,42	0,94	3,53	0,016
Tubería p367	29,07	200	0,0015	29,42	0,94	3,54	0,016
Tubería p368	34,14	200	0,0015	29,42	0,94	3,55	0,016
Tubería p369	19,76	200	0,0015	29,42	0,94	3,54	0,016
Tubería p370	51,22	200	0,0015	29,42	0,94	3,54	0,016
Tubería p371	15,36	200	0,0015	29,42	0,94	3,55	0,016
Tubería p372	30,35	200	0,0015	29,42	0,94	3,54	0,016
Tubería p373	34,50	200	0,0015	29,42	0,94	3,55	0,016
Tubería p374	30,24	200	0,0015	29,42	0,94	3,53	0,016
Tubería p375	11,69	200	0,0015	29,42	0,94	3,56	0,016
Tubería p376	55,18	200	0,0015	29,42	0,94	3,54	0,016
Tubería p377	28,40	200	0,0015	29,42	0,94	3,54	0,016
Tubería p378	40,26	200	0,0015	29,42	0,94	3,54	0,016
Tubería p379	23,53	200	0,0015	29,42	0,94	3,54	0,016
Tubería p380	31,08	200	0,0015	29,42	0,94	3,54	0,016
Tubería p381	30,46	200	0,0015	29,42	0,94	3,55	0,016
Tubería p382	183,50	200	0,0015	29,42	0,94	3,54	0,016
Tubería p383	29,50	200	0,0015	29,42	0,94	3,54	0,016
Tubería p384	43,74	200	0,0015	29,42	0,94	3,55	0,016
Tubería p385	49,24	200	0,0015	29,42	0,94	3,54	0,016
Tubería p386	31,71	200	0,0015	29,42	0,94	3,54	0,016
Tubería p387	20,45	200	0,0015	29,42	0,94	3,55	0,016
Tubería p388	24,90	200	0,0015	29,42	0,94	3,54	0,016
Tubería p389	27,84	200	0,0015	29,42	0,94	3,55	0,016
Tubería p390	29,48	200	0,0015	29,42	0,94	3,54	0,016
Tubería p391	21,27	200	0,0015	29,42	0,94	3,54	0,016
Tubería p392	32,32	200	0,0015	29,42	0,94	3,55	0,016
Tubería p393	29,19	200	0,0015	29,42	0,94	3,54	0,016
Tubería p394	22,45	200	0,0015	29,42	0,94	3,54	0,016

Tubería p395 29,66 Tubería p396 34,28 Tubería p397 10,78 Tubería p398 26,53 Tubería p399 11,45 Tubería p400 35,30 Tubería p401 24,38 Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30	200 200 200 200 200 200 200 200	0,0015 0,0015 0,0015 0,0015 0,0015 0,0015	29,42 29,42 29,42 29,42 29,42 29,42	0,94 0,94 0,94 0,94 0,94	3,54 3,54 3,56 3,55	0,016 0,016 0,016 0,016
Tubería p397 10,78 Tubería p398 26,53 Tubería p399 11,45 Tubería p400 35,30 Tubería p401 24,38 Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30	200 200 200 200 200 200	0,0015 0,0015 0,0015 0,0015	29,42 29,42 29,42	0,94 0,94	3,56 3,55	0,016
Tubería p398 26,53 Tubería p399 11,45 Tubería p400 35,30 Tubería p401 24,38 Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30	200 200 200 200	0,0015 0,0015 0,0015	29,42 29,42	0,94	3,55	
Tubería p399 11,45 Tubería p400 35,30 Tubería p401 24,38 Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30	200 200 200	0,0015 0,0015	29,42			. 0.016
Tubería p40035,30Tubería p40124,38Tubería p40228,61Tubería p40314,49Tubería p40432,30	200 200	0,0015		0.5-	3,54	0,016
Tubería p401 24,38 Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30	200	·	23.72	0,94	3,54	0,016
Tubería p402 28,61 Tubería p403 14,49 Tubería p404 32,30		0,0013	29,42	0,94	3,54	0,016
Tubería p403 14,49 Tubería p404 32,30	/ ///	0,0015	29,42	0,94	3,55	0,016
Tubería p404 32,30	200	0,0015	29,42	0,94	3,53	0,016
•	200	0,0015	29,42	0,94	3,55	0,016
Tubería p405 7,79	200	0,0015	29,42	0,94	3,56	0,016
Tubería p406 31,89	200					0,016
Tubería p407 26,14	200	0,0015 0,0015	29,42	0,94	3,54	
		·	29,42	0,94	3,54	0,016
	200	0,0015	29,42	0,94	3,55	0,016
-	200	0,0015	29,42	0,94	3,54	0,016
Tubería p410 24,60	200	0,0015	29,42	0,94	3,55	0,016
Tubería p411 17,02	200	0,0015	29,42	0,94	3,53	0,016
Tubería p412 25,89	200	0,0015	29,42	0,94	3,55	0,016
Tubería p413 20,68	200	0,0015	29,42	0,94	3,54	0,016
Tubería p414 26,70	200	0,0015	29,42	0,94	3,55	0,016
Tubería p415 21,83	200	0,0015	29,42	0,94	3,53	0,016
Tubería p416 20,84	200	0,0015	29,42	0,94	3,54	0,016
Tubería p417 36,83	200	0,0015	29,42	0,94	3,55	0,016
Tubería p418 53,22	200	0,0015	29,42	0,94	3,54	0,016
Tubería p419 12,03	200	0,0015	29,42	0,94	3,56	0,016
Tubería p420 22,19	200	0,0015	29,42	0,94	3,54	0,016
Tubería p421 17,75	200	0,0015	29,42	0,94	3,54	0,016
Tubería p422 33,10	200	0,0015	29,42	0,94	3,54	0,016
Tubería p423 21,27	200	0,0015	29,42	0,94	3,54	0,016
Tubería p424 37,13	200	0,0015	29,42	0,94	3,54	0,016
Tubería p425 34,86	200	0,0015	29,42	0,94	3,54	0,016
Tubería p426 27,27	200	0,0015	29,42	0,94	3,55	0,016
Tubería p427 24,03	200	0,0015	29,42	0,94	3,54	0,016
Tubería p428 33,79	200	0,0015	29,42	0,94	3,54	0,016
Tubería p429 32,31	200	0,0015	29,42	0,94	3,55	0,016
Tubería p430 13,83	200	0,0015	29,42	0,94	3,53	0,016
Tubería p431 22,79	200	0,0015	29,42	0,94	3,55	0,016
Tubería p432 51,20	200	0,0015	29,42	0,94	3,54	0,016
Tubería p433 19,22	200	0,0015	29,42	0,94	3,55	0,016
Tubería p434 23,31	200	0,0015	29,42	0,94	3,55	0,016
Tubería p435 22,86	200	0,0015	29,42	0,94	3,54	0,016
Tubería p436 12,85	200	0,0015	29,42	0,94	3,54	0,016
Tubería p437 20,85	200	0,0015	29,42	0,94	3,54	0,016
Tubería p438 29,56	200	0,0015	29,42	0,94	3,54	0,016
Tubería p439 22,43	160	0,0015	29,42	1,46	10,38	0,015

Tubería p440	18,76	160	0,0015	29,42	1,46	10,38	0,015
Tubería p441	22,07	160	0,0015	29,42	1,46	10,38	0,015
Tubería p442	26,12	160	0,0015	29,42	1,46	10,37	0,015
Tubería p443	29,55	160	0,0015	29,42	1,46	10,38	0,015
Tubería p444	25,56	160	0,0015	29,42			0,015
Tubería p445	29,83	160	0,0015		1,46 1,46	10,38	0,015
Tubería p446	9,31		·	29,42		10,38	*
Tubería p447	14,10	160	0,0015	29,42	1,46	10,36	0,015
		160	0,0015	29,42	1,46	10,39	0,015
Tubería p448 Tubería p449	20,79	160	0,0015	29,42	1,46	10,38	0,015
•	23,76	160	0,0015	29,42	1,46	10,37	0,015
Tubería p450	26,92	160	0,0015	29,42	1,46	10,37	0,015
Tubería p451	28,19	160	0,0015	29,42	1,46	10,38	0,015
Tubería p452	29,69	160	0,0015	29,42	1,46	10,38	0,015
Tubería p453	68,96	160	0,0015	29,42	1,46	10,37	0,015
Tubería p454	29,35	160	0,0015	29,42	1,46	10,37	0,015
Tubería p455	27,32	160	0,0015	29,42	1,46	10,38	0,015
Tubería p456	15,63	160	0,0015	29,42	1,46	10,38	0,015
Tubería p457	15,73	160	0,0015	29,42	1,46	10,37	0,015
Tubería p458	17,56	160	0,0015	29,42	1,46	10,37	0,015
Tubería p459	28,94	160	0,0015	29,42	1,46	10,38	0,015
Tubería p460	25,07	160	0,0015	29,42	1,46	10,38	0,015
Tubería p461	31,40	160	0,0015	29,42	1,46	10,37	0,015
Tubería p462	10,11	160	0,0015	29,42	1,46	10,39	0,015
Tubería p463	13,89	160	0,0015	29,42	1,46	10,37	0,015
Tubería p464	46,49	160	0,0015	29,42	1,46	10,37	0,015
Tubería p465	20,91	160	0,0015	29,42	1,46	10,38	0,015
Tubería p466	22,74	160	0,0015	29,42	1,46	10,38	0,015
Tubería p467	9,34	160	0,0015	29,42	1,46	10,36	0,015
Tubería p468	24,14	160	0,0015	29,42	1,46	10,38	0,015
Tubería p469	16,54	160	0,0015	29,42	1,46	10,37	0,015
Tubería p470	13,99	160	0,0015	29,42	1,46	10,38	0,015
Tubería p471	16,25	160	0,0015	29,42	1,46	10,37	0,015
Tubería p472	17,76	160	0,0015	29,42	1,46	10,37	0,015
Tubería p473	6,75	160	0,0015	29,42	1,46	10,41	0,015
Tubería p474	16,28	160	0,0015	29,42	1,46	10,37	0,015
Tubería p475	25,04	160	0,0015	29,42	1,46	10,38	0,015
Tubería p476	19,33	160	0,0015	29,42	1,46	10,38	0,015
Tubería p477	16,81	160	0,0015	29,42	1,46	10,38	0,015
Tubería p478	37,70	160	0,0015	29,42	1,46	10,37	0,015
Tubería p479	36,50	160	0,0015	29,42	1,46	10,37	0,015
Tubería p480	19,33	100	0,0015	29,42	3,75	100,4	0,014
Tubería p481	11,64	100	0,0015	29,42	3,75	100,4	0,014
Tubería p482	24,12	100	0,0015	29,42	3,75	100,39	0,014
Tubería p483	33,32	100	0,0015	29,42	3,75	100,39	0,014

Anexo 7 Rubro: Relleno de zanja con material de sitio

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 1 DE 26

UNIDAD: m3

RUBRO: 1

DETALLE: RELLENO DE ZANJA CON MATERIAL DE SITIO

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.16
PLANCHA VIBROAPISONADORA	1.00	5.00	2.20	0.600	1.32
RETROEXCAVADORA	1.00	30.00	30.00	0.020	0.60
SUBTOTAL M					2.08

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	0.160	0.61
OPERADOR EQUIPO LIVIANO	EO D2	1.00	3.45	3.45	0.180	0.62
OPERADOR EQUIPO PESADO G1	OP C1	1.00	3.82	3.82	0.180	0.69
PEON	EO E2	2.00	3.41	6.82	0.180	1.23
SUBTOTAL N						3.15

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
RIPIO	m3	1.00	1.05	1.05
SUBTOTAL O				1.05

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)	6.27	
INDIRECTOS (%)	20.00%	1.25
UTILIDAD (%)	1.00%	0.06
COSTO TOTAL DEL RUBRO		7.59
VALOR UNITARIO		7.59

SON: SIETE DOLARES, 59/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 8 Rubro: Desalojo de material

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 2 DE 26 UNIDAD: m3

RUBRO: 2

DETALLE: DESALOJO DE MATERIAL (DISTANCIA 1 KM)

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.02
CARGADORA FRONTAL	1.00	35.00	35.00	0.020	0.70
VOLQUETA 8 m3	1.00	30.00	30.00	0.020	0.60
SUBTOTAL M					1.32

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	0.020	0.08
CHOFER PROFESIONAL LICENCIA E	EO Ch. C1	1.00	3.89	3.89	0.020	0.08
OPERADOR EQUIPO PESADO G1	OP C1	1.00	3.82	3.82	0.020	0.08
PEON	EO E2	2.00	3.41	6.82	0.020	0.14
SUBTOTAL N						0.37

MATERIALES	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL O				0.00

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)	1.69	
INDIRECTOS (%)	20.00%	0.34
UTILIDAD (%)	1.00%	0.02
COSTO TOTAL DEL RUBRO		2.04
VALOR UNITARIO		2.04

SON: DOS DOLARES, 04/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 9 Rubro: Relleno con arena.

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 5 DE 26

UNIDAD: m3

RUBRO : 5

DETALLE: RELLENO CON ARENA

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.15
PLANCHA VIBROAPISONADORA	1.00	2.20	2.20	0.600	1.32
SUBTOTAL M					1.47

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
ALBAÑIL	EO D2	1.00	3.87	3.87	0.200	0.77
PEON	EO E2	1.00	3.83	3.83	0.600	2.30
SUBTOTAL N						3.07

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
ARENA	m3	1.05	13.50	14.18
SUBTOTAL O				14.18

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		18.72
INDIRECTOS (%)	20.00%	3.74
UTILIDAD (%)	1.00%	0.19
COSTO TOTAL DEL RUBRO		22.65
VALOR UNITARIO		22.65

SON: VEINTIDOS DOLARES, 65/100 CENTAVOS

ESTOS PRECIOS NO INCLUYEN IVA

Anexo 10 Rubro: Limpieza y desbroce.

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 3 DE 26 UNIDAD: m2

RUBRO: 3

DETALLE: LIMPIEZA Y DESBROCE MANUAL DEL TERRENO

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.05
SUBTOTAL M					0.05

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
ALBAÑIL	EO D2	1.00	3.83	3.87	0.120	0.46
PEON	EO E2	1.00	3.87	3.87	0.120	0.46
SUBTOTAL N						0.93

MATERIALES		CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL O				0.00

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)	0.98	
INDIRECTOS (%)	20.00%	0.20
UTILIDAD (%)	1.00%	0.01
COSTO TOTAL DEL RUBRO		1.18
VALOR UNITARIO		1.18

SON: UN DOLAR, 18/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 11 Rubro: Hormigón

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 4

DETALLE: HORMIGON f'c 210 kg/m2

HOJA 4 DE 26 UNIDAD: m3

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.75
CONCRETERA 1 SACO	1.00	2.10	2.10	0.320	0.67
VIBRADOR DE MANGUERA	1.00	1.00	1.00	0.320	0.32
SUBTOTAL M					1.74

MANO DE OBRA		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		Α	В	C=AxB	R	D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	0.060	0.23
OPERADOR EQUIPO LIVIANO	EO D2	1.00	3.50	3.50	0.640	2.24
ALBAÑIL	OP C1	1.00	3.45	3.45	0.640	2.21
PEON	EO E2	1.00	3.20	3.20	3.200	10.24
SUBTOTAL N						14.92

MATERIALES			CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION		UNIDAD	Α	В	C=AxB
Cemento Fuerte Tipo GU Saco 50 Kg - Holcim DISENSA		SACO	7.01	8.10	56.78
ARENA		m2	0.51	11.00	5.61
RIPIO	1.20	m3	0.64	18.00	11.52
SUBTOTAL O					73.91

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		90.57
INDIRECTOS (%)	20.00%	18.11
UTILIDAD (%)	1.00%	0.91
COSTO TOTAL DEL RUBRO		109.58
VALOR UNITARIO		109.58

SON: CIENTO NUEVO DOLARES, 20/100 CENTAVOS

ESTOS PRECIOS NO INCLUYEN IVA

Anexo 12 Rubro: Laminas de PRFV

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 6

DETALLE: LAMINAS DE PRFV

HOJA 6 DE 26

UNIDAD: u

EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C=AxB	R	D=CxR
Herramienta Menor 5% de M.O.					1.26
SUBTOTAL M					1.26
				·-	

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	1.000	3.82
FIERRERO	EO D2	1.00	3.50	3.50	1.500	5.25
ALBAÑIL	OP C1	1.00	3.45	3.45	0.500	1.73
PEON	EO E2	2.00	3.20	6.40	2.250	14.40
SUBTOTAL N						25.20

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
LAMINAS DE PRFV	U	1.00	1,456.23	1,456.23
SUBTOTAL O				1,456.23

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		1,482.68
INDIRECTOS (%)	20.00%	296.54
UTILIDAD (%)	1.00%	14.83
COSTO TOTAL DEL RUBRO		1,794.05
VALOR UNITARIO		1,794.05

SON: MIL SETECIENTOS NOVENTA Y CUATRO DOLARES, 05/100 CENTAVOS

Anexo 13 Rubro: Mampostería de bloque

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 7 DE 26

UNIDAD:

m2

RUBRO: 7

DETALLE: MAMPOSTERIA DE BLOQUE LIVIANO e=20mm

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.25
SUBTOTAL M					0.25

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.83	4.29	0.060	0.26
ALBAÑIL	OP C1	1.00	3.87	3.87	0.620	2.40
PEON	EO E2	1.00	3.20	3.83	0.620	2.37
SUBTOTAL N						5.03

MATERIALES		CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
Cemento Fuerte Tipo GU Saco 50 Kg - Holcim DISENSA	SACO	0.12	7.68	0.92
ARENA	m3	0.03	13.50	0.41
AGUA	m3	0.01	0.85	0.01
BLOQUE LIVIANO 20X20X40	m3	13.00	0.37	4.81
SUBTOTAL O				6.15

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P))	11.43
INDIRECTOS (%)	20.00%	2.29
UTILIDAD (%)	1.00%	0.11
COSTO TOTAL DEL RUBRO		13.83
VALOR UNITARIO		13.83

SON: TRECE DOLARES, 83/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 14 Rubro: Caja de revisión

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 8

DETALLE: CAJA DE REVISIÓN

HOJA 8 DE 26 UNIDAD: U

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.97
CONCRETERA 1 SACO	1.00	2.10	2.10	0.320	0.67
SUBTOTAL M					1.64

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	0.600	2.29
ALBAÑIL	OP C1	1.00	3.45	3.45	2.500	8.63
PEON	EO E2	1.00	3.41	3.41	2.500	8.53
SUBTOTAL N						19.44

MATERIALES			CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION		UNIDAD	Α	В	C=AxB
Cemento Fuerte Tipo GU Saco 50 Kg - Holcim DISENSA		SACO	0.60	8.10	4.86
ARENA		m3	0.06	11.00	0.66
PIEDRA		m3	0.02	10.63	0.21
AGUA		m3	0.01	0.66	0.01
ACERO DE REFUERZO f'c=4200kg/cm2		kg	1.20	0.81	0.97
LADRILLOS	1.20	U	40.00	0.20	8.00
SUBTOTAL O					14.71

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00
	TOTAL COSTO DIRE	CTO (M+N+O+P)		35.80
	INDIRECTOS (%)		20.00%	7.16
	UTILIDAD (%)		1.00%	0.36
	COSTO TOTAL DEL	RUBRO		43.31
	VALOR UNITARIO			43.31

SON: CUARENTA Y TRES, 31/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 15 Rubro: Acero de refuerzo

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 9 DE 26 UNIDAD: kg

RUBRO: 9

DETALLE: ACERO DE REFUERZO

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.01
SUBTOTAL M	_				0.01

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
FIERRERO	EO D2	1.00	3.45	3.45	0.040	0.14
PEON	EO E2	1.00	3.41	3.41	0.040	0.14
SUBTOTAL N						0.27

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
ALAMBRE GALVANIZADO Nº 18	kg	0.06	2.49	0.15
ACERO DE REFUERZO f'c=4200kg/cm2	kg	1.05	0.81	0.85
SUBTOTAL O			_	1.00

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		1.29
INDIRECTOS (%)	13.00%	0.17
UTILIDAD (%)	5.00%	0.06
COSTO TOTAL DEL RUBRO		1.52
VALOR UNITARIO		1.52

SON: UN DOLAR, 52/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 16 Rubro: Cruz de PVC 4"

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 10

DETALLE: CRUZ PVC 4" (100mm)

HOJA 10 DE 26

UNIDAD: U

EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C=AxB	R	D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.21
SUBTOTAL M					0.21

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	0.400	1.38
PEON	EO E2	1.00	3.41	3.41	0.800	2.73
SUBTOTAL N						4.11

MATERIALES		CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
CINTA TEFLON 12 mm	u	1.00	0.37	0.37
CRUZ PVC 4" (100 mm)	u	1.00	53.21	53.21
SUBTOTAL O				53.58

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+	57.89	
INDIRECTOS (%)	13.00%	7.53
UTILIDAD (%)	5.00%	2.89
COSTO TOTAL DEL RUBRO		68.31
VALOR UNITARIO		68.31

SON: SESENTA Y OCHO, 31/100 CENTAVOS

Anexo 17 Rubro: Tapón PVC 6"

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 11 DE 26

UNIDAD: U

RUBRO: 11

DETALLE: TAPON PVC (160mm)

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.14
SUBTOTAL M					0.14

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	0.400	1.38
PEON	EO E2	1.00	3.41	3.41	0.400	1.36
SUBTOTAL N						2.74

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CINTA TEFLON 12 mm	u	1.00	0.37	0.37
TAPON PVC 6" (160mm)	u	1.00	5.62	5.62
SUBTOTAL O		_		5.99

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		8.87
INDIRECTOS (%)	13.00%	1.15
UTILIDAD (%)	5.00%	0.44
COSTO TOTAL DEL RUBRO		10.47
VALOR UNITARIO		10.47

SON: DIEZ DOLARES, 47/100 CENTAVOS **ESTOS PRECIOS NO INCLUYEN IVA**

Anexo 18 Rubro: YEE PVC 6"

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 12

DETALLE: YEE PVC (160mm)

HOJA 12 DE 26

UNIDAD: U

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.14
SUBTOTAL M					0.14

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	0.400	1.38
PEON	EO E2	1.00	3.41	3.41	0.400	1.36
SUBTOTAL N						2.74

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CINTA TEFLON 12 mm	u	1.00	0.37	0.37
YEE PVC (160mm)	u	1.00	13.97	13.97
SUBTOTAL O				14.34

