Escuela Superior Politécnica del Litoral

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Reducción del número de daños en maquinarias pesadas de una empresa de servicio de alquiler

Proyecto Integrador

Previo la obtención del Título de:

Ingeniera Industrial

Presentado por:

Jeniffer Pamela Párraga Alvarado

Guayaquil - Ecuador

Año: 2023

Dedicatoria

El presente proyecto se lo dedico a mi familia, en especial a mi madre querida Beatriz Alvarado quien siempre estuvo presente, ayudándome, dándome ánimos, madrugando incluso más que yo, para que pueda llevar comida de casa, comida hecha con el amor de una madre que busca y desea todo lo mejor para sus hijos.

Agradecimientos

Agradezco en primer lugar a Dios, porque a pesar de ofrecerle tan poco me bendice día a día, a mi tutora por brindarme semana a semana su tiempo y su ayuda en la realización de este proyecto, a la empresa que me abrió sus puertas y me dieron la oportunidad de aplicar y desarrollar lo aprendido en la carrera, por último, y no menos importante le doy las gracias a mi enamorado Anthony S. quien estuvo presente brindándome su apoyo durante toda mi carrera y que siempre ha estado ahí, no solo en los momentos buenos sino también en esos días de tormenta.

Declaración Expresa

"Los derechos de titularidad y explotación, me corresponde conforme al reglamento de propiedad intelectual de la institución; Jeniffer Pamela Párraga Alvarado y doy mi consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Jeniffer Párraga Alvarado

Evaluadores					
Msc. María Laura Retamales García	PhD. María Denise Rodríguez Zurita				
Profesora de Materia	Tutora de proyecto				

Τ

Resumen

El presente proyecto se basa en el análisis de los daños operativos de las maquinarias

pesadas de una empresa de servicio de alquiler con el objetivo de reducir el porcentaje de daños

mensuales ocurridos en las maquinarias. Para este proyecto se aplicó la metodología DMAIC, la

cual permitió definir adecuadamente el problema e identificar que el 57% de los daños se dan en

las grúas y elevadores telescópicos y que el 53% de los daños presentados en estos dos tipos de

maquinarias corresponden a daños o fallas hidráulicas. Una vez identificado el problema se

procedió a analizar las causas raíz y se realizaron propuestas de solución que van enlazadas a dos

pilares del mantenimiento productivo total TPM uno de ellos es el plan de mantenimiento, donde

se realizó inicialmente un análisis de criticidad de los daños reportados, un sistema de registro que

permitió planificar las actividades preventivas y correctivas, y se realizó la elaboración de un check

list de inspección acompañado de una capacitación. Con esta implementación se logró reducir de

35% a 25% el porcentaje promedio de daños mensuales, además, se obtuvo una reducción del 18%

en lo que corresponde a la pérdida de dinero mensual por no contar con máquinas operativas.

Palabras Clave: mantenimiento, hidráulico, criticidad, daños.

Ш

Abstract

This project analyzes the operational damages of heavy machinery of a rental service

company. The objective is to reduce the percentage of monthly damages occurred in the

machinery. For this project, the DMAIC methodology was applied, which allowed to properly

establish the problem and identify that 57% of the damages occur in cranes and telescopic

elevators and that 53% of the damages presented in these two types of machinery correspond to

hydraulic damages or failures. Once the problem was identified, we proceeded to analyze the root

causes and made proposals for solutions that are linked to two pillars of Total Productive

Maintenance (TPM), one of which is the maintenance plan, where we initially performed a

criticality analysis of the reported damages, a registration system that allowed us to plan

preventive and corrective activities, and we prepared an inspection check list accompanied by

training. With this implementation, the average percentage of monthly damages was reduced from

35% to 25%, and there was also an 18% reduction in the monthly loss of money due to not having

operational machines.

Keywords: maintenance, hydraulics, criticality, damages.

Índice general

Resumen	I
Abstract	II
Índice general	III
Abreviaturas	.VII
Simbología	VIII
Índice de figuras	IX
Índice de tablas	XI
Capítulo 1	1
1. Introducción	2
1.1 Descripción del problema	3
1.1.1 Definición del problema	4
1.1.2 Variable de interés	5
1.2 Triple Bottom Line	6
1.2.1 Indicador Económico: Costo por inactividad a causa de daños	6
1.2.2 Indicador Ambiental: Consumo de aceite hidráulico	7
1.2.3 Indicador Social: Porcentaje de daños mensuales por mala inspección	7
1.3 Justificación del problema	7
1.4 Objetivos	8
1.4.1 Objetivo general	8

1.4.2	Objetivos específicos	. 8
1.5	Marco teórico	. 9
1.5.1	Six Sigma	. 9
1.5.2	DMAIC	10
1.5.3	Voice Of Customer (VOC)	10
1.5.4	Maquinaria pesada	10
1.5.5	Gestión de mantenimiento	11
1.5.6	TPM – Total Productive Maintenance	11
1.5.7	Mantenimiento autónomo	13
1.5.8	Mantenimiento correctivo	14
1.5.9	Mantenimiento preventivo	14
1.5.10	Mantenimiento de oportunidad	14
Capítulo	2	15
2. Me	etodología	16
2.1	Medición	16
2.1.2	Confiabilidad de los datos	17
2.1.3	Problema enfocado	18
2.2	Análisis	22
2.2.1	Priorización de Causas	24
2.2.2	Plan de verificación de causas	25

2.3	Análisis de causa raíz	32
2.3.1	No se toman medidas sobre los daños o fallas hidráulicas reportados	33
2.3.2	2 Sellos hidráulicos en mal estado	35
2.3.3	Falta de acciones preventivas	36
2.3.4	Mangueras hidráulicas en mal estado	37
2.4	Propuestas de mejora	38
2.4.1	Priorización de las soluciones	39
2.4.2	Plan de Implementación	40
2.4.3	Implementación de la propuesta #1	43
2.4.4	Implementación de la propuesta #2	46
2.4.5	Implementación de la propuesta #3	49
2.4.6	5 Implementación de la propuesta #4	51
Capítul	o 3	52
3. R	esultados y Análisis	53
3.1	Matriz de criticidad y planificación de reparaciones	53
3.1.1	Beneficios y Control	53
3.2	Plan de mantenimiento preventivo y correctivo del sistema	54
3.2.1	Beneficios y control	55
3.3	Capacitación e Inspecciones realizadas	56
3.4	Análisis de la mejora	56

3.5 Plan de control	58
3.6 Análisis de los indicadores de sostenibilidad	59
3.6.1 Económico	59
3.6.2 Social	60
3.6.3 Ambiental	60
Capítulo 4	61
4. Conclusiones y Recomendaciones	62
4.1 Conclusiones	62
4.2 Recomendaciones	62
Referencias	63
Apéndices	65

Abreviaturas

ESPOL Escuela Superior Politécnica del Litoral

DMAIC Definir, Medir, Analizar, Implementar, Controlar

VOC Voice of Customer / Voz del Cliente

CTQ Critical to Quality / Árbol Crítico de Calidad

SIPOC Supply, Input, Process, Output, Customer

TPM Mantenimiento Productivo Total

GAL Galones

Simbología

% Porcentaje

Índice de figuras

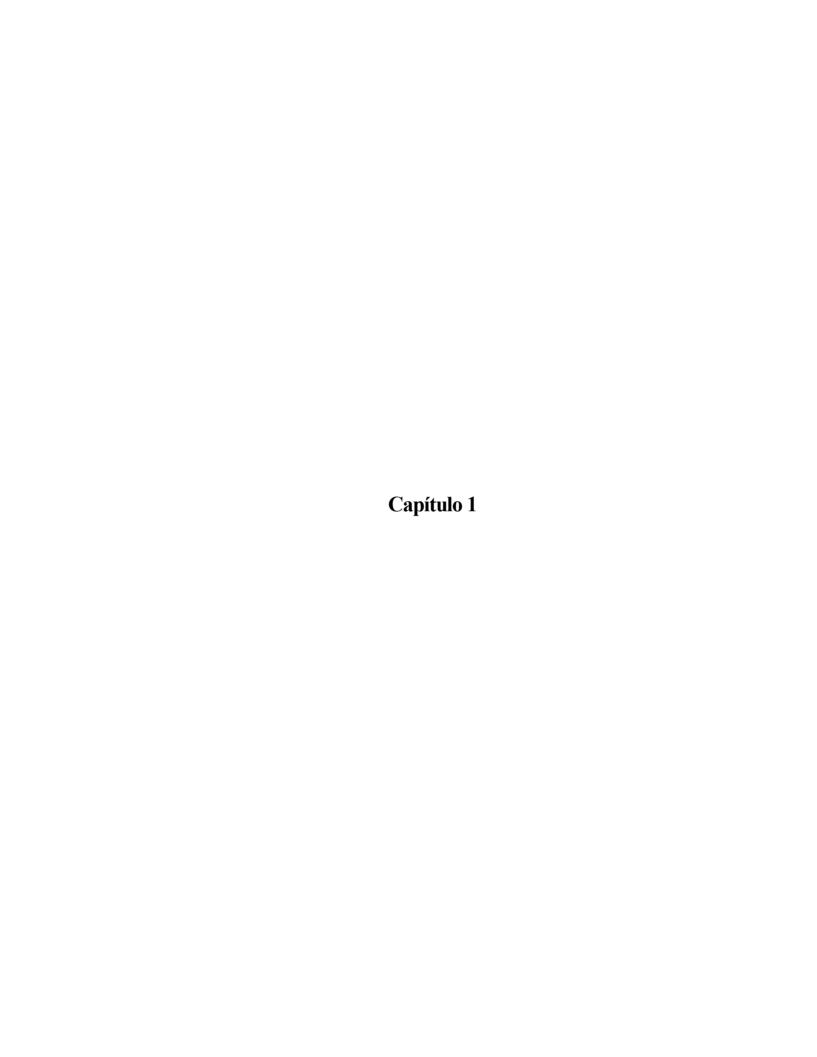

Figura 1 Serie de tiempo: Porcentaje de daños junio 2022- abril 2023	3
Figura 2 Herramienta 3W+ 2H	4
Figura 3 Lluvia de ideas	6
Figura 4 Prueba de normalidad de los datos históricos	17
Figura 5 Prueba de normalidad de los datos recolectados	17
Figura 6 Frecuencia de daños o fallas por tipo de maquinaria	19
Figura 7 Frecuencias por tipo de daños o fallas en Grúas	20
Figura 8 Frecuencias por tipo de daños o fallas en elevadores telescópicos	20
Figura 9 Diagrama de Ishikawa para problema enfocado 1	22
Figura 10 Diagrama de Ishikawa para problema enfocado 2	22
Figura 11 Plan de verificación de causas	25
Figura 12 Liqueo en el tambor del lado derecho	28
Figura 13 Cilindro estabilizador se retrae	28
Figura 14 Cilindro estabilizador presenta humedad	28
Figura 15 Actividades preventivas vs actividades correctivas	31
Figura 16 Matriz Impacto - Esfuerzo Matriz Impacto - Esfuerzo	40
Figura 17 Actividades preventivas	46
Figura 18 Base de datos-Mantenimiento Correctivo	47
Figura 19 Check List diario	50
Figura 20 Material entregado para la capacitación	51
Figura 21 Porcentaje de Reparaciones realizadas	53
Figura 22 Antes y después de daños reportados	53

Figura 23 Porcentaje de actividades de mantenimiento	54
Figura 24 LUP Planificación de actividades correctivas	55
Figura 25 LUP Planificación de actividades preventivas	55
Figura 26 Promedio de tipos de daños julio-agosto 2023	56
Figura 27 Promedio de tipos de daños abril-junio 2023	56
Figura 28 Resultados de la Prueba de Poisson	57
Figura 29 Porcentaje promedio de daños Antes vs Actual	57
Figura 30 Pilares de sostenibilidad	60

Índice de tablas

Tabla 1 Plan de recolección de datos	16
Tabla 2 Prueba No Paramétrica de Mann Whitney U	18
Tabla 3 Frecuencia de daños por tipo de maquinaria	19
Tabla 4 Frecuencias por tipo de daños o fallas en Grúas	20
Tabla 5 Frecuencias por tipo de daños o fallas en Elevadores Telescópicos	20
Tabla 6 Porcentajes de mejora	21
Tabla 7 Priorización de Causas	24
Tabla 8 Información de las maquinarias	26
Tabla 9 Agrupación de máquinas por antigüedad	26
Tabla 10 Prueba Chi-Cuadrado Antigüedad Vs Daños o fallas hidráulicas	27
Tabla 11 Base de datos-Reporte de daños de operadores	28
Tabla 12 Base de datos-Reporte de daños	29
Tabla 13 Prueba Chi-Cuadrado Sellos hidráulicos en mal estado Vs Daños hidráuli	icos
	30
Tabla 14 Prueba Chi-Cuadrado Mangueras en mal estado vs daños hidráulicos	32
Tabla 15 Análisis de Causa X7	33
Tabla 16 Análisis de Causa X7	34
Tabla 17 Análisis de causa X8	35
Tabla 18 Análisis de causa X11	36
Tabla 19 Análisis de Causa X14	37
Tabla 20 Propuestas de solución	38

Tabla 21 Plan de Implementación	41
Tabla 22 Criterios de evaluación	44
Tabla 23 Clasificación de criticidad	44
Tabla 24 Matriz de criticidad	45
Tabla 25 Plan de Control	58

1. Introducción

A través del tiempo, el uso de la maquinaria pesada ha sido de vital importancia para realizar diversos tipos de trabajo, generalmente se utilizan en obras civiles, trabajos portuarios, empresas mineras, entre otras industrias que requieran levantar, movilizar, transportar grandes cargas. Las empresas que cuentan con maquinaria pesada no solo deben contar con operadores capacitados que puedan realizar de manera correcta las operaciones según el tipo de maquinaria que se maneje, sino también, debe contar un equipo mecánico o una empresa que preste servicios de reparación y mantenimiento de las maquinarias, debido a que, cada tipo de maquinaria requiere de inspecciones y revisiones adecuadas para mantener un equipo operativo que permita cumplir y satisfacer las necesidades del cliente. Por este motivo, este proyecto se enfoca en revisión de los daños presentados en las maquinarias de una empresa de servicio de maquinarias pesadas, la cual cuenta con: grúas telescópicas, camiones grúas, elevadores telescópicos, elevadores de tijera, montacargas, telehanders entre otros.

