ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Diseño de ingenierías de una vivienda de 2 pisos en Ciudad Celeste con automatización de instalaciones empleando la metodología BIM

INGE-2276

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Civil

Presentado por:
Luis Ángel Fuel Sandoval
Doménica Mayela Tobar Piedra

GUAYAQUIL - ECUADOR II PAO 2023

DEDICATORIA

Esta tesis va dedicada especialmente a Dios que siempre me ha bendecido y a usted mamá, por todo su apoyo y esfuerzo en toda mi vida para que pueda superarme y ser un profesional. A mi tío Stalin, por ser mi guía en todo este proceso. A mi papá por apoyarme, a mi familia, padrinos, a Geovanny y Cristhian por guiarme desde que era un niño, a mi novia Keyla por siempre estar conmigo en los momentos difíciles dándome su apoyo, y a mis amigos Lissa y Jean Frank por brindarme su amistad y estar siempre para mí en todo lo que necesite.

Al Ing. David Valverde por ayudarme cualquier duda que tenía y a nuestro tutor, el Ing. Rafael Cabrera por todo su apoyo en este proceso.

AGRADECIMIENTOS

Mi más sincero agradecimiento va hacia Dios, nuestros padres, por apoyarnos siempre y nuestros amigos, especialmente a Juan Carlos por todas esas videollamadas en WhatsApp trabajando en la tesis y ayudándonos el uno al otros. A mis futuros colegas de Policonstrucciones: Marlene, por enseñarme el significado del trabajo duro y esfuerzo, Grace por enseñarme a nunca rendirme y seguir adelante, Patty por por motivarme a ser la mejor versión de mí misma, Hugo por enseñarme la lección de no juzgar a una libro por su portada ni por su participación en grupo en Análisis Estructural, Jean por enseñarme el significado verdadero de la amistad y darme lecciones de la carrera por medio de notas de voz, Jhon por enseñarme a sonreír a pesar de las dificultadas, y Tomas por

enseñarme a ver las cosas más allá que la sombra . A nuestro tutor, el Ing. Rafael Cabera por habernos soportado durante estos 4 meses y por ser el mejor tutor de tesis que cualquier alumno pudiese tener. Finalmente, al café por habernos mantenido despiertos todas esas madrugadas que nos desvelamos.

Declaración Expresa

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *Luis Ángel Fuel Sandoval y Doménica Mayela Tobar Piedra* damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Domenica Tobar

Doménica Mayela Tobar Piedra A

Luis Ángel Fuel Sandoval

EVALUADORES

Nombre del Profesor

MSc. Ingrid Orta

PRESENTATION OF THE PROPERTY O

Nombre del Profesor

MSc. Rafael Cabrera

RESUMEN

El presente proyecto se aborda la introducción de nuevas metodologías de diseño e implementación como la metodología BIM para la construcción y la domótica para la gestión de recursos de forma eficiente. Se proponen estos modelos para el diseño de una vivienda unifamiliar que permite reducir gastos y costos, así brindando una mejor experiencia a los usuarios en los hogares, además de tener beneficios como el aumento de la productividad y el mejor uso de los recursos. Una vez elegidos los sistemas para cada ingeniería, se realizó el diseño estructural, hidrosanitario y eléctrico de la vivienda aplicando la metodología BIM usando el software de Autodesk REVIT. Se automatizaron aparatos y equipos electrónicos mediante el uso de "Alexa" como centro de control y "Wifi" como el medio de transmisión entre sistemas. Los diseños se basaron según los códigos establecidos en la Normativa Ecuatoriana de la Construcción para estructuras e instalaciones eléctricas, y la Norma Hidrosanitaria NHE del agua. Se utilizo el software de Navisworks Manager para la elaboración del cronograma, con lo que se concluye que el uso de BIM dentro de cualquier proyecto ingenieril es imprescindible por todos los beneficios que provee para ejecución eficiente de un proyecto.

Palabras Clave: Metodología BIM, Domótica, Diseño ingenieril, Instalaciones hidrosanitarias, Estructura metálica.

ABSTRACT

This project addresses the introduction of new design and implementation methodologies such as the BIM methodology for construction and home automation for efficient resource management. These models are proposed for the design of a single-family home that allows reducing expenses and costs, thus providing a better experience to users in their homes, in addition to having benefits such as increased productivity and better use of resources. Once the systems for each engineering were chosen, the structural, hydrosanitary and electrical design of the home was carried out applying the BIM methodology using the Autodesk REVIT software. Electronic devices and equipment were automated using "Alexa" as a control center and "WiFi" as the means of transmission between systems. The designs were based on the codes established in the Ecuadorian Construction Regulations for structures and electrical installations, and the NHE Hydrosanitary Standard Code for water. The Navisworks Manager software was used to prepare the schedule, and it was found out that the use of BIM within any engineering project is essential due to all the benefits it provides for the efficient execution of a project.

Keywords: BIM methodology, home automation, engineering design, hydro-sanitary installations, teel structure.

ÍNDICE GENERAL

EVALU	ADORES	VI
RESUN	MEN	VII
ABSTF	RACT	VIII
ÍNDICE	E GENERAL	IX
ABREV	/IATURAS	XIX
SIMBO	LOGÍA	XX
ÍNDICE	DE FIGURAS	XXII
ÍNDICE	DE TABLAS	XXVII
ÍNDICE	DE PLANOS	XXIX
CAPÍTI	JLO 1	1
1.1	Antecedentes	1
1.2	Presentación general del problema	2
1.3	Justificación del problema	3
1.4	Objetivos	4
CAPÍTI	JLO 2	6
2.1	Revisión de literatura	6
2.1	.1 Materiales de construcción	6
2.1	.2 Sismicidad	7
2.1	.3 Building Information Modeling (BIM)	9
2.1	.4 Distribución de la red de agua potable (AAPP)	12
2.1	.5 Sistema de drenaje de aguas servidas (AASS)	14
2.1	.6 Sistema de drenaje de aguas Iluvias (AALL)	16
2.1	.7 Instalaciones Eléctricas	16
2.1	.8 Instalaciones Domóticas	17
2.2	Área de estudio	20
2.2	.1 Ubicación	20