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)	17.22	
INDIRECTOS (%)	20.00%	3.44
UTILIDAD (%)	1.00%	0.17
COSTO TOTAL DEL RUBRO		20.84
VALOR UNITARIO		20.84

SON: VEINTE DOLARES, 84/100 CENTAVOS

Anexo 19 Rubro: Codo PVC 6" 90°

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 13

DETALLE: CODO PVC (160mm) 90°

HOJA 13 DE 26

UNIDAD: U

EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C=AxB	R	D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.21
SUBTOTAL M					0.21

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	0.400	1.38
PEON	EO E2	1.00	3.41	3.41	0.800	2.73
SUBTOTAL N						4.11

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CINTA TEFLON 12 mm	и	1.00	0.37	0.37
CODO PVC (160mm) 90°	u	1.00	53.30	53.30
SUBTOTAL O				53.67

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		57.98
INDIRECTOS (%)	20.00%	11.60
UTILIDAD (%)	1.00%	0.58
COSTO TOTAL DEL RUBRO		70.16
VALOR UNITARIO		70.16

SON: SETENTA, 16/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 20 Rubro: Válvula compuerta 6"

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG
ANALISIS DE PRECIOS

UNITARIOS HOJA 14 DE 26

RUBRO : 14 UNIDAD: U

DETALLE: VALVULA DE COMPUERTA 200mm

EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C=AxB	R	D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.22
SUBTOTAL M					0.22

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	0.500	1.73
PEON	EO E2	1.00	3.41	3.41	0.80	2.73
SUBTOTAL N						4.45

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CINTA TEFLON 12 mm	u	1.00	0.37	0.37
VALVULA DE COMPUERTA 200mm	u	1.00	368.90	368.90
SUBTOTAL O		•		369.27

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		373.95
INDIRECTOS (%)	20.00%	74.79
UTILIDAD (%)	1.00%	3.74
COSTO TOTAL DEL RUBRO		452.47
VALOR UNITARIO		452.47

SON:CUATROCIENTOS CINCUENTA Y DOS DOLARES, 47/100 CENTAVOS **ESTOS PRECIOS NO INCLUYEN IVA**

Anexo 21 Rubro: Union Flexible tipo Dresser 6"

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 26 DE 26

UNIDAD: u

RUBRO: 26

DETALLE: Unión Flexible tipo Dresser 6"

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					
SUBTOTAL M					

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	OP D2	1.00	3.45	3.45	0.500	1.73
PEON	EO E2	1.00	3.83	3.41	0.500	1.71
SUBTOTAL N				•		3.43

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Unión Flexible tipo Dresser 6"	u	1.00	12.65	12.65
CINTA 1 TEFLON 12mmX10m C/carrete				
PLASTIGAMA	u	1.00	0.37	0.37
SUBTOTAL O				

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O-	+P)	16.25
INDIRECTOS (%)	20.00%	3.25
UTILIDAD (%)	1.00%	0.16
COSTO TOTAL DEL RUBRO		19.66
VALOR UNITARIO		19.66

SON: DIECINUEVE DOLARES, 46/100 CENTAVOS

Anexo 22 Rubro: Mejoramiento de suelo

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 25 DE 26

UNIDAD: m3

RUBRO : 25

DETALLE: MEJORAMIENTO DE SUELO

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.				1	0.14
PLANCHA VIBROAPISONADORA	1.00	2.20	2.20	0.600	1.32
SUBTOTAL M				L	1.46
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
ALBAÑIL OP D2	1.00	3.45	3.45	0.200	0.69
PEON EO E2	1.00	3.83	3.41	0.600	2.05
SUBTOTAL N				L	2.74
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
RIPIO		m3	1.20	18.00	21.60
SUBTOTAL O				L	21.60
TRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P				L	0.00
		TOTAL COSTO DIRECTO	O (M+N+O+P)		25.79
		INDIRECTOS (%)		20.00%	5.16
		UTILIDAD (%)		1.00%	0.26
		COSTO TOTAL DEL RUE	BRO		31.21
		VALOR UNITARIO			31.21

SON: REINTA Y UN DOLARES, 4/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 23 Rubro: Muro de piebra bola

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO : 24

DETALLE: Muro de piedra bola

HOJA 24 DE 26

UNIDAD: m3

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA R	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.		<u> </u>	O-AXD	, , ,	2.51
SUBTOTAL M					2.51

MANO DE OBRA		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		Α	В	C=AxB	R	D=CxR
PEON	EO E2	1.00	3.41	3.41	8.050	27.45
CARPINTERO	EO D2	1.00	3.45	3.45	1.000	3.45
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	3.82	3.82	5.060	19.33
SUBTOTAL N						50.23

MATERIALES		CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
cemento fuerte tipo GU saco 50 kg - Holcim				
DISENSA	saco	4.36	8.10	35.28
PIEDRA BASE	m3	0.53	10.00	5.30
TABLA DURA DE ENCOFRADO 0,30m	u	10.00	1.95	19.50
CLAVOS	kg	4.00	0.67	2.68
ARENA	m3	0.42	11.00	4.65
RIPIO	m3	0.62	18.00	11.12
AGUA	m3	0.15	0.66	0.10
TIRA DE EUCALIPTO 4X5cm	m	4.00	0.40	1.60
SUBTOTAL O				80.23

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		132.97
INDIRECTOS (%)	20.00%	26.59
UTILIDAD (%)	1.00%	1.33
COSTO TOTAL DEL RUBRO		160.90
VALOR UNITARIO		160.90

SON: CIENTO CINCUENTA Y SIETE DOLARES, 86/100 CENTAVOS

Anexo 24 Rubro: Relleno con arena

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 23 DE 26 UNIDAD: m3

RUBRO : 23

DETALLE: Relleno con arena

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLANCHA VIBROAPISONADORA	1.00	2.20	2.20	0.600	1.32
HERRAMIENTA MENOR 5% de M.O.					0.14
SUBTOTAL M					1.46

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
ALBAÑIL	EO D2	1.00	3.45	3.45	0.200	0.69
PEON	EO E2	1.00	3.83	3.41	0.600	2.05
SUBTOTAL N						2.74

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
ARENA	m3	1.00	11.55	11.55
SUBTOTAL O		_		11.55

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		15.74
INDIRECTOS (%)	20.00%	3.15
UTILIDAD (%)	1.00%	0.16
COSTO TOTAL DEL RUBRO		19.05
VALOR UNITARIO		19.05

SON: DIECISIETE DOLARES, 29/100 CENTAVOS

Anexo 25 Rubro: Tubería BIAX d: 200mm

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 22 DE 26

UNIDAD: m3

RUBRO : 22

DETALLE: Tubería BIAX d: 200mm

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					
SUBTOTAL M				_	0.36

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	OP D2	1.00	3.45	3.45	1.000	3.45
PEON	EO E2	1.00	3.83	3.83	1.000	3.83
SUBTOTAL N						7.28

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Tubería BIAX d: 200mm L: 6m	u	1.00	106.98	106.98
SUBTOTAL O				106.98

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+C)+P)	114.62
INDIRECTOS (%)	13.00%	14.90
UTILIDAD (%)	5.00%	5.73
COSTO TOTAL DEL RUBRO		135.26
VALOR UNITARIO		135.26

SON: CIENTO TREINTA Y CUATRO DOLARES, 83/100 CENTAVOS

Anexo 26 Rubro: Tubería BIAX d: 160mm

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 21 DE 26 UNIDAD: u

RUBRO : 21

DETALLE: Tubería BIAX d: 160mm

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.36
SUBTOTAL M					0.36

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO D2	1.00	3.45	3.45	1.000	3.45
PEON	EO E2	1.00	3.83	3.83	1.000	3.83
SUBTOTAL N						7.28

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Tubería BIAX d: 160mm L: 6m	u	1.00	65.24	65.24
SUBTOTAL O				65.24

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+	72.88	
INDIRECTOS (%)	13.00%	9.47
UTILIDAD (%)	5.00%	3.64
COSTO TOTAL DEL RUBRO		86.00
VALOR UNITARIO		86.00

SON: OCHENTA Y CINCO DOLARES, 57/100 CENTAVOS

Anexo 27 Rubro: Tubería BIAX d: 100mm

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 20 DE 26

UNIDAD: u

RUBRO: 20

DETALLE: Tubería BIAX d: 100mm

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.17
SUBTOTAL M					0.17

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO C1	1.00	3.45	3.45	1.000	3.45
PEON	EO E2	1.00	3.83	3.83	0.080	0.31
SUBTOTAL N						3.45

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Tubería BIAX d: 100mm L: 6m	u	1.00	33.43	33.43
SUBTOTAL O	_			33.43

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O	+P)	37.05
INDIRECTOS (%)	20.00%	7.41
UTILIDAD (%)	1.00%	0.37
COSTO TOTAL DEL RUBRO		44.83
VALOR UNITARIO		44.83

SON: CUARENTA Y CUATRO DOLARES, 62/100 CENTAVOS

Anexo 28 Rubro: Excavación de zanjas.

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 19 DE 26 UNIDAD: m3

RUBRO: 19

DETALLE: EXCAVACION DE ZANJAS

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.05
RETROEXCAVADORA 75 HP	1.00	25.00	25.00	0.08	2.00
SUBTOTAL M					2.05

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PEON	EO E2	1.00	3.83	3.83	0.080	0.31
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	4.29	4.29	0.010	0.04
OPERADOR DE EQUIPO PESADO	EO C1 G1	1.00	3.82	3.82	0.080	0.31
Engrasador o abastecedor responsable	EO D2	1.00	3.55	3.55	0.080	0.28
SUBTOTAL N		•				0.94

MATERIALES	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL O				0.00

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		2.99
INDIRECTOS (%)	20.00%	0.60
UTILIDAD (%)	1.00%	0.03
COSTO TOTAL DEL RUBRO		3.61
VALOR UNITARIO		3.61

SON: TRES DOLARES, 56/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 29 Rubro: Relleno de zanja con material de sitio.

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 18 DE 26 UNIDAD: m3

RUBRO: 18

DETALLE: RELLENO DE ZANJAS CON MATERIALES DEL SITIO

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.22
COMPACTADOR MECANICO	1.00	6.25	6.25	0.50	3.13
SUBTOTAL M					3.35

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	4.29	4.29	0.500	2.15
ALBAÑIL	OP D2	1.00	3.87	3.87	0.100	0.39
PEON	EO E2	1.00	3.83	3.83	0.500	1.92
SUBTOTAL N				_		4.45

MATERIALES	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL O				0.00

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P	_			0.00

TOTAL COSTO DIRECTO (M+N+O+P)	7.79	
INDIRECTOS (%)	20.00%	1.56
UTILIDAD (%)	1.00%	0.08
COSTO TOTAL DEL RUBRO		9.43
VALOR UNITARIO		9.43

SON: NUEVE DOLARES, 16/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 30 Rubro: Válvula reductora de presión

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

RUBRO: 26

DETALLE: Válvula reductora de presión 200 mm

HOJA 26 DE 26

UNIDAD: u

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.69
SUBTOTAL M			_		0.69

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	OP D2	1.00	3.45	3.45	2.000	6.90
PEON	EO E2	2.00	3.83	3.41	2.000	6.82
SUBTOTAL N			_	_		13.72

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Válvula reductora de presión 200 mm	u	1.00	2,997.04	2,997.04
CINTA 1 TEFLON 12mmX10m C/carrete				
PLASTIGAMA	u	1.00	0.37	0.37
SUBTOTAL O				2,997.04

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		3,011.45
INDIRECTOS (%)	15.00%	451.72
UTILIDAD (%)	1.00%	30.11
COSTO TOTAL DEL RUBRO		3,493.28
VALOR UNITARIO		3,493.28

SON: TRES MIL CUATROCIENTOS NOVENTA Y TRES DOLARES, 28/100 CENTAVOS

Anexo 31 Rubro: Cama de arena

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 17 DE 26 UNIDAD: m2

RUBRO: 17

DETALLE: CAMA DE ARENA

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
COMPACTADOR MECANICO	1.00	6.25	6.25	0.07	0.44
HERRAMIENTA MENOR 5% de M.O.	•				0.03
SUBTOTAL M			•		0.47

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
ALBAÑIL	EO D2	1.00	3.83	3.83	0.070	0.27
MAESTRO MAYOR EJEC.OBRAS CIVIL	EO C1	1.00	4.29	4.29	0.015	0.06
PEON	EO E2	1.00	3.83	3.83	0.070	0.27
SUBTOTAL N						0.60

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
ARENA	m3	0.11	13.50	1.49
SUBTOTAL O	_	_		1.49

TRANSPORTE DESCRIPCION	UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB	
SUBTOTAL P				0.00	
	TOTAL COSTO DIRE	TOTAL COSTO DIRECTO (M+N+O+P)			
	INDIRECTOS (%)		20.00%	0.51	
	UTILIDAD (%)		1.00%	0.03	
	COSTO TOTAL DEL	RUBRO		3.09	
	VALOR UNITARIO			3.09	

SON: TRES DOLARES, 9/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

Anexo 32 Rubro: Codo PVC

PROYECTO: LINEA DE CONDUCCION Y SISTEMA DE CAPTACION PARA AGUA DE RIEGO

UBICACION: PARROQUIA SAN SIMON, QUEBRADA HUAYTALLUG

ANALISIS DE PRECIOS UNITARIOS

HOJA 16 DE 26

UNIDAD: u

RUBRO: 16

DETALLE: CODO PVC

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
HERRAMIENTA MENOR 5% de M.O.					0.17
SUBTOTAL M					0.17

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PLOMERO	EO C1	1.00	3.45	3.45	1.000	3.45
SUBTOTAL N						3.45

MATERIALES		CANTIDAD	PRECIO UNIT.	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
CODO PVC 20 mm X 90 grados desagüe				
PLASTIGAMA	u	1.00	37.21	37.21
CINTA 1 TEFLON 12mmX10m C/carrete				
PLASTIGAMA	u	1.00	0.37	0.37
SUBTOTAL O				37.58

TRANSPORTE		CANTIDAD	TARIFA	COSTO
DESCRIPCION	UNIDAD	Α	В	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		41.20
INDIRECTOS (%)	20.00%	8.24
UTILIDAD (%)	1.00%	0.41
COSTO TOTAL DEL RUBRO		49.86
VALOR UNITARIO		49.86

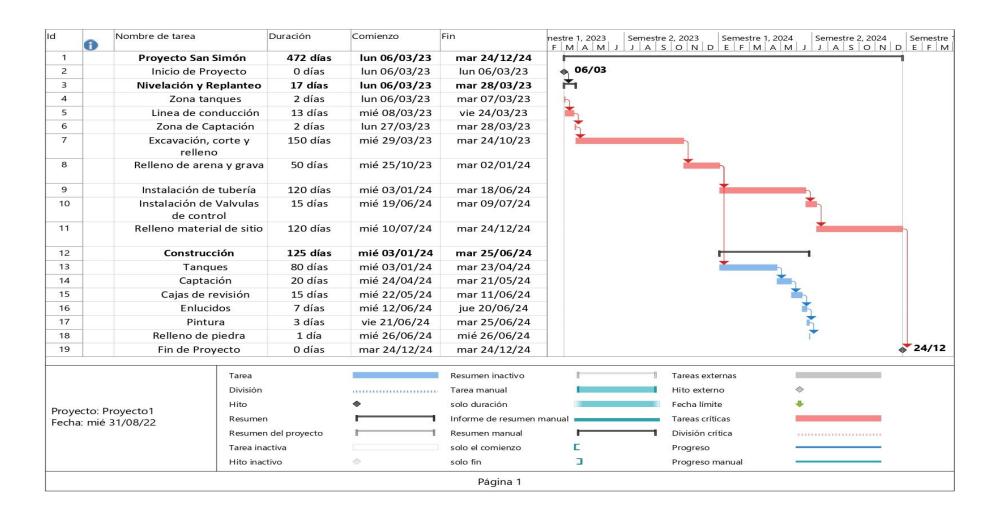
SON: CUARENTA Y NUEVE DOLARES, 65/100 CENTAVOS

Anexo 33 Presupuesto

PROYECTO: PROYECTO DE LINEA DE CONDUCCION SAN SIMON UBICACION: PARROQUIA SAN SIMON, GUARANDA, BOLIVAR ELABORADO: RICHARD LARA MEDINA, JHONNY PINO GADVAY

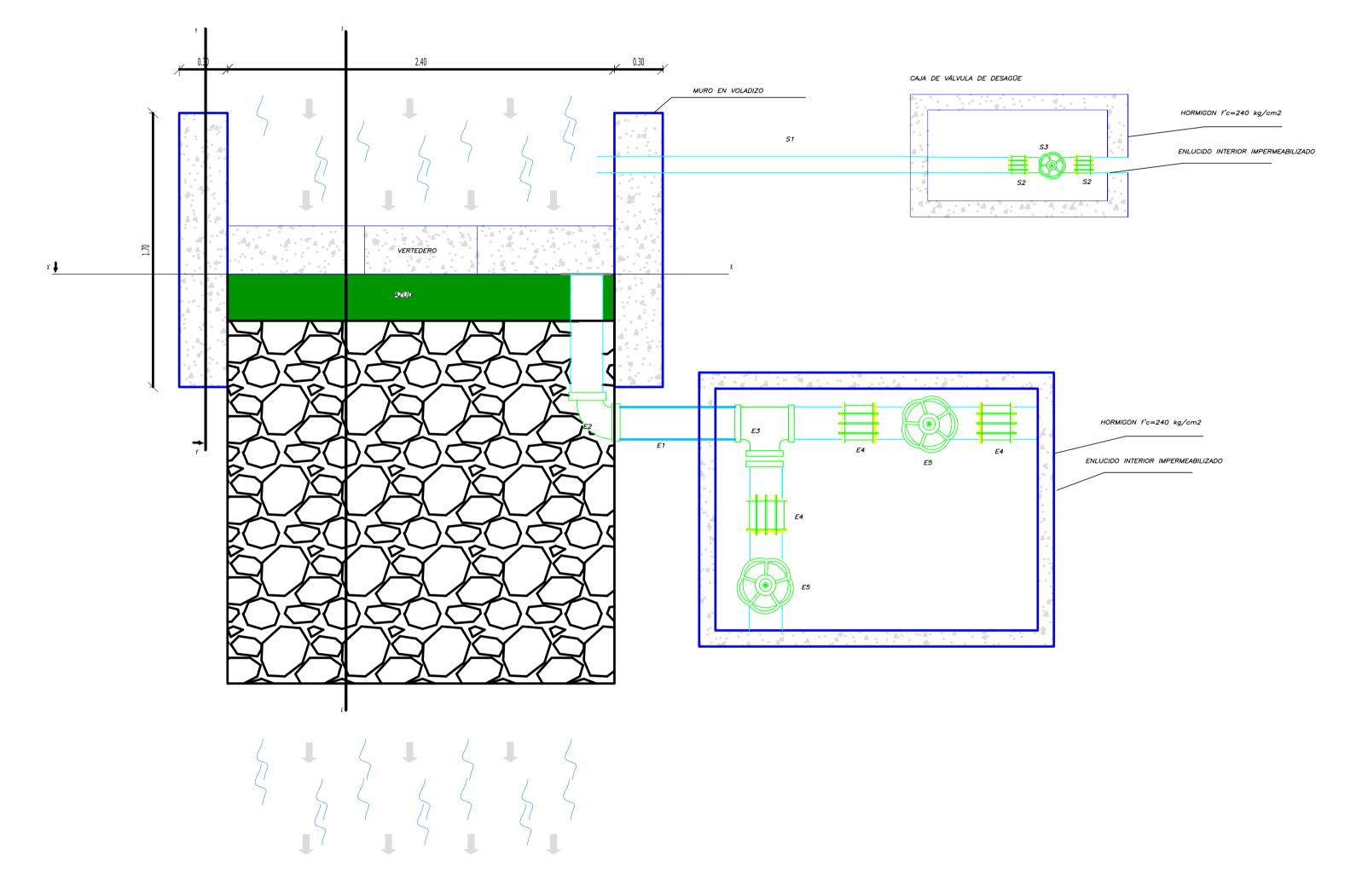
TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS

No. Rubro / Descripción		<u>Unidad</u>	Cantidad	<u>Precio</u> unitario	<u>Precio global</u>
Α	TANQUES DE ALMACENAMIENTO				
1	1 RELLENO DE ZANJA CON MATERIAL DE SITIO		160.00	7.59	1,214.80
2	DESALOJO DE MATERIAL (DISTANCIA 1 KM)	m ³	4,190.00	2.04	8,544.56
3	LIMPIEZA Y DESBROCE MANUAL DEL TERRENO	m ²	3,660.00	1.18	4,318.95
4	HORMIGON f'c 210 kg/m2	m ³	90.00	14.92	1,342.55
5	RELLENO CON ARENA	m ³	526.00	22.65	11,914.91
6	LAMINAS DE PRFV	m ²	152.00	1,794.05	272,695.38
7	MAMPOSTERIA DE BLOQUE LIVIANO e=20mm	m ²	270.00	13.83	3,734.10
8	CAJA DE REVISIÓN	m	12.00	43.31	519.72
9	ACERO DE REFUERZO	kg	568.00	1.52	863.36
10	CRUZ PVC 4" (100mm)	m	4.00	68.31	273.24
11	TAPON PVC (160mm)	m	9.00	10.47	94.23
12	YEE PVC (160mm)	u	20.00	20.84	416.80
13	CODO PVC (160mm) 90°	u	40.00	70.16	2,806.40
14	14 VALVULA DE COMPUERTA 200mm		20.00	452.47	9,049.40
16 CERRAMIENTO DE MALLA TRIPLE		m	250.00	44.01	11,002.50
	LINEA DE CONDUCION				
16	CODO PVC	u	1.00	49.65	49.65
31	REPLANTEO LINEA DE CONDUCCION	m ²	13,500.00	2.09	28,215.00
17	CAMA DE ARENA	m ³	2,148.48	3.05	6,552.86
18	RELLENO DE ZANJA CON MATERIAL DE SITIO	m ³	10,742.00	9.16	98,396.72
19	EXCAVACION DE ZANJAS	m ³	12,890.00	3.56	45,888.40
20	TUBERIA BIAX 100mm	u	15.00	44.62	669.30
21	TUBERIA BIAX 160mm	u	160.00	85.57	13,691.20
22	TUBERIA BIAX 200mm	u	2,064.00	134.87	278,371.68
27	VALVULA REDUCTORA DE PRESIÓN	u	5.00	3,493.28	17466.40
	CAPTACION				
23	RELLENO CON ARENA	m ³	24.00	4.20	100.80
24	CAMA DE PIEDRA BOLA	m ³	5.00	6.23	31.15
25	MEJORAMIENTO DE SUELO	m ³	1.00	2.25	2.25
26	UNION FLEXIBLE TIPO DRESSER	u	42.00	19.46	817.32
4	HORMIGON f'c 210 kg/m2	m ³	42.00	2.17	91.22
9	ACERO DE REFUERZO	kg	4.20	3.54	14.87
				TOTAL:	819,149.72