Es importante analizar los daños presentados en las maquinarias debido a que se trata de una empresa que presta el servicio de alquiler y sus ganancias están directamente relacionadas a la operatividad de las máquinas.

1.1 Descripción del problema

En el cantón Durán, existe una empresa que ofrece el servicio de alquiler de maquinaria pesada, las cuales ayudan a realizar trabajos de izaje, elevación de personal, de carga, transporte de material, entre otras actividades que se pueden realizar con este tipo de máquinas, sus principales clientes son empresas constructoras, o encargados de obras. Para prestar este servicio la compañía cuenta con 20 máquinas como: grúas telescópicas, elevadores de tijera, elevadores telescópicos, camiones grúas, telehanders, entre otras. Sin embargo, la empresa indica que las máquinas han venido presentando daños o fallas que afectan a su operatividad. Según datos proporcionados por la compañía desde el segundo semestre del 2022, se ha registrado que en promedio el 35% de las máquinas han presentado daños operativos al menos una vez en el mes. Por lo tanto, la empresa necesita que este porcentaje se reduzca y que se logre un 20% como lo establece su política.

En la siguiente Figura 1 se puede observar una serie de tiempos con el porcentaje de daños desde el segundo semestre del año 2022 hasta el mes de abril del 2023.

Figura 1
Serie de tiempo: Porcentaje de daños junio 2022- abril 2023

1.1.1 Definición del problema

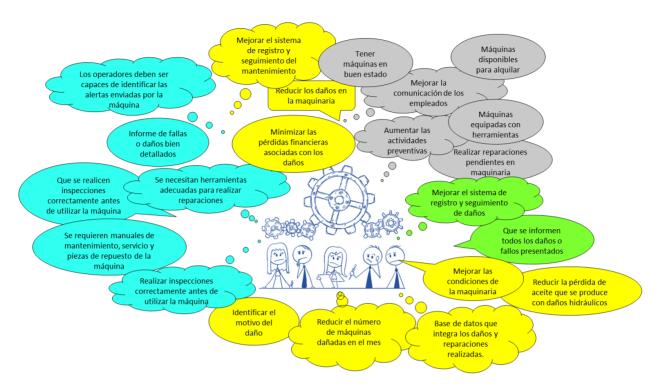
Para realizar la definición del problema procedemos a utilizar la herramienta 3W+2H la cual se muestra detalladamente en la Figura 2.

Figura 2

Herramienta 3W+ 2H

Por lo tanto, el problema se define de la siguiente manera: La empresa de servicios de alquiler de maquinaria pesada ha venido presentando daños o fallas en sus máquinas desde junio del 2022 hasta abril del 2023, según datos históricos proporcionados por la empresa se ha registrado que en promedio el 35% de las máquinas han tenido problemas de operativos al menos una vez al mes, cuando se ha tenido meses que su porcentaje ha sido del 25%.

1.1.2 Variable de interés


Para determinar la variable de interés, es necesario recopilar las necesidades de los clientes mediante un VOC, en el cual se solicitó la participación de clientes internos como:

- Gerencia / Administración: Encargado de revisar y aprobar cualquier actividad que realicen los demás cargos de la empresa, así como tomar decisiones, aprobar compras, y el ingreso a taller de las maquinarias.
- **Jefe de Operaciones:** Encargado de organizar al personal operativo y de realizar inspecciones para determinar qué máquina se va a necesitar según el tipo de trabajo que se va a realizar.
- **Jefe de Taller:** Encargado de organizar al equipo de taller y de realizar junto a su equipo los trabajos de reparación o mantenimiento.
- Coordinador de Taller: Encargado de proporcionarles al equipo de taller las herramientas, repuestos, e insumos necesarios para realizar los trabajos y de coordinar junto al jefe de taller los trabajos a realizar en cada maquinaria.

En la Figura 3 se muestra la lluvia de ideas realizada a los clientes internos, mencionados anteriormente. Entre los comentarios obtenidos por parte del personal se tiene:

- Mejorar el sistema de registro y seguimiento del mantenimiento.
- Aumentar las actividades preventivas.
- Realizar las reparaciones pendientes en las maquinarias.
- Que se realicen inspecciones correctamente antes de utilizar la maquinaria.
- Reducir el número de máquinas dañadas en el mes.

Figura 3 *Lluvia de ideas*

A partir de la información recolectada con en el VOC, se procedió a realizar el CTQ Tree y se transformaron las necesidades del cliente en indicadores de calidad, obteniendo los indicadores del triple bottom line y como variable de respuesta (Y): Porcentaje de máquinas con daños o fallos operativos por mes.

$$\frac{N\'umero\ de\ m\'aquinas\ con\ da\~nos\ o\ fallos\ operativos\ en\ el\ mes}{Total\ de\ m\'aquinas} x100\% \hspace{1cm} \textbf{(1.1)}$$

1.2 Triple Bottom Line

1.2.1 Indicador Económico: Costo por inactividad a causa de daños

Este indicador nos muestra el impacto económico que tiene para la empresa que sus máquinas presenten daños o fallas que afecten directamente a su operatividad. Para el cálculo de

este indicador se toma en cuenta el costo de alquiler por hora de cada máquina y el tiempo en horas que la máquina permanece dañada o con fallos.

Costo por inactividad = Costo de alquiler por hora
$$(\frac{\$}{H})$$
 x Tiempo de Inactividad (H)

(1.2)

1.2.2 Indicador Ambiental: Consumo de aceite hidráulico

Este indicador nos ayuda a conocer la cantidad de aceite que se pierde cuando existen daños, para el cálculo de este indicador se tomará en cuenta la cantidad de aceite que se completa a la máquina luego de haberse presentado el daño.

$$V_o\ (gal)$$
: Cantidad de aceite antes del da $\~no$ $V_f\ (gal)$: Cantidad de aceite después del da $\~no$ Consumo de aceite $=V_f\ (gal)-V_o\ (gal)$ (1.3)

1.2.3 Indicador Social: Porcentaje de daños mensuales por mala inspección

Este indicador nos ayuda a conocer el porcentaje de daños o fallas mensuales causados por una mala inspección de parte de los operadores. Con este indicador podemos conocer si los operadores están capacitados para revisar correctamente las máquinas antes de realizar los trabajos de izaje.

$$\frac{\textit{N\'umero de dama\~nos o fallas causadas por una mala inspecci\'on}}{\textit{Total de da\~nos reportados}} x 100\%$$

1.3 Justificación del problema

La importancia de reducir daños o fallas en las maquinarias de la empresa de servicio de alquiler nace por la necesidad que tiene la compañía de contar con máquinas operativas y

disponibles para ofrecerlas a los clientes, y que estos puedan culminar sus trabajos sin presenciar problemas operativos con los equipos, ya que, al ocurrir un daño en la maquinaria afecta tanto el avance a la obra del cliente como a la imagen de la empresa. Por este motivo, para este proyecto se utilizará la metodología DMAIC con la finalidad de poder identificar cuáles son las principales causas que producen los daños en las maquinarias y a partir de esto poder proponer mejoras con la finalidad de reducir el porcentaje mensual de daños.

1.4 Objetivos

1.4.1 Objetivo general

Reducir de 35% a 26% los daños operativos en las maquinarias de la empresa de servicio de alquiler de maquinaria pesada, desde junio a septiembre del 2023.

1.4.2 Objetivos específicos

- Identificar la causa de los daños o fallas en las maquinarias de la empresa a través de un análisis de causa raíz.
- Proponer soluciones que ayuden a reducir los daños o fallas en las máquinas a través de un análisis de criticidad.
- Implementar soluciones relacionadas a la eliminación de las causas raíz identificadas.
- Evaluar la efectividad de las soluciones implementadas.

1.5 Marco teórico

1.5.1 Six Sigma

Six Sigma como filosofía del trabajo se basa en el mejoramiento continuo de procesos y productos, y como métrica representa una manera de medir el desempeño de un proceso (Escalante Vázquez, 2008). Esta metodología se enfoca en comprender las necesidades de los clientes, recolectar la información necesaria, para luego hacer uso de herramientas estadísticas que permitan encontrar oportunidades de mejora.

Six Sigma cuenta con herramientas básicas que ayudarán a obtener información relevante para la mejora del proceso, entre ellas tenemos:

- **Diagrama de Pareto:** Gutiérrez y De la Vara (2009) mencionan que un diagrama de Pareto es un gráfico de barras, el cual ayuda a identificar prioridades y causas, estas se ordenan por orden de importancia o frecuencia según los diferentes problemas que se presentan en un proceso.
- Estratificación: Es una herramienta que ayuda a enfocar un problema, permite ir de lo general a lo particular mediante criterios de estratificación como: tipos de fallas, tipos de maquinarias, turnos de trabajo, entre otros criterios, según el problema que se esté analizando (Gutiérrez y De la Vara, 2009).
- Diagrama de Ishikawa: También conocido como "Espina de pescado" muestra las
 posibles causas de un problema específico. Esta herramienta ayuda a analizar por
 qué un producto, servicio, o proceso no está funcionando correctamente.
- Método de las 6M: Este método trata de agrupar las causas potenciales en categorías como: materiales, maquinaria, mano de obra, método de trabajo medición y medio ambiente.

1.5.2 DMAIC

Socconini (2019) en su manual de certificación LSS, indica que DMAIC es un acrónimo de los pasos de una metodología que se utiliza para la implementación de proyectos de mejora, cuenta con cinco fases: definir, medir, analizar, mejorar, controlar. Berardinelli (2016) en su publicación detalla cada una de estas etapas, para la fase de medición las herramientas que se utilizan son claves para establecer las bases del proyecto, ya que, en esta primera etapa se define claramente el problema, se establece el alcance, se identifican a los clientes y partes interesadas. En la etapa de medición se analiza el proceso, sus entradas y salidas, se revisa los sistemas de medición y la confiabilidad de los datos, en la etapa de análisis se determinan causas raíz y causas potenciales que afectan al problema identificado en la primera fase, además se proponen y analizan soluciones, en las dos últimas etapas se implementan, controlan las soluciones planteadas, se realizan planes de control y de acciones que se deben tomar para mantener las mejoras.

1.5.3 Voice Of Customer (VOC)

Voice of customer o Voz del cliente, ayuda a conocer las expectativas o experiencias del cliente relacionadas a un producto o servicio, con esto se obtiene información directa, que procede a ser analizada con la finalidad de poder identificar qué mejoría se puede realizar e incrementar la satisfacción del cliente a futuro.

1.5.4 Maquinaria pesada

Se define a la maquinaria pesada como el conjunto de máquinas diseñadas para realizar trabajos de gran importancia en los sectores industriales, mineros, de construcción, entre otros sectores.

1.5.5 Gestión de mantenimiento

Chávez Medina et al. (2019) en su artículo publicado en la revista de Ingeniería Industrial detallan cómo realizaron un proyecto en una PYME donde combinan el TPM y la metodología DMAIC para solucionar un problema, indican que la gestión de mantenimiento es el medio que tiene toda empresa para conservar la eficiencia y eficacia de un activo fijo. Su propósito es el de incrementar la rentabilidad de la empresa, ayudando a que los equipos y/o maquinarias estén disponibles para su uso.

1.5.6 TPM – Total Productive Maintenance

TPM o Mantenimiento Productivo Total es una metodología que busca mantener y mejorar el estado de los equipos para reducir pérdidas de producción, paradas no programadas, fallos y averías. Esta metodología se basa en 8 pilares:

- Mejora enfocada: Son actividades que se desarrollan con la ayuda de otras áreas
 de la empresa, para esto se debe establecer equipos de trabajo que centren su
 atención en el análisis y la eliminación de las pérdidas o desperdicios existentes en
 la empresa.
 - El TPM considera 6 tipos de pérdidas que influyen directamente en el OEE: Fallos en los equipos, Tiempo de inactividad, ocio y paradas menores, pérdida de velocidad, defectos en el proceso, y pérdidas de arranque.
- Mantenimiento autónomo: Este pilar se basa en que el operador puede tener el
 conocimiento suficiente para dominar las condiciones del equipo, deben ser capaces
 de realizar inspecciones, realizar actividades de mantenimiento de primer nivel,

participar activamente en el cuidado de la maquinaria. Para esto se debe establecer responsabilidades, estandarizar los procesos, aplicar técnicas de inspección.

- Mantenimiento programado: Este pilar consiste en establecer actividades de
 mantenimiento, con la finalidad de mantener los equipos en óptimas condiciones y
 evitar paros innecesarios, para lograrlo se debe realizar un estudio inicial de los
 equipos, llevar un sistema de registro adecuado en lo que corresponde a daños y
 reparaciones, establecer frecuencias, responsables y actividades.
- Mantenimiento de calidad: En este pilar se analiza y controla la variabilidad del proceso con el propósito de mejorar la calidad de los productos. Generalmente en un entorno industrial se cree que existe un problema cuando las maquinarias se detienen y dejan de producir, sin embargo, pueden existir averías que no afectan al funcionamiento del equipo, pero afectan directamente a la calidad del producto.