	2.2.2	Alcance	21
	2.2.3	Trabajo de campo y laboratorio	21
	2.2.4	Inspección geotécnica	22
	2.2.5	Inspección hidrosanitaria	22
	2.2.6	Inspección eléctrica	23
	2.3 A	nálisis de datos	23
	2.3.1	Diseño Arquitectónico	23
	2.3.2	Estudio Geotécnico	24
	2.4 A	nálisis de alternativas	28
	2.4.1	Tabla de valoración	28
	2.4.2	Escala de Likert	28
	2.4.3	Planteamiento de alternativas	29
	2.4.3.1	Sistema Estructural	29
	2.4.3.2	Sistema de distribución de agua potable	34
	2.4.3.3	Conectividad del sistema inalámbrico de automatización	38
CA	PÍTULO	3	42
	3.1	Diseño arquitectónico	42
	3.2	Diseño Estructural	42
	3.2.1	Propiedades de los materiales	42
	3.2.2	Estimación de cargas	43
	3.2.3	Carga muerta	43
	3.2.4	Carga Viva	45
	3.2.5	Cargas totales	45
	3.2.6	Combinaciones de carga	46
	3.2.7	Evaluación de perfiles estructurales	46
	3.2.8	Evaluación de perfiles estructurales a compresión	47
	3.2.9	Predimensionamiento	48

3.2.9.1	Predimensionamiento de vigas secundarias	49
3.2.9.2	Predimensionamiento de vigas principales	53
3.2.9.3	Predimensionamiento de columnas	56
3.2.10	Modelamiento de la estructura en el software	57
3.2.11	Ingreso de los materiales	58
3.2.12	Ingreso de los perfiles de vigas, columnas y secciones de losa	59
3.2.13	Asignación de diafragmas rígidos	61
3.2.14	Asignación de cargas	63
3.2.15	Patrones de carga	64
3.2.16	Análisis estático lineal	65
3.2.16.1	Espectro elástico e inelástico de aceleraciones	66
3.2.16.2	Periodo fundamental de la estructura	71
3.2.16.3	Masa sísmica	72
3.2.16.4	Combinaciones de carga en el software	73
3.2.16.5	Periodo fundamental de la estructura (Método 2)	73
3.2.16.6	Cortante basal	74
3.2.17	Deriva admisible	76
3.2.18	Índice de estabilidad	78
3.3 Dis	eño estructural definitivo	79
3.3.1	Diseño de vigas	79
3.3.2	Diseño de columnas	83
3.3.3	Diseño de pernos de anclaje y placa base	87
3.4 Dis	eño de conexiones soldadas	91
3.4.1 C	Conexiones soldadas a momento (columna-viga)	93
3.4.2 C	Conexiones soldadas a corte (viga-viga)	95
3.5 Dis	seño de cimentaciones	96
3.5.1 C	Capacidad de carga última (qult)	97

3.5.2	Esfuerzo de contacto (qcontacto)	103		
3.5.3	Dimensiones de la zapata.	104		
3.5.4	Asentamientos	106		
3.5.5	Armadura de la zapata	110		
3.6 D	Diseño de instalaciones de AAPP	111		
3.6.1	Criterios de Diseño	111		
3.6.1.1	Caudal en tuberías de agua fría	111		
3.6.1.2	Caudal en tuberías de agua caliente	112		
3.6.1.3	Diámetro	112		
3.6.1.4	Presión	112		
3.6.1.5	Velocidad	112		
3.6.2	Depósito de almacenamiento	112		
3.6.3	Diseño de la Cisterna	113		
3.6.3.1	Demanda de Agua	113		
3.6.4	Volumen de almacenamiento	114		
3.6.5	Dimensiones	115		
3.6.6 Ubicación de la cisterna 11				
3.6.7	Características de la cisterna	117		
3.7 L	íneas de distribución de agua	118		
3.7.1	Prediseño	118		
3.7.2	Estimación de caudales	118		
3.7.2.1	Definición de Tramos	118		
3.7.2.2	Identificación de aparatos sanitarios en cada tramo y ca	udales		
instantá	áneos	120		
3.7.2.3	Caudal Máximo Probable	120		
3.7.2.4	Coeficiente de Simultaneidad	120		
3.7.2.5	Velocidad	121		

3.7.3 L	Dimensionamiento	123
3.7.3.1	Identificación de aparato critico	123
3.7.3.2	Separación de tramos	124
3.7.3.3	Presión recomendada del aparato critico	124
3.7.3.4	Unidades del aparato critico	124
3.7.3.5	Unidades de los demás tramos	125
3.7.3.6	Tablas de Flamant	125
3.7.3.7	Coeficiente de Fricción de accesorios	126
3.7.3.8	Método de las longitudes equivalentes	127
3.7.3.9	Cálculo de longitudes	127
3.7.3.10	Pérdida Total	128
3.7.3.11	Pérdida por fricción	129
3.7.3.12	Presión	129
3.8 Ele	ección de Bomba	130
3.8.1 F	Presión	130
3.8.2	Caudal	130
3.9 Dis	seño de instalaciones de aguas servida	131
3.9.1 L	Jbicación de bajantes y colectores	131
3.9.2 lo	dentificación de aparatos sanitarios y unidades de descarga	131
3.10 E	Diseño de bajante	132
3.10.1	Número máximo de unidades de descarga por bajante	132
3.10.2	Caudal	133
3.10.3	Resultados	135
3.10.4	Diseño de colectores	135
3.10.4.1	Separación por ramales	135
3.10.4.2	Unidades descargas del colector	135
3.10.4.3	Pendiente del ramal	136

3.10.4.4	Longitud del colector	136
3.10.4.5	Caudal del colector	136
3.10.4.6	Caudal y velocidad de diseño	137
3.10.4.7	Q/Qo	138
3.10.4.8	Tirante de diseño y velocidad	138
3.10.4.9	Cotas	140
3.10.4.10	Resultados	140
3.10.5	Ventilación	141
3.10.5.1	Diámetro mínimo de ventilación	141
3.11	Diseño de instalaciones de agua lluvia	142
3.11.1	Criterios de diseño	142
3.11.2	Identificación del recorrido del agua según los niveles.	142
3.11.3	Intensidad de Iluvia	143
3.11.4	Diseño de bajante	143
3.11.4.1	Áreas propias y acumuladas	143
3.11.4.2	Área servida y diámetro de la bajante	144
3.11.4.3	Caudal	144
3.11.4.4	Resultados	145
3.11.5	Diseño de colectores	145
3.11.5.1	Caudal	145
3.11.5.2	Área servida, pendiente y diámetro	145
3.11.5.3	Caudal y velocidad de diseño	146
3.11.5.4	Q/Qo	146
3.11.5.5	Tirante de diseño y velocidad	147
3.11.6	Resultados	150
3.12	Diseño de instalaciones eléctricas	150
3.12.1	Estimación de demanda eléctrica	150