 $\textbf{SON}: \texttt{OCHOCIENTOS} \ \texttt{DIECINUEVE} \ \texttt{MIL} \ \texttt{CIENTO} \ \texttt{CUARENTA} \ \texttt{Y} \ \texttt{NUEVE}, 72/100 \ \texttt{CENTAVOS} \\ \textbf{ESTOS} \ \textbf{PRECIOS} \ \textbf{NO} \ \textbf{INCLUYEN} \ \textbf{IVA}$

RICHARD LARA, JHONNY PINO

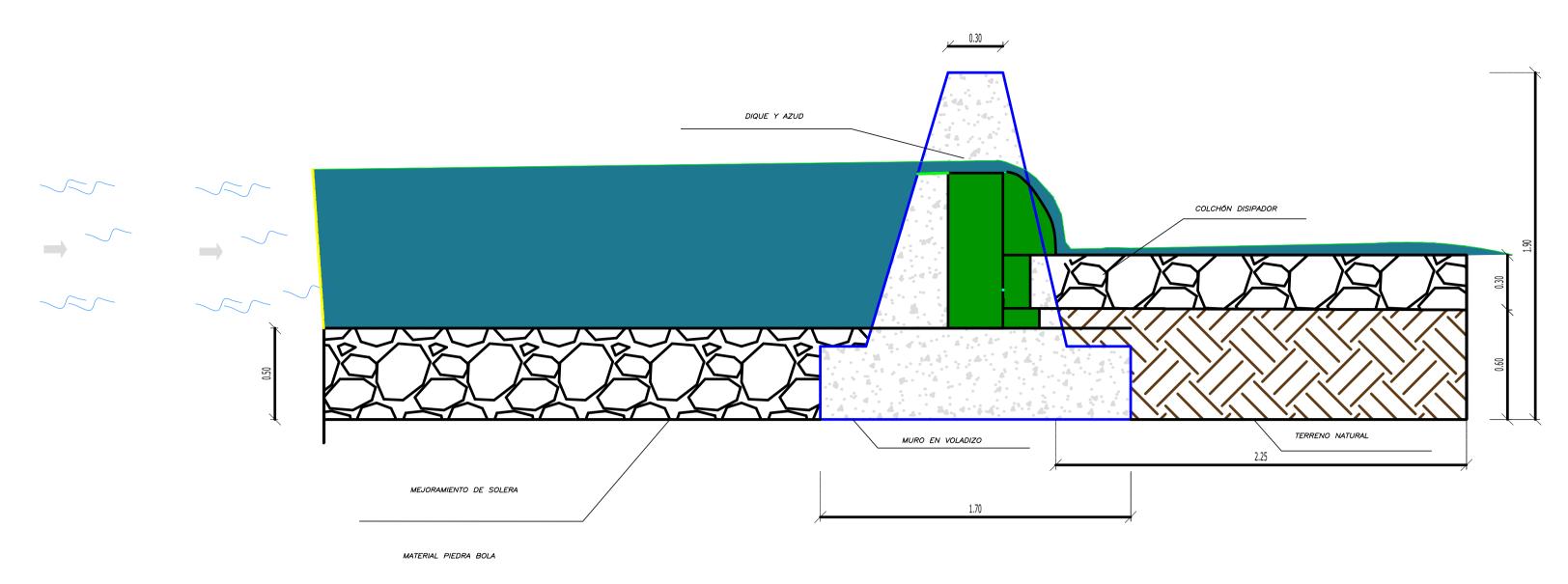
ELABORADO


GUARANDA, 31 DE AGOSTO DE 2022

Anexo 34 CRONOGRAMA DE OBRA

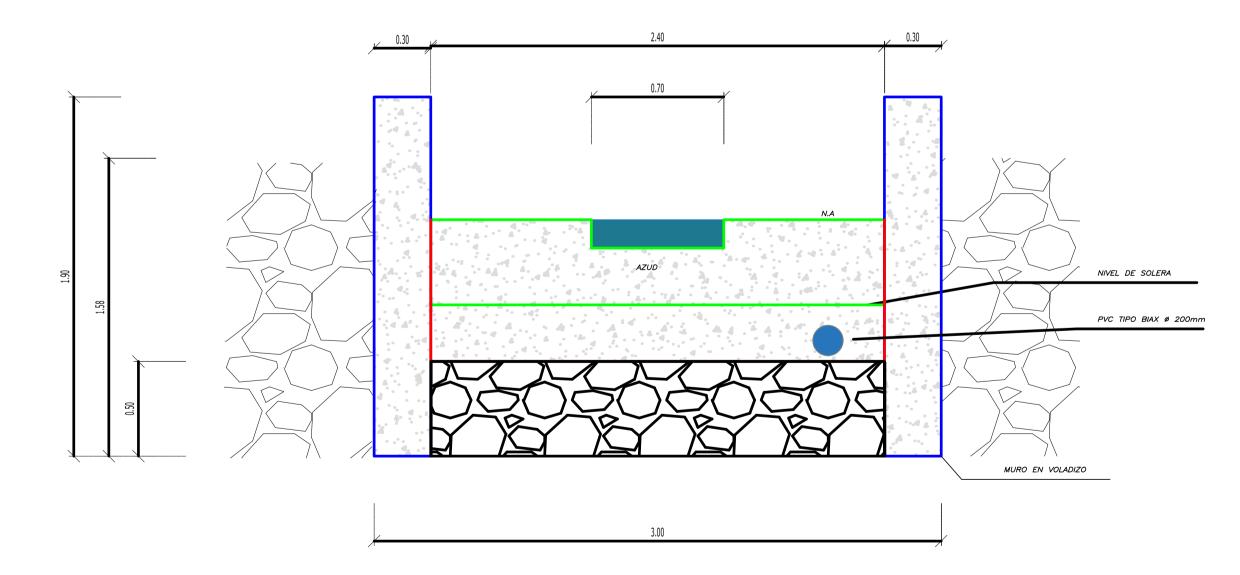
ANEXO DE PLANOS

OBRA DE TOMA - VISTA EN PLANTA

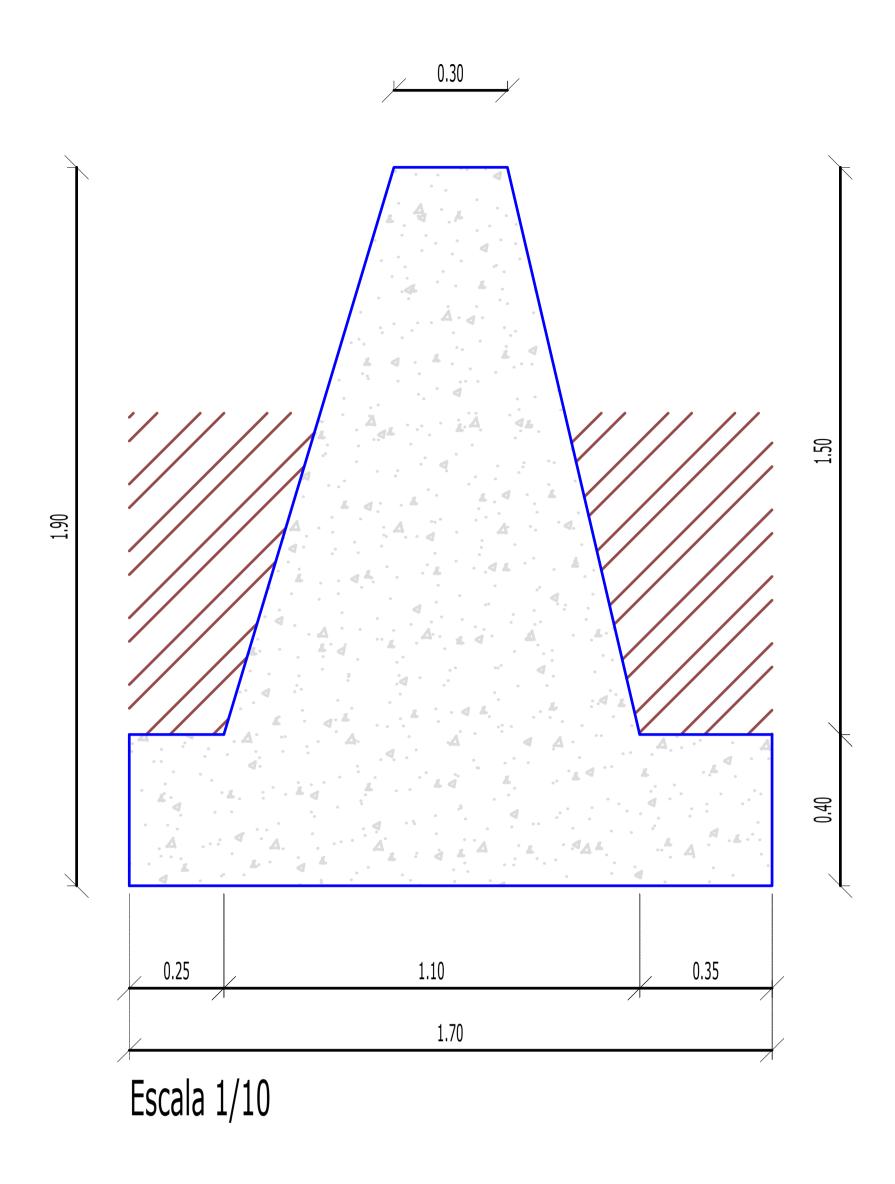

ESCALA 1/20

LISTA DE ACCESORIOS

SIMBOLOGÍA	Ø	CANTIDAD	PRESION	DESCRIPCION		
ACCESORIOS DE SALIDA						
E1	200mm	1	1 MPA	TUBERIA PVC TIPO BIAX		
E2	200mm	1		CODO PVC 90° E/C		
E3	200mm	1		TEE PVC E. E/C		
E4	200mm	3		UNION GIBAULT HF TIPO DRESSER SIMET.		
E5	200mm	2		VALVULA DE COMPUERTA		
ACCESORIOS DE DESAGUE						
S1	100mm	1	0.65 MPA	TUBERIA PVC E/C		
S2	100mm	2		UNION GIBAULT HG TIPO DRESSER SIMET.		
S3	100mm	1		VÁLVULA DE COMPUERTA HG		


	RIOR POLITÉCNICA DEL LITO Iltad de ingeniería en ciencias de la t				
Dise	ño de un sistema de conducción de agua p	ara riego en la parroquia San Simón del c	antón Guaranda		
	DISEÑO DE OBRA DE TOMA - VISTA EN 1	PLANTA			
Coordinador de materia integradora:	Tutores de conocimientos específicos:	Estudiantes:	Fecha de Entrega:		
Ing. Andres Velastegui Arq. Carola P. Zavala M ING. Fernanda Mejía -Jhonny D. Pino G.					
Tutor de Área de conocimiento:	ING. Fernanda Mejía ING. Miguel Chávez	-Richard S. Lara M.	Lámina:	Escala:	
Mgs. Fernanda Mejìa			HS 1/20	INDICADAS	

CORTE Z-Z'. VISTA LATERAL


ESCALA 1/20

CORTE X-X'. VISTA FRONTAL

Escala 1/20

CORTE Y-Y'. MURO EN VOLADIZO

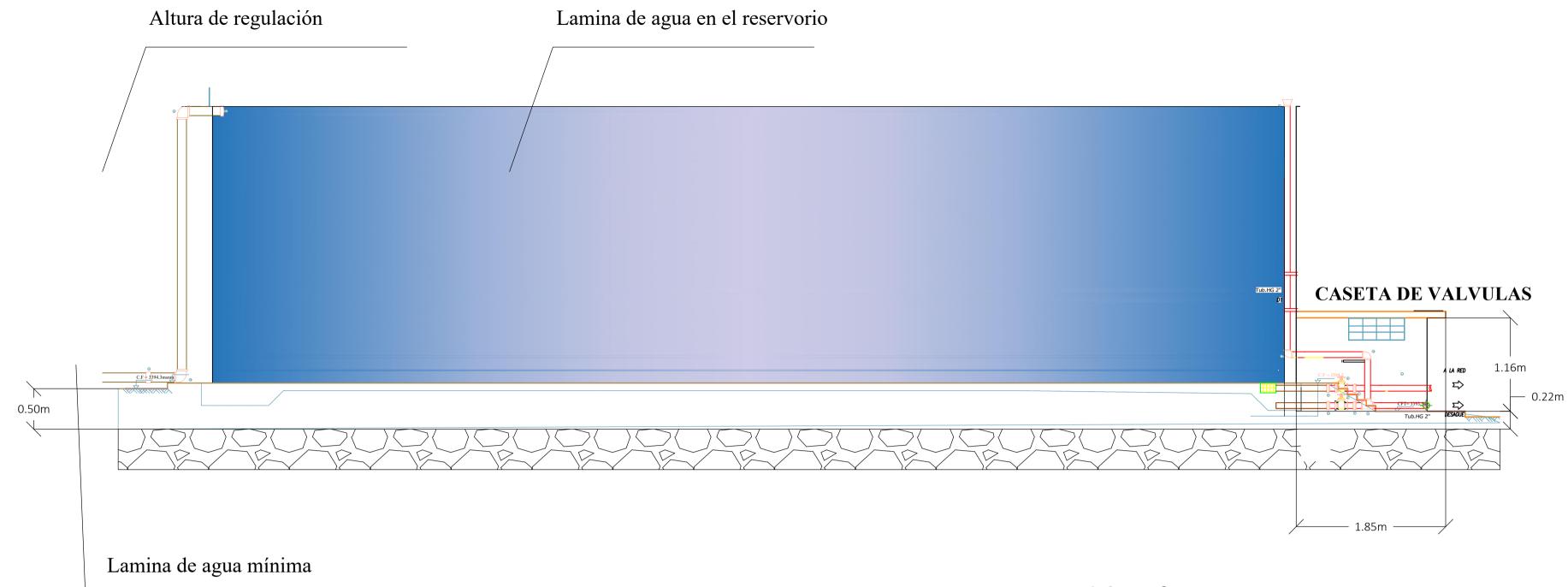
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL
FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

Plano de Diseño Abscisas 0+000 a 0+2000

Coordinador de materia integradora:
Ing. Andres Velastegui

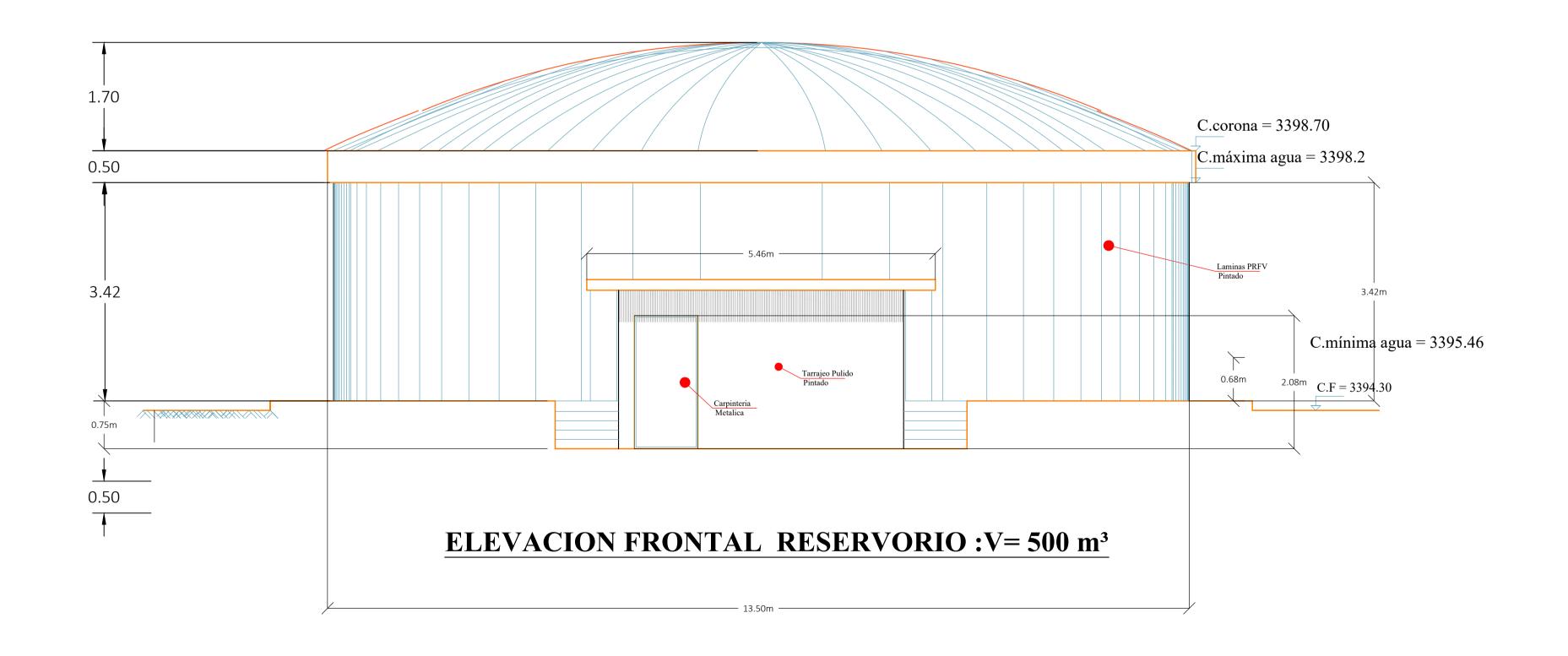
Arq. Carola P. Zavala M.


Tutor de Área de conocimiento:
Mgs. Fernanda Mejìa

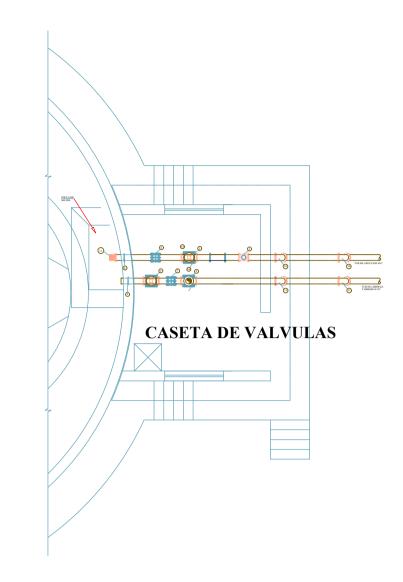
Fecha de Entrega:
//Septiembre/2022

Lámina:
Escala:
T 1/?

ROCADAS


ELEVACIÓN LATERAL DE TANQUE DE ALMACENAMIENTO

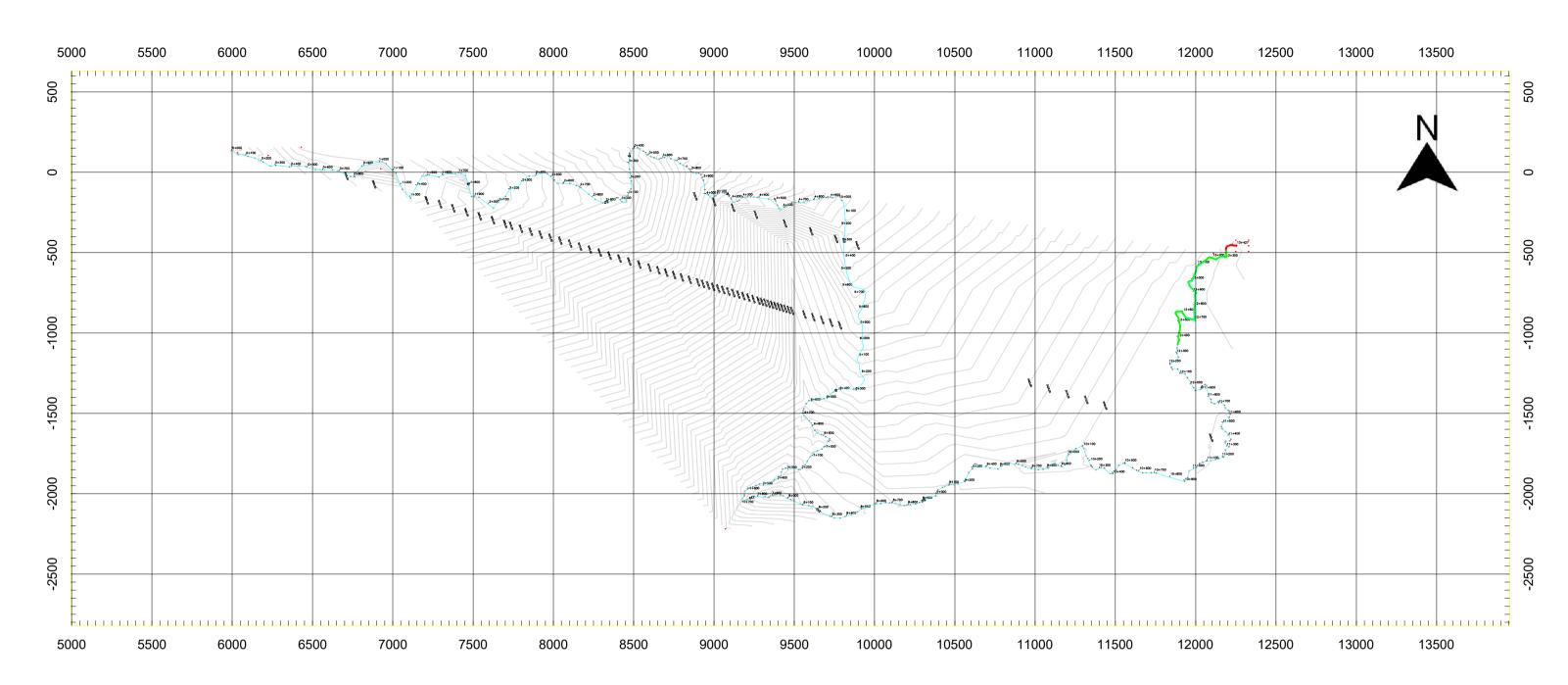
ELEVACION LATERAL RESERVORIO:V=500 m³


ESCALA 1/25

ELEVACIÓN FRONTAL

ESCALA 1/50

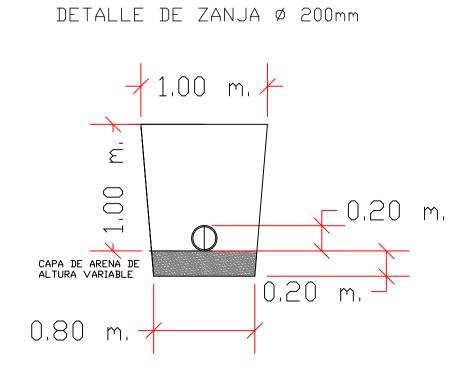
INSTALACIONES HIDRAÚLICAS

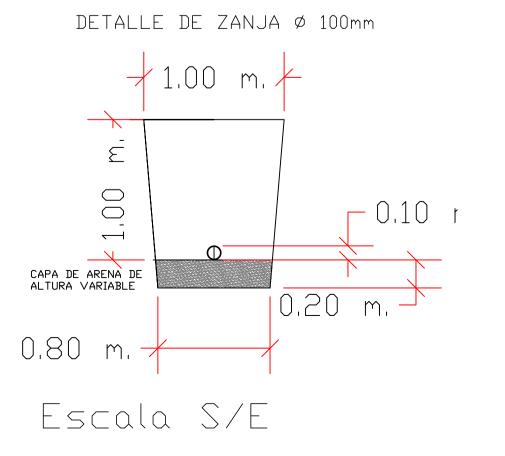

PLANTA:INSTALACIONES
HIDRÁULICAS

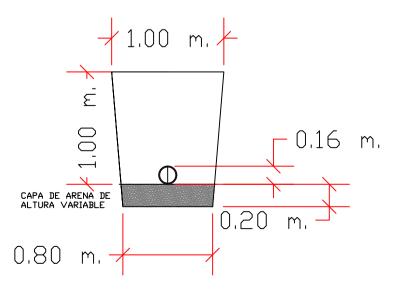
ESCALA 1/100

NOMENCL.	DESCRIPCION	
1	VALVULA COMPUERTA Ø 100 mm.	
2	VALVULA COMPUERTA Ø 100 mm	
3	TEE Ø 100 mm	
4	TEE Ø 160 mm	
5	MEDIDOR DE CAUDAL 100 mm	
7	UNION FLEX. TIPO DRESSER Ø 100 mm	
8	BRIDA ROMPE AGUA Ø 100 mm PVC.	
9	BRIDA ROMPE AGUA Ø 100 mm PVC.	
10	CODO Ø 100 mm x 45°	
11	CODO Ø 100 mm x 45°	
12	CODO Ø 100 mm x 90°	
13	CANASTILLA DE ADUCCION Ø 100 mm	
14	DADO DE CONCRETO F'C = 175 Kg/cm2	
15	TEE Ø 100 mm	
16	CODO Ø 100 mm 90°	

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda Plano de Diseño de Tanque Coordinador de materia integradora: Ms.C. Andres Velasteguí Tutor de Área de conocimiento: Ms.C. Fernanda Mejía Ph.D. Miguel Chávez Ms.C. Fernanda Mejía Ph.D. Miguel Chávez Proposition de Agua para riego en la parroquia San Simón del cantón Guaranda Plano de Diseño de Tanque Fecha de Entrega: 31/Agosto/2022 Lámina: 3/20 INDICADAS


VISTA EN PLANTA LINEA DE CONDUCCIÓN


Escala 1/20000


Escala 10/265

Escala S/E

DETALLE DE ZANJA Ø 160mm

Escala S/E

DIÁMETRO DE TUBERÍAS				
SIMBOLOGÍA	DIÁMETRO			
	200 mm.			
	160 mm.			
	100 mm.			
	Válvula de seccionamiento			
	Válvula rompe-presión			
	Cámara de aire			

TIPO DE COMPONENTE	NORTE	ESTE	ELEVACION	DESCRIPCION
Válvula de Seccionamiento	9817932.12	732519.38	3634.80	Válvula de seccionamiento #1 Abscisa 2+900 (200mm)
Válvula de Seccionamiento	9819310.42	731384.00	3463.70	Válvula de seccionamiento #2 Abscisa 5+900 (200mm)
Válvula de Seccionamiento	9820458.05	731566.32	3396.10	Válvula de seccionamiento #3 Abscisa 8+900 (200mm)
Válvula de Seccionamiento	9820575.86	729657.32	3403.15	Válvula de seccionamiento #4 Abscisa 11+900 (200mm)
Válvula de Seccionamiento	9819845.72	729102.47	3394.65	Válvula de entrada al tanque Abscisa 13+400 (100mm)
Cámara rompe-presión	9817411.23	733219.62	3670.10	Cámara rompe-presiones #1 Abscisa 1+800 (200mm)
Cámara rompe-presión	9817716.62	732222.05	3610.30	Cámara rompe-presiones #2 Abscisa 3+300 (200mm)
Cámara rompe-presión	9818216.35	731794.61	3549.40	Cámara rompe-presiones #3 Abscisa 4+150 (200mm)
Cámara rompe-presión	9818999.12	731338.25	3482.85	Cámara rompe-presiones #4 Abscisa 5+450 (200mm)
Cámara rompe-presión	9819609.59	731731.38	3431.95	Cámara rompe-presiones #5 Abscisa 6+400 (200mm)
Tanque de almacenamiento	9819930.20	729018.44	3393.00	Tanque de almacenamiento de agua delantero #1
Tanque de almacenamiento	9819866.98	728988.52	3390.55	Tanque de almacenamiento de agua delantero #2
Tanque de almacenamiento	9819832.74	729060.86	3394.20	Tanque de almacenamiento de agua posterior #1
Tanque de almacenamiento	9819896.00	729090.77	3396.95	Tanque de almacenamiento de agua posterior #2
Zona de Captación	9816643.25	734470.59	3724.20	Captación tipo dique Abscisa 0+000

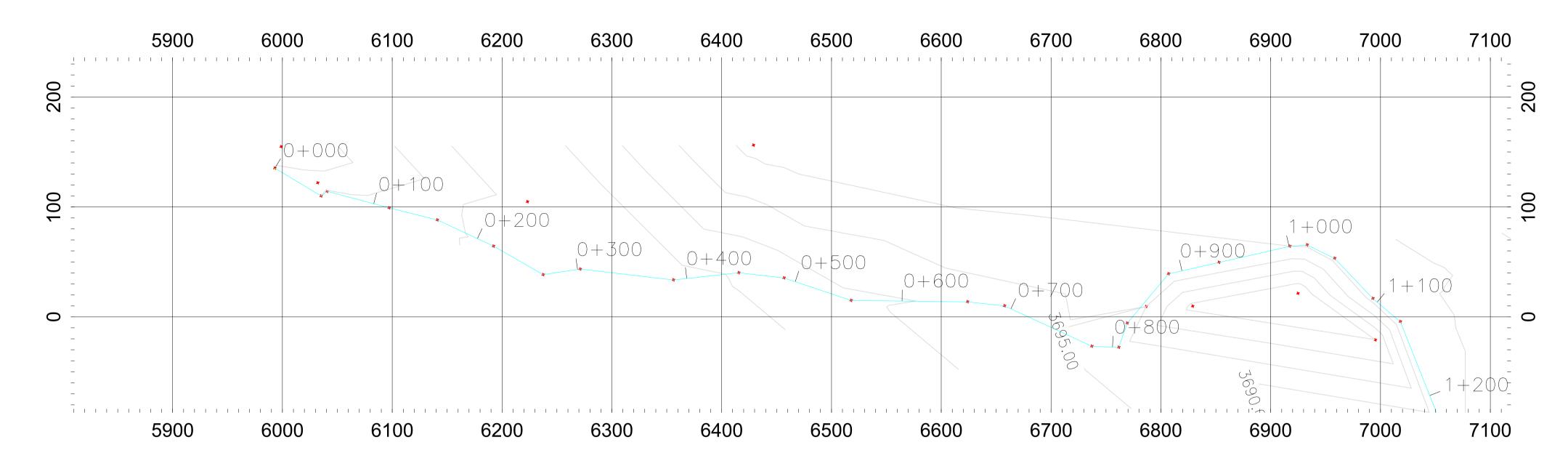
Línea Piezométrica

Línea de tubería

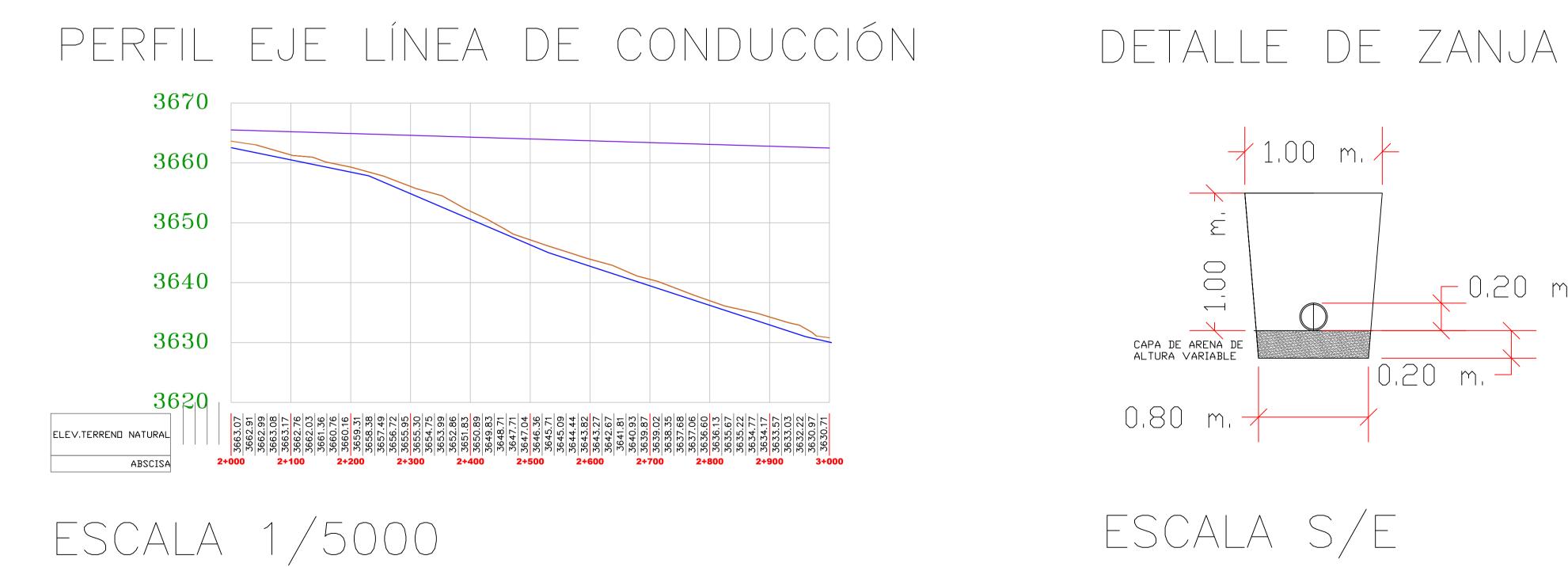
Perfil de suelo

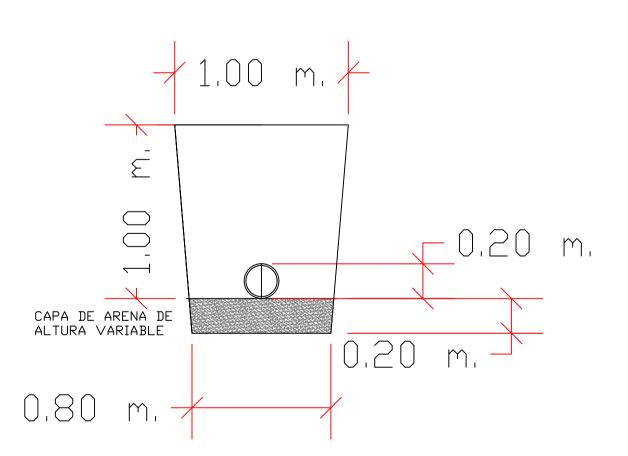
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda


integradora:		específicos:	Estudiantes:	
	M.Sc. Andres Velastegui	Aly. Calola F. Zavala Ivi	-Jhonny D. Pir	
	Tutor de Área de conocimiento: M.Sc. Fernanda Mejìa	M.Sc. Fernanda Mejía PhD. Miguel Chávez	-Richard S. La	

-Jhonny D. Pino G.
-Richard S. Lara M.


Lámina: Escala:
HS 6/20 INDICADAS


Fecha de Entrega:

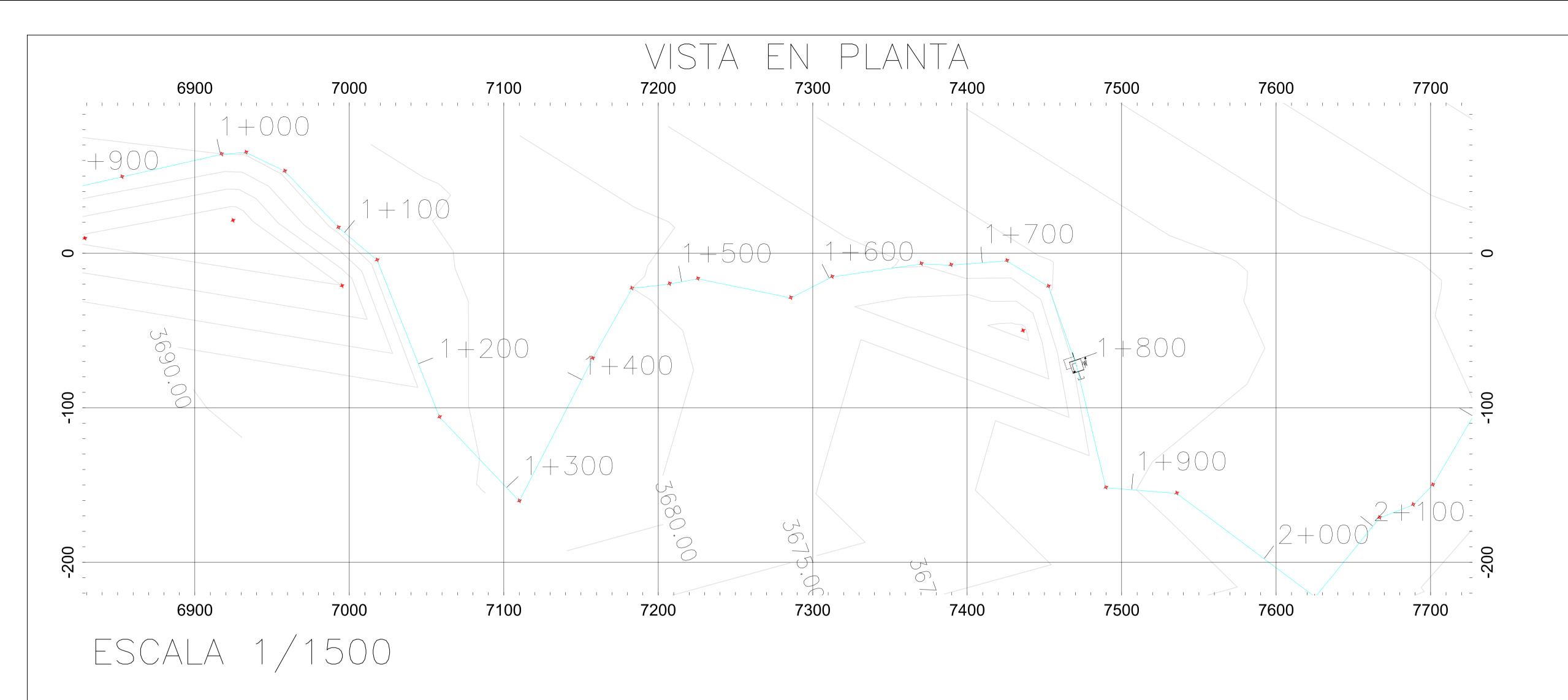
07/Septiembre/2022

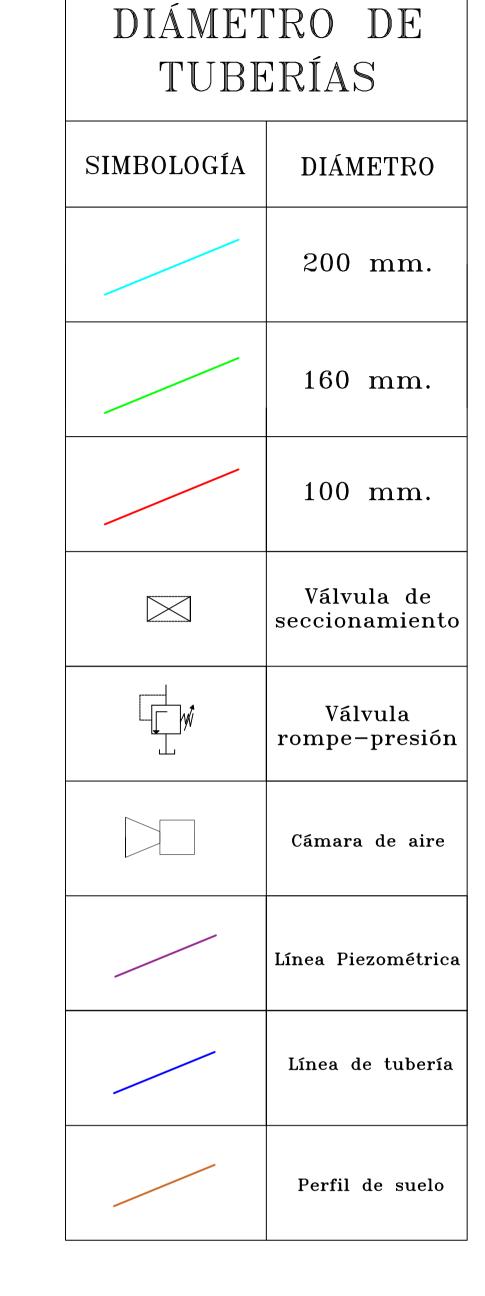
ESCALA 1/2500

ESCALA S/E

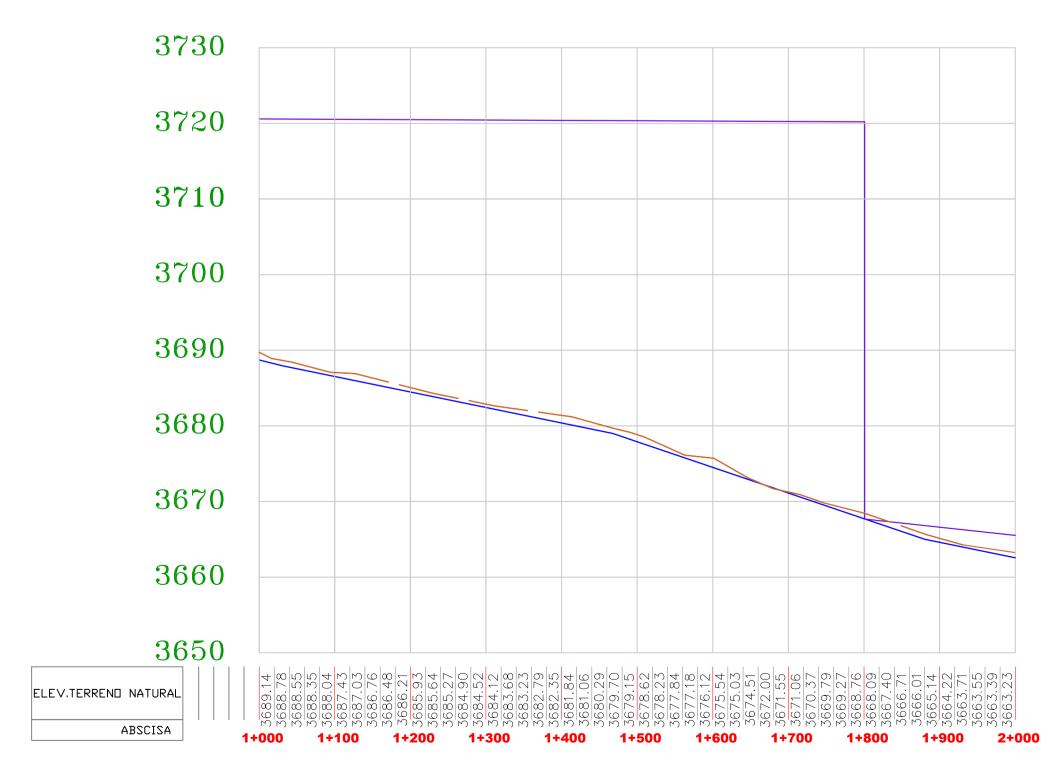
	DIÁMETRO DE TUBERÍAS					
SIMBOLOGÍA	DIÁMETRO					
	200 mm.					
	160 mm.					
	100 mm.					
	Válvula de seccionamiento					
	Válvula rompe-presión					
	Cámara de aire					
	Línea Piezométrica					
	Línea de tubería					
	Perfil de suelo					

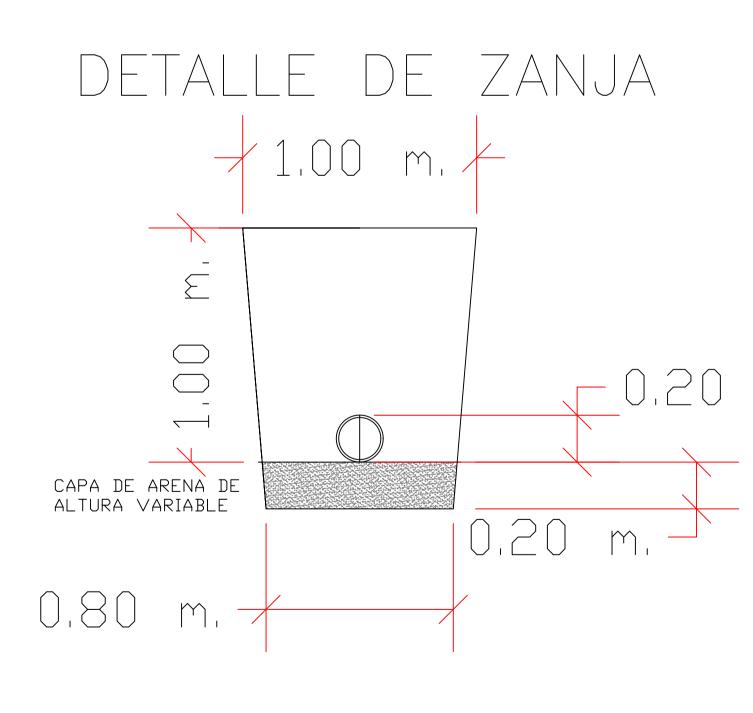
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA


Diseño de un sistema de conducción de agua para riego


en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 0+000 a 1+000


	integradora:	Tutores de conocimientos específicos:	
	M.Sc. Andres Velastegui	Aly. Calola F. Zavala IVI	
1	Tutor de Área de	M.Sc. Fernanda Mejía	
	conocimiento: M.Sc. Fernanda Mejìa	PhD. Miguel Chávez	


07/Septiembre/2022 -Jhonny D. Pino G. -Richard S. Lara M. HS 7/20 INDICADAS

ESCALA S/E

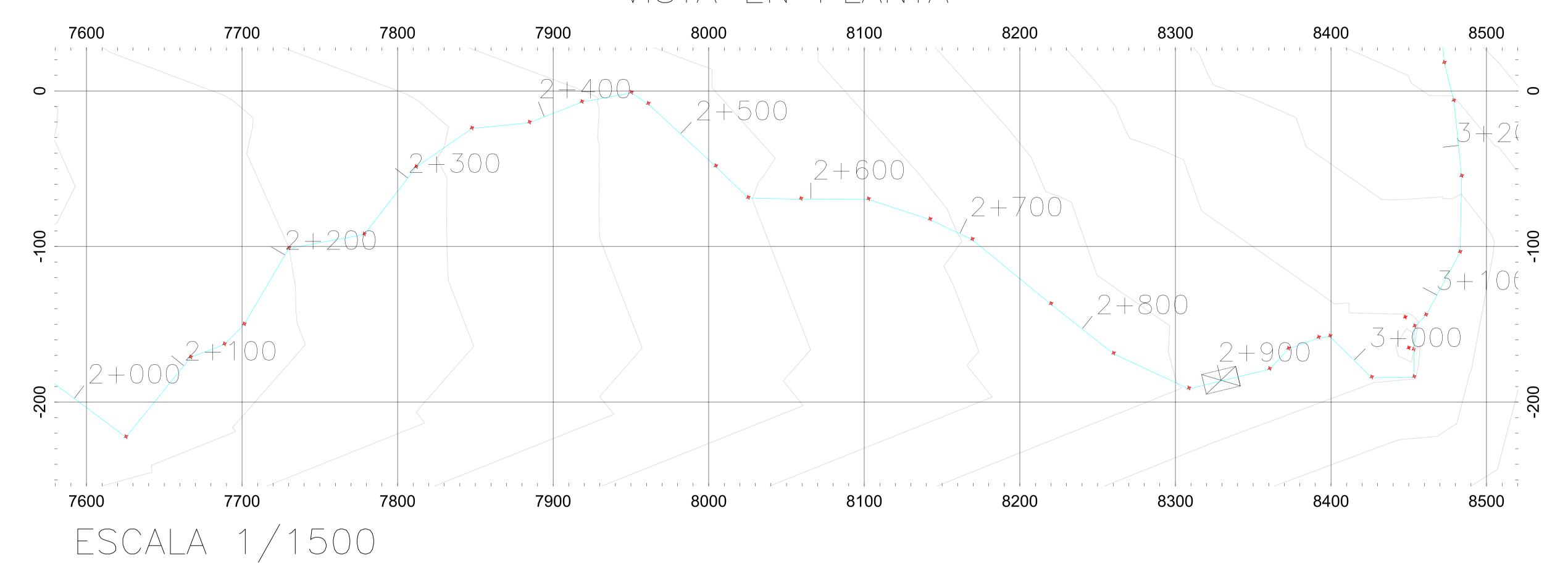
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA Diseño de un sistema de conducción de agua para riego

en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 1+000 a 2+000

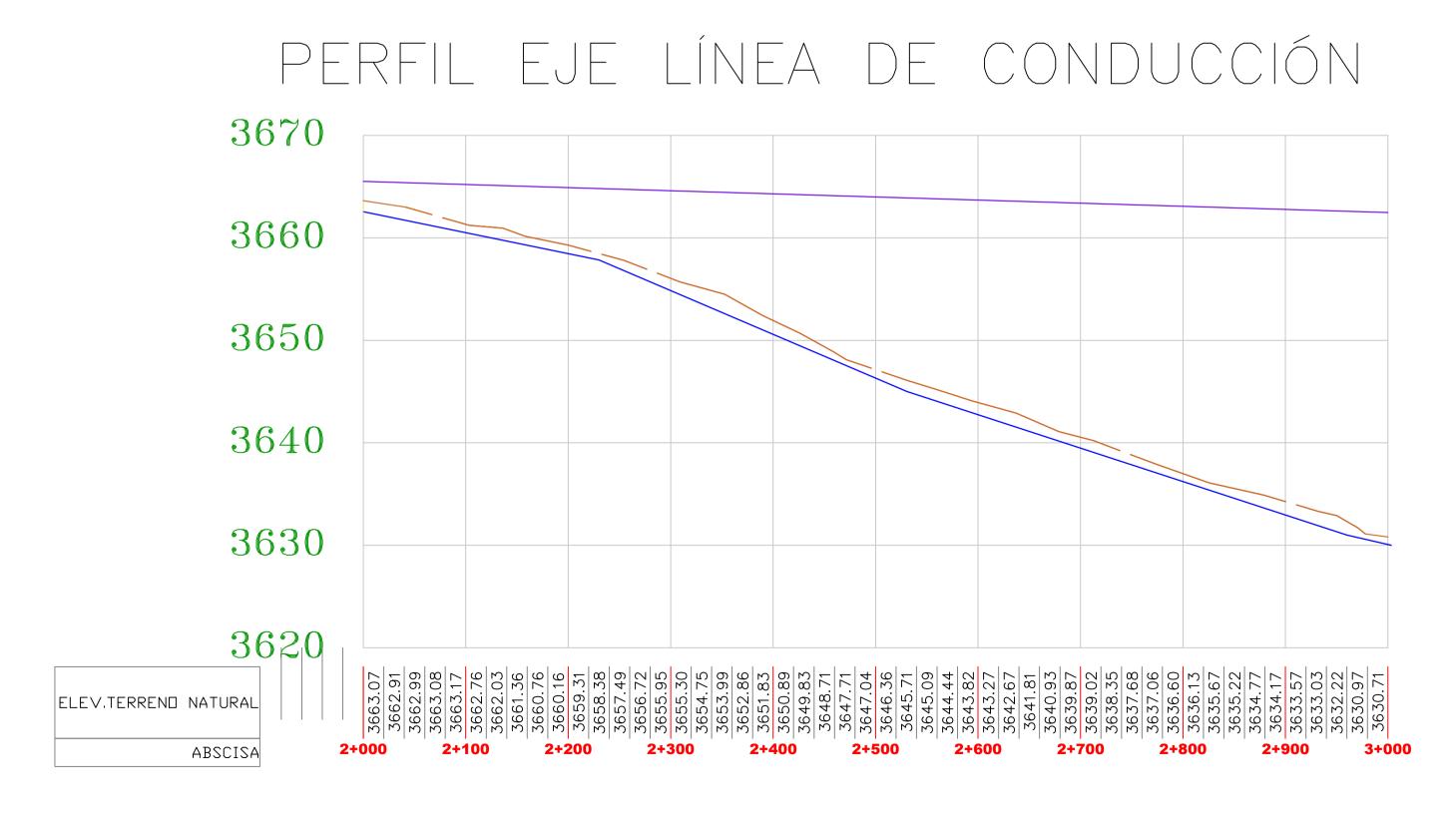
Ms.C. Andres Velasteguí conocimiento: Ms.C. Fernanda Mejìa


Arq. Carola P. Zavala M Ms.C. Fernanda Mejía Ph.D Miguel Chávez

-Jhonny D. Pino G.

Fecha de Entrega: 31/Agosto/2022 -Richard S. Lara M.

HS 8/20 INDICADAS


ESCALA 1/5000

DIÁMETRO DE TUBERÍAS

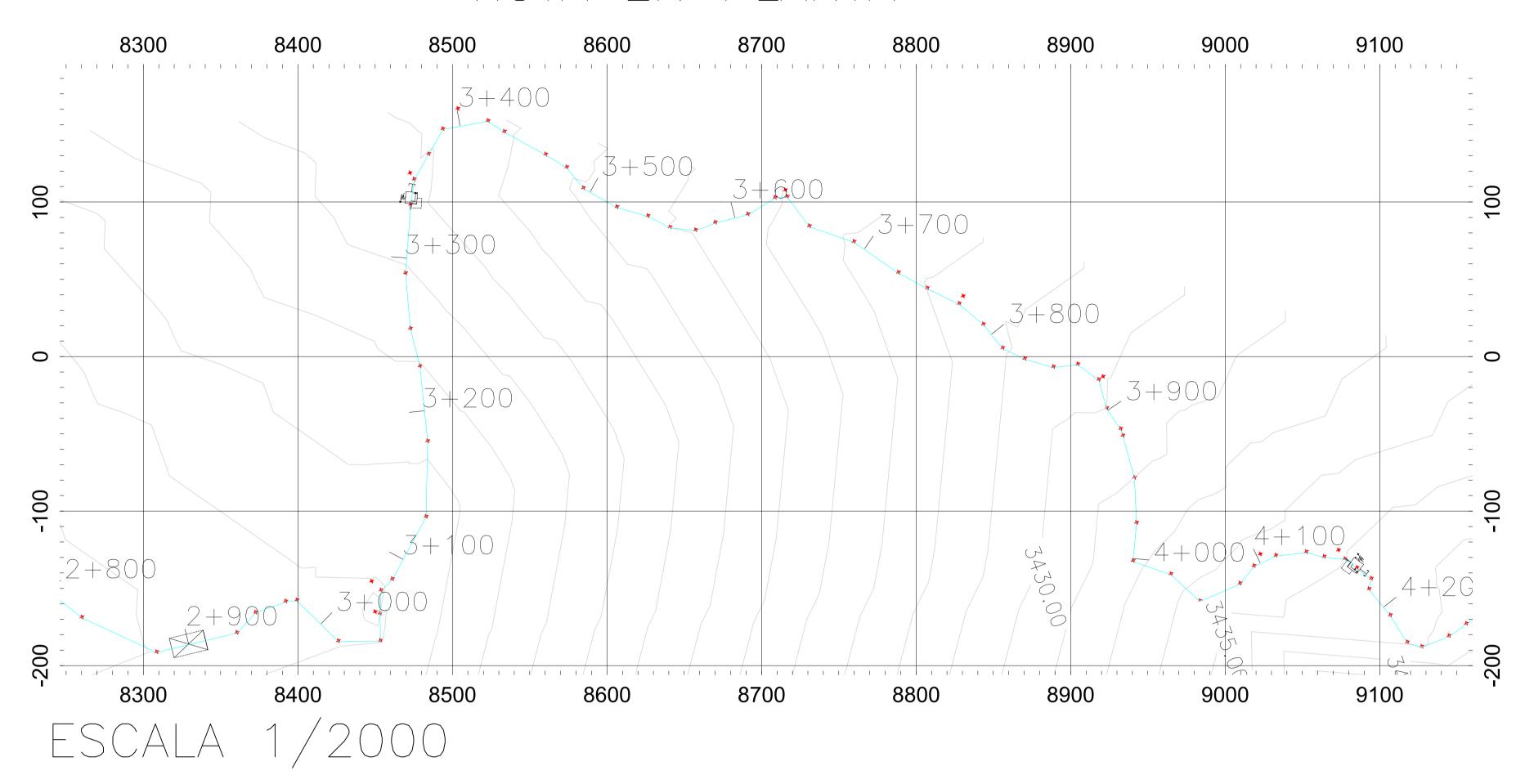
SIMBOLOGÍA	DIÁMETRO
	200 mm.
	160 mm.
	100 mm.
	Válvula de seccionamiento
₩W	Válvula rompe-presión
	Cámara de aire
	Línea Piezométrica
	Línea de tubería
	Perfil de suelo

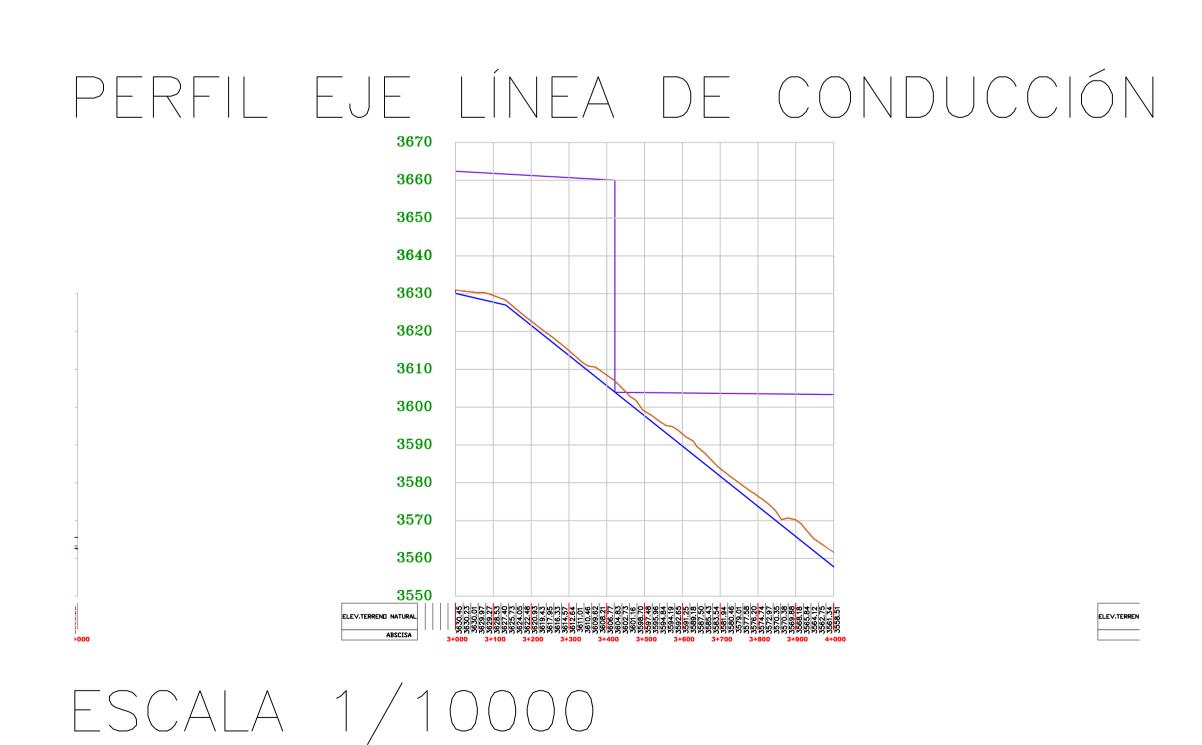
DETALLE DE ZANJA

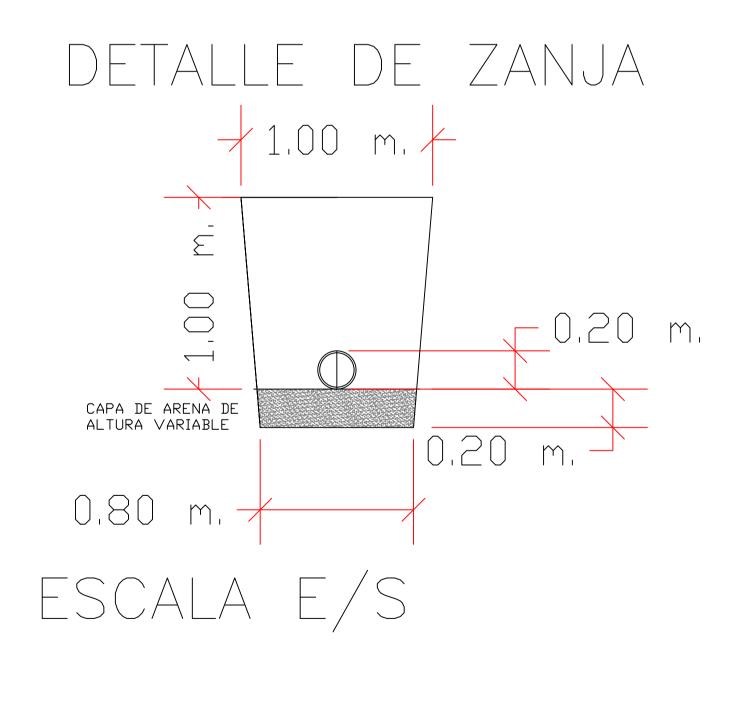
_0.20 m. CAPA DE ARENA DE ALTURA VARIABLE 0,80 m. -ESCALA E/S

ESCALA 100/330

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA


Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda


Plano de Tubería Abscisas 2+000 a 3+000


Coordinador de materia integradora: M.Sc. Andres Velastegu Arq. Carola P. Zavala M M.Sc. Fernanda Mejía Ph.D. Miguel Chávez M.Sc. Fernanda Mejìa

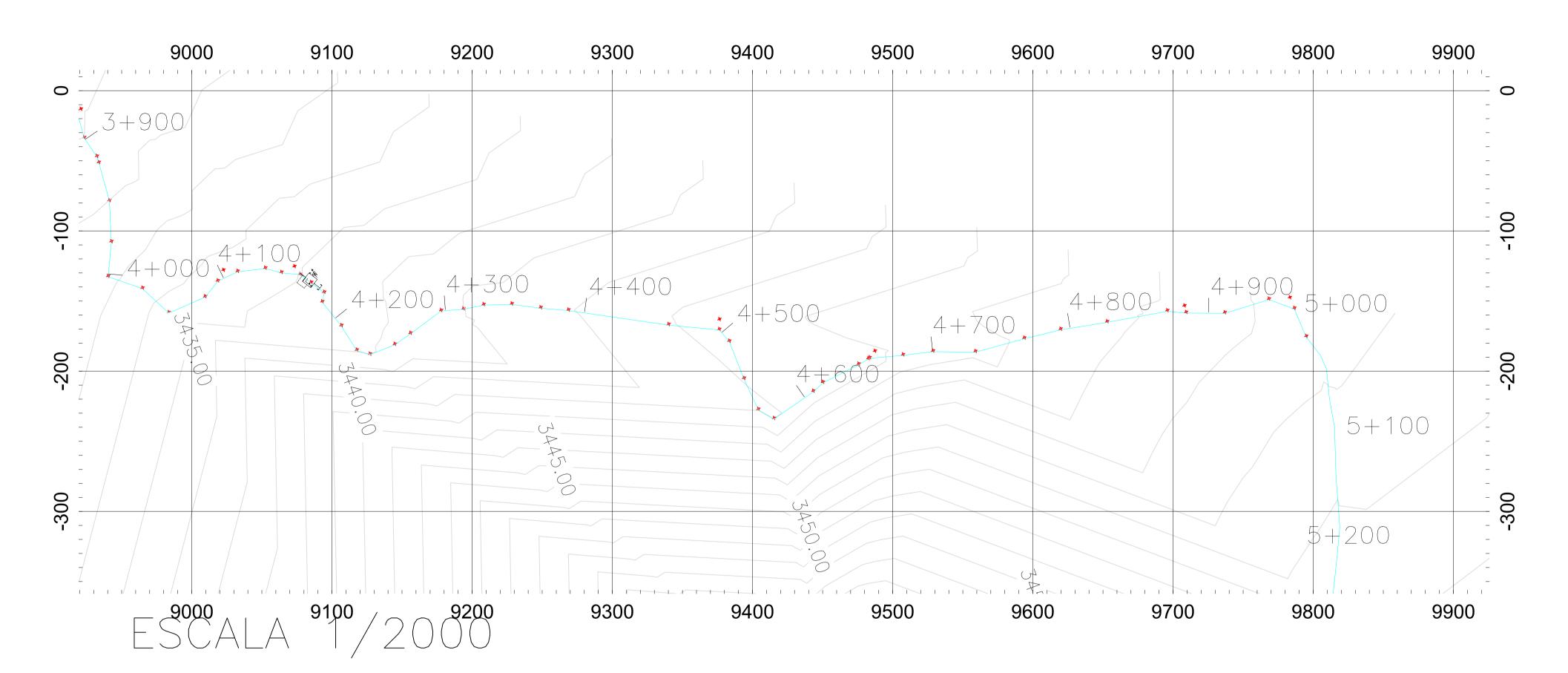
-Jhonny D. Pino G. -Richard S. Lara M.

31/Agosto/2022 HS 9/20 INDICADAS

DIÁMETRO DE TUBERÍAS DIÁMETRO SIMBOLOGÍA 200 mm. $160 \, \mathrm{mm}.$ 100 mm. Válvula de seccionamiento Válvula rompe-presión Cámara de aire Línea Piezométrica Línea de tubería Perfil de suelo

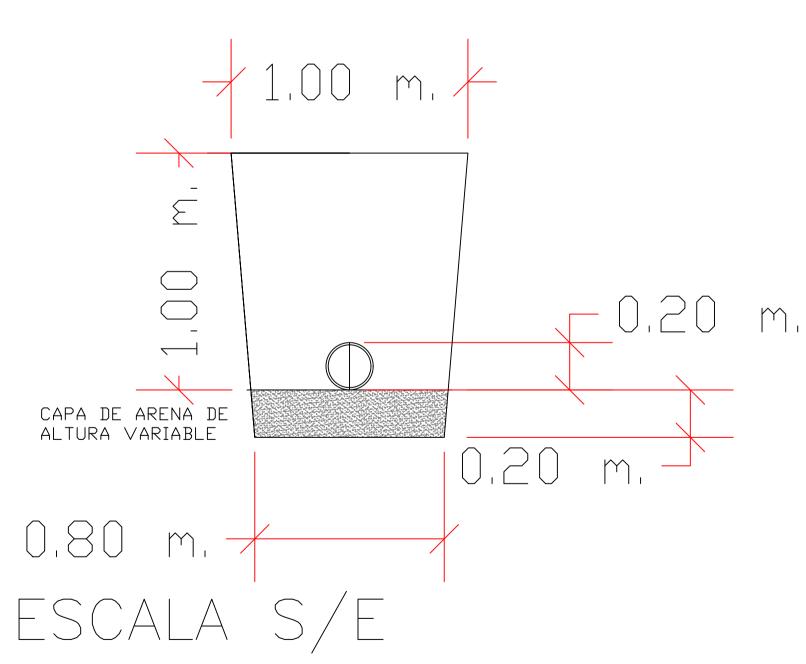
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda


Plano de Tubería Abscisas 3+000 a 4+000

Coordinador de materia integradora: M.Sc. Andres Velastegu Ph.D. Miguel Chávez M.Sc. Fernanda Mejìa


Arq. Carola P. Zavala M M.Sc. Fernanda Mejía


Fecha de Entrega: -Jhonny D. Pino G. -Richard S. Lara M.