Para desarrollar este pilar, se pueden realizar las siguientes acciones:

- 1) Realizar actividades orientadas al cuidado de la maquinaria.
- 2) Certificar que las máquinas cumplen con las condiciones "cero defectos" y que están trabajando dentro de los parámetros técnicos establecidos.
- 3) Identificar si existen variaciones en los procesos o en los equipos y tomar acciones para evitar defectos en los productos.
- 4) Identificar qué parte de los equipos puede causar fallas directas en el producto y realizar controles frecuentes.
- **Gestión temprana de equipos:** Este pilar se basa en el análisis que se debe realizar al momento que una empresa planifica adquirir nuevos equipos, para esto es

importante investigar qué máquinas pueden ser las más adecuadas para la empresa, sus procesos y su flujo de trabajo.

- Entrenamiento y educación: Generalmente la mayor parte de los desperdicios se dan porque el personal no está informado sobre los procesos, es decir, muchos de ellos no saben cómo se hace, cada cuánto se hace o con qué frecuencia, por esto es importante invertir en la capacitación del personal para que sean capaces de realizar un mantenimiento rutinario, conocer mejor el equipo y saber identificar cuando está presentando un problema.
- Seguridad y Medio ambiente: Fernández (2018) indica que el TPM se enfoca en cero accidentes, y cero contaminaciones, para esto se debe proporcionar ambientes seguros, cuidar de la salud de los trabajadores, establecer medidas de seguridad para la correcta instalación y operación de los equipos.
- TPM en Administración: TPM no solo se basa en la planta de producción, sino que también trata de que las mejoras lleguen a departamentos administrativos.
 Fernández (2018) indica que en este pilar las siglas TPM toman el siguiente significado:
- **T:** Total participación de los miembros de la empresa.
- **P:** Productividad
- M: Mantener clientes actuales y buscar nuevos clientes.

1.5.7 Mantenimiento autónomo

El mantenimiento autónomo es uno de los pilares del TPM, el concepto principal es de hacer que los operadores se hagan responsables y cumplan con tareas rutinarias de mantenimiento preventivo tales como: limpieza, lubricación e inspección.

1.5.8 Mantenimiento correctivo

Beltran et al. (2014) define como mantenimiento correctivo a las actividades que deben realizar para corregir daños o fallas que se presentan y afectan al funcionamiento de la maquinaria, generalmente se realizan actividades como; revisión, reparación o sustitución de piezas o componentes.

1.5.9 Mantenimiento preventivo

Beltran et al. (2014) define como mantenimiento preventivo a las actividades que se deben realizar con la finalidad de prevenir averías o reducir la posibilidad de falla, entre estas se tienen actividades tales como limpieza, inspección, lubricación, entre otros.

1.5.10 Mantenimiento de oportunidad

La Asociación Española para la Calidad indica, que el mantenimiento de oportunidad trata de provechar cuando las maquinarias o equipos no están siendo utilizados para realizar operaciones de mantenimiento, realizando las revisiones o reparaciones necesarias para garantizar el buen funcionamiento de las máquinas en el nuevo periodo de utilización (Asociación Española para la Calidad [AEC], 2019).

2. Metodología

Como se mencionó en el primer capítulo, para este proyecto integrador se propuso trabajar con la metodología DMAIC con el cual, mediante el uso de varias herramientas de esta metodología se logró definir el problema, y a partir de ahora se continúa con las etapas de medición y análisis.

2.1 Medición

Para realizar esta etapa del proyecto fue necesario elaborar un plan de recolección de datos, el cual se muestra en la Tabla 1 para esto, se procedió a definir qué y por qué se va a recolectar, con qué frecuencia, dónde, y cómo se iba a estratificar. En este caso se va a registrar la frecuencia de daños o fallas operativas en las maquinarias, el cual se procederá a estratificar por tipos de maquinaria y por tipos de daños.

Tabla 1Plan de recolección de datos

¿Qué?	Unidades	Tipo de dato	¿Dónde recolecta		¿Cuándo se recolectará?
Frecuencia de daños o fallas de las máquinas	Número	Cuantitativo	En la empresa de servicio de alquiler de maquinaria pesada		junio 2022-junio 2023
Método de recolección	Factor de estratificación		Muestra	٦	Por qué se registra?
Base histórica - Observación directa	Tipo de maquinaria y Tipos de daños o fallas		No aplica	Identificar en qué tipo de maquinaria se produce la may cantidad de daños	

2.1.2 Confiabilidad de los datos

Para determinar la confiabilidad de los datos, fue necesario hacer una revisión de la base de datos que tiene la empresa, la cual contaba con registro de daños desde el mes de junio del 2022 hasta junio del 2023, y con ayuda de herramientas estadísticas se comparó esta información con los datos recolectados desde el mes de marzo hasta junio del 2023.

Para poder trabajar mejor con los datos, se tomó la cantidad de daños o fallas operativas por semana y fue necesario realizar una prueba de normalidad tanto de los datos históricos (Figura 4) como de los datos recolectados (Figura 5) para determinar qué pruebas estadísticas se podían utilizar para verificar la confiabilidad de los datos.

Figura 4

Prueba de normalidad de los datos históricos

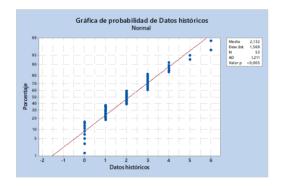
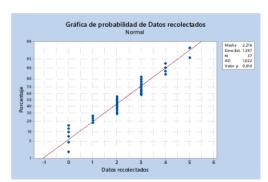



Figura 5

Prueba de normalidad de los datos recolectados

Para ambas pruebas realizadas se obtuvo un valor $p \le 0.05$ concluyendo que los datos no siguen una distribución normal. El siguiente paso fue analizar qué prueba estadística se podía utilizar para determinar la confiabilidad de los datos y se trabajó con una prueba no paramétrica Test de Mann Whitney U debido a que no necesita que los datos sean normales, en la Tabla 2 se muestra el resultado obtenido en la prueba no paramétrica.

Tabla 2Prueba No Paramétrica de Mann Whitney U

Prueba de Mann-Whitney e IC: Datos históricos; Datos recolectados

	N	Mediana
Datos históricos	53	2
Datos recolectados	37	2

La estimación del punto para n1-n2 es 0,000 95,1 el porcentaje IC para n1-n2 es (-1,000; -0,000)

W=2355,0

Prueba de n1=n2 vs- n1 ≠n2 es significativa en 0,6461

La prueba es significativa en 0,6390 (ajustado por empates)

Luego de realizar la prueba de Mann Whitney se obtiene un valor p $(0,6461) \ge p$ (0,005) indicando que no hay diferencia significativa entre los datos históricos vs los datos recolectados por lo tanto se consideran confiables.

2.1.3 Problema enfocado

Como se había mencionado en el primer capítulo, la empresa cuenta con un total de 20 máquinas, para realizar un mejor análisis en la Tabla 3 se procedió a agrupar por tipos de maquinarias y a elaborar un diagrama de Pareto para conocer cuáles son los tipos de máquinas con mayor frecuencia de daños o fallos operativos.

Tabla 3Frecuencia de daños por tipo de maquinaria

Tipo de Maquinaria	Frecuencia	%	%
Tipo de Maquillaria	de daño	Relativo	Acumulado
Grúas	44	33,85%	33,85%
Elevadores Telescópicos	31	23,85%	57,69%
Telehanders	25	19,23%	76,92%
Camiones Grúas	9	6,92%	83,85%
Elevadores de Tijera	7	5,38%	89,23%
Generadores	6	4,62%	93,85%
Montacargas	6	4,62%	98,46%
Rodillo	1	0,77%	99,23%
Motosoldadora	1	0,77%	100 %
Total	130	100 %	

Figura 6

Frecuencia de daños o fallas por tipo de maquinaria

Como se puede observar en la Figura 6 los daños o fallas entre grúas y elevadores telescópicos representan un total de 57,69%, para poder enfocar mejor el problema fue necesario realizar un Pareto de segundo nivel, para identificar el tipo de daño o falla que se presentan en los tipos de maquinaria antes mencionados.

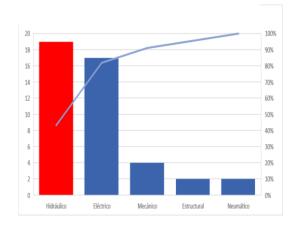

En la Tabla 4 y en la Figura 7 se observa que en las máquinas de tipo grúa se obtiene que el 43,18% corresponde a daños hidráulicos.

Tabla 4Frecuencias por tipo de daños o fallas en Grúas

Figura 7

Frecuencias por tipo de daños o fallas en Grúas

Tipo de daños	Frecuencia	%	%
en Grúas	de daño	Relativo	Acumulado
Hidráulico	19	43,18%	43,18%
Eléctrico	17	38,64%	81,82%
Mecánico	4	9,09%	90,91%
Estructural	2	4,55%	95,45%
Neumático	2	4,55%	100%
Total	44	100%	

El segundo tipo de maquinarias a analizar son los elevadores telescópicos, el cual se puede observar en la Tabla 5 y Figura 8 que los daños hidráulicos representan el 67,74%.

Tabla 5Frecuencias por tipo de daños o fallas en Elevadores Telescópicos

Tipo de	Frecuencia	%	%
daño	de daño	Relativo	Acumulado
Hidráulico	21	67,74%	67,74%
Eléctrico	10	32,26%	100%
Total	31	100%	

Figura 8

Frecuencias por tipo de daños o fallas en elevadores telescópicos

En la Tabla 6 se puede observar que el 14,61% de daños o fallas hidráulicas provienen de las grúas y que el 16,15% de los daños o fallas hidráulicas provienen de los elevadores telescópicos.

Tabla 6Porcentajes de mejora

Problema	Cálculo	% de Mejora
Daños o fallas hidráulicas en las máquinas tipo grúa	33,85%*43,18%	14,61%
Daños o fallas hidráulicas en las máquinas tipo elevadores telescópicos	23,85%*67,74%	16,15%
Total		30,76%

Problema enfocado 1:

"Desde junio del 2022 hasta junio del 2023 la empresa de servicio de maquinaria pesada ha presentado daños o fallas hidráulicas en las maquinarias tipo grúa, el cual representa un 14,61% mientras que la empresa espera que sea de un 10%".

Problema enfocado 2:

"Desde junio del 2022 hasta junio del 2023 la empresa de servicio de maquinaria pesada ha presentado daños o fallas hidráulicas en las maquinarias tipo elevadores telescópicos, el cual representa un 16,15% mientras que la empresa espera que sea de un 10%".

2.2 Análisis

Una vez definidos los problemas enfocados se solicitó la participación del personal mecánico y personal operativo de la empresa con la finalidad de obtener información sobre las posibles causas que puedan producir los daños hidráulicos en las maquinarias antes mencionadas.

Para la elaboración del diagrama de Ishikawa se consideraron categorías como: mano de obra, método, materiales y maquinaria, a continuación, en la Figura 9 y la Figura 10 se muestran los diagramas de Ishikawa realizados para cada problema enfocado.

Figura 9

Diagrama de Ishikawa para problema enfocado 1

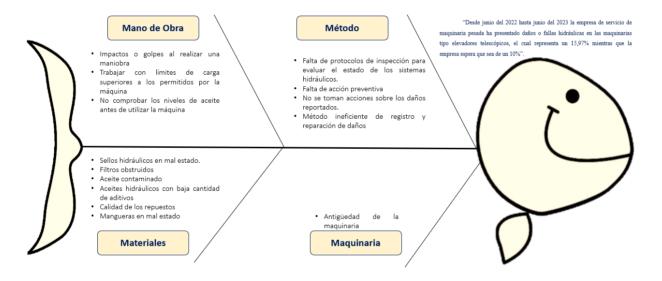
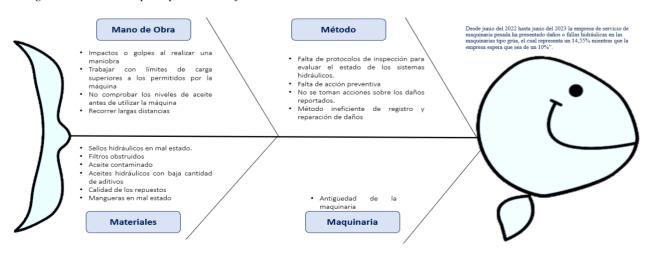



Figura 10

Diagrama de Ishikawa para problema enfocado 2

Entre las posibles causas de los daños hidráulicos en las grúas y los daños hidráulicos en los elevadores telescópicos se obtuvo lo siguiente:

- Impactos o golpes al realizar una maniobra.
- Trabajar con límites de carga superiores a los permitidos por la máquina.
- No comprobar los niveles de aceite antes de utilizar la máquina.
- Falta de protocolos de inspección para evaluar el estado de los sistemas hidráulicos.
- Falta de acciones preventivas.
- No se toman acciones sobre los daños reportados.
- Método ineficiente de registro y reparación de daños.
- Sellos hidráulicos en mal estado.
- Filtros obstruidos.
- Aceites hidráulicos con baja calidad de aditivos.
- Calidad de los repuestos.
- Mangueras en mal estado.
- Antigüedad de la maquinaria

Las causas obtenidas para los daños hidráulicos en las grúas y en los elevadores telescópicos son iguales, debido a que el sistema hidráulico funciona de la misma manera en ambas maquinarias, por este motivo, de ahora en adelante se considerará un solo problema enfocado, definido de la siguiente manera: "Desde junio del 2022 hasta junio del 2023 la empresa de servicio de maquinaria pesada ha presentado daños hidráulicos en las grúas y elevadores telescópicos, el cual representa un 30,6%".