3.12.1.1	Mínimo número de circuitos	151
3.12.1.2	Cargas	152
3.12.1.3	Tomacorrientes y luminarias	152
3.12.1.4	Cargas Especiales	152
3.12.1.5	Circuitos	152
3.12.1.6	Circuitos de Iluminación	153
3.12.1.7	Circuitos de tomacorrientes	153
3.12.1.8	Potencial Total	154
3.12.1.9	Fase	155
3.12.1.10	Potencia	155
3.12.1.11	Corriente	155
3.12.1.12	Corriente Aparente	155
3.12.1.13	Selección del Cable	156
3.12.1.14	Selección del diámetro del conducto	157
3.12.2	Dimensionamiento de los tableros de distribución	158
3.12.2.1	Potencia de las fases	158
3.12.2.2	Corriente	159
3.12.3	Dimensionamiento del medidor	159
3.12.3.1	Potencia	159
3.12.3.2	Corriente	159
3.12.3.3	Resultados	160
3.13 D	omótica	160
3.14 E	specificaciones técnicas	163
3.14.1	Estructura metálica y hormigón armado	163
3.14.2	Limpieza interna de escombros	163
3.14.3	Trazado y replanteo	164
3.14.4	Excavación con maquinaria para cimentación	165

3.14.5	Relleno compactado con material de mejoramiento H= 1 m	166
3.14.6	Relleno compactado con material de sitio	167
3.14.7	Limpieza y desalojo del material excavado	168
3.14.8 C/150MN	Placa colaborante (Steel deck = 0.75 mm) y malla electrosoldada Ø5 // 169	.5MM
3.14.9	Suministro, fabricación y montaje de acero estructural ASTM A36	169
3.14.10	Instalaciones hidrosanitarias	171
3.14.11	Puntos de Agua Fria	171
3.14.12	Tubería de ½" PVC Roscable (Agua Fria)	173
3.14.13	Llave de Jardín	175
3.14.14	Puntos de desagüe	175
3.14.15	Bajantes de aguas servidas PVC 110 mm	176
3.14.16	Rejillas de piso	177
3.14.17	Suministro e Instalación de Lavamanos completo (para empotrar,	línea
hogar, tip	oo Elea Oval)	178
3.14.18 escurrido	Suministro e Instalación de Fregaderos uno. de cocina (1 pozo or) (Incluye grifería y herrajes)	con 179
3.14.19	Tubería de 3" PVC	181
3.14.20	Suministro e instalación de calefón	182
3.14.21	Puntos de ventilación	183
3.14.22	Cajas de registro	184
3.14.23	Instalaciones Eléctricas	185
3.14.24	Suministro e instalacion de tablero de distribución eléctrica 2 POLO	10-32
AMPS S	QUARE D	186
3.14.25	Tablero de distribución principal	187
3.14.26	Varilla COOPERWELD 5/8" X 6'(PUESTA A TIERRA)	187
3.14.27	PUNTOS DE ILUMINACION 110 V	188
3.14.28	PUNTOS DE TOMACORRIENTE 110 V.	189

	3.14.2	29	Puntos de tomacorriente 220 v	191
	3.14.3	30	PORTERO ELECTRICO	192
	3.14.3	31	CAMARA DE SEGURIDAD	193
	3.14.3	32	Suministro de instalación de luminarias de ojos de buey	194
	3.14.3 ajusta		Suministro de instalación de luminarias de led de pared up & down An 195	gulo
	3.14.3	34	Suministro e instalación de piezas de tomacorrientes	196
	3.14.3	35	Suministro e instalación de interruptores	197
	3.14.3	36	Colocación de tubería electrica awg 3x2*1x4*1x5	198
	3.14.3	37	Salidas de antenas tv	199
CA	PÍTUL	0 4		201
	4.1	Obj	ietivos	201
	4.2	Lín	ea base ambiental	203
	4.2.1	M	Medio físico	203
	4.2.2	M	Medio biótico	204
	4.2.3	M	Medio socioeconómico	206
	4.3	Act	ividades del proyecto	207
	4.3.1	Н	lormigón	207
	4.3.2	Α	cero	209
	4.4	Ide	ntificación de impactos ambientales	211
	4.5	Val	oración de impactos ambientales	212
	4.5.1	M	létodos para valorar el impacto ambiental	212
	4.5.2	M	latriz de Leopold	214
	4.5.3	lr	nterpretación de resultados	216
	4.6	Me	didas de prevención/mitigación,	216
	4.6.1	Α	ctividades durante la fase de construcción	217
\cap	PÍTIII	0.5		210

5	.1	Estructura Desglosada del trabajo	219
5	.2	Rubros y análisis de precios unitarios (fusión)	220
5	.3	Descripción de cantidades de obra	220
5	.4	Valoración integral del costo del proyecto	228
5	.5	Colisiones del modelado y cronograma de obra	229
CA	PÍTU	JLO 6	231
6	.1	Conclusiones	231
6	.2	Recomendaciones	233
PLANOS Y ANEXOS			239
	CA	LCULOS: DISEÑO ESTRUCTURAL	239
	AN	ÁLISIS DE PRECIOS UNITARIOS (APUS)	249
	RE	SULTADOS: INSTALACIONES ELECTRICAS	302
	CR	ONOGRAMA DE OBRA	305
	PL	ANOS	309

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

BIM Building Information Modelling

NEC Norma Ecuatoriana de la Construcción

NEC-SE-CG Cargas (No Sismicas)

NEC-SE-DS Peligro Sísmico, Diseño sismoresistente

AISC American Institute of Steel Construction

NEC-SE-GC Geotecnia y Cimentaciones

NEC-SE-AC Estructuras de Acero

NHE Norma Hidrosanitaria NHE Agua

NEC-HS-EE Eficiencia Energética en Edificaciones Residenciales

NEC-SB-IE Instalaciones Eléctricas

SIMBOLOGÍA

m Metro

ml Metros lineales

mm Milímetro
Ton Toneladas

Fy Esfuerzo de fluencia del acero

Kg Kilogramo

Mu Momento último
Mn Momento nominal
m2 metro cuadrado

m3 metro cúbico

kg/cm2 Kilogramo por centímetro cuadradokgf/m2 kilogramo fuerza por metro cuadradokgf/m3 kilogramo fuerza por metro cúbico

Ton/m2 Tonelada por metro cuadrado

Ton/m3 Tonelada por metro cúbico

T Periodo de vibración

Es Módulo de elasticidad del acero

A Área

Ix Inercia en X
Iy Inercia en Y

Zx Módulo elástico en X
Zy Módulo elástico en Y

d Peralte efectivo de la viga

bf Ancho del patín

h Altura de la sección

tf Grosor del patín tw Grosor del alma

pulg Pulgada
ptos Puntos
u Unidad
V Voltaje
W Power

A Amperio

AWG American Wire Gauge

m.c.a Metros columna de agua

UD Unidades de descarga

ÍNDICE DE FIGURAS

Figura 2.1	7
Figura 2.2	8
Figura 2.3	9
Figura 2.4	11
Figura 2.5	13
Figura 2.6	14
Figura 2.7	15
Figura 2.8	17
Figura 2.9	19
Figura 2.10	20
Figura 2.11	22
Figura 2.12	22
Figura 2.13	24
Figura 2.14	24
Figura 2.15	25
Figura 2.16	25
Figura 2.17	26
Figura 2.18	31
Figura 2.19	35
Figura 3.1	42
Figura 3.1	44
Figura 3.2	47
Figura 3.3	49
Figura 3.4	50
Figura 3.5	51
Figura 3.6	52
Figura 3.7	54
Figura 3.8	55
Figura 3.9	57
Figura 3.10	58
Figura 3.11	58
Figura 3.12	59

