

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2018	PERÍODO:	PRIMER TÉRMINO	Calificación
MATERIA: Álgebra PR		PROFESORES:	Bracamonte Mireya, Celleri Mario, Cordova Nelson, Laveglia Franca, Marchan Luz E, Martinez Margarita, Moreno Alex, Sánchez Joffred, Valdivieso Janet, Valdivieso Patricia, Vielma Jorge.	
EVALUACIÓN:	Segunda	FECHA:	30 de agosto 2018	

1. Son 10 proposiciones correctas, 2 punto cada una, recordando que una seleccionada de forma incorrecta elimina una correcta.

2. Desmostración

Inadecuado	En desarrollo	Satisfactorio	Avanzado
En blanco o sólo incoherencias	Intenta resolver y escribe algo relacionado	Resuelve, procedimientos casi completos con algunas fallas	Resuelve satisfactoriamente
0	1-3	2-4	5

3. Desmostración

Inadecuado	En desarrollo	Satisfactorio	Avanzado
En blanco o sólo incoherencias	Intenta resolver y escribe algo relacionado	Resuelve, procedimientos casi completos con algunas fallas	Resuelve satisfactoriamente
0	1-3	2-4	5

- 4. Para (a), (b), (c)
 - 3 puntos cada sistema escrito de forma correcta.
- 5. (18 Puntos) Sea $V = P_2(\mathbb{R})$ el espacio de los polinomios de grado menor o igual a 2, con coeficientes reales. Considere los conjuntos:

$$H_1 = \{ax^2 + (2a+b)x + b : a, b \in \mathbb{R}\},\$$

$$H_2 = gen\{x-2, x+3\},$$

$$H_3 = \{(a+b)x^2 + (a+b)x + 1 : a, b \in \mathbb{R}\}.$$

- a. Determine, cuáles de estos conjuntos es un subespacio vectorial de V.
- b. Si en el literal a. obtiene más de un subespacio vectorial, determine la intersección entre dichos subespacios.
- c. Determine si $H_1 \cup H_2$ es un subespacio de V.

	Inadecuado	En desarrollo	Satisfactorio	Avanzado
	En blanco o sólo incoherencias	Intenta resolver y escribe algo relacionado	Resuelve, procedimientos casi completos con leves fallas	Resuelve satisfactoriamente
(a)	0	1-2	3-4	5
(b)	0	1-3	3-6	7
(c)	0	1	2-3	6

6. (21 Puntos) Construya, de ser posible, una transformación lineal $T: \mathbb{R}^3 \to M_{2\times 2}(\mathbb{R})$ tal que

$$T(-2,2,-1) = \begin{pmatrix} 2 & 0 \\ 1 & -2 \end{pmatrix}, T(0,1,-3) = \begin{pmatrix} 0 & -1 \\ 4 & 3 \end{pmatrix}, T(-2,1,2) = \begin{pmatrix} 2 & 1 \\ -3 & -5 \end{pmatrix}, T(1,-1,0) = \begin{pmatrix} 4 & -2 \\ 1 & 0 \end{pmatrix}.$$

	Inadecuado	En desarrollo	Satisfactorio	Avanzado
	En blanco o sólo incoherencias	Intenta resolver y escribe algo relacionado	Resuelve, procedimientos casi completos con algunas fallas	Resuelve satisfactoriamente
Escoge una base de \mathbb{R}^3 (Justificadamente)	0	1-4	5-7	8
Determina la regla de definición de la transformación lineal	0	1-3	4-6	7
Verifica que se cumple la linealidad (o definición) del vector que no está en la base	0	1-2	4-5	6

$$(22 \text{ Puntos}) \text{ Sea } A \in M_{4\times 4}(\mathbb{R}), \text{ si sus subespacios propios son} \\ L_1 = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \colon \begin{array}{l} x+y-3z+w=0 \\ y-z-2w=0 \\ x+2y-4z-w=0 \end{array} \right\} \quad \text{y} \quad L_2 = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 \colon \begin{array}{l} x+y-z+2w=0 \\ y-z+w=0 \end{array} \right\}.$$

- a. Determine si A es diagonalizable.
- b. ¿A es una matriz simétrica? Justifique su respuesta.

	Inadecuado	En desarrollo	Satisfactorio	Avanzado
	En blanco o sólo incoherencias	Intenta resolver y escribe algo relacionado	Resuelve, procedimientos casi completos con algunas fallas	Resuelve satisfactoriamente
Determina una base para L_1	0	1-3	4-6	7
Determina una base para L_2	0	1-3	4-6	7
Justifica correctamente si la matriz es diagonalizable.	0	0	1-2	3
Justifica correctamente si la matriz es simétrica	0	1-2	3-4	5