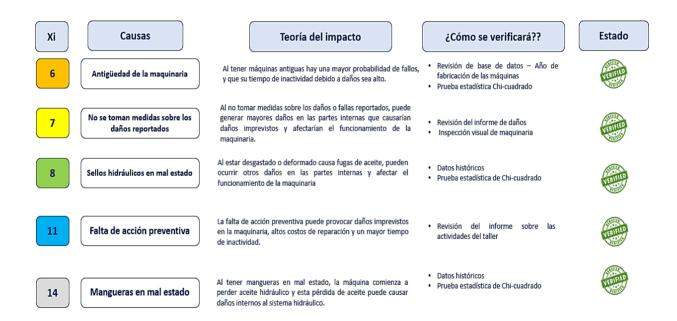
2.2.1 Priorización de Causas

Para realizar la priorización de causas, se realizó un formulario donde se enlistaron todas las causas mencionadas en el diagrama de Ishikawa, y se solicitó al mismo personal que califiquen cada una de ellas según el impacto que puedan tener para causar daños o fallas hidráulicas, en la Tabla 7 se muestran las calificaciones y el resultado obtenido para cada causa.

Tabla 7Priorización de Causas

		Daños	hidráulicos e	n las grúas y	elevadores tel	escópicos
Xi	Variables X's	Jefe de	Jefe de	Ayudante	Ayudante	Total
	variables A 3	Taller	Operaciones	mecánico 1	mecánico 2	
1	Impactos o golpes al momento de realizar una maniobra	9	3	3	1	16
2	Trabajar con límites de carga mayor al permitido por la máquina	9	3	3	3	18
3	No revisar niveles de aceite antes de usar la máquina	9	3	3	1	16
4	Rodar largas distancias	9	3	9	9	30
	Falta de protocolos de inspección para evaluar el estado de los					
5	sistemas hidráulicos.	9	3	9	9	30
6	Antigüedad de las maquinarias	9	9	9	9	36
7	No se toman acciones sobre los daños reportados.	9	9	9	9	36
8	Sellos hidráulicos en mal estado	9	9	9	9	36
9	Filtros obstruidos	3	3	3	3	12
10	Aceite contaminado	9	3	9	9	30
11	Falta de acciones preventivas	9	9	9	9	36
12	Aceites hidráulicos con baja cantidad de aditivos	9	3	3	9	24
13	Método de registro de daños y reparaciones ineficientes	3	9	3	9	24
14	Mangueras en mal estado	9	9	9	9	36
15	Calidad de los repuestos	3	3	3	9	18

De las 15 causas mostradas en la Tabla 7, las que tuvieron mayor calificación fueron:


- X6: Antigüedad de las maquinarias
- X7: No se toman acciones sobre los daños reportados
- X8: Sellos hidráulicos en mal estado
- X11: Falta de acciones preventivas
- X14: Mangueras en mal estado

2.2.2 Plan de verificación de causas

Para el plan de verificación de causa, el cual se muestra en la Figura 11, se explica qué impacto tiene cada causa mencionada anteriormente con la variable de respuesta, qué métodos se utilizaron para su verificación, ya que para poder realizar la verificación fue necesario aplicar herramientas estadísticas, inspecciones visuales y revisión de bases de datos.

Figura 11

Plan de verificación de causas

Verificación 1: Antigüedad de la maquinaria. Para realizar la verificación de esta causa se procedió a revisar la información referente al año de fabricación de las grúas y de los elevadores telescópicos, el cual se puede observar en la Tabla 8. En la Tabla 9 encontramos la clasificación por antigüedad: el primer grupo corresponde a máquinas que tienen entre 15 y 20 años de antigüedad y el segundo grupo corresponde a las máquinas que tienen más de 20 años. Posterior a eso, para cada daño o falla hidráulica reportado se

identificó a qué grupo pertenecía la máquina que había presentado el problema, para realizar la verificación se utilizó la prueba estadística de Chi-Cuadrado cuyo análisis se muestra en la Tabla 10 y con dicho análisis se comprobó si existe o no relación entre las variables: antigüedad y los daños o fallas hidráulicas.

Tabla 8Información de las maquinarias

Código	Nombre de Máquina	Tipo	Año	Marca	Modelo
EP-01	EP-01 HAULOTTE 18MTS	Elevador articulado	2001	HAULLOTE	HA18 PX
EP-07	EP-07 GENIE 21MTS	Elevador articulado	2006	GENIE	S-65
GP-03	GP-03 LUNA 35TN	Grúa sobre camión	2002	LUNA	AT 35-32
GP-05	GP-05 GROVE 80TN	Grúa sobre camión	2001	GROVE	GMk 4075
GP-06	GP-06 PPM 30TN	Grúa sobre camión	2002	PPM	ATT 300
GP-07	GP-07 LUNA 50TN MOTOR 1	Grúa sobre camión	2004	LUNA	AT 50/40
					LTM
GP-08	GP-08 LIEBHERR 1050/1 50TN	Grúa sobre camión	2005	LIEBHERR	1050/1

Tabla 9Agrupación de máquinas por antigüedad

Antigüedad	Categoría	Cantidad de máquinas	Código
Entre 15 y 20 años	1	3	EP-07, GP-07, GP-08
Mayor a 20 años	2	4	EP-01, GP-03, GP-05, GP-06

Prueba de Chi-Cuadrado

H₀: No hay asociación entre las variables

Ha: Existe una asociación entre las variables.

Tabla 10Prueba Chi-Cuadrado Antigüedad Vs Daños o fallas hidráulicas

Prueba chi-cuadrada para asociación: Categoría - Tipo de daño; Antigüedad de la máquina

Filas: Categoría - Tipo de daño

Columnas: Antigüedad de la máquina

	Entre 15 y 20 años	Mayor a 20 años	Todo
Otros	13	14	27
	11,28	15,72	
Hidráulico	15 16,72	25 23,28	40
Todo	28	29	67

Chi-cuadrada de Pearson = 0.751; GL = 1; Valor p = 0.386

Chi-cuadrada de la tasa de verosimilitud = 0,750; DF = 1; Valor p = 0,387

Debido a que el valor p $(0,387) \ge p$ (0,05) No se rechaza Ho, por lo tanto, se puede indicar que la antigüedad de la maquinaria no tiene una relación directa con los daños o fallas hidráulicas en las maquinarias.

Verificación 2: No se toman medidas sobre los daños reportados. Para realizar esta verificación se procedió a revisar la base de datos de daños o fallas reportadas por los operadores, en la Tabla 11 se muestra un extracto de la información que se encuentra en los reportes, se determinó cuantos reportes hidráulicos sin solucionar existen por máquina, y luego de eso se procedió mediante el GEMBA a verificar si lo que estaba en el reporte aún permanecía sin

solucionar. De 18 reportes hidráulicos se pudieron verificar 10 de ellos mediante GEMBA, en la Figura 12, Figura 13,y Figura 14, se muestran algunas de las verificaciones realizadas mediante GEMBA.

Tabla 11Base de datos-Reporte de daños de operadores

Cód.	Persona que reporta	Fecha de reporte del daño	Situación	Tipo de Daño	Estado de actividad
GP-03	Х.Н	29/9/2022	Cilindro de estabilización posterior derecho se retrae	Hidráulico	P
GP-03	Е.СН	23/2/2023	Liqueo en el tambor del lado derecho posterior	Hidráulico	P
GP-03	Е.СН	27/4/2023	Cilindro estabilizador trasero izquierdo presenta humedad	Hidráulico	P

Figura 14Figura 13Figura 12Cilindro estabilizador presenta humedadCilindro estabilizador se retraeLiqueo en el tambor del lado derecho

Verificación 3: Sellos hidráulicos en mal estado. Para realizar esta verificación se procedió a revisar la base de datos de los daños hidráulicos desde enero del 2023 la cual se muestra

en la Tabla 12 y para cada daño registrado se tuvo que revisar si se encontró o no sellos en mal estado. Con esta información, se elaboró una tabla de contingencia para proceder a realizar un análisis estadístico Chi- Cuadrado para determinar si existe relación entre estas dos variables.

Tabla 12Base de datos-Reporte de daños

Lugar	Detalle de Daño	Tipo de Daño	¿Sellos en mal estado?	¿Manguera en mal estado?
-	Liqueo de aceite por el acumulador y fisura de la carcasa de la bomba	Hidráulico	SI	SI
Peñón del Río	hidráulica Daño en acoples y mangueras	Hidráulico	NO	SI
CITEL	Problemas con el control de la traslación	Eléctrico	N/A	N/A

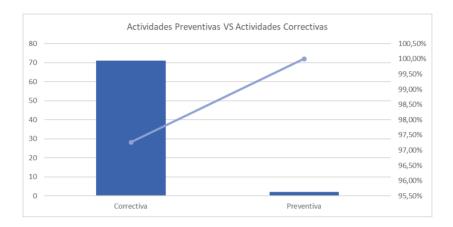
En la Tabla 13 se muestra en análisis estadístico realizado para verificar si existe una relación entre los sellos hidráulicos en mal estado y los daños hidráulicos.

Hipótesis

H₀: No hay asociación entre las variables

Ha: Existe una asociación entre las variables

Tabla 13Prueba Chi-Cuadrado Sellos hidráulicos en mal estado Vs Daños hidráulicos


	Otros daños	Daño Hidráulico	Todo
0	12	11	23
Conteo esperado	10,222	12,778	
1	0	4	4
Conteo esperado	1,778	2,222	
Todo	12	15	27

Chi-cuadrada de Pearson = 3,757; GL = 1; Valor p = 0,053Chi-cuadrada de la tasa de verosimilitud = 5,255; DF = 1; Valor p = 0,022

Debido a que el valor p $(0,022) \le p(0,05)$ se rechaza Ho, por lo tanto, se puede indicar que existe una relación entre los sellos en mal estado y los daños o fallas hidráulicas en las maquinarias.

Verificación 4: Falta de acciones preventivas. Para realizar esta verificación, fue necesario revisar la base de datos de reporte de actividades que realiza el equipo de taller diariamente, con la finalidad de identificar qué tipo de actividad realizan y si esta es una actividad correctiva o preventiva. Como se puede observar en la Figura 15 aproximadamente el 95% de las actividades son correctivas.

Figura 15Actividades preventivas vs actividades correctivas

Verificación 5: Mangueras en mal estado. Esta verificación se la realizó de la misma manera que los sellos hidráulicos en mal estado, por cada daño o falla hidráulica registrado en la Tabla 12, se revisó si se encontraron mangueras en mal estado y se procedió a realizar una prueba de Chi-Cuadrado para determinar si existe una relación entre estas dos variables.

En la Tabla 14 se muestra en análisis estadístico realizado para verificar si existe una relación entre las mangueras hidráulicas en mal estado y los daños hidráulicos.

Hipótesis

H₀: No hay asociación entre las variables

Ha: Existe una asociación entre las variables

Tabla 14Prueba Chi-Cuadrado Mangueras en mal estado vs daños hidráulicos

	Sin daño	Con daño	Todo
En buen estado 12		11	23
Conteo esperado	10,222	12,778	
En mal estado	0	4	4
Conteo esperado	1,778	2,222	
Todo	12	15	27

Chi-cuadrada de Pearson = 4,909; GL = 1; Valor p = 0,027

Debido a que el valor p $(0,027) \le p$ (0,05) se rechaza Ho, por lo tanto, se puede indicar que si existe una relación entre los daños o fallas hidráulicas en las maquinarias y las mangueras en mal estado.

2.3 Análisis de causa raíz

Una vez verificada aquellas causas que tienen relación con los daños hidráulicos en las maquinarias se procede a utilizar la técnica de los 5 por qué, para poder llegar a una causa raíz.

2.3.1 No se toman medidas sobre los daños o fallas hidráulicas reportados

En la Tabla 15 y en la Tabla 16 se muestra el análisis realizado para la causa X7.

Tabla 15Análisis de Causa X7

Ronda 1	Н.	Ronda 2	H.	Ronda 3	Hipótesis
¿Por qué no se toman medida sobre los daños o fallas hidráulicas reportadas?	Si	¿Por qué se da prioridad a los daños imprevistos en otras maquinarias?	Si	¿Por qué los daños reportados pueden esperar para ser reparados, y los daños imprevistos no?	No
Porque se da prioridad a los daños imprevistos en otras maquinarias.		Porque los daños reportados pueden esperar para ser reparados, y los daños imprevistos no.		Porque los daños reportados no se consideran críticos y la máquina puede seguir trabajando.	

CAUSA RAÍZ 1

• Los daños reportados no se consideran críticos y la máquina puede seguir trabajando: Es decir, como el daño o falla reportada no afecta a la operatividad de la maquinaria permiten que la máquina continúe prestando servicios, esto largo plazo se torna un problema debido a que, por no darle una solución a tiempo el daño en las piezas internas puede ser mayor.