Figura 3.13	59
Figura 3.14	60
Figura 3.15	60
Figura 3.16	60
Figura 3.17	61
Figura 3.18	61
Figura 3.19	62
Figura 3.20	62
Figura 3.21	63
Figura 3.22	63
Figura 3.23	64
Figura 3.24	64
Figura 3.25	65
Figura 3.26	65
Figura 3.27	66
Figura 3.28	66
Figura 3.29	67
Figura 3.30	68
Figura 3.31	68
Figura 3.32	69
Figura 3.33	69
Figura 3.34	71
Figura 3.35	72
Figura 3.36	72
Figura 3.37	73
Figura 3.38	73
Figura 3.39	74
Figura 3.40	74
Figura 3.41	75
Figura 3.42	75
Figura 3.43	76
Figura 3.44	77
Figura 3.45	77
Figura 3.46	78

Figura 3.47	81
Figura 3.48	82
Figura 3.49	84
Figura 3.50	84
Figura 3.51	88
Figura 3.52	88
Figura 3.53	92
Figura 3.54	96
Figura 3.55	97
Figura 3.56	98
Figura 3.57	99
Figura 3.58	101
Figura 3.59	103
Figura 3.60	106
Figura 3.61	107
Figura 3.62	108
Figura 3.63	114
Figura 3.64	116
Figura 3.65	116
Figura 3.66	116
Figura 3.67	118
Figura 3.68	119
Figura 3.69	124
Figura 3.70	125
Figura 3.71	126
Figura 3.72	128
Figura 3.73	130
Figura 3.74	132
Figura 3.75	133
Figura 3.76	133
Figura 3.77	136
Figura 3.78	136
Figura 3.79	137
Figura 3.80	138

Figura 3.81	141
Figura 3.82	142
Figura 3.83	144
Figura 3.84	146
Figura 3.85	147
Figura 3.86	148
Figura 3.87	149
Figura 3.88	151
Figura 3.89	152
Figura 3.90	153
Figura 3.91	154
Figura 3.92	157
Figura 3.93	158
Figura 3.94	160
Figura 4.1	202
Figura 4.2	205
Figura 4.3	207
Figura 4.4	215
Figura 4.5	216
Figura 5.1	221
Figura 5.2	221
Figura 5.3	222
Figura 5.4	224
Figura 5.5	224
Figura 5.6	224
Figura 5.7	225
Figura 5.8	225
Figura 5.9	225
Figura 5.10	227
Figura 5.11	228
Figura 5.12	228
Figura 5.13	228
Figura 5.13	229
Figura 5.12	230

Figura 5.13	230
i igura 5. 15	250

ÍNDICE DE TABLAS

Tabla 2.1	10
Tabla 2.2	18
Tabla 2.3	20
Tabla 2.4	23
Tabla 2.5	26
Tabla 2.6	27
Tabla 2.7	27
Tabla 2.8	28
Tabla 2.9	33
Tabla 2.10	33
Tabla 2.11	36
Tabla 2.12	37
Tabla 2.13	40
Tabla 2.14	41
Tabla 3.1	43
Tabla 3.2	45
Tabla 3.3	45
Tabla 3.4	46
Tabla 3.5	47
Tabla 3.6	47
Tabla 3.7	67
Tabla 3.8	70
Tabla 3.9	70
Tabla 3.10	75
Tabla 3.11	77
Tabla 3.12	78
Tabla 3.13	79
Tabla 3.14	79
Tabla 3.15	87
Tabla 3.16	89
Tabla 3.17	92
Tabla 3.18	93

Tabla 3.19	94
Tabla 3.20	95
Tabla 3.21	100
Tabla 3.22	102
Tabla 3.23	103
Tabla 3.24	105
Tabla 3.25	111
Tabla 3.26	117
Tabla 3.27	120
Tabla 3.28	122
Tabla 3.29	123
Tabla 3.30	126
Tabla 3.31	129
Tabla 3.32	129
Tabla 3.33	132
Tabla 3.34	135
Tabla 3.35	140
Tabla 3.36	143
Tabla 3.37	145
Tabla 3.38	150
Tabla 3.39	161
Tabla 4.1	210
Tabla 4.2	211
Tabla 4.3	213
Tabla 4.4	214
Tabla 4.5	217
Tabla 4.6	217
Tabla 4.7	217
Table 5.1	210

ÍNDICE DE PLANOS

PLANO 1	Cimentaciones, placa base, dados y columnas
PLANO 2	Vigas, losa y vigas de cubierta
PLANO 3	Elevaciones de piso y soldadura
PLANO 4	Sistema de abastecimiento de agua potable
PLANO 5	Sistema de drenaje de aguas servidas
PLANO 6	Sistema de drenaje de aguas Iluvias
PLANO 7	Instalaciones Eléctricas
PLANO 8	Instalaciones Domóticas

CAPÍTULO 1

1. INTRODUCCIÓN

1.1 Antecedentes

A lo largo de los años, el desarrollo de la tecnología ha dado grandes pasos para simplificar las tareas de la población actual. También, la adopción de tecnologías domésticas modernas ha impactado la forma de vivir de la gente, introduciendo la idea de transformar los hogares de las personas, que va desde la fase de construcción por todos los beneficios y facilidades que provee. Esto ha dado nacimiento a nuevas metodologías de gestión e implementación como son: la metodología BIM para la construcción y la domótica para la gestión eficiente de viviendas.

Las instalaciones domóticas consisten en un sistema que automatiza y controla los dispositivos, a través de la conectividad y comunicación entre los mismos ofreciendo al usuario una mejor calidad de vida en el hogar. Buscando fomentar la integración de aplicaciones domesticas mediante la gestión inteligente de recursos que involucran aspectos de seguridad, bienestar, comodidad en beneficio a los habitantes de la vivienda. (Pacheco, 2012).

Estas nuevas tendencias tecnológicas, como el BIM, han revolucionado el sector de la construcción ya que permiten una mejor administración y control de datos de un proyecto (Primicias, 2023). La implementación de dichas metodologías abre paso a la transformación digital de la industria, promoviendo la adopción de soluciones sostenibles en el diseño de infraestructuras inteligentes, encaminadas a la optimización de la gestión de procesos.

En Ecuador, una de las mayores prioridades actuales en la vida de sus habitantes es la seguridad y la tranquilidad, puesto que los niveles de violencia en el país han alcanzado cifras históricas. (Mella, 2023). Debido a esto, la población está en constante búsqueda de zonas más seguras para vivir: una de ellas es Samborondón. De acuerdo con (Belencervantes, 2023), este cantón de 100.000 habitantes ha sido proclamado por un ranking de impactos de seguridad, como la ciudad más segura de la zona 8, ya que no tiene ni el 2% de los delitos cometidos en este perímetro. Samborondón es reconocido por sus urbanizaciones privadas y sitios seguros, que proveen un estilo de vida exclusivo y lujoso a sus habitantes, las cuales cuentan con accesos controlados y vigilancia privada las 24 horas garantizando la tranquilidad de sus residentes y limitando el acceso a personas no autorizadas. Por estas razones y más, Samborondón se convierta en una de las opciones más ideales para aquellos que buscan residir en entorno tranquilo y protegido (Embarquemos, 2023).

1.2 Presentación general del problema

Una prioridad en esta nueva era de la construcción es la búsqueda de sistemas innovadores y eficientes que reduzcan el consumo energético en las instalaciones, que permitan alcanzar una correcta gestión de gastos y costos, y que brinden un mayor nivel de seguridad y confort a los ocupantes de las viviendas.

Una de las constantes preocupaciones de los ecuatorianos es el alto consumo de agua y electricidad en las edificaciones, por lo que es imprescindible proponer nuevos modelos que permitan diseñar viviendas alineadas a las necesidades de los usuarios. Asimismo, es necesario adoptar nuevos sistemas que permitan mejorar la experiencia de los usuarios en los hogares y brinden beneficios a través de sus características como el aumento de la productividad, el mejor uso de los recursos, etc.

Por otro lado, existen varios inconvenientes que predominan en los sistemas tradicionales: altos periodos de tiempo de planificación, demoras en la ejecución, mantenimiento y remodelación de una edificación, etc. (Salvatierra, 2017) Por este motivo, existe una necesidad en adoptar metodologías que permitan a los clientes optimizar tiempo y costos en todos estos procesos, y que a su vez resulten ser buenas inversiones a largo plazo.

El propósito de este trabajo es proponer el diseño de las ingenierías de una vivienda, ubicada en el cantón Samborondón que reúna todas estas características de un diseño que sea sostenible y eficiente, bajo la necesidad de nuestro cliente de invertir en la mejora de la calidad de su vida y la de su familia.

1.3 Justificación del problema

La domótica es un sistema innovador que ofrece diversas ventajas en el campo del hogar y en el día a día. Según (Ruano, 2020, p. 1) Las casas inteligentes son más seguras y garantizan la comodidad de los propietarios debido a que cuentan con múltiples funciones como: el control a distancia de distintos elementos, incluyendo cámaras de seguridad para robos o accidentes domésticos, además que permite tener una comunicación eficiente, el conocimiento en tiempo real del estado de la vivienda y un ahorro energético considerable con una gestión inteligente de los recursos del hogar evitando sobrecargas y promoviendo un entorno más sostenibles y la comodidad deseada.

Al mismo tiempo, la domótica ha tenido una influencia importante en la rutina diaria de las personas. Por ejemplo, la popularización de los sistemas de reconocimiento facial ha llevado al cambio de las costumbres donde el uso de llaves ha sido una actividad menos común y la tecnología lleva la ventaja. Del mismo modo ocurre con el

reconocimiento de voz, la cual ha conllevado a una disminución de las instalaciones de interruptores de luz y enchufes debido a la automatización de estos y por consiguiente una disminución en el costo que presentan las planillas.

En otro punto, la implementación del BIM es otro elemento clave que aporta al bienestar de los usuarios al momento de la ejecución del proyecto, además de contribuir significativamente en la reducción de los tiempos y costos de construcción, evitando errores y elevando la calidad de la infraestructura. Según (Arias, R., 2019), la metodología BIM aporta de manera fundamental en el proceso constructivo, desafiando el modelo tradicional de trabajo, incentivando una mayor colaboración y comunicación entre el equipo de trabajo. Como resultado, se tiene una mejor coordinación y planificación de las fases del proyecto, el cual a través de herramientas y aplicaciones BIM, se puede visualizar todas las ingenierías de la estructura. Al gestionar la información de manera eficiente, no se produce una carga económica considerable.

De acuerdo con los requerimientos del propietario, se ha optado a implementar este tipo de tecnologías y metodología con el fin de brindar tanto optimización, eficiencia y comodidad, así dándole el estilo de vida que el cliente desea, con una alineación hacia el cumplimiento del ODS 9: "Industria, Innovación e Infraestructura" con el objetivo de promover el desarrollo sostenible e innovación.

1.4 Objetivos

Objetivo general

Diseñar las ingenierías básicas de una vivienda de 2 pisos en Ciudad Celeste en un plazo de 3 meses, empleando la metodología BIM y la domótica para la optimización de recursos garantizando el confort y seguridad del usuario.

Objetivos específicos

- Realizar el diseño estructural sismo-resistente de la vivienda desarrollando su respectivo modelo utilizando softwares de modelación estructural, cumpliendo los requerimientos especificados en la normativa NEC-SE, ACI-318 y AISC.
- Diseñar el sistema hidrosanitario y de automatización de la vivienda para el buen funcionamiento de esta cumpliendo los requerimientos especificados en la normativa NEC-NHE, el reglamento ITC-BT-26 (automatizaciones, eficiencias).
- Aplicar la metodología BIM para la gestión y optimización de los diseños requeridos minimizando el impacto ambiental por medio de la innovación y sostenibilidad del diseño las ingenierías

¿Qué herramientas y normativas se utilizarán para asegurar un diseño sismorresistente de la vivienda?

¿Qué estrategia se implementará para satisfacer las necesidades del cliente?

¿Qué consideraciones específicas son necesarias para incorporar la innovación y la sostenibilidad en el diseño de las ingenierías relacionadas con la vivienda?

CAPÍTULO 2

2. MATERIALES Y MÉTODOS

2.1 Revisión de literatura

2.1.1 Materiales de construcción

Hormigón Armado

Según la Normativa Ecuatoriana de la Construcción (NEC 2015), el hormigón es una mezcla de cemento, agregado fino, agregado grueso y agua con o sin aditivos, siendo su principal uso en sistemas estructurales al momento de incluir el armado de varillas.

Acero estructural

Es una categoría del acero, siendo diseñado para soportar cargas estructurales, utilizado frecuentemente en proyectos de construcción.