31/Agosto/2022 HS 10/20 INDICADAS

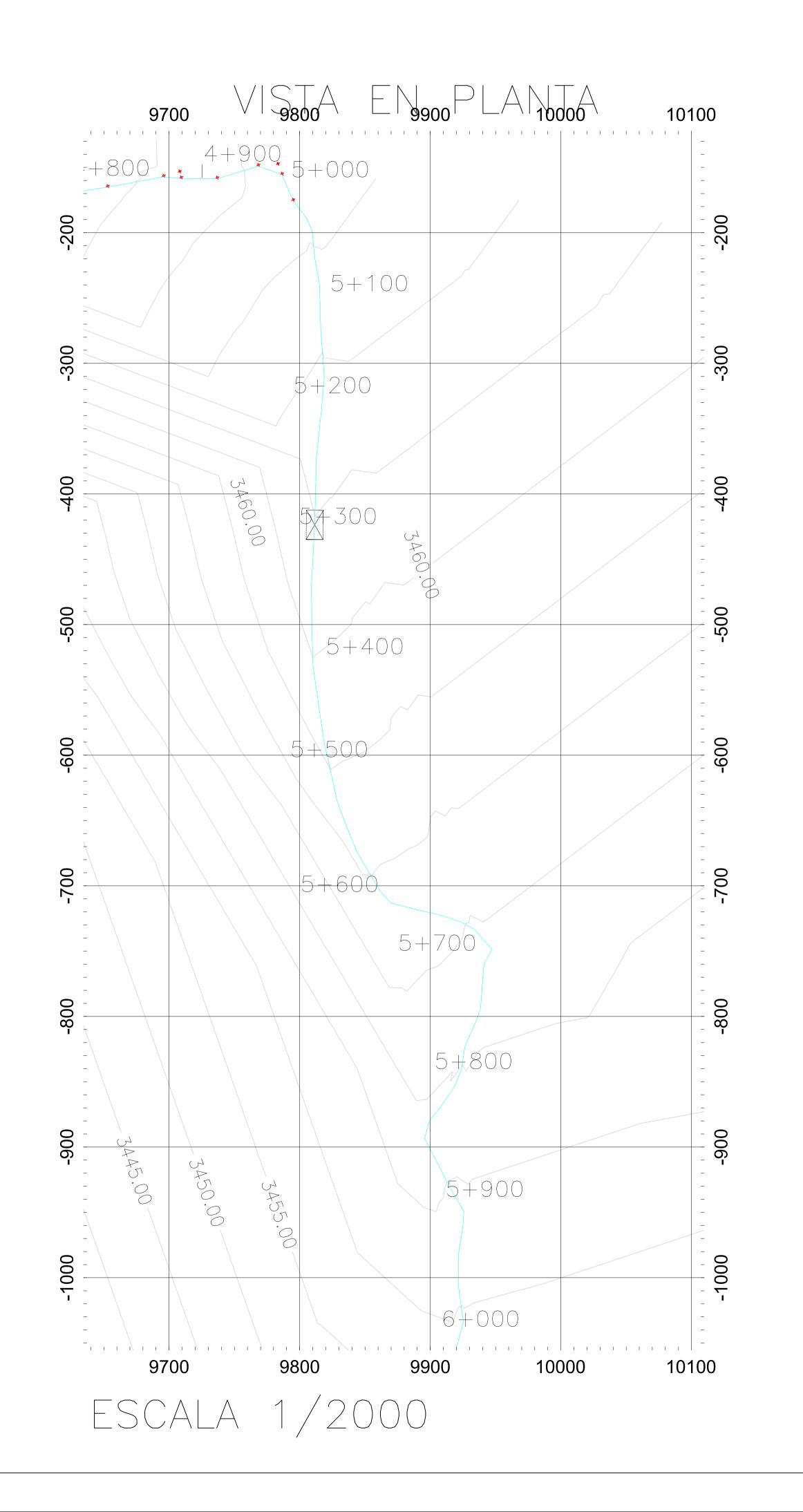
PERFIL EJE LÍNEA DE CONDUCCIÓN

DIÁMETRO DE TUBERÍAS

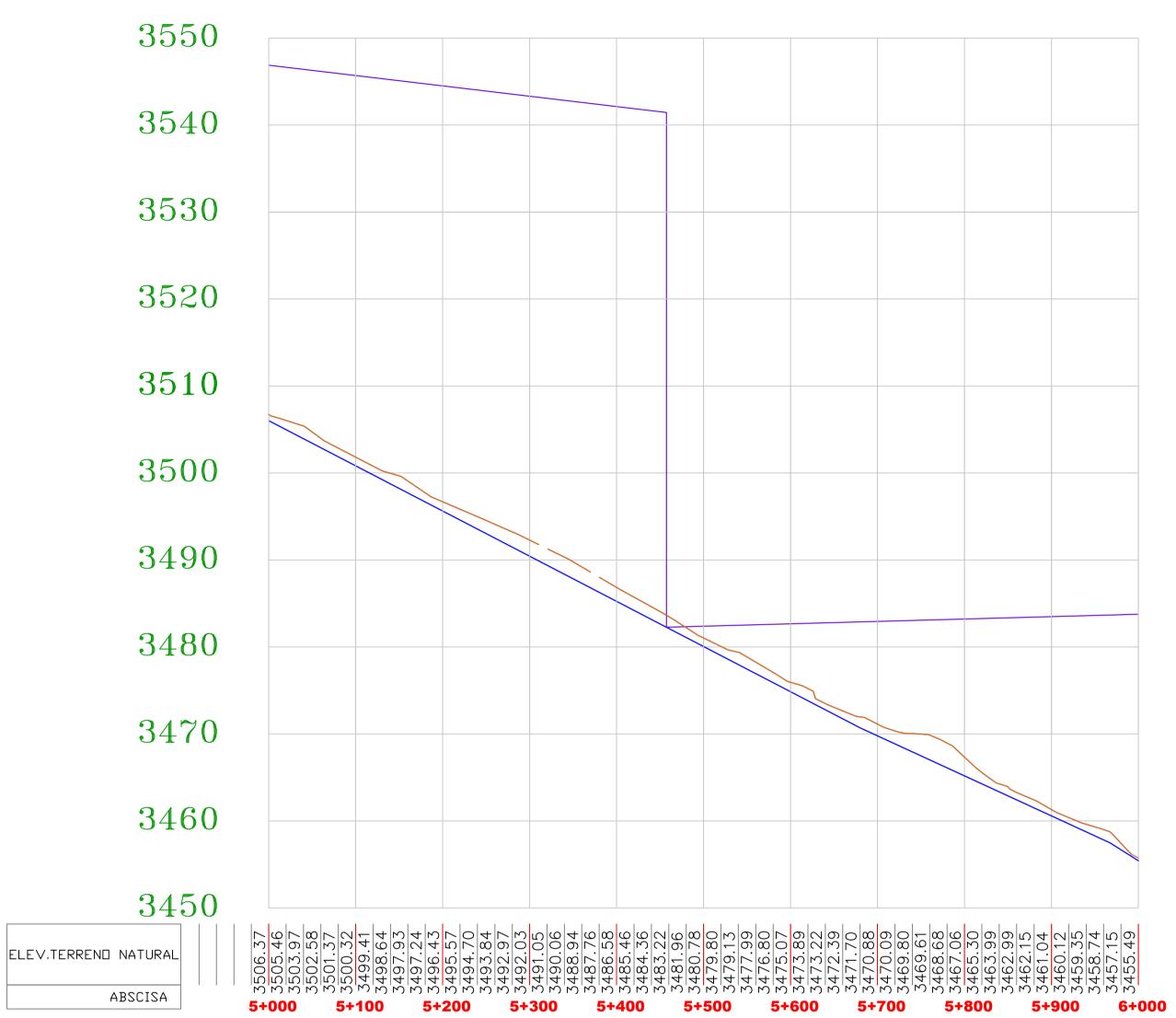
IUBLKIAS	
SIMBOLOGÍA	DIÁMETRO
	200 mm.
	160 mm.
	100 mm.
	Válvula de seccionamiento
Ţ,	Válvula rompe-presión
	Cámara de aire
	Línea Piezométrica
	Línea de tubería
	Perfil de suelo

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA


Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 4+000 a 5+000


Coordinador de materia integradora: M.Sc. Andres Velastegu Arq. Carola P. Zavala M M.Sc. Fernanda Mejía Ph.D. Miguel Chávez M.Sc. Fernanda Mejìa

Fecha de Entrega: -Jhonny D. Pino G. -Richard S. Lara M.

31/Agosto/2022 HS 11/20 INDICADAS


PERFIL EJE LÍNEA DE CONDUCCIÓN

DIÁMETRO DE TUBERÍAS SIMBOLOGÍA DIÁMETRO 200 mm. $160 \, \mathrm{mm}.$ $100 \, \mathrm{mm}.$ Válvula de \searrow seccionamiento ₩ Válvula rompe-presión Cámara de aire Línea Piezométrica Línea de tubería Perfil de suelo

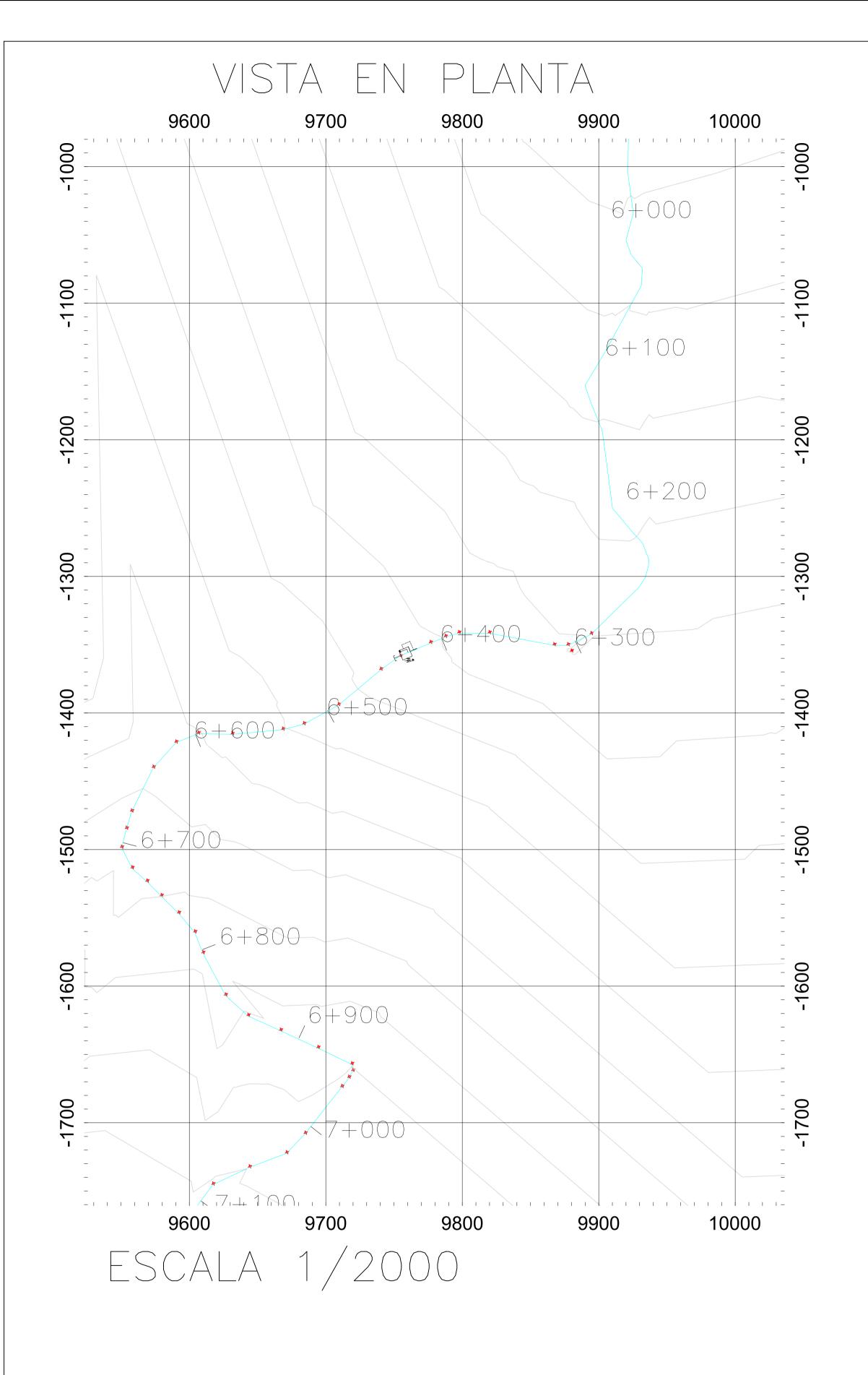
ESCALA 1/4000

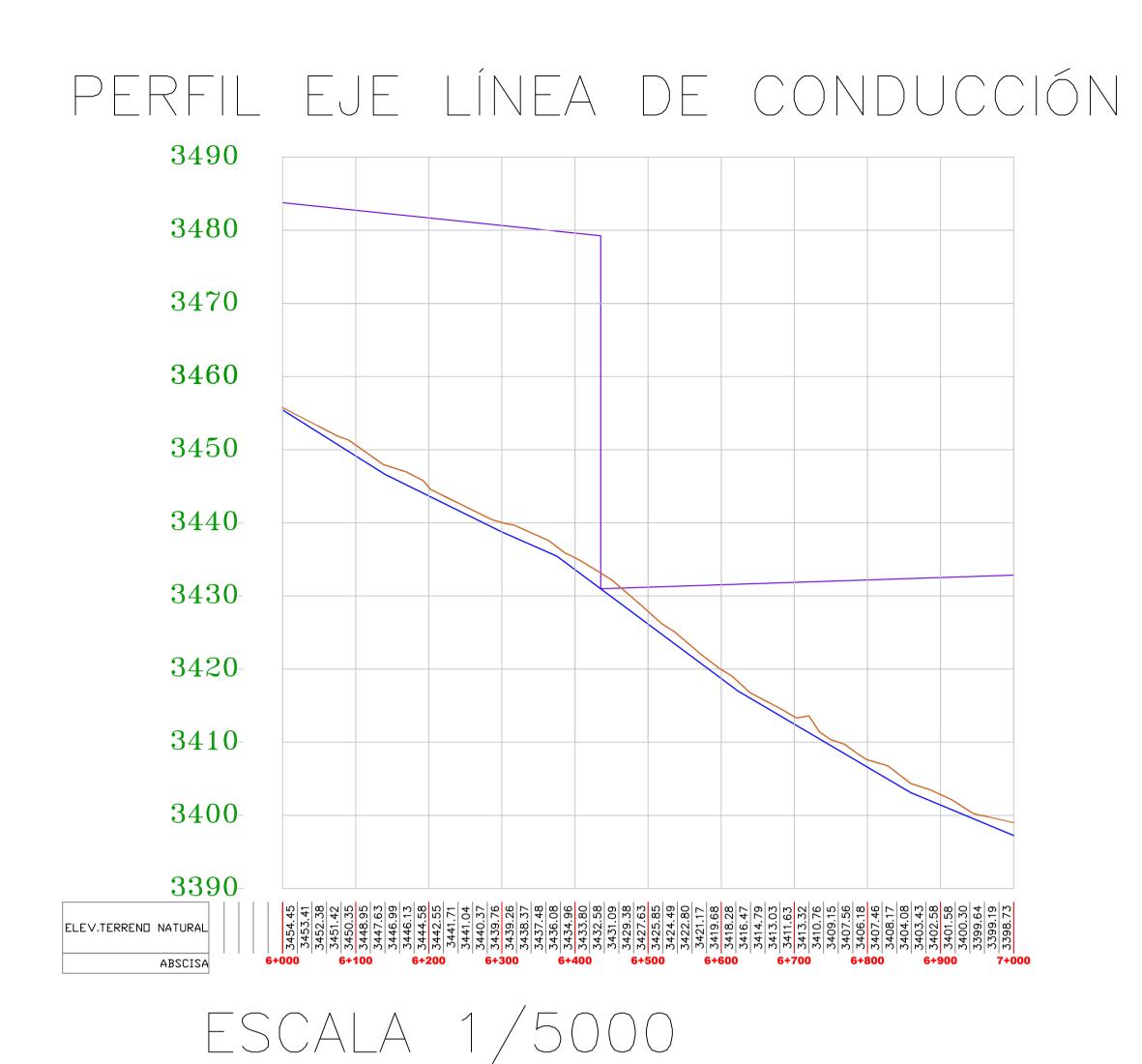
DETALLE DE ZANJA

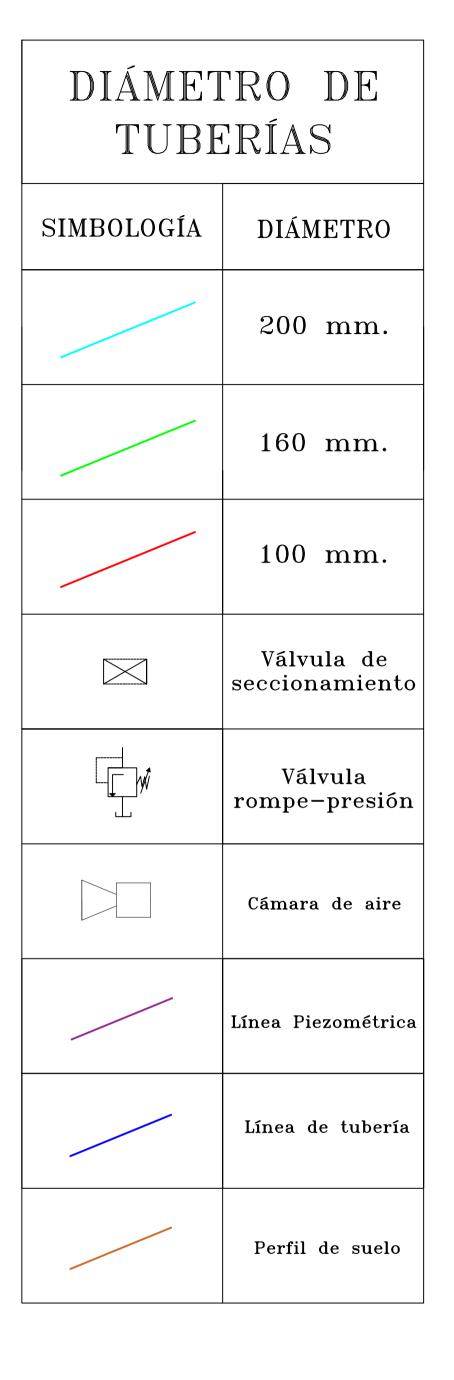
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

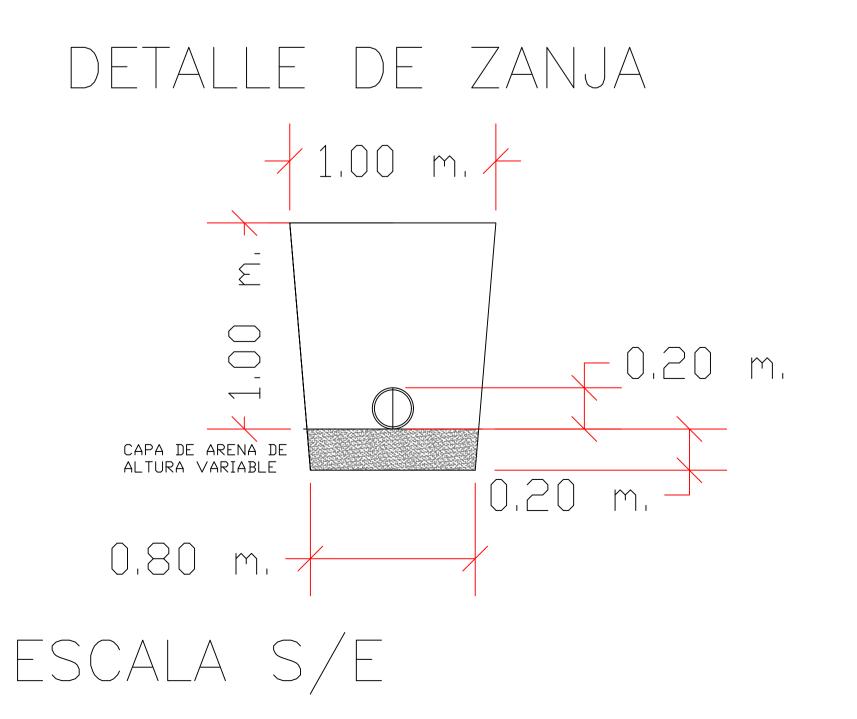
FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

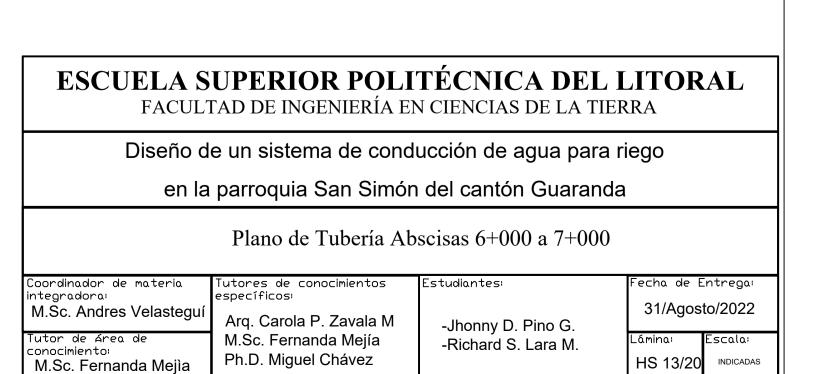
Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

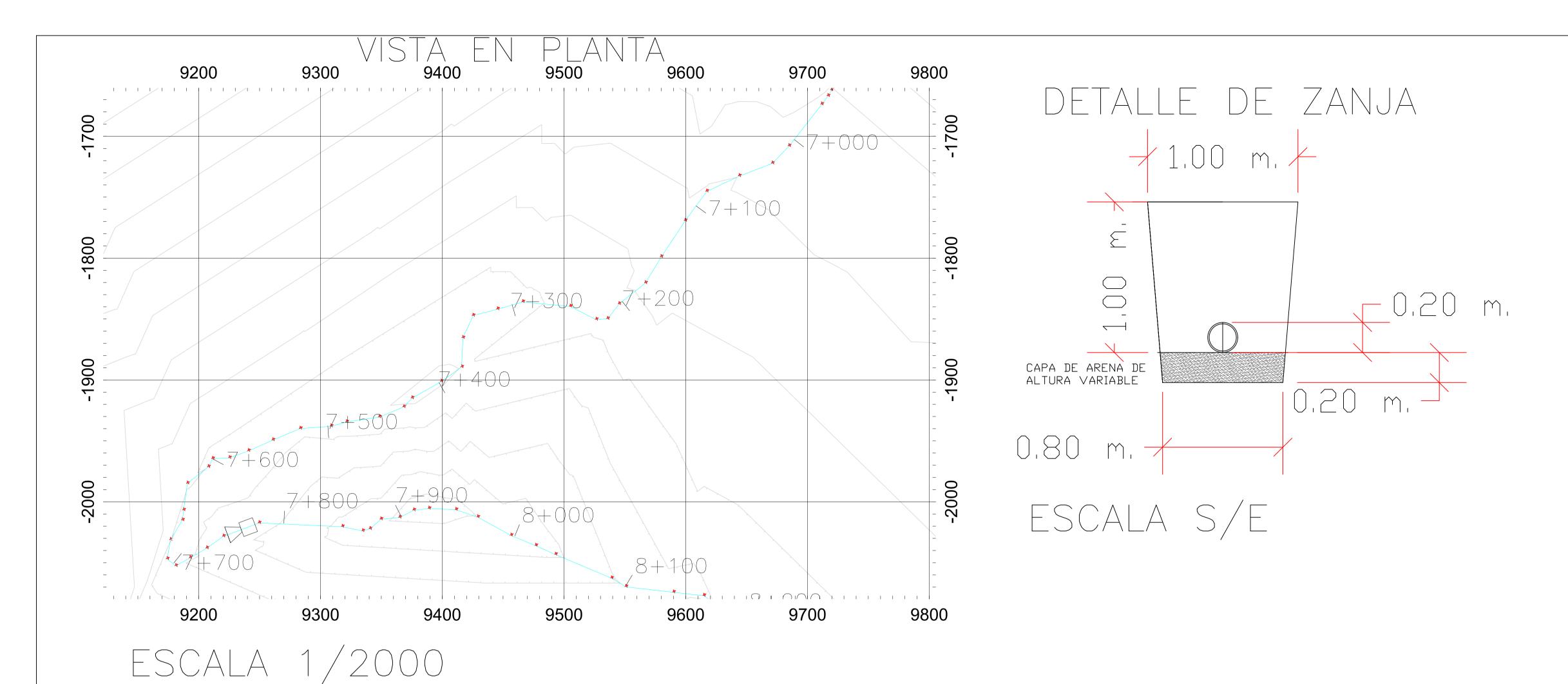

Plano de Tubería Abscisas 5+000 a 6+000

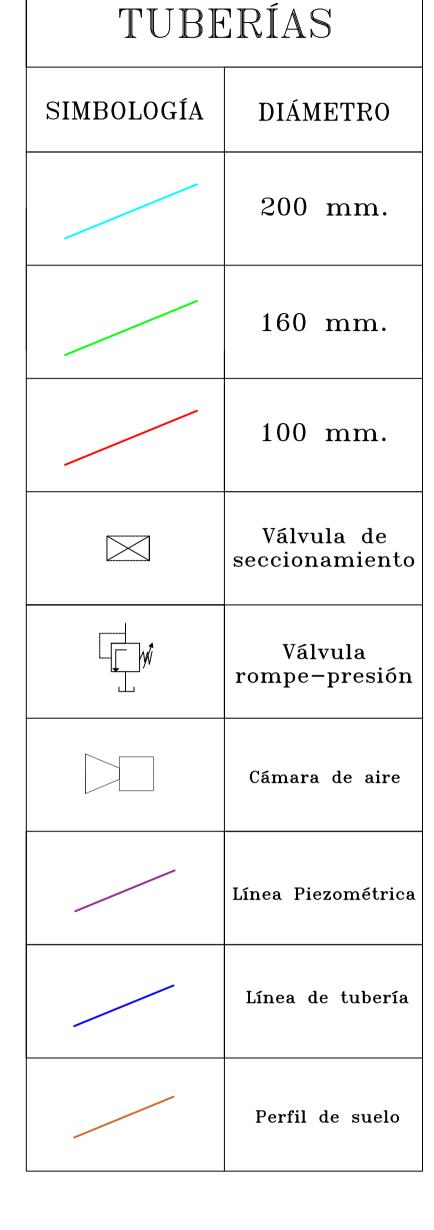

Coordinador de materia integradora: M.Sc. Andres Velastege Ph.D. Miguel Chávez M.Sc. Fernanda Mejìa

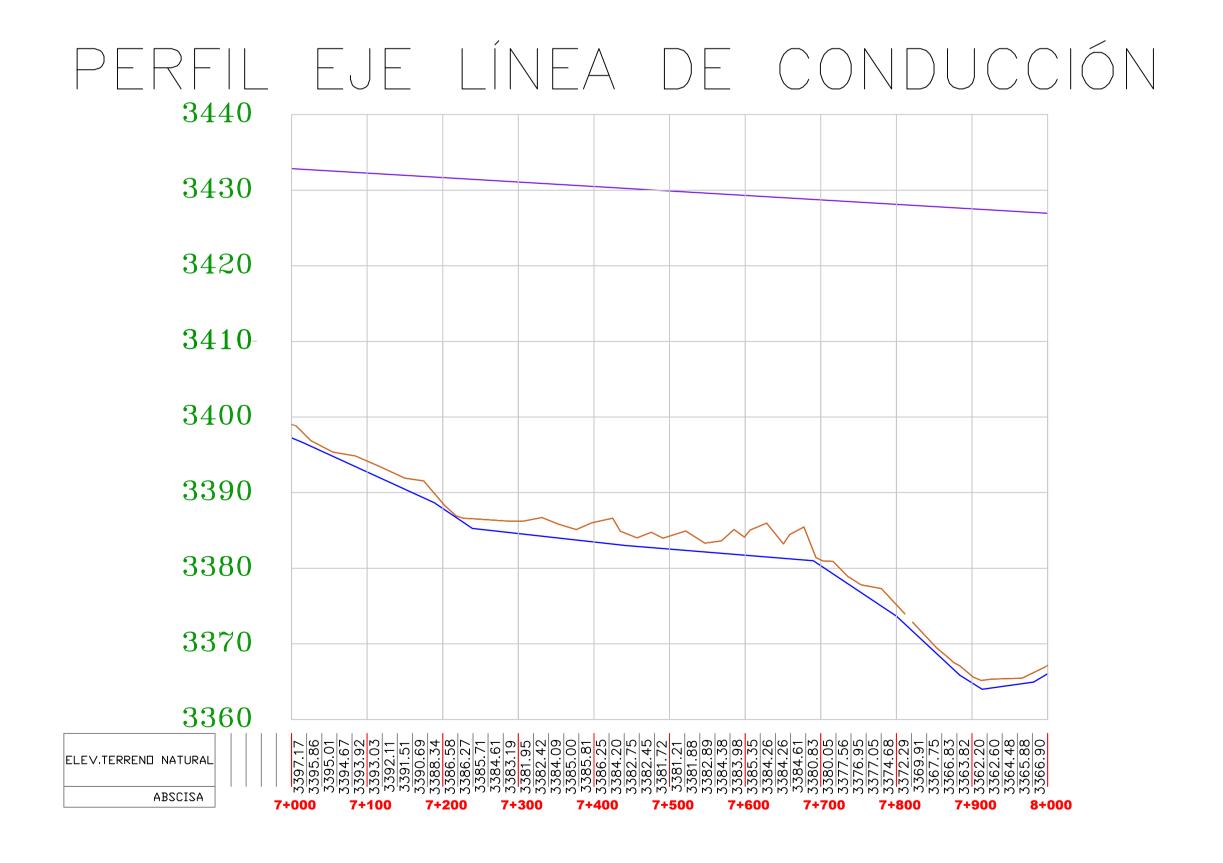

Arq. Carola P. Zavala M M.Sc. Fernanda Mejía


-Jhonny D. Pino G. -Richard S. Lara M.


Fecha de Entrega: 31/Agosto/2022 HS 12/20 INDICADAS







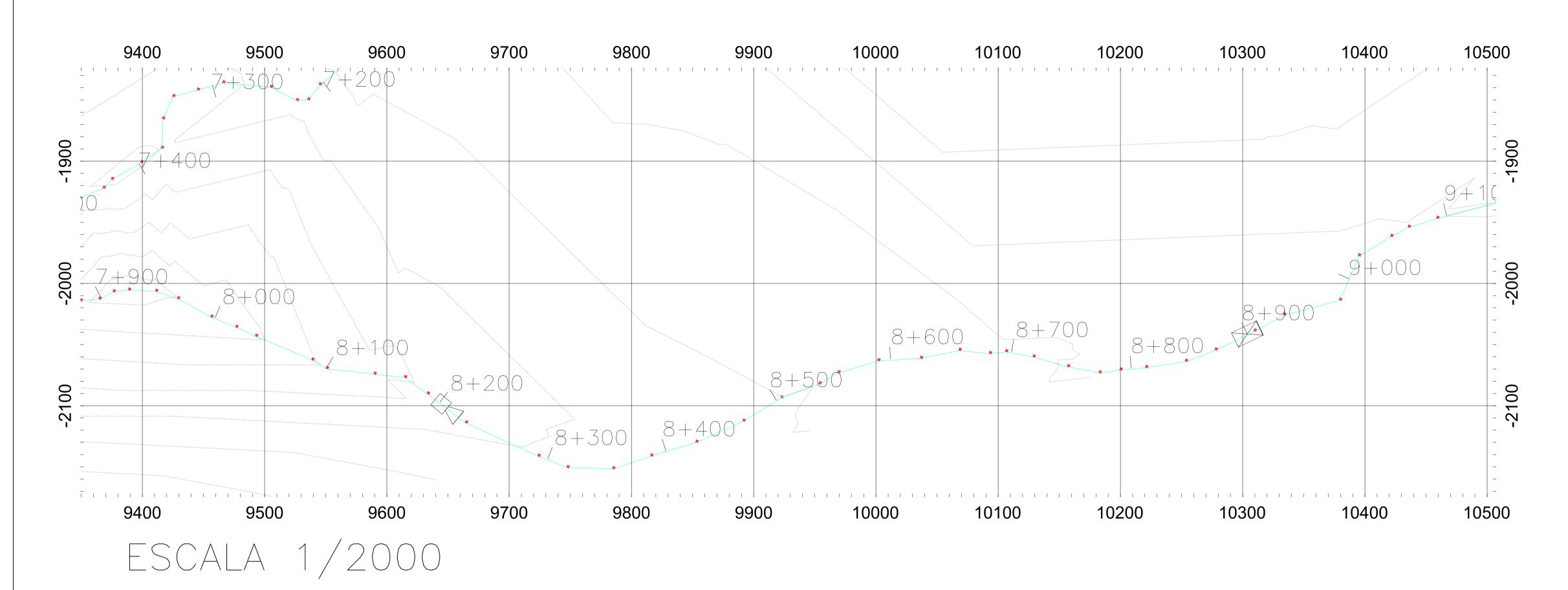
DIÁMETRO DE

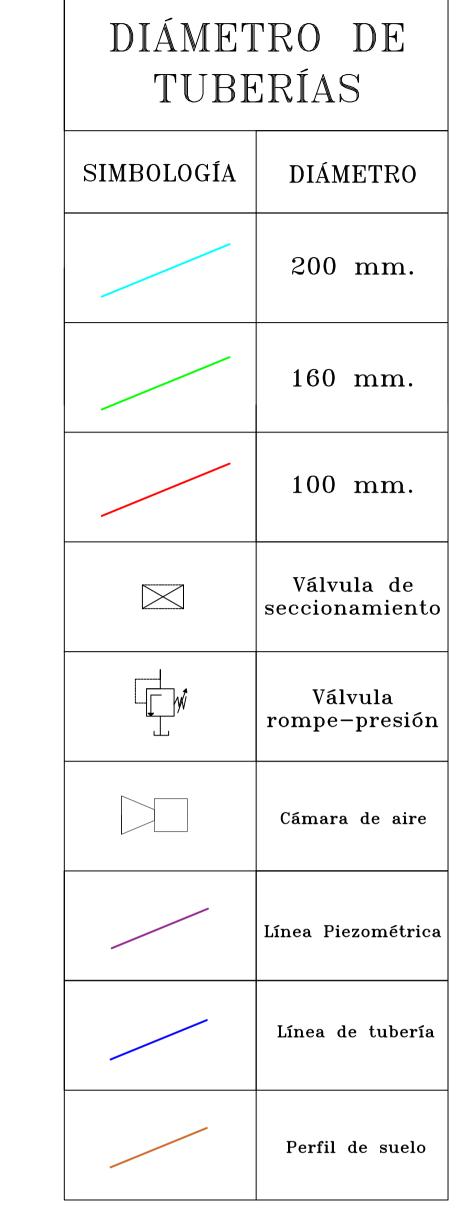
ESCALA 1/5000

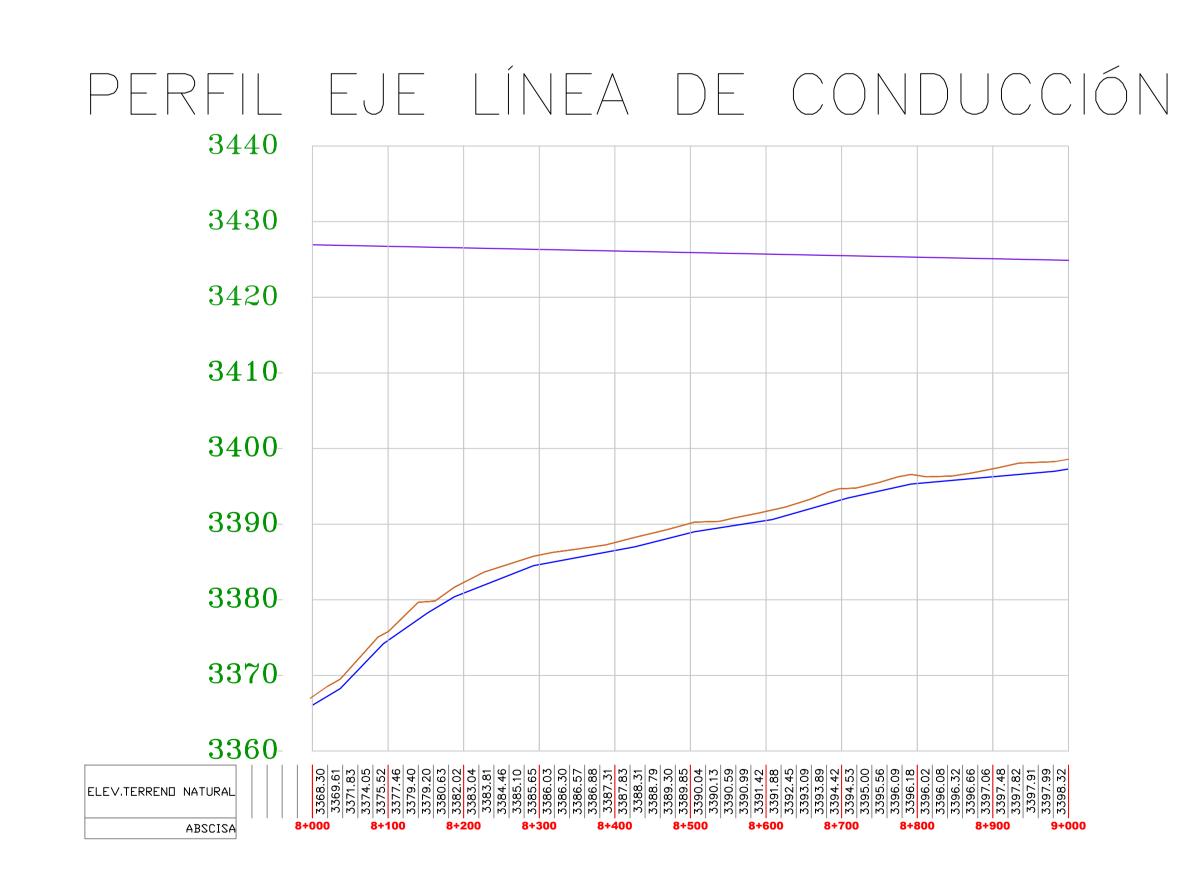
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

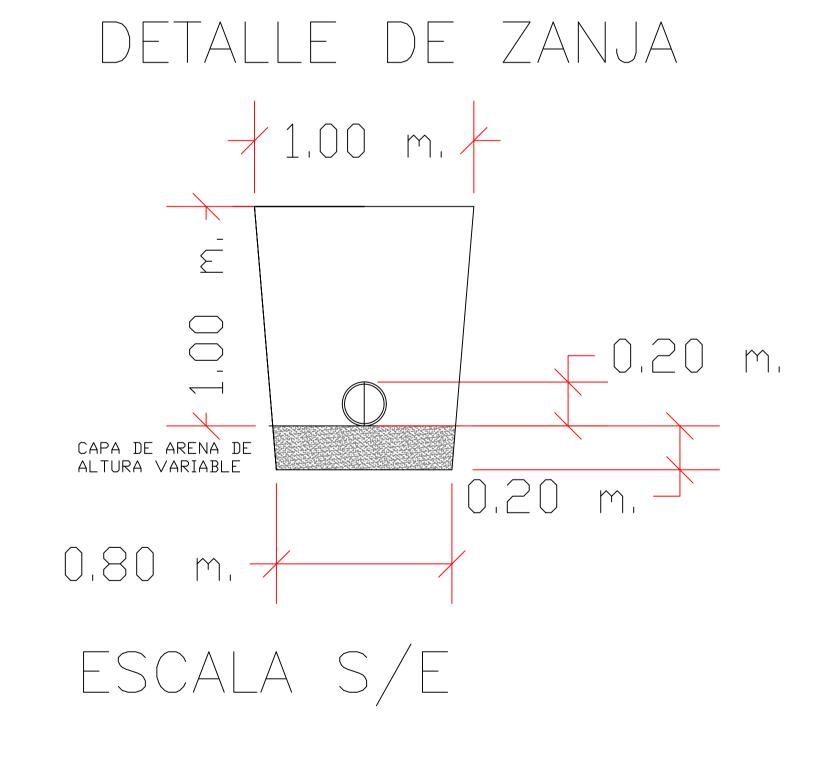
FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda


Plano de Tubería Abscisas 7+000 a 8+000


Coordinador de materia integradora: M.Sc. Andres Velastegu M.Sc. Fernanda Mejía Ph.D. Miguel Chávez


M.Sc. Fernanda Mejìa


Arq. Carola P. Zavala M -Jhonny D. Pino G. Fecha de Entrega: 31/Agosto/2022

-Richard S. Lara M. HS 14/20 INDICADAS

ESCALA 1/5000

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 8+000 a 9+000

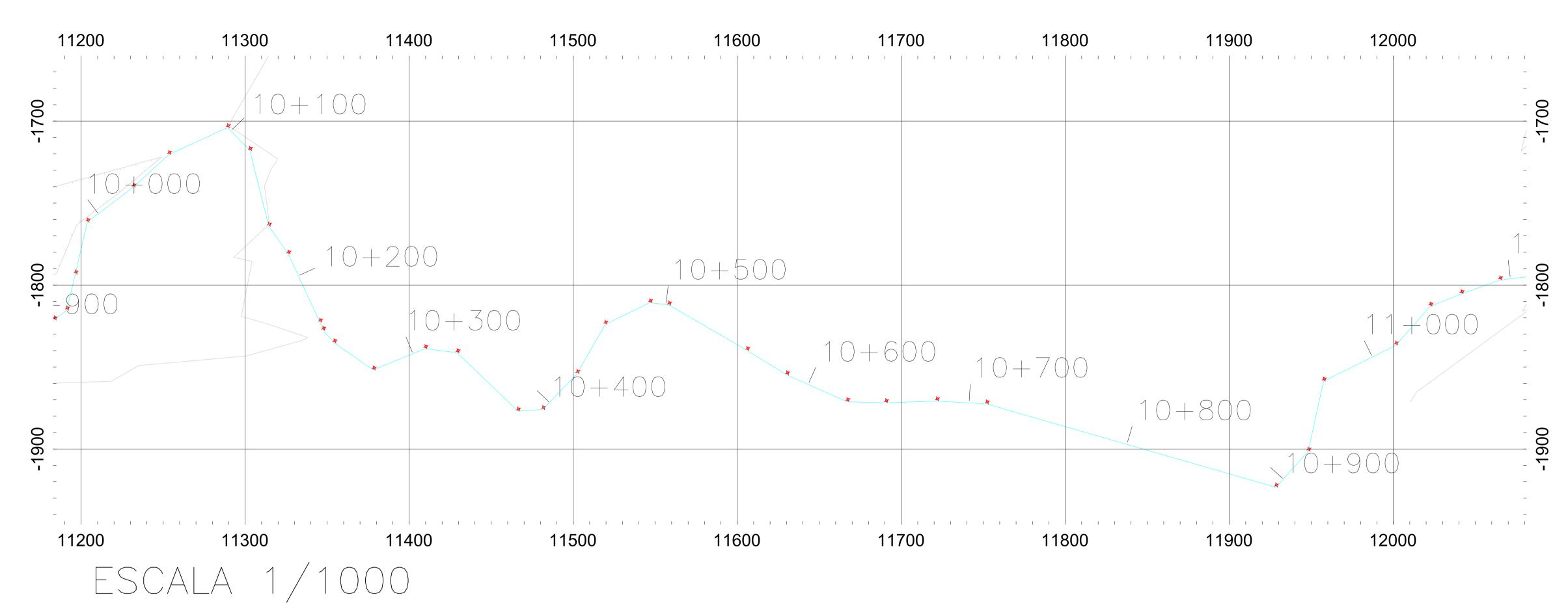
Coordinador de materia integradora:

M.Sc. Andres Velasteguí

Tutor de área de M.

M.Sc. Fernanda Mejìa

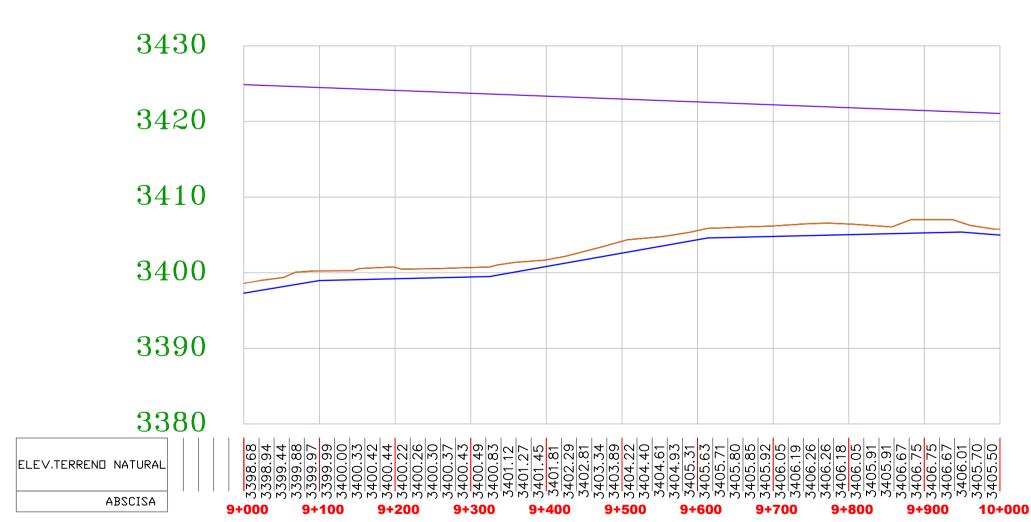
Arq. Carola P. Zavala M
M.Sc. Fernanda Mejía
Ph.D. Miguel Chávez


-Jhonny D. Pino G. -Richard S. Lara M.

31/Agosto/2022

Lámina: Escala:

HS 15/20 INDICADAS


Fecha de Entrega:

DIÁMETRO DE TUBERÍAS


TUBERÍAS	
SIMBOLOGÍA	DIÁMETRO
	200 mm.
	160 mm.
	100 mm.
	Válvula de seccionamiento
W	Válvula rompe-presión
	Cámara de aire
	Línea Piezométrica
	Línea de tubería

PERFIL EJE LÍNEA DE CONDUCCIÓN

ESCALA 1/5000

DETALLE DE ZANJA

ESCALA S/E

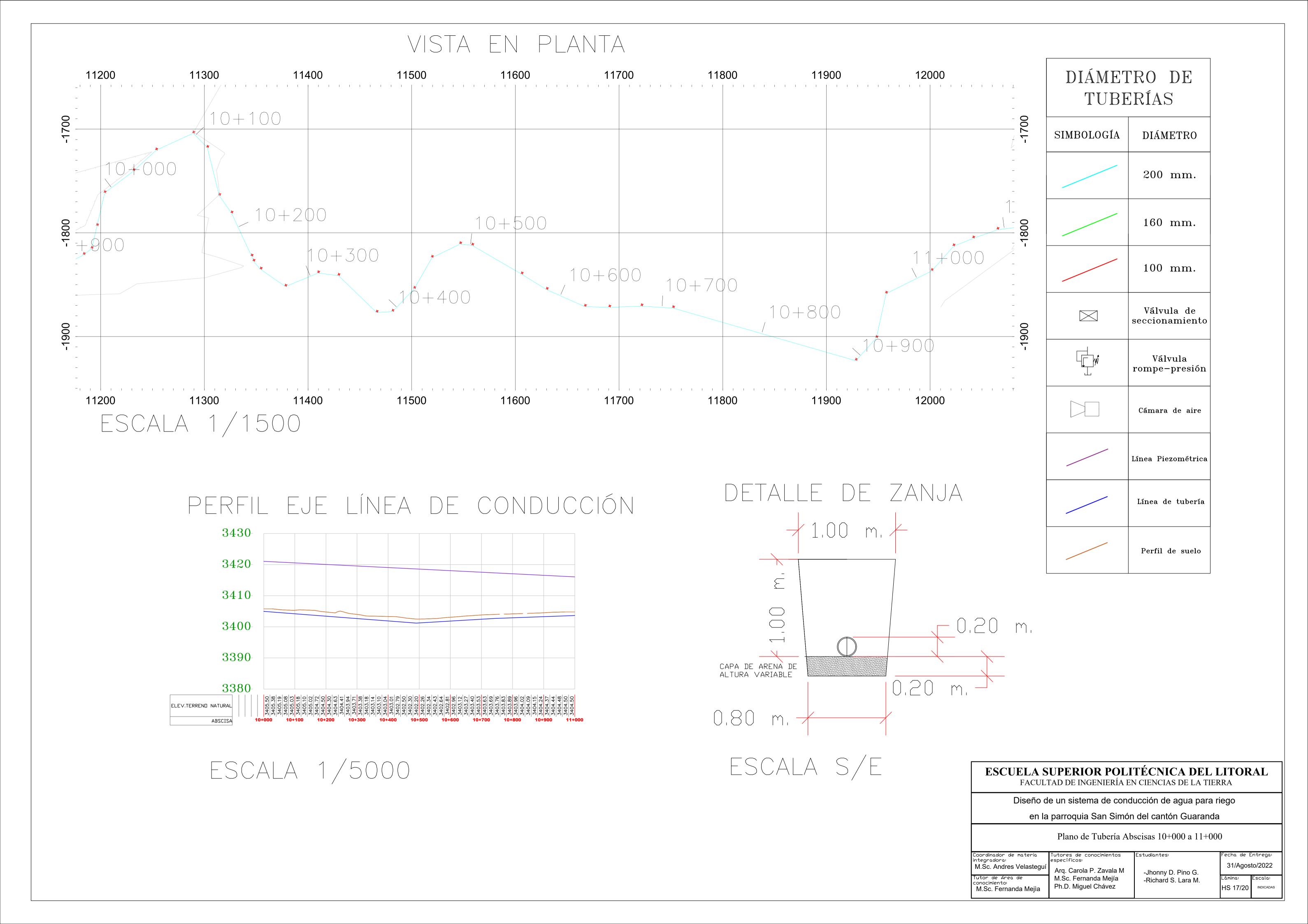
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego

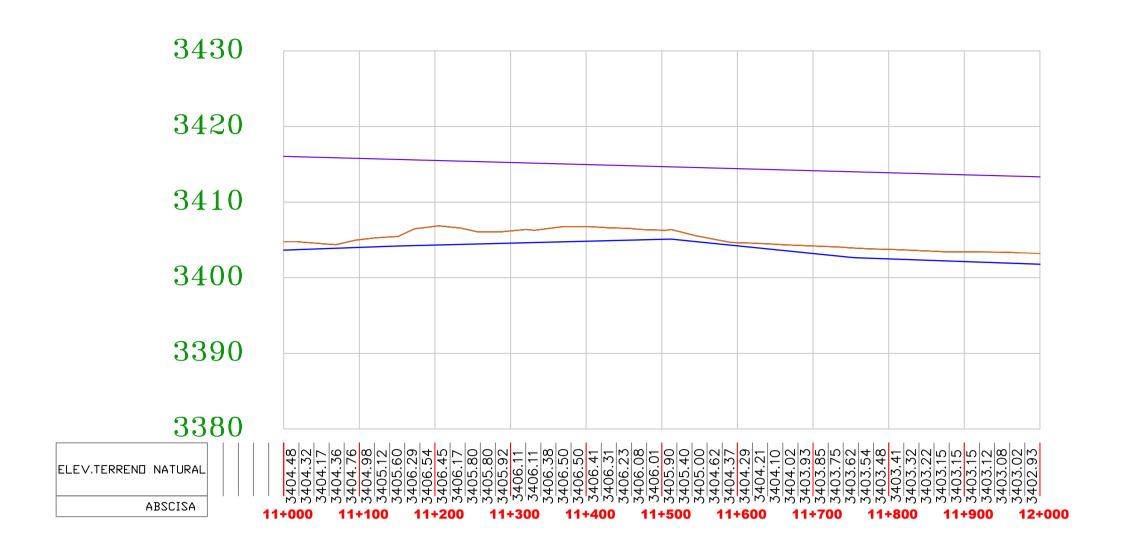
en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 9+000 a 10+000

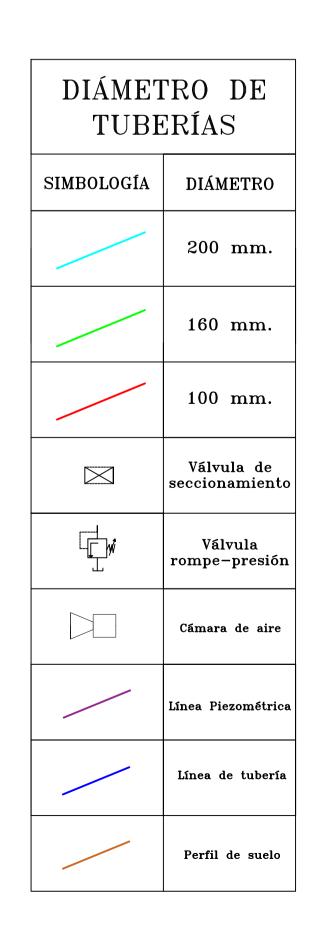

Coordinador de materia integradora:	Tutores de conocimientos específicos:
M.Sc. Andres Velasteguí	Arq. Carola P. Zavala I
Tutor de Área de conocimiento: M.Sc. Fernanda Mejìa	M.Sc. Fernanda Mejía Ph.D. Miguel Chávez

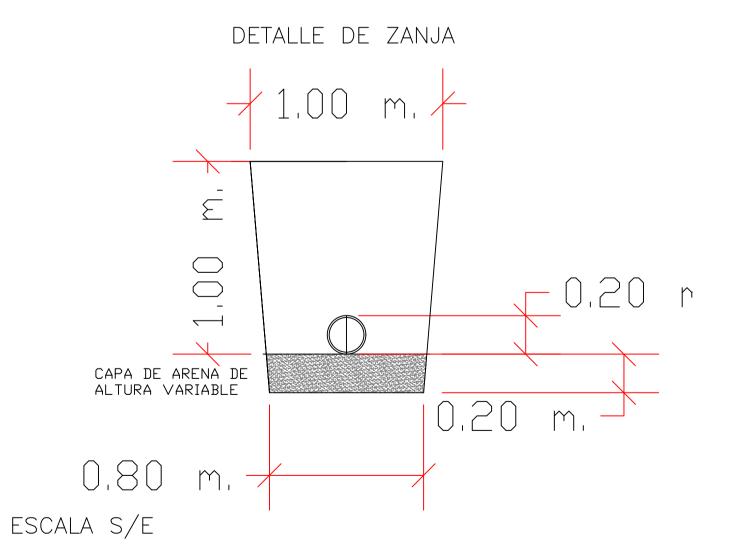
-Jhonny D. Pino G. -Richard S. Lara M.

Perfil de suelo

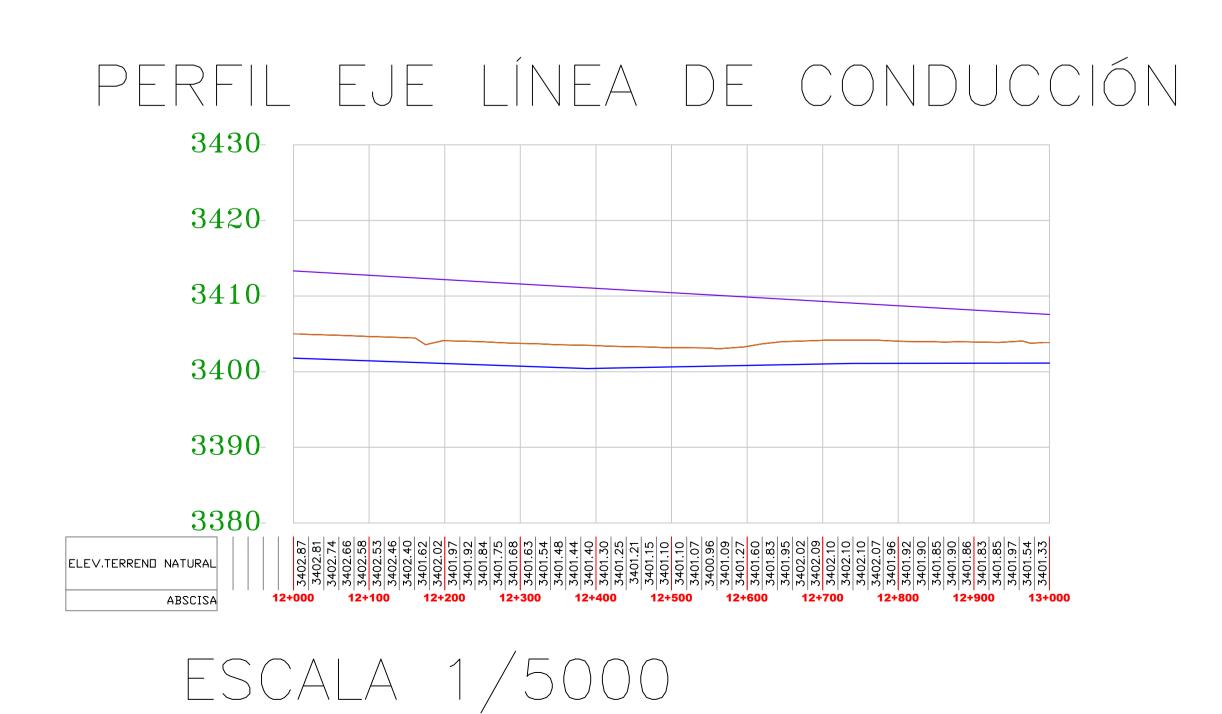

Fecha de Entrega: 31/Agosto/2022

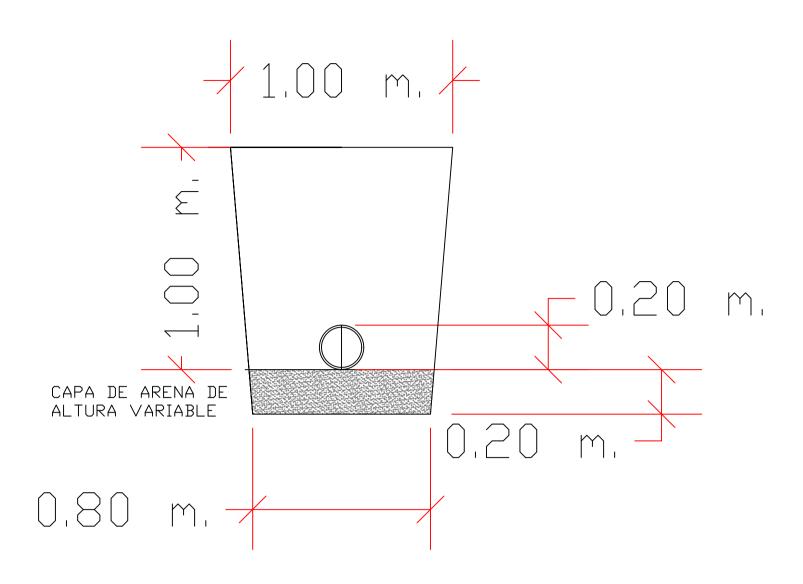
HS 16/20 INDICADAS



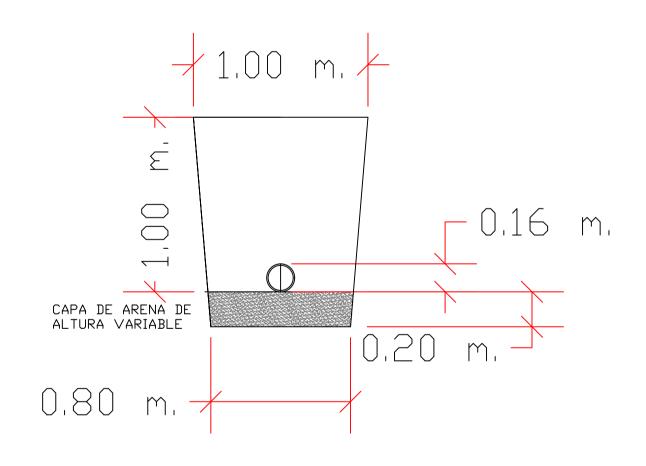

VISTA EN PLANTA 11900 12000 12300 12 + 10011+800 11 + 600-160 11 + 4001 + 300-1700 -1700 -10+800-1900 -1900 11900 12000 12200 12300 12100 ESCALA 1/1500

PERFIL EJE LÍNEA DE CONDUCCIÓN


ESCALA 1/5000



VISTA FN PLANTA 12300 3+000 2+900 2+800 12+600 2 + 40012 + 30012+200 11700 11800 12000 12100 12200 12300 ESCALA 1/2500


DIÁMETRO DE TUBERÍAS DIÁMETRO SIMBOLOGÍA 200 mm. 160 mm. 100 mm. Válvula de seccionamiento Válvula rompe-presión Cámara de aire Línea Piezométrica Línea de tubería Perfil de suelo

DETALLE DE ZANJA Ø200mm

ESCALA s/n

DETALLE DE ZANJA Ø 160mm

ESCALA S/E

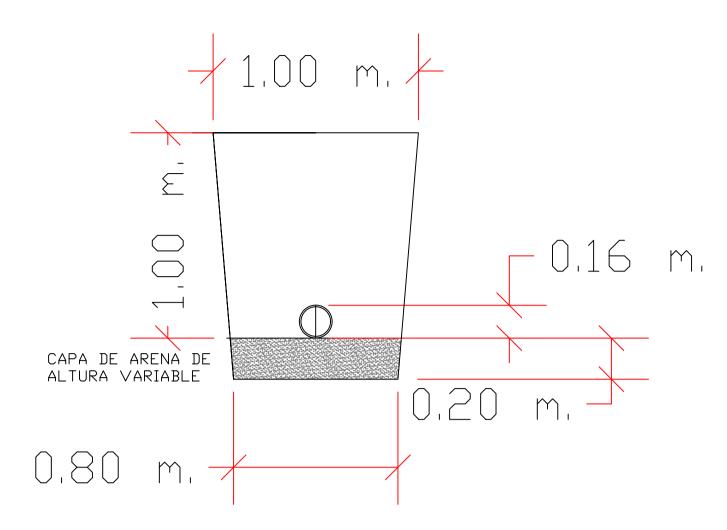
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda

Plano de Tubería Abscisas 12+000 a 13+000

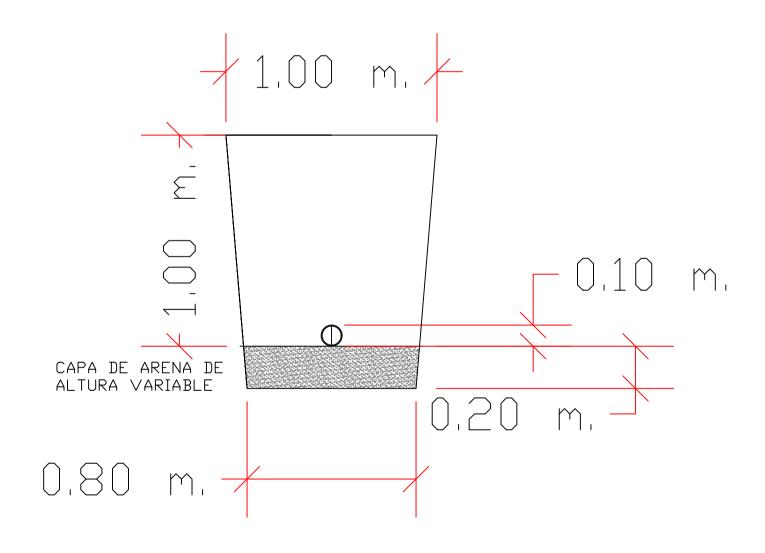
Coordinador de materia integradora: M.Sc. Andres Velastege Ph.D. Miguel Chávez M.Sc. Fernanda Mejìa

Arq. Carola P. Zavala M M.Sc. Fernanda Mejía


31/Agosto/2022 -Jhonny D. Pino G. -Richard S. Lara M.

HS 19/20 INDICADAS

VISTA EN PLANTA 12000 12050 12200 12250 12300 12100 13+200 113+300 -650 12150 12200 12250 12300


	DIÁMETRO DE TUBERÍAS		
SIMBOLOGÍA	DIÁMETRO		
	200 mm.		
	160 mm.		
	100 mm.		
	Válvula de seccionamiento		
, w	Válvula rompe-presión		
	Cámara de aire		
	Línea Piezométrica		
	Línea de tubería		
	Perfil de suelo		

DETALLE DE ZANJA Ø 160mm

ESCALA s/n

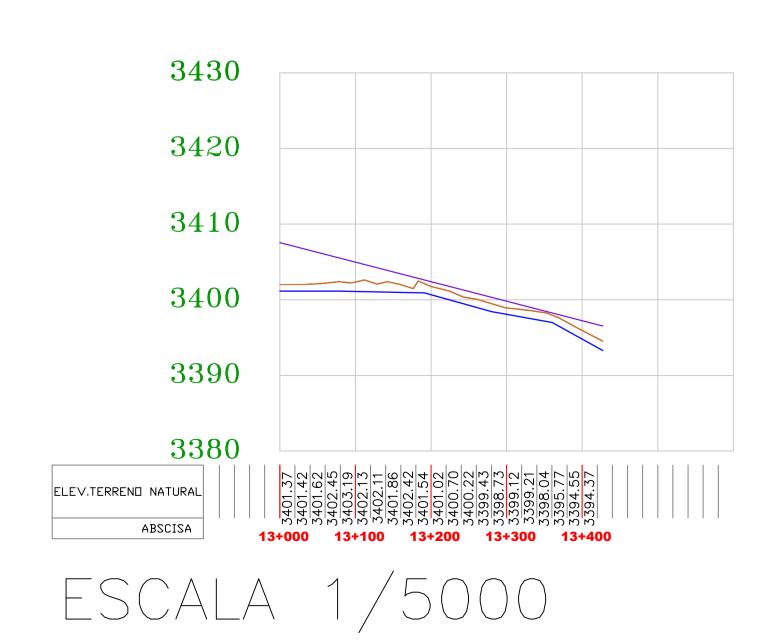
DETALLE DE ZANJA Ø 100mm

ESCALA S/E

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA Diseño de un sistema de conducción de agua para riego en la parroquia San Simón del cantón Guaranda Plano de Tubería Abscisas 13+000 a 13+427 Coordinador de materia Tutores de conocimientos Estudiantes: Fecha de Entrega integradora: Fecha de Entrega

M.Sc. Andres Velasteguí

Tutor de área de conocimiento:
M.Sc. Fernanda Mejìa


Ph.D. Miguel Chávez

-Jhonny D. Pino G.
-Richard S. Lara M.

31/Agosto/2022

Lámina: Escala:
HS 20/20 INDICADAS

PERFIL EJE LÍNEA DE CONDUCCIÓN