Tabla 16Análisis de Causa X7

Ronda 1	Н.	Ronda 2	H.	Ronda 3	Н.	Ronda 4	H.
¿Por qué no se toman medida sobre los daños o fallas hidráulicas reportadas?		¿Por qué l máquinas no encuentran disponibles?		¿Por qué se prioriza su alquiler y no su reparación?		¿Por qué realizar las reparaciones pendientes paraliza la máquina durante mucho tiempo y genera pérdidas de	
	Si		Si		No	dinero?	Si
Porque las máquinas no se encuentran disponibles		. 1.	se su su	Porque realizar las reparaciones pendientes paraliza la máquina durante mucho tiempo y genera pérdidas de dinero		Porque existen reparaciones complejas e implican que la máquina no puede ser alquilada durante ese tiempo	

CAUSA RAÍZ 2

• Existen reparaciones complejas e implica que la máquina no puede ser alquilada durante ese tiempo: Según lo conversado con el jefe de taller, hay reparaciones que tiene un nivel de complejidad medio-alto lo cual, para poder solucionar el daño o la falla reportada tienen que desarmar y desmontar varias partes o piezas de la máquina, incluso el tiempo que la máquina permanece en taller podría llegar a extenderse si no se llegan a encontrar los repuestos necesarios para la reparación.

2.3.2 Sellos hidráulicos en mal estado

En la Tabla 17 y Tabla 18 muestra el análisis realizado para la causa X8 referente a los sellos hidráulicos.

Tabla 17Análisis de causa X8

Ronda 1	Н	Ronda 2	Н	Ronda 3	Н
¿Por qué los sellos hidráulicos en mal estado causan daños o fallas hidráulicas?	No	¿Por qué puede causar deficiencia en la presión interna del sistema? Porque puede haber	No	¿Por qué puede haber válvulas mal reguladas, con obstrucciones, o bombas hidráulicas en mal estado?	No
Porque puede causar deficiencia en la presión interna del sistema.		válvulas mal reguladas, con obstrucciones, o bombas hidráulicas en mal estado		Porque no hay revisión y limpieza de estas partes	

Tabla 18Análisis de causa X8

Ronda 4		Ronda 5	Н	Ronda 6	Н
¿Por qué no hay revisión y limpieza de estas partes?		¿Por qué solo se revisan y limpian cuando comienzan a fallar?		¿Por qué no se ha identificado cuáles son las partes/piezas críticas que deben ser inspeccionadas?	
Porque solo se revisan y limpian cuando comienzan a fallar	Si	Porque no se ha identificado cuáles son las partes/piezas críticas que deben ser inspeccionadas	Si	Porque no hay un plan de mantenimiento ni control sobre las partes y piezas que se han cambiado o deben cambiarse.	Si

Para la causa raíz de los sellos hidráulicos en mal estado tenemos que, actualmente la empresa no cuenta con un plan de mantenimiento ni se lleva un control de las piezas que ya han sido cambiadas o que deberían cambiarse. Debido a que no se lleva un control, se desconoce cuándo fue la última vez que se reemplazaron los sellos hidráulicos de una parte específica de la

maquinaria, por lo tanto, sólo se detecta el problema cuando ya se empieza a evidenciar humedad o liqueos de aceite.

2.3.3 Falta de acciones preventivas

En la Tabla 19 se muestra el análisis realizado para la causa X11 referente a la falta de acciones preventivas.

Tabla 19Análisis de causa X11

Ronda 1	H.	Ronda 2	H.	Ronda 3	H.
¿Por qué la falta de acciones preventivas conduce a daños o fallas hidráulicas?	No	¿Por qué el desgaste o las fugas en las piezas y componentes del sistema no se detectan a tiempo?	No	¿Por qué las piezas y componentes del sistema hidráulico no se inspeccionan a profundidad?	Si
Porque el desgaste o las fugas en las piezas y componentes del sistema no se detectan a tiempo.		Porque las piezas y componentes del sistema hidráulico no se inspeccionan a profundidad.		Porque para realizar esa inspección se debe paralizar la maquinaria	
		¿Por qué el desgaste o las fugas en las piezas y componentes del sistema no se detectan a tiempo?		¿Por qué no se realiza una inspección rutinaria de las partes o piezas más visibles de la maquinaria?	
		Porque no se realiza una inspección rutinaria de las partes o piezas más visibles de la maquinaria	Si	Porque no se tiene establecido un procedimiento de inspección del sistema hidráulico	Si
		Ronda 4	H.	Ronda 5	H.
		¿Por qué para realizar esa inspección se debe paralizar la maquinaria?	Si	¿Por qué se debe desmontar y desarmar ciertas partes o piezas?	Si
		Porque se debe desmontar y desarmar ciertas partes o piezas		Porque muchas de las piezas hidráulicas no están en lugares visibles y lleva mucho tiempo revisarlas.	

Para este análisis se tiene que, la falta de acciones preventivas provoca que no se detecte a tiempo algún desgaste o fuga en las piezas/componentes hidráulicos, y no se detecta a tiempo debido a que no se realiza una inspección profunda del sistema, ya que, al realizar este tipo de revisiones se debe paralizar la máquina porque es necesario desmontar y desarmar ciertas partes para tener una mejor visibilidad y acceso a la pieza o componente que se debe inspeccionar.

Por otro lado, otra causa por la cual no se logra detectar a tiempo el desgaste o fuga en las piezas/componentes hidráulicos es porque no se realiza una inspección rutinaria de aquellas piezas o partes más visibles, esto es, porque no se tiene establecido un procedimiento de inspección del sistema hidráulico.

2.3.4 Mangueras hidráulicas en mal estado

En la Tabla 20 se muestra el análisis realizado para la causa X14 referente a las mangueras hidráulicas en mal estado.

Tabla 20Análisis de Causa X14

Ronda 1	Н.	Ronda 2	Н.	Ronda 3	H.	Ronda 4	Н.
¿Por qué las mangueras hidráulicas en mal estado causan daños o fallas hidráulicas?	No	¿Por qué pueden romperse al realizar una maniobra?	No	¿Por qué la mayoría de las mangueras de las máquinas nunca se han cambiado?	No	¿Por qué si no hay fugas, no consideran el reemplazo de las mangueras?	Si
Porque pueden romperse al realizar una maniobra.		Porque la mayoría de las mangueras de las máquinas nunca se han cambiado.		Porque si no hay fugas, no consideran el reemplazo de las mangueras		Porque reemplazar una manguera lleva tiempo y necesitan tener la máquina disponible	

Para las mangueras hidráulicas en mal estado tenemos la siguiente causa raíz:

• El tiempo de reemplazo suele ser extenso y necesitan tener la máquina disponible: Según lo conversado con el jefe de taller, si existen mangueras hidráulicas en mal estado es porque la mayoría de las mangueras presentes en las maquinarias no han sido cambiadas, y esto no se ha realizado porque, como no se evidencia humedad o fugas de aceite, se considera que no amerita su reemplazo. También indica que sí se ha realizado el cambio de aquellas mangueras que se encuentran en lugares accesibles, visibles, y que sacarlas y mandarlas a fabricar no ha tomado mucho tiempo.

2.4 Propuestas de mejora

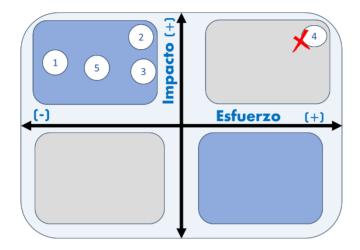
Para esta etapa del proyecto, se realizó una entrevista con el jefe de Taller y el jefe de operaciones, para esto se les dio a conocer cuáles eran las causas potenciales y las causas raíz, en la Tabla 21 se muestran las posibles soluciones y con qué causa raíz se relaciona.

Tabla 21Propuestas de solución

Causa potencial	No.	No. Causa raíz Relación		Propuesta de solución
No se toman medidas sobre los daños	1	Los daños reportados no se consideran críticos y la máquina puede seguir trabajando.	1	Realizar un análisis de criticidad de los daños hidráulicos y planificar reparaciones con criticidad medias y altas
hidráulicos reportados	2	Existen reparaciones que toman mucho tiempo realizar la reparación debido a su complejidad	2 - 3- 5	Elaborar un Plan de Mantenimiento Preventivo
Sellos hidráulicos en mal estado	3	No hay un plan de mantenimiento ni control sobre la frecuencia de reemplazo	2-3-3	y Correctivo del sistema hidráulico

Falta de acciones	4	No se tiene establecido qué piezas/partes deben inspeccionarse	4 - 6	Capacitar al personal operativo en inspecciones rutinarias y temas hidráulicos
preventivas	5	Muchas de las piezas hidráulicas no están en lugares visibles y lleva mucho tiempo revisarlas	2 - 5	Adquisición de una máquina nueva que sirva de máquina sustituta
Mangueras hidráulicas en mal estado	6	Existen mangueras que nunca han sido cambiadas	4 - 6	Elaboración de un check list diario de inspección del sistema hidráulico

2.4.1 Priorización de las soluciones


De la Tabla 21, se obtuvieron 5 propuestas de solución las cuales mencionamos a continuación:

- Realizar un análisis de criticidad de los daños hidráulicos y planificar reparaciones con criticidad medias y altas.
- 2. Elaborar un Plan de Mantenimiento Preventivo y Correctivo del sistema hidráulico.
- 3. Capacitar al personal operativo en inspecciones rutinarias y temas hidráulicos.
- 4. Adquisición de una maquinaria nueva que sirva de máquina sustituta.
- 5. Elaboración de un check list diario de inspección del sistema hidráulico.

Para realizar la priorización se realizó una matriz Impacto-Esfuerzo la cual se muestra en la Figura 16, esta matriz cuenta con 4 cuadrantes, las propuestas que se ubiquen en los cuadrantes inferiores serán aquellas que tengan bajo impacto y aquellas propuestas que se ubiquen en los cuadrantes superiores serán aquellas que tendrán un mayor impacto con la causa raíz, además del impacto se analiza el esfuerzo que requiere implementar esta solución para esto se puede considerar tiempo y costos.

Figura 16

Matriz Impacto - Esfuerzo Matriz Impacto - Esfuerzo

Por lo tanto, obtenemos que se realizarán 4 de 5 propuestas ya que no requieren de mucho esfuerzo, pero sin embargo causan un alto impacto.

La propuesta número 4 (Adquisición de una máquina nueva) se descarta debido a que requiere de una alta inversión económica de aproximadamente \$180000 para una grúa telescópica y \$25000 un elevador telescópico.

2.4.2 Plan de Implementación

En la Tabla 22 se muestra el plan de implementación para cada una de las propuestas, en él se detalla de manera vertical el por qué y cómo se realizará cada propuesta, dónde se implementará, quien lo realiza y cuánto costará realizar su implementación.

Tabla 22Plan de Implementación

	Propuesta 1	Propuesta 2	Propuesta 3	Propuesta 4		
¿QUÉ?	Análisis de criticidad y planificación de reparaciones con criticidad media y alta	Elaborar un plan de mantenimiento preventivo y correctivo del sistema hidráulico	Capacitar al personal operativo en inspecciones rutinarias y temas hidráulicos	Elaboración de un check list diario de inspección del sistema hidráulico		
¿POR QUÉ?	Para conocer el estado actual de la maquinaria, saber qué daños reportados actualmente pueden ser críticos a futuro y poder planificar reparaciones en base a su criticidad	Para definir las actividades preventivas, establecer frecuencias de revisión y programar reparaciones que eviten daños a futuro.	Para que puedan realizar de manera correcta tareas básicas y logren detectar alguna falla en el sistema hidráulico	Para detectar de manera oportuna posibles problemas o desgastes en el sistema hidráulico		
¿CÓMO?	Propuesta 1 Junto al jefe de taller y el jefe de operaciones se revisará el reporte de los daños pendientes y se determinará su criticidad	Propuesta 2 Revisión de manuales de las maquinarias, reunión con el jefe de taller, elaboración de una base de datos para reparaciones y actividades preventivas	Propuesta 3 Reunión con el responsable de mantenimiento del taller para determinar los temas que se van a tratar y preparar el formulario de asistencia.	de taller para levantar información y elaborar el		
¿QUIEN?	Líder del	Líder del proyecto	Líder del proyecto	Líder del proyecto		
¿DONDE?	proyecto Empresa de servicio de alquiler	Empresa de servicio de alquiler	Empresa de servicio de alquiler	Empresa de servicio de alquiler		
COSTO	\$0	\$0	\$70	\$25		
ESTADO	En proceso	En proceso	En proceso	En proceso		

Para el costo de implementación de la propuesta #3 se tomó en cuenta la cantidad de personas que iban a recibir la capacitación, el costo por hora de cada empleado según su cargo, el tiempo estimado para realizar la capacitación y la impresión de trípticos.

Para el costo de implementación de la propuesta #4 se considera la impresión del check list del sistema hidráulico.

Las propuestas mencionadas anteriormente, van relacionadas a 2 pilares del TPM:

Pilar 1: Mantenimiento Planificado

Dentro de este pilar existen ciertos pasos que se deben seguir, como son: Estudio Inicial, Gestión de la Información, y el Sistema de mantenimiento periódico.

Para el estudio inicial la propuesta relacionada es el análisis de criticidad, de esta manera se logra determinar el estado actual de la maquinaria en lo que corresponde a daños o fallas hidráulicas.

Para la Gestión de la información la propuesta relacionada es el plan de mantenimiento preventivo y correctivo, en el cual se realizará una base de datos en Excel para llevar un mejor control de los daños y las acciones que se toman para repararlos, así también el registro y seguimiento de actividades preventivas.

Para el sistema de mantenimiento periódico también se relaciona con la propuesta del plan de mantenimiento preventivo y con la elaboración del check list diario de inspección, ya que dentro de este se definen las actividades preventivas y la frecuencia con la que se deben realizar.

Entrenamiento y Capacitación

Para este pilar tenemos la capacitación del personal operativo en inspecciones rutinarias y temas hidráulicos, la cual debe ser dirigida por el jefe de taller y el líder del proyecto.

2.4.3 Implementación de la propuesta #1

Actualmente existe cierta inconformidad de parte de los operarios, debido a que ellos realizan un reporte semanal de daños o fallas, pero muchas veces no se realiza ninguna acción para solucionarlo. Esto se debe porque la administración desconoce que ese daño o falla reportada actualmente a futuro puede afectar a la operatividad de la máquina además de que puede contaminar al lugar de trabajo. Por este motivo, se propuso realizar un análisis de criticidad de aquellos daños hidráulicos reportados.

Para realizar el análisis de criticidad es necesario evaluar los siguientes criterios:

- Frecuencia de falla: Analiza qué tan frecuente ocurre ese daño cada año
- Impacto operacional: Analiza si afecta a la operatividad de la máquina
- Costo de reparación: Analiza qué tan costosa llegaría a ser la reparación
- Impacto a la seguridad ambiental o humana: Analiza si el daño puede ocasionar un impacto ambiental o si afecta a la seguridad humana

En la Tabla 23 se puede observar cada uno de los criterios, además del puntaje que se le dará a cada uno de ellos.

Tabla 23Criterios de evaluación

CRITERIOS DE EVALUACIÓN	Muy bajo = 1	Bajo = 3	Medio = 5	Alto = 9
Frecuencia de Fallas (FF)	Menos de 1 vez al año	De 1 a 2 Fallas al año	De 2 a 4 veces al año	Más de 4 veces al año
Impacto operacional (IO)	No impide el funcionamiento de la máquina	Impacto a nivel de operación	Parada parcial de la máquina	Parada total e inmediata de la máquina
Costos de reparación (CR)	Gasto irrelevante ≤ 150	Gasto bajo \$150 - \$300	Gasto Razonable \$300-\$800	Gasto alto ≥ 800
Impacto de seguridad Ambiental y humana (ISAH)	No provoca ningún daño a las personas o el medio ambiente	Provoca un impacto Ambiental cuyo efecto no es considerable	Provoca daños menores (accidentes)	Afecta a las instalaciones y a la seguridad humana

Una vez definido los criterios de evaluación se procedió a enlistar los daños o fallas hidráulicas existentes en cada máquina, en la Tabla 25 se muestra el análisis de una sola máquina, el detalle de las demás maquinarias se los puede encontrar al final del documento.

La evaluación se la realizó con el jefe de taller y el jefe de operaciones, el cálculo de criticidad se muestra en la ecuación 2.1 y la clasificación en la Tabla 24.

Criticidad = Frecuencia de fallas
$$x (IO + CR + ISAH)$$
 (2.1)

Tabla 24Clasificación de criticidad

Criticidad	Abreviatura	Rango
Altamente Críticos	AC	≥ 25
Medianamente Críticos	MC	\leq 9 - 25 >
Baja Criticidad	BC	<9

Tabla 25

Matriz de criticidad

Cód.	Reporte del daño	Consecuencias a futuro	FF	Ю	CR	ISAH	Total	Criticidad
	Cilindro estabilizador trasero derecho se retrae	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	5	9	23	МС
	Fuga de aceite por el cilindro estabilizador trasero izquierdo	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con	1	9	3	9	21	MC
GP-03	válvula de retención del telescópico del boom	carga Pérdida de presión, lo cual puede ocasionar que el boom se puede retraer de manera repentina	1	9	9	5	23	MC
		Daño en el sistema de grupo satelital	3	1	3	1	15	MC
	Liqueo de aceite en el	Daño en el sistema de grupo satelital	3	1	3	1	15	MC

Actualmente se determinaron que existen 2 daños que a futuro serán críticos, 10 daños con criticidad media y 5 con criticidad baja, sin embargo, para este proyecto no se tomarán acciones para los dos daños con criticidad alta debido a la complejidad y el tiempo de reparación.

2.4.4 Implementación de la propuesta #2

Para el plan de mantenimiento preventivo se procedió a determinar junto al jefe de taller las actividades que deben realizarse en el sistema hidráulico las cuales se muestran en la Figura 17 en esta ficha se indica la frecuencia de revisión, quienes son los encargados de realizar las actividades, y el tiempo aproximado que les tomaría realizar cada actividad.

Figura 17

Actividades preventivas

	Actividad	Frecuencia	Frecuencia en Horas de trabajo	Encargados	Tiempo estimado	Cod. Equipo	Horómetro o fecha de revisión	Próxima Revisión
	Revisar el nive de aceite del motor	Diario	8	Operadores				
	Revisar nivel de aceite hidráulico	Diario	8	Operadores				
	Revisar nivel de aceite de dirección	Diario	8	Operadores				
	Revisar el nivel de refrigerante	Diario	8	Operadores				
	Revisar el nivel de aceite en la caja de cambios	Diario	8	Operadores				
	Revisar fugas de aceite del motor	Diario	8	Operadores				
	Revisar fugas de aceite por los reservorios hidráulicos	Diario	8	Operadores				
	Revisar que los reservorios hidráulicos se encuentren bien tapados	Diario	8	Operadores				
	Revisar alarmas de presión de aceite del motor	Diario	8	Operadores				
	Revisar alarmas de temperatura de aceite de la transmisión	Diario	8	Operadores				
	Revisar alarmas de temperatura de líquido refrigerante del motor	Diario	8	Operadores				
	Revisar alarmas de presión de aceite del convertidor	Diario	8	Operadores				
	Revisar humedad de aceite cilindros hidráulicos	Diario	8	Operadores				
	Revisar estado de mangueras hidráulicas externas y acoples	Semanal	50	Operadores				
SISTEMA	Revisar flujos de la bomba matriz	Semanal	50	Taller				
HIDRÁULICO	Revisar estado de mangueras hidráulicas internas y acoples	Semanal	50	Taller				
	Chequeo de válvulas y electroválvulas	Semanal	50	Taller				
	Revisar enfriadores y ventiladores del sistema hidráulico	Semanal	50	Taller				
	Revisar estado de componentes eléctricos y electrónicos	Semanal	50	Taller				
	Reemplazar filtros hidráulicos	Bimestral	250	Taller	2 H			
	Cambiar aceite hidráulico	Bimestral	250	Taller	2 H			
	Revisar y limpiar válvulas de alivio externas	Trimestral	500	Taller	4 H			
	Revisar y limpiar válvulas de alivio internas	Trimestral	500	Taller	16 H			
	Realizar calibración de bombas							
	Bomba matriz	Semestral	1000	Taller	6 H			
	Bomba de transmisión	Semestral	1000	Taller	4 H			
	Bomba de suspensión	Semestral	1000	Taller	4 H			
	Bomba de dirección	Semestral	1000	Taller	3 H			
	Bomba de estabilizadores	Semestral	1000	Taller	4 H			
	Revisar cuerpos de válvula	Anual	2000	Taller				

Para el plan de mantenimiento correctivo se elaboró una base de datos en Excel, para poder darle seguimiento a las actividades correctivas que se tienen pendientes y para registrar cualquier otro daño o falla presentada en la máquina. Esta base de Excel cuenta con dos partes, una parte para registrar información referente a los daños y la segunda parte para registrar información referente a la reparación que se realizó para solucionar el daño.

Figura 18

Base de datos-Mantenimiento Correctivo

			O DE			RE	EG	IS'	TF	RC) D]	E I	DAÑOS	YR	E	PA]	RA	CIONE	S	
Tipo de	máquina		95 Y	Cód-Máq				Prioridad				97.	W	Tipo de Daño/Falla		87 YE	1			
Devac	dor telescópis	o Grús			CGP-02 EP-01			Por Progr	amar Pref	erente	Programado	Urgente		Eléctrico	Electrós	nico				
Camión Grús Elevador de tijera		EP-07	EP-OS GNP							_	Hidráulico Humana									
Gener		Montes		GP-03	GP-05 GP-06			Estado				97	20	Mecánico	Neumá	ticos				
Rodific	D	Telebar	nder		TH-04 ROD			En Proces	Pen Pen	diente	Solucionado			Estructural						
				IM-02	IN-04 ROD												1			
						REPORTE DE DAÑOS POR MÁQUINA										MANTENIMIENT	0			
# Daño	Fecha de Reporte del daño	Operador	Cód-Máquina	Tipo de máquina	tugar donde courrió el daño	Reporte del Duño o falla	Tipo de Daño/Falla	Te ha reportado anteciar mente?	Prioridad	Estado	Lugar de Reparación	Inicio de Reparación	Inspección realizada por taller	Motivo del daño/Falla	Requiere cambio de piezas?	Repuestos por cambiar	Se completó aceite hidráulico?	Actividades correctivas realizadas	Fin de Reparación	Observaciones
s	19-05-23	Luis Chaguay	GP-08	Gnia		Máquina se le apagó miestras octuba codando	Hamana	No	Urgean	Solucionado		19-05-23	El jefe de taller conventi con el operador, le dio indicaciones via tallefinica. La falla se produjo posque el operador no sevini el combumble sense de sulle a meloise	Falta de inspección	No	NA		Limpier filtros Racor, limarios de combustible, bombour el sistema, purger el sistema	19-46-23	So tavo que especar que enfrie el sistema para po- realizar los actividades
10	21-05-23	Lais Chaguay	GP-03	Gnia	Santa Elima	Esploré Bota delastora del lado derecho	Neumiticos	No	Urgean	Solucionado		21-05-23		Tiempo de uno	Si	Llana 465/95825		Se Bool a la vulcanizadora a enflastar y se muliol el cambio	21-65-29	
13	25-05-23	Xavier Hemindez	GP-67	Gris		Las 2 suspensiones posteriores se bajan al mumento de ordar	Hidrinko	s	Urgeans	Solucionado	Rese	25-05-23		Desgarte de piexas				Limpioza de la electrovidrula, verificación de contenidad y roltaje de las bobinas, navior el estado de los caschos internos	23-66-29	
14	29-05-23	Cristian Torres	GP-03	Gnia	Azucanes Valdéz	Equipo presenti biloqueo en las marchas	Eléctrico	No	Urgenne	Solucionado		29-05-23	Adicional al problema de las marchas, so visuados fugas de acolo- derais del metter, se va a quitar fugas de las tamuas radiales resentes					Se contigió problemar de las marchas, se contigió fugas de aceite encontrados detais del motor, para solucionar fugas por las termos radiales se mandó a fabricar mises y os manudasis	13-67-29	
15	30-05-23	Cristian Torres	GP-65	Gnia		Máquina prountó bloqueo	Elicateo	s	Urgeans	En Proceso		30-05-23	El problema no es eléctrico, sino electrónico. La máquina proseura problemas con el EKS	Tiempo de uno						Se outrogé EXS a person externas para su reputacio
43	62-06-23	Luis Cevalites	EP-07	Elevador telescópico		Equipo se encuentra desnivolado, una de las Bastas traseras queda en el airo	Hidrinko	No	Urgeans	Sulucionado	Campo	02-06-23	Problema con una vilvula de angulación	Falta de manuelmiento				So maliza trabajo do revisión de valvala de augulación del plate de la bomba hidrándica, y se revisó la valvala limitadora de preción. So malizaron praeboc de preción de bomba hidrándica	62-66-23	
46	69-06-23		GP-08	Gnia		Motor de la máquina se apaga y presenta problemas electrónicos	Elicateo	s	Urgeans	Salacionado	Campo	3/6/2023	Se multió revisión del estado de cables	Desgasto de piexas				Su consigió cables fisjos de bateria por desguete, su choqueu cable sulfatado y se moura		

Para la parte del reporte de daños o fallas se tiene que completar la siguiente información:

- Fecha de reporte del daño o falla: Registrar la fecha de cuando se presentó el daño o falla
- Persona que reporta el daño: Registrar el nombre del operador de la maquinaria,
 o del jefe de taller en caso de que sea él quien haya detectado algún daño.
- Código de la máquina: Registrar los códigos correspondientes a cada máquina
- Lugar donde ocurrió el daño: Si el daño ocurrió en alguna obra, se debe registrar el nombre del lugar donde se encontraba trabajando.
- Reporte del daño o falla: Detallar qué es lo que está ocurriendo en la máquina
- Tipo de daño: Indicar si es un tipo de daño hidráulico, eléctrico, mecánico, electrónico u otros.
- Indicar si ese daño se ha presentado anteriormente: Para este apartado se debe colocar Si o No. En caso de que el daño se haya presentado anteriormente
- Establecer Prioridad: En este apartado se debe establecer si el daño presentado es
 Urgente, Preferente, Por Programar o Programado.

- **Urgente:** Se considera que un daño es urgente cuando la máquina se encuentra en alguna obra o ya está planificada para realizar un trabajo y esta presenta un daño o falla imprevista que afecta a la operatividad de la máquina.
- **Preferente:** Es cuando la máquina está presentando alguna falla que a taller no le toma mucho tiempo en realizar la reparación.
- Por Programar: Es cuando la máquina está presentando alguna falla, pero para solucionarla se necesita paralizar completamente la maquinaria.
- Programado: Se considera cuando ya se planifica la reparación de un daño o falla reportado.
- Establecer el Progreso: En este apartado se debe colocar si el daño ya ha sido solucionado, si está pendiente de reparar o si la reparación ya está en progreso.

La segunda parte de la base de datos está enfocada a las reparaciones, se deberá completar la siguiente información:

- Lugar de Reparación: En este apartado se deberá colocar si la reparación se la realizó en la "Base" es decir en la propia empresa.
 O si la reparación se la realizó fuera de la empresa se deberá colocar "Campo".
- Inicio de la Reparación: Se deberá indicar la fecha de inicio de la reparación.

- Inspección Realizada por Taller: Esta información la proporciona el jefe de taller, en este apartado se deberá colocar lo que en primera instancia encuentran al momento de revisar el daño.
- Indicar si se requiere realizar cambio de Piezas
- Repuestos que se deben cambiar: Especificar qué repuestos necesitan reemplazarse.
- Actividades Correctivas realizadas: Especificar qué acciones se realizaron para solucionar el daño.
- Fecha de Finalización de la Reparación: Colocar la fecha en la que se culmina los trabajos de reparación y la máquina queda lista para ser alquilada.

2.4.5 Implementación de la propuesta #3

El Check list lo deberá llenar el operador de la maquinaria antes de empezar su jornada de trabajo, él deberá realizar una inspección visual correspondiente al sistema hidráulico y una vez a la semana deberá realizar una revisión en las mangueras hidráulicas que se encuentran en lugares visibles.

Para la revisión de las mangueras hidráulicas existen criterios de evaluación como: bueno, malo, regular, según las condiciones en las que se encuentre la manguera se deberá tomar acciones para su reemplazo, por ejemplo:

Se considera que una manguera se encuentra en mal estado si se visualiza lo siguiente:

 La manguera carece de flexibilidad, se evidencia daños externos severos en el revestimiento: cortes, grietas, desgastes, o presenta liqueo de aceite hidráulico por el prensado o conexiones. Para una manguera en mal estado, se debe realizar su reemplazo lo más pronto posible.

Se considera que una manguera está en estado regular si se visualiza lo siguiente:

 La manguera tiene flexibilidad, se evidencia desgaste o rozamiento en el revestimiento (capa externa), se evidencia humedad de aceite hidráulico por el prensado o conexiones.

Para una manguera que se encuentre en estado regular, se deberá planificar su reemplazo.

Figura 19
Check List diario

	NOMBRE D	E L	A EMPR	ESA						
	INSPECCION DIARIA	DEL S	SISTEMA H	IDRÁULICO)					
emana desde	: Hasta:				Cód. E	quipo:	_		-	
Día	Inspeccionado por:		Operador	Ayudante		Horá	met	ro		
unes lartes					}				_	
liércoles ueves		-			1				Ξ	
iernes		-			1				-	
ábado	-				1					
Oomingo					J				_	
	Marque: ✓ Si está bien	X Sie	está mal	N/A S	Si no ap	lica				
ITEM	DESCRIPCION	LUN	MAR	MIE	JUE	VIE	S	ΑВ		DO
	Nivel de aceite del motor Nivel de aceite hidráulico								+	
Niveles de aceite	Nivel de aceite hidráulico Nivel de aceite de dirección								+	
	Nivel de refrigerante								+	
	Fugas de aceite del motor								+	
	Fugas de aceite por los reservorios				-				+	
Fugas de	hidráulicos									
aceite hidráulico	Fugas de aceite por válvulas hidráulicas									
maraanoo	Fugas de aceite por bombas hidráulicas									
	Humedad de aceite por cilindros hidráulicos									
	Alarmas de presión de aceite del motor									
	Alarmas de temperatura de aceite de la transmisión									
Alarmas del	Alarmas de temperatura de líquido								+	
tablero	refrigerante del motor									
	Alarmas de presión de aceite del convertidor									
Observacione	s adicionales:			•						
Criterios de	INSPECCIÓN DE N	/ANG	UERAS HIDI	RÁULICAS						
riterios de	La manguera tiene flexibilidad				Día de In	spección:				
	No se evidencia daños externos:		W 7 E		Partes a	a revisar	В	R	м	N/A
Bueno	cortes, grietas, desgastes.						-		***	
	No se evidencia presencia de aceite hidráulico en el prensado o				Estabili	izadores				
	conexiones.				delar	nteros				
		Seatile .		Me.		izadores	П			_
	La manguera tiene flexibilidad	4			Tras	seros				_
	Se evidencia desgaste o rozamiento en		18/2	DIA.	Bo	oom				
Regular	el revestimiento (capa externa) Se evidencia humedad de aceite			Mary 10						_
	hidráulico por el prensado o	al			Cabre	estante				
	conexiones.									
	La manguera carece de flexibilidad.	1			Carr	ileras				
	Se evidencia daños externos severos	l	48		\vdash		ш			<u> </u>
Malo	en el revestimiento: cortes, grietas,	d	The same of	2	Observ	aciones				
iviaio	desgastes.	"		100						
	Presenta liqueo de aceite hidráulico	1			1					
	por el prensado o conexiones	l l								

2.4.6 Implementación de la propuesta #4

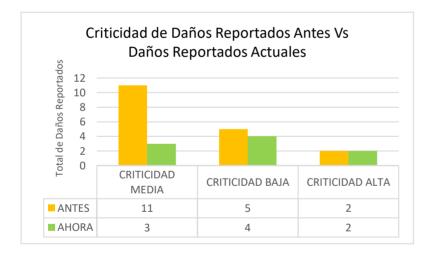
La capacitación se realizó tanto a operadores como ayudantes, esta capacitación fue realizada por el jefe de taller y el líder del proyecto. En esta capacitación se trataron los siguientes temas:

- Manera correcta de realizar las inspecciones diarias en las máquinas.
- Revisión de check list del sistema hidráulico
- Identificación de mangueras en mal estado
- Indicaciones sobre las actividades de mantenimiento preventivo: inspección, limpieza, lubricación.
- Identificación de alarmas en el sistema.

Figura 20

Material entregado para la capacitación

3. Resultados y Análisis


3.1 Matriz de criticidad y planificación de reparaciones

El objetivo principal de implementar esta solución fue iniciar reparaciones que habían sido reportadas meses atrás pero que no se habían tomado acciones para repararlas.

En la Figura 22 se muestra la cantidad de reparaciones pendientes antes de la implementación y la cantidad de reparaciones pendientes actualmente.

Luego de elaborar la matriz de criticidad se fueron programando las reparaciones según la disponibilidad de la máquina y del personal de taller logrando realizar un total de 9 reparaciones entre criticidad media y baja, lo cual se logró un porcentaje de reparación del 50%.

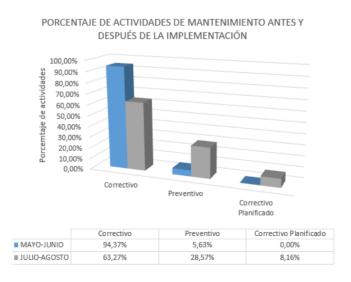
Figura 22Antes y después de daños reportados

Figura 21Porcentaje de Reparaciones realizadas

3.1.1 Beneficios y Control

Lo ideal es no dejar que pase mucho tiempo para realizar la reparación del daño o falla reportada semanalmente por los operadores, al darle pronta solución a estos reportes evitaremos que la máquina presente daños mayores que afecten a su funcionamiento.

Para el control de esta implementación se deberá:


- Revisar semanalmente el reporte de daños realizado por los operadores.
- Mantener actualizada la matriz de criticidad de daños hidráulicos y la base de Excel de actividades correctivas.
- Reunirse semanalmente con gerencia para coordinar y planificar las reparaciones pendientes.

3.2 Plan de mantenimiento preventivo y correctivo del sistema

El objetivo del plan de mantenimiento preventivo y correctivo es que se vayan incrementando actividades preventivas y que las actividades correctivas vayan disminuyendo, para esto se realizó un análisis del promedio de estas actividades antes y después de la implementación, en la Figura 23 se muestra que en los meses de mayo-junio el porcentaje de actividades correctivas era mayor en comparación con los meses de julio-agosto, también se puede observar que actualmente el porcentaje de actividades preventivas es mayor y que se ha establecido el mantenimiento correctivo planificado.

Figura 23

Porcentaje de actividades de mantenimiento

3.2.1 Beneficios y control

Al incrementar actividades preventivas, se puede detectar de manera temprana repuestos, piezas, componentes que ya no están en condiciones óptimas y que requieren planificar su compra y reemplazarlo antes de que este empiece a fallar.

Para el control de esta implementación se deberá seguir los pasos indicados en los LUP

Figura 24

LUP Planificación de actividades correctivas

Figura 25

LUP Planificación de actividades preventivas

3.3 Capacitación e Inspecciones realizadas

Con la capacitación realizada al personal operativo y con la implementación de las inspecciones hidráulicas realizadas por parte de los operadores se logró disminuir los daños hidráulicos, debido a que, en cada inspección realizada se tomaban acciones en caso de encontrar humedad de aceite, mangueras o componentes en mal estado.

Se realizó una comparación con el porcentaje promedio de daños hidráulicos reportados desde mes de abril hasta el mes de junio del 2023 y los meses de julio-agosto que son los meses donde se realizó la implementación. En la Figura 27 podemos observar que el promedio de daños hidráulicos es del 48% y en la Figura 26 podemos observar que actualmente el promedio de daños hidráulicos es del 33%.

Figura 26

Promedio de tipos de daños julio-agosto 2023

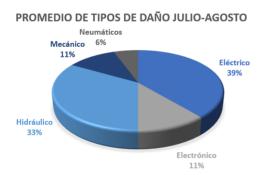



Figura 27

Promedio de tipos de daños abril-junio 2023

3.4 Análisis de la mejora

Se logró disminuir los daños imprevistos presentados en las maquinarias, para poder realizar esta comprobación, debido al factor tiempo, se tomaron datos históricos semanales del número de máquinas que ha presentado daños y se realizó la comparación con datos semanales tomados luego de la implementación, para esto se realizó una prueba de Poisson para evidenciar si ha existido una disminución del número de máquinas dañadas.

A continuación, presentamos la hipótesis para esta prueba estadística:

- Ho: No existe diferencia entre la tasa de daños histórica y la tasa de daños actual
- H1: Existe diferencia entre la tasa de daños histórica y la tasa de daños actual

En la Figura 28 se muestra el resultado obtenido por el programa estadístico, en donde obtenemos un valor p $(0,031) \le p$ (0,05) con este valor podemos concluir que existe suficiente evidencia estadística para rechazar la hipótesis nula e indicar que sí existe una mejoría y ha disminuido el número de máquinas dañadas semanalmente.

Figura 28

Resultados de la Prueba de Poisson

Prueba e IC para tasas de Poisson de dos muestras: HISTORICO; ACTUAL


```
Total de Tasa de
Variable ocurrencias N ocurrencia
HISTORICO 115 52 2,21154
ACTUAL 10 8 1,25000

Diferencia = tasa(HISTORICO) - tasa(ACTUAL)
Estimación de la diferencia: 0,961538
IC de 95% para la diferencia: (0,0876943, 1,83538)
Prueba para la diferencia = 0 vs. ≠ 0: Z = 2,16 Valor p = 0,031
```

En la Figura 29 se muestra el porcentaje promedio de daños mensuales antes y después de la implementación, en donde se observa actualmente un porcentaje de 25% lo que equivale a 5 de 20 máquinas dañadas al mes.

Figura 29

Porcentaje promedio de daños Antes vs Actual

3.5 Plan de control

Una vez realizada las implementaciones, fue necesario elaborar un plan de control el cual se muestra en la Tabla 26, este plan ayudará a asegurar la sostenibilidad de las propuestas. En este plan se indica qué se debe realizar, por qué es necesario hacerlo, con qué frecuencia, etc.

Tabla 26Plan de Control

	Solución #1	Solució	n #2
Solución	Análisis de criticidad y planificación de reparaciones con criticidad media y alta	Elaborar un plan de man correctivo del sistema hidrát	•
¿Qué voy a revisar?	Que se actualice la matriz de criticidad y se vayan realizando las reparaciones que a futuro son de criticidad media y alta	Que se registren los daños presentados y las acciones que se realizaron para repararlo	Que se realicen las actividades preventivas en las frecuencias establecidas
¿Por qué voy a revisar?	Para poder planificar esas reparaciones y disminuir la cantidad de reportes hidráulicos pendientes	Para mantener una base de datos actualizada y poder generar un historial de reparaciones por máquina que permita realizar análisis a futuro	Para mejorar el estado de las piezas o componentes y poder detectar a tiempo cualquier falla
¿Qué Cantidad?	2 veces / día	2 veces / día	Semanal
¿Cuándo lo voy a revisar?	En el transcurso del día	En el transcurso del día	Al inicio del turno
¿Quién lo va a revisar?	mantenga	Coordinador de taller junto al jefe de Taller Revisar que se llene correctamente la base de Excel.	junto al jefe de Taller
¿Cómo puedo revisarlo y controlarlo?	de criticidad y que se encuentre en el tablero informativo.	Realizar semanalmente una reunión con gerencia, para indicar los daños que se han presentado en la semana, y revisar las reparaciones que se tienen pendientes.	preventivas. Revisar disponibilidad de maquinaria y realizar mantenimiento de oportunidad

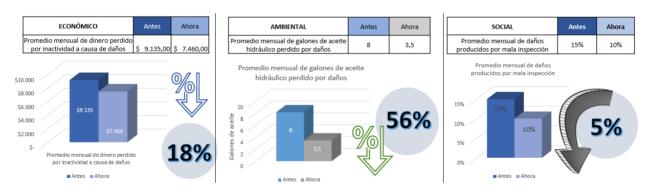
	Solución #3	Solución #4							
Solución	hidráulico	operativo en temas de inspección							
¿Qué voy a revisar?	Que el personal operativo realice la inspección y llene correctamente el check list.								
¿Por qué voy a revisar?	Para detectar de manera temprana si hay humedad de aceite hidráulico o mangueras en mal estado								
¿Qué Cantidad?	1 vez / semana								
¿Cuándo lo voy a revisar?	En el transcurso del día								
¿Quién lo va a revisar?	Coordinador de taller								
¿Cómo puedo revisarlo y controlarlo?	Realizar inspecciones repentinas en las máquinas y verificar que se está llenando el check list. Cuando la máquina ingrese a taller el jefe de taller deberá revisar el último check list realizado y comprobar lo marcado por el operador								

3.6 Análisis de los indicadores de sostenibilidad

En la Figura 30 se muestran los resultados obtenidos de los tres indicadores de sostenibilidad mencionados en el punto 1.2.

3.6.1 Económico

Al implementar las revisiones frecuentes, y las actividades de mantenimiento se logró reducir los daños imprevistos y el tiempo de inactividad. Se logró una reducción del 18% en pérdida de dinero por no tener la máquina disponible para ser alquilada, para esto, se consideró el tiempo en horas que la máquina permaneció inactiva por causa de un daño, los días de inactividad, y el costo de la hora de alquiler, lo que también puede considerarse como pérdida de oportunidad.


3.6.2 *Social*

Con la implementación del check list y la capacitación se logró reducir en un 5% el porcentaje de daños mensuales ocasionados por una mala inspección, lo que se traduce a un incremento en los conocimientos de los trabajadores.

3.6.3 Ambiental

Debido a que se redujo el porcentaje de daños hidráulicos, también se logró una reducción en la cantidad promedio de aceite hidráulico desperdiciado por causa de los daños, antes el promedio de aceite mensual era de 8,5 galones de aceite y actualmente el promedio de aceite desperdiciado es tan solo de 3 galones.

Figura 30Pilares de sostenibilidad

4. Conclusiones y Recomendaciones

4.1 Conclusiones

- Con las mejoras implementadas se logró reducir el porcentaje mensual de máquinas dañadas de un 35% a un 25%, lo que equivale a 5 máquinas por mes.
- Se logró identificar que el 57% de los daños corresponden a las máquinas de tipo:
 Grúas y elevadores telescópicos.
- Se logró identificar la criticidad de los daños hidráulicos reportados y se ejecutaron acciones para reparar el 50% de los daños.
- Con las inspecciones hidráulicas, y el reemplazo progresivo de mangueras se logró reducir el porcentaje de daños hidráulicos.

4.2 Recomendaciones

- Mantener la base de datos de Excel actualizada para poder planificar actividades correctivas y preventivas.
- Verificar la disponibilidad de la maquinaria y del personal de taller para realizar mantenimientos de oportunidad.
- Revisar semanalmente el check list de inspecciones para registrar y coordinar el reemplazo o revisión de alguna pieza o parte.

Referencias

- Asociación Española para la Calidad [AEC]. (2019). *AEC*. Obtenido de https://www.aec.es/web/guest/centro-conocimiento/mantenimiento#:~:text=Mantenimiento%20de%20oportunidad%3A%20que%20es,el%20nuevo%20periodo%20de%20utilizaci%C3%B3n.
- Beltrán Freyre, M., Fuentes Polo, B., & Martínez Ramirez, K. (2014). Definición de un plan de mantenimiento preventivo para los equipos clasificados como criticos e identificación de las fallas mecanicas de mayor impacto en la planta de producción de ITALCOL S.A BARRANQUILLA [Tesis de Pregrado]. Universidad de la Costa, Barranquilla. Obtenido de

https://repositorio.cuc.edu.co/bitstream/handle/11323/4857/DEFINICI%C3%93N%20DE%20UN%20PLAN%20DE%20MANTENIMIENTO%20PREVENTIVO%20PARA%20LOS.pdf?sequence=1&isAllowed=y

- Berardinelli, C. F. (Enero de 2016). *ASQ*. Obtenido de https://asq.org/quality-progress/articles/best-of-back-to-basics-to-dmaic-or-not-to-dmaic?id=5c9c7d86cfd9418090852faa7d0538b7
- CADECO. (27 de Septiembre de 2021). Sistemas hidráulicos en maquinaria pesada [Artículo del blog]. Obtenido de https://blog.cadeco.com.mx/index.php/causas-de-fallas-mas-comunes-en-sistemas-hidraulicos/#:~:text=los%20sistemas%20hidr%C3%A1ulicos.-,%C2%BFQu%C3%A9%20es%20un%20sistema%20hidr%C3%A1ulico%20en%20maquinaria%20pesada%3F,a%20trav%C3%A9s%20de%20fluidos%20pres
- Chávez Medina, J., Luna Fernández, V. G., & Santiesteban López, N. A. (2019). Gestión del mantenimiento mediante Six Sigma para la optimización de la productividad de la

- maquinaria y equipos diversos para una pyme. *Revista de Ingeniería Industrial, 3*(10 17-27), 17-27. Obtenido de chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ecorfan.org/republicofperu/research_journals/Revista_de_Ingenieria_Industrial/vol3num10/Revista_de_Ingenier%C3%ADa_Industrial_V3_N10_2.pdf
- Escalante Vázquez, E. J. (2008). Seis-Sigma: Metodologías y técnicas. México: Limusa.
- Fernández, E. A. (2018). Gestión de Mantenimiento: Lean Maintenance y TPM. [TESIS DE MAESTRÍA]. ESCUELA SUPERIOR DE LA MARINA CIVIL DE GIJÓN, Gijón.
- Gutiérrez Pulido, H., & De la Vara Salazar, R. (2009). *Control Estadístico de Calidad y Seis Sigma* (Vol. Segunda edición). México: McGraw-Hill Companies, Inc. Prolongación Paseo de la Reforma 1015, Torre A Piso 17, Colonia De. doi:978-970-10-6912-7
- Socconini, L. V. (2019). *Lean Six Sigma Green Belt Manual de Certificación* . Barcelona: ICG Marge.

The American Society of Mechanical Engineers. (17 de Diciembre de 2021). ASME. New York.

Apéndices

• Matriz de criticidad de los daños reportados, con su consecuencia a futuro

Máquina	Reporte del daño	Consecuencias a futuro	FF	IO ,	CR	ISAH	Total	Criticidad
GP-03	Cilindro estabilizador trasero derecho se retrae	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	5	9	23	CRITICIDAD MEDIA
GP-03	Fuga de aceite por el cilindro estabilizador trasero izquierdo	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	3	9	21	CRITICIDAD MEDIA
GP-03	Fuga de aceite por válvula de retención del telescópico del boom	Pérdida de presión, lo cual puede ocasionar que el boom se puede retraer de manera repentina	1	9	9	5	23	CRITICIDAD MEDIA
GP-03	Liqueo de aceite en el tambor de la rueda del lado derecho posterior	Daño en el sistema de grupo satelital	3	1	3	1	15	CRITICIDAD MEDIA
GP-03	Liqueo de aceite en el tambor de la rueda del lado izquierdo posterior	Daño en el sistema de grupo satelital	3	1	3	1	15	CRITICIDAD MEDIA
GP-05	Se evidencia presencia de Oxido en cañerías del fluido hidráulico del sistema de estabilización	Si ocurre una fisura, se pierde aceite hidráulico del sistema y se pierden movimientos de estabilización	0	1	9	3	0	CRITICIDAD BAJA
GP-06	Fuga de aceite en el cilindro principal del boom	Se revientan los retenedores, el sistema pierde presión y el boom se retrae completamente	1	10	9	9	28	CRITICIDAD ALTA
GP-06	Liqueo de aceite en los joystick de movimiento	Los joystick pueden tardar al reaccionar a los movimientos	1	3	1	1	5	CRITICIDAD BAJA
GP-06	Fuga de aceite por el cilindro hidráulico del estabilizador delantero derecho	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	3	9	21	CRITICIDAD MEDIA
GP-06	Fuga de aceite por el cilindro hidráulico del estabilizador delantero izquierdo	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	3	9	21	CRITICIDAD MEDIA
GP-06	Liqueo de aceite por debajo del motor	Corre el riesgo de que el convertidor se quede sin aceite y que afecte directamente a la transmisión	1	9	9	3	21	CRITICIDAD MEDIA
GP-07	El Joystick del lado derecho presenta sensibilidad al momento de realizar el descenso del boom	Los joystick pueden tardar al reaccionar a los movimientos	1	3	1	1	5	CRITICIDAD BAJA
GP-07	Humedad de aceite hidráulico por el mando que controla el dromo auxiliar	Los joystick pueden tardar al reaccionar a los movimientos	1	3	1	1	5	CRITICIDAD BAJA
GP-07	Fuga de aceite por el cilindro hidráulico del estabilizador delantero derecho	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	3	9	21	CRITICIDAD MEDIA
GP-07	Fuga de aceite por el cilindro hidráulico del estabilizador delantero izquierdo	La máquina pierde presión y estabilidad lo que puede ocasionar un volcamiento en caso de que se encuentre con carga	1	9	3	9	21	CRITICIDAD MEDIA
GP-08	Liqueo de aceite por el cilindro interno del boom	Se revientan los retenedores, el sistema pierde presión y el boom se retrae completamente	1	9	9	9	27	CRITICIDAD ALTA
EP-01	Humedad de aceite por el cuerpo de válvulas	Pérdida de aceite en el sistema hidráulico, lo cual provoca pérdidad en los movimientos de las maquinarias	1	9	1	3	13	CRITICIDAD MEDIA
EP-07	Fuga de aceite por un filtro hidráulico	Al quedarse sin aceite, disminuye la lubricación y puede producir daños en componentes internos	1	1	1	1	3	CRITICIDAD BAJA

• Ficha de actividades preventivas

ACTIVIDADES PREVENTIVAS

	Actividad	Frecuencia	Frecuencia en Horas de trabajo	Encargados
	Revisar nivel de aceite hidráulico	Diario	8	Operadores
	Revisar nivel de aceite de dirección	Diario	8	Operadores
	Revisar el nivel de refrigerante	Diario	8	Operadores
	Revisar el nivel de aceite en la caja de cambios	Diario	8	Operadores
	Revisar fugas de aceite por los reservorios hidráulicos	Diario	8	Operadores
	Revisar que los reservorios hidráulicos se encuentren bien tapados	Diario	8	Operadores
	Revisar alarmas de presión de aceite del convertidor	Diario	8	Operadores
	Revisar humedad de aceite cilindros hidráulicos	Diario	8	Operadores
	Revisar estado de mangueras hidráulicas externas y acoples	Semanal	50	Operadores
	Revisar flujos de la bomba matriz	Semanal	50	Taller
	Revisar estado de mangueras hidráulicas internas y acoples	Semanal	250	Taller
SISTEMA	Chequeo de válvulas y electroválvulas	Semanal	50	Taller
HIDRÁULICO	Revisión de bobinas hidtáulicas y neumáticas	Mensual	150	Taller
IIIDIAOLICO	Revisar enfriadores y ventiladores del sistema hidráulico	Semanal	50	Taller
	Reemplazar filtros hidráulicos	Bimestral	250	Taller
	Cambiar aceite hidráulico	Bimestral	250	Taller
	Revisar y limpiar válvulas de alivio externas	Trimestral	500	Taller
	Revisar y limpiar válvulas de alivio internas	Trimestral	500	Taller
	Realizar calibración de bombas			
	Bomba matriz	Semestral	1000	Taller
	Bomba de transmisión	Semestral	1000	Taller
	Bomba de suspensión	Semestral	1000	Taller
	Bomba de dirección	Semestral	1000	Taller
	Bomba de estabilizadores	Semestral	1000	Taller
	Revisar cuerpos de válvula	Anual	2000	Taller
	Revisar el nive de aceite del motor	Diario	8	Operadores
	Cambiar aceite del motor y filtro	Bimestral	250	Taller
	Cambiar filtro de combustible	Bimestral	250	Taller
	Purgar separador de agua motor	Semanal	50	Taller
MOTOR	Limpieza del tanque de combustible	Anual	2000	Taller
	Cambiar filtro de aire	Bimestral	250	Taller
	Revisión o reemplazo de la banda de motor	Semestral	1000	Taller
	Revisar fugas de aceite del motor	Diario	8	Operadores
	Revisar alarmas de presión de aceite del motor	Diario	8	Operadores
	Revisar alarmas de temperatura de líquido refrigerante del motor	Diario	8	Operadores
	Revisar alarmas de temperatura de aceite de la transmisión	Diario	8	Operadores
	Revisión del nivel de aceite de la transmisión	Diario	8	Operadores
TRANSMISIÓN	Cambio de aceite de la transmisión	Semestral	1000	Taller
	Inspección de fugas	Semanal	50	Taller
	Reemplazo de filtro de transmisión	Trimestral	500	Taller
	Realizar pruebas para verificar el cambio de marcha	Semanal	50	Operadores
	Mantenimiento de las baterías	Semestral	1000	Taller
	Completar agua destilada			
	Revisar el estado de los bornes			
	Revisar la fecha en la que se debe cambiar la batería		70	m 11
	Revisión de luces	Semanal	50	Taller
	Licuadoras			
SISTEMA	Luces delanteras y traseras			
ELÉCTRICO	Luces de parqueo y direccionales			-
	Luces de la cabina inferior y superior			
	Luces del tablero	G 1	1000	TP - 11
	Revisión de componentes	Semestral	1000	Taller
	Mantenimiento de motor de arranque			
	Mantenimiento al alternador	D:	250	T. "
	Revisar el funcionamiento de sensores	Bimestral	250	Taller
	Revisar condiciones del cableado			