Faculty of Maritime Engineering and Marine Sciences

Ship Vibrations

Second Evaluation

January 30th, 2020

Student:

1.- Deduce the equations of motion of a rigid bar in the plane, with uniformly distributed mass m, length L, and suspended through two springs from the ceiling, as shown in the figure. The support has a harmonic pure vertical motion $v(t) = V \exp(i\omega t - \beta)$. (25)

2.- Consider the simplified model of a ship propulsion system, which includes an engine, a reduction gear, shaft, and propeller. Due to the high stiffness of the crankshaft, the model of the engine is a single disk. Diameter of the pinion is 15cm, and its mass polar moment of inertia is 0.25kg m², and, reduction gear ratio of 2.5:1, as shown in the figure:

In the following table it has been calculated the forced response, considering the reduction gear, for a frequency 20rad/sec. If the amplitude of the exciting torque generated by the propeller is 24500N-m, calculate the amplitude of the contact force between pinion and gear teeth for that frequency. (30)

Holzer Forced												
ω:	20	1/s										
j	J_{j}	C_{j}	$\boldsymbol{\theta}_{j}$ Real	$\boldsymbol{\theta}_j$ Imag	$(-J \omega^2 + i \omega C) \theta_j R$	$(-J \omega^2 + i \omega C) \theta_j I$	S Real	Σ Imag	K	G	Σ/(K+i ω G) R	Σ/(K+i ω G) I
	kg m s ²	kg m s			kg-m	kg-m	kg-m	kg-m	kg -m			
1	2.00	0	-0.0102	-0.0293	8.13	23.42	8.1	23.4	159345	0	5.10E-05	1.47E-04
2	0.07	0	-0.0102	-0.0294	0.30	0.85	8.4	24.3	4249	0	1.98E-03	5.71E-03
3	20.32	1270.3	-0.0122	-0.0351	991.58	-24.27	1000.0	0.0				

3.- Explain in Spanish, in no more than 4 lines:**a.-** What is entrained water? (10)

b.- What is the origin of the vibratory forces generated by a ship propeller? (10)

4.- Free vibration of a prismatic beam of length *L* with left end clamped and the other as SS is to be analyzed. One of principal values has been estimated as $(\beta_i L) = 7.06858$. Plot the corresponding mode shape, and explain what is its mode number. (25)

Jrml/2019-20

I certify that during this exam I have complied with the Code of ethics of our university.

.....