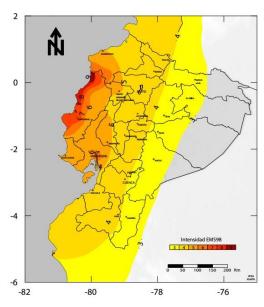
El acero es una aleación de hierro y otros minerales, siendo el más utilizado el carbono debido a que incrementa su resistencia a la fluencia con su aumento, y si disminuye el acero se vuelve más dúctil.

Este tipo de material posee diversas ventajas como la ductilidad, resistencia, tenacidad, elasticidad, y al ser elemento prefabricados, agilita el proceso de construcción de la estructura (Cruz, 2017).

La AISC (Instituto Americano de Construcción del acero), publica el "Manual de Construcción en Acero", la cual da una guía y estándares sobre el diseño de estructuras en acero y sus características, la Figura 2.1 muestra los diferentes tipos de acero de acuerdo a su aleación y la recomendación de acuerdo al perfil a utilizar:

Figura 2.1Resistencia de los materiales a diversos perfiles estructurales de acuerdo al tipo de acero.

	for Various Structural Shapes Applicable Shape Series													
Steel Type	ASTM S		F _y Min. Yield Stress (ksi)	F _u Tensile Stress ^a (ksi) 58-80 ^b	w	м	s					HSS		Pipe
			36							INIO	_	11001.	æ	
Carbon	A53 Gr. B		35	60										
	7.00	, u. b	42	58										
		Gr. B	46	58										
	A500	Gr. C	46	62										
			50	62										\vdash
		Gr. A	36	58										
	A501	Gr. B	50	70										
	A529 ^c	Gr. 50	50	65-100										Т
		Gr. 55	55	70-100										
	A572	Gr. 42	42	60										
		Gr. 50	50	65 ^d										
		Gr. 55	55	70										
		Gr. 60 ^e	60	75										
High-		Gr. 65 ^e	65	80										
Strength	A618 ^f	Gr. I & II	50 ^g	70 ⁹										
	AUTO	Gr. III	50	65					Applicable Shape Series HSS					
Strength Low- Alloy		50	50 ^h	60 ^h										
	A913	60	60	75										
	7515	65	65	80										
		70	70	90										
	A	992	50	65 ⁱ										_
Corrosion			42 ^j	63 ^j										_
Resistant	A	242	46 ^k	67 ^k										_
•	High-		50 ¹	70¹										_
Strength _ow-Alloy	A588		50	70										⊢
LOW-Alloy	A847		50	70										


Nota. Tabla tomada del manual de la AISC 360-10, Tabla 2-4, pág 2-48, 14ava. ed., 2011.

2.1.2 Sismicidad

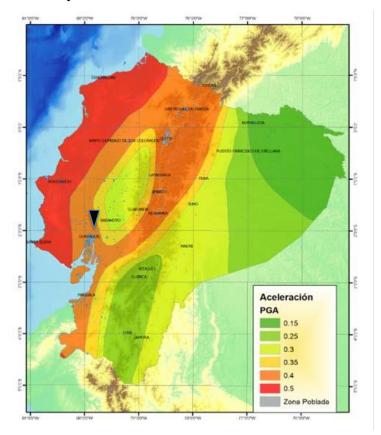
Peligro sísmico

Ecuador es un país de alto peligro sísmico por su ubicación en el cinturón de fuego, lo que ha causado muchos sismos que han devastado ciudades como Ambato (Quinde, Reinoso, 2016). En el año 2016, se registró un terremoto de magnitud 7.8 Mw en la escala de Richter cuyo hipocentro se ubicó frente a Pedernales, Manabí (IG-EPN, 2016).

Figura 2.2
Intensidad del terremoto en Ecuador, Abril 2016

Nota. Imagen tomada de la página del IG-EPN, 2016.

Con el objetivo de revertir esta situación, se elaboró las normativas NEC 2015, que establecen los requisitos mínimos de seguridad y lineamientos para las futuras construcciones del país.


La normativa NEC-SE-DS detalla los requerimientos y metodologías para el diseño sismo resistente de edificios, basándose en conceptos de Ingeniería Sísmica y del país. (NEC, 2015).

Zonificación

Ecuador está conformado por 6 zonas sísmicas según la ubicación, como se ilustra en la llustración 2. El valor z determina el comportamiento sísmico, que representa la aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad.

Figura 2.3

Zonas sísmicas del Ecuador y valor del factor Z

Nota. Gráfico tomado de la normativa ecuatoriana de sismoresistencia NEC-SE-DS, 2015.

2.1.3 Building Information Modeling (BIM)

BIM es una metodología de trabajo que permite tomar decisiones en base a un modelo para el diseño, construcción y operación durante todo el ciclo de vida del proyecto. (BIM Forum Chile, 2017, pág. 9). El modelo es la representación digital en 3D del diseño de la infraestructura, con el poder de visualizar la información de esta en cada una de sus fases de construcción y cuenta con niveles LOD (Nivel de desarrollo). Estos

se enfocan en el detalle, como: volúmenes, planos, recursos, cantidades, tablas, costos, entre otros.

Niveles LOD

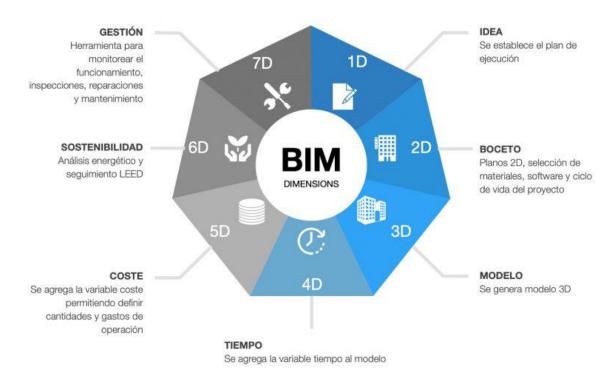
Según el documento G202-2013 PROTOCOLO DE BUILDING INFORMATION MODELING de la AIA, los niveles LOD son un indicador que identifica el nivel de datos, parámetros y geometría asociado a cada elemento en un modelo BIM en cinco niveles, como se observa en la Tabla 2.1:

Tabla 2.1 *Niveles LOD*

LOD	Definición	Representación
100	Nivel de detalle donde el elemento solo es representado por un símbolo u otro aspecto simple, cuya información es escasa solo confirmando su existencia en el modelado	
200	El elemento se representa con un esquema completo pero básico, cuya información incluye lo relacionado a su geometría.	
300	En este nivel se incluye información del elemento con referencia a las cantidades, dimensiones, forma, ubicación y materiales con el que está hecho	
400	El nivel de detalle del elemento es tal, que se puede visualizar dimensiones, comportamiento en encuentros, ubicación, forma y materiales con información que incluye los costes, fabricante, montaje e instalación, ya pudiendo replicarlo en obra	

500

Nivel de detalle del elemento con una aproximación casi exacta a lo ejecutado en la construcción, que incluye forma, medidas, ubicación, orientación, tamaño y datos físicos y químicos. A este nivel se le conoce como "AS BUILT"


Nota. Información extraída del documento "GUÍA PARA LA IMPLEMENTACIÓN DE HERRAMIENTAS BIM EN EL PROCESO DE CONTROL DE UN PROYECTO", Méndez, 2019.

Dimensiones BIM

Para una correcta ejecución del proyecto es fundamental una planificación eficiente, lo que vuelve indispensable la coordinación entre todos sus integrantes. Para esto, BIM se guía con 7 dimensiones de trabajo donde se presenta un ciclo que inicia con la idea y termina con la gestión.

Figura 2.4

Dimensiones BIM

Nota. Imagen tomada de la página web de Orfisa.

Interoperatividad

La interoperatividad permite el trabajo colaborativo para la gestión a lo largo del ciclo de vida del proyecto con toda la información en un solo modelo. (Ormaza, Tinoco, 2021.). Hay distintas empresas enfocadas en desarrollar programas que permitan el paso a esta forma innovadora de colaboración, siendo una de ellas Autodesk Inc. Con su software de modelado de construcción Revit.

Software Revit

Revit es un programa de modelado que permite aplicar la metodología BIM y cuenta con una base de datos, la cual se actualiza automáticamente al momento de realizar cambios, que permite coordinar la información necesaria para el modelado de los detalles de las ingenierías del proyecto y gestionando su diseño (Suarez, I. Vidal, L. y Levya, C., 2019).

2.1.4 Distribución de la red de agua potable (AAPP)

Sistema de abastecimiento de agua potable

Son los sistemas por gravedad o bombeo, que consisten en series de elementos con tuberías, instalaciones y accesorios, que permiten que el agua llegue a los hogares desde la fuente de captación (CRS Azure, 2021).

Un elemento crucial de la red de abastecimiento es el reservorio, el cual almacena el agua mediante el uso de tanques elevados u apoyados en el suelo, siendo transportada hasta las conexiones domiciliarias mediante la línea y red de distribución. Seguidamente, se tiene la acometida domiciliaria, tuberías que conectan a los usuarios con la red de distribución y el medidor, ubicado en la entrada de casa, que registra el consumo de agua (CRS Azure, 2021).

Presiones recomendadas

Los caudales instantáneos mínimos y presiones recomendadas por cada elemento sanitario se dan en la Tabla 2:

Figura 2.5Demanda de caudales, presiones y diámetros en aparatos de consumo.

Aparato sanitario	Caudal instantáneo	Presión		Diámetro según
	mínimo (L/s)	recomendada (m c.a.)	mínima (m c.a.)	NTE INEN 1369 (mm)
Bañera / tina	0.30	7.0	3.0	20
Bidet	0.10	7.0	3.0	16
Calentadores / calderas	0.30	15.0	10.0	20
Ducha	0.20	10.0	3.0	16
Fregadero cocina	0.20	5.0	2.0	16
Fuentes para beber	0.10	3.0	2.0	16
Grifo para manguera	0.20	7.0	3.0	16
Inodoro con depósito	0.10	7.0	3.0	16
Inodoro con fluxor	1.25	15.0	10.0	25
Lavabo	0.10	5.0	2.0	16
Máquina de lavar ropa	0.20	7.0	3.0	16
Máquina lava vajilla	0.20	7.0	3.0	16
Urinario con fluxor	0.50	15.0	10.0	20
Urinario con llave	0.15	7.0	3.0	16
Sauna, turco, d hidromasaje domésticos	1.00	15.0	10.0	25

Nota. Información obtenida de la Normativa Hidrosanitaria Ecuatoriana NHE, cap. 16.

Demanda de agua

Es fundamental determinar la demanda máxima de agua para el dimensionamiento de las tuberías, la cual va a depender de las capacidades de los aparatos sanitarios, el tipo de edificación y sus dotaciones (Instalaciones para hidrosanitarias y de gas para edificaciones Sexta Edición – McGraw):

Figura 2.6

Dotaciones para edificaciones de uso específico

Tipo de edificación	Unidad	Dotación	
Bloques de viviendas	L/habitante/día	200 a 350	
Bares, cafeterías y restaurantes	L/m² _{área útil} /día	40 a 60	
Camales y planta de faenamiento	L/cabeza	150 a 300	
Cementerios y mausoleos	L/visitante/día	3 a 5	
Centro comercial	L/m² área útil /día	15 a 25	
Cines, templos y auditorios	L/concurrente/día	5 a 10	
Consultorios médicos y clínicas con hospitalización	L/ocupante/día	500 a 1000	
Cuarteles	L/persona/día	150 a 350	
Escuelas y colegios	L/estudiante/día	20 a 50	
Hospitales	L/cama/día	800 a 1300	
Hoteles hasta 3 estrellas	L/ocupante/día	150 a 400	
Hoteles de 4 estrellas en	L/ocupante/día	350 a 800	
adelante			
Internados, hogar de ancianos y niños	L/ocupante/día	200 a 300	
Jardines y ornamentación con recirculación	L/m²/día	2 a 8	
Lavanderías y tintorerías	L/kg de ropa	30 a 50	
Mercados	L/puesto/día	100 a 500	
Oficinas	L/persona/día	50 a 90	
Piscinas	L/m² área útil /día	15 a 30	
Prisiones	L/persona/día	350 a 600	
Salas de fiesta y casinos	L/ m ² área útil /día	20 a 40	
Servicios sanitarios públicos	L/mueble sanitario/día	300	
Talleres, industrias y agencias	L/trabajador/jornada	80 a 120	
Terminales de autobuses	L/pasajero/día	10 a 15	
Universidades	L/estudiante/día	40 a 60	
Zonas industriales, agropecuarias y fábricas*	L/s/Ha	1 a 2	

Nota. Información extraída de la Normativa Hidrosanitaria del Ecuador, NHE, cap. 16.

2.1.5 Sistema de drenaje de aguas servidas (AASS)

Aguas servidas

Es el tipo de agua generada por el consumo humano y los residuos domésticos, clasificándose en aguas grises y negras. Con el tiempo, estas aguas producen gases que deben de dirigidos a lugares sin presencia humana.

Se transportan mediante gravedad a través de ramales, bajantes, colectores y cajas de revisión que se conectan a las redes de alcantarillado público. El diámetro de las tuberías para AASS se determinan a partir de las unidades de descarga de los aparatos sanitarios (Instalaciones para hidrosanitarias y de gas para edificaciones Sexta Edición – McGraw).

Unidad de descarga

Se determinó que el lavamanos podía descargar normalmente 28.5 litros de agua por minuto, lo cual se lo tomó como base del sistema unitario.

Figura 2.7
Unidades de descarga de aparatos sanitarios

Unidades de Aparatos			
Anomata	Diametro	Diametro	UD
Aparato	mm	in	UD
Bañera o tina	50	1 1/2 - 2	2-3
Bide o bidet (limpieza	50		2
sin papel)	50	1 1/2	2
Ducha privada	75	3	2
Ducha publica	75	3	4
Fregadero o lavamano	50	1 1/2	2
Inodoro de tanque	110	3-4	1-3
Inodoro de fluxometro	110		6
(agua a compresion)	110	4	ь
Lavaplatos	50	2	2
Lavadora	50	2	2
Lavaplato con			2
trituradora	50	2	3
Fuente de agua potable (llave de jardin)	50	1	1-2
Lavamanos	50	1 1/2 - 2 1/2	1-2
Unirario	50	1 1/2	2
Unirario con flexometro	75	3	10
Unirario de pared			-
(centros comerciales)	50	2	5
Baño completo	110	4	3
Baño con fluxometro	110	4	6

Nota. Valores obtenidos del libro de Rafael Pérez Carmona, "Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición, Tabla 5.2.

Sistemas de ventilación

Están compuestos por una red de tuberías conectadas a la red de aguas servidas con el objetivo de limitar las fluctuaciones de la presión de aire, evitando sinfonamientos dentro de la tubería, evitando que gases y olores evadan el entorno de la vivienda (Instalaciones para hidrosanitarias y de gas para edificaciones Sexta Edición – McGraw).

2.1.6 Sistema de drenaje de aguas Iluvias (AALL)

Agua pluvial

Agua proveniente de las lluvias o de la nieve, en forma de precipitación.

Sistema de aguas Iluvias

Se hace referencia al conjunto de tuberías, colectores, bajantes y dispositivos complementarios que ayudan a recolectar agua de escorrentía de precipitaciones pluviales (Valdivielso, 2022).

Se lo considera como un sistema de drenaje a gravedad con caudales de tubo parcialmente lleno. (Chimbolema, 2021).

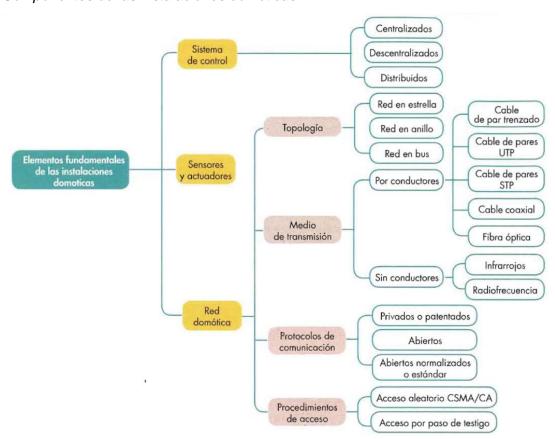
2.1.7 Instalaciones Eléctricas

Constan del suministro de electricidad de la red de distribución publica hasta la vivienda del usuario, compuesta por los diferentes circuitos de puntos de luz y tomacorrientes. Este tipo de instalaciones consta de los siguientes elementos: línea de acometida, toma de tierra de la edificación, tablero principal de distribución, entre otros (Instalación eléctrica de una vivienda).

Tipos de sistemas eléctricos en edificaciones

Los sistemas eléctricos se clasifican según el número de conductores utilizados para transportar la energía, dando origen a instalaciones monofásicas y trifásicas. La primera tiene una sola fase con corriente alterna, mientras que la segunda consta de tres fases con tres corrientes alternas distintas.

Tipos de circuitos eléctricos en edificaciones


Los circuitos son aquellos que configuran la instalación eléctrica interior de la vivienda y que alimentan a los diferentes receptores: puntos de luz, y tomacorrientes. Entre ellos, se tienen los circuitos de iluminación y tomacorriente.

2.1.8 Instalaciones Domóticas

Los sistemas usados en las instalaciones domóticas son sensores que recogen información del hogar y los trasladan con transmisores al controlador. Este proceso opera según una programación específica, diseñado en un componente central. Entre los elementos que componen este tipo de instalaciones, se encuentran: sistemas de control, sensores y actuadores, y red de control o domótica (Instalaciones Domóticas, McGraw).

Figura 2.8

Componentes de las instalaciones domóticas

Nota. Mapa obtenido del libro de McGraw "Instalaciones domóticas".

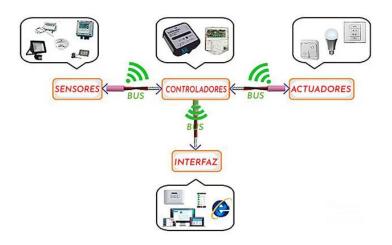
El control domótico se lleva a cabo mediante dispositivos que gestionan todas las funciones que los usuarios desean implementar en sus hogares (Electrónica Edimar, 2021). La elección del tipo de sistema ya sea central o distribuido, depende de la configuración de las redes domésticas, caracterizadas por la topología de dicho sistema (McGraw, Sexta Edición). Para el intercambio de información entre dispositivos, se utilizan los medios de transmisión dentro de las redes. La elección del tipo de medio transmisor depende de las siguientes características mostradas en la tabla 2.2:

Tabla 2.2Características fundamentales para la elección del medio de transmisión

Factores para la elección del medio de transmisión			
Topología que soporta	Influencia a las interferencias		
Velocidad de transmisión	Fiabilidad y Vulnerabilidad		
Ancho de banda que puede transmitir	Economía y facilidad de instalación		

Nota. Información obtenida del libro de McGraw, "Instalaciones Domóticas".

Tipos de sistemas domóticos


Según Seara y Pérez, entre los sistemas más implementados, se encuentran los siguientes:

- Termostatos inteligentes
- Sistemas de seguridad
- Equipos de iluminación y bombillas inteligentes
- Control de aire acondicionado, persianas, electrodomésticos y sistemas por voz
- Control de calefacción
- Cámaras en red con conexión a internet
- Sistemas de audio multi-room
- Sensores de agua y humo

Los dispositivos que conforman un sistema domótico requieren de una red Wifi para transmitir información e interactuar con el usuario. Particularmente, para realizar la instalación de un sistema domótico tipo BUS, se debe considerar otros factores como: trazado de conductos, tipo de cableados, coexistencia de cables en los conductos (Bticino, 2023). Por lo general, se tienen dispositivos de mando conectado mediante una línea BUS a actuadores para controlar los diferentes componentes electrónicos, como se muestra en la Figura 2.6:

Figura 2.9

Principales componentes de un sistema domótico

Nota. Fuente: Pentadom – