

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

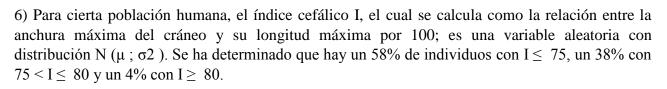
AÑO:	2016	PERIODO:	PRIMER TÈRMINO		
MATERIA:	ESTADÍSTICA	PROFESORES:			
EVALUACIÓN:	PRIMERA	FECHA:	30/06/2016		

COMPROMISO DE HONOR							
Yo,							
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".							
Firma	NÚMERO DE MATRÍCULA:PARALELO:						

1.- Durante un curso nivelatorio para bachilleres, se tomó una prueba piloto a 141 de ellos y aprobaron la misma 85 de ellos, que se distribuyen por género y aprobación como se muestra en la siguiente tabla.

	Masculino	Femenino
Aprueba	51	34
No aprueba	27	29

- a)¿Cuál es la probabilidad que una estudiante apruebe y sea mujer?
- b)¿Cuál es la probabilidad de que apruebe dado que es hombre?
- c)¿Puede afirmarse que el género del bachiller no influye en el resultado?


2. Un doctor dispone de tres equipos electrónicos para realizar ecosonogramas. El uso que le da a cada
equipo es de 25% al primero, 35% el segundo y 40% el tercero. Se sabe que los aparatos tienen
probabilidades de error de 1%, 2% y 3% respectivamente. Un paciente busca el resultado de una
ecografía y observa que tiene un error. Determine la probabilidad de que se ha usado el primer aparato.

3. Las alturas de los jugadores de un equipo de básquet están dadas según la siguiente tabla:

Altura	[1.70,1.75)	[1.75,1.80)	[1.80,1.85)	[1.85,1.90)	[1.90,1.95)	[1.95,2.00)
No. De	1	3	4	8	5	2
jugadores						

Determine la altura promedio del equipo y la mediana, además interprete los resultados.

4. Un representante de ventas debe visitar seis ciudades durante un viaje. Si hay diez ciudades en el área geográfica que va a visitar, de las cuales seis son mercados primarios para el producto en cuestión, mientras que las otras cuatro son mercados secundarios. Si el vendedor elige al azar las seis ciudades que va a visitar, ¿cuál es la probabilidad de que todas las ciudades visitadas por el vendedor sean del mercado primario?
5. Un individuo lanza un dardo a una diana. La distancia (d) entre el punto central de la diana y el punto obtenido en el lanzamiento del dardo se distribuye como una exponencial con media 10. Si el individuo consigue la puntuación máxima cuando la distancia d es menor que 8.
a)Calcular la probabilidad de que en 50 lanzamientos obtenga la puntuación máxima al menos una vez
b)Calcular la probabilidad de que obtenga la primera puntuación máxima en el segundo lanzamiento
c)Calcular la probabilidad de que se necesiten 10 lanzamientos para obtener tres puntuaciones máximas
d)Calcular el número medio de lanzamientos para obtener tres puntuaciones máximas

Con esta información:

- a) Determine los parámetros de la distribución de I
- b) Calcule P $(78 \le I \le 82)$

TABLA DISTRIBUCIÓN NORMAL ESTÁNDAR ACUMULADA

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Probabilidad Total

$$P(E_1|A) = \frac{P(A|E_1)P(E_1)}{P(A)}$$

Teorema de Bayes

$$P(A) = \sum_{i=1}^{k} P(A|E_i)P(E_i)$$

Variable Aleatoria Gamma

 $f(x,\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, & \text{para } x > 0; \alpha, \beta > 0; \\ 0, & \text{de otra manera.} \end{cases}$

Función de probabilidades Binomial

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}; x \in S \land S = \{0,1,2,3,...n\}$$

Función de probabilidades Hipergeométrica

$$f(x) = \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}} para toda \ x \in S , siendo \ S = \{0,1,2,3,...k\} \ con \ k = \min\{a,n\}$$

Función de probabilidades Binomial Negativa

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}; siendo S = \{r, r+1, \dots\}$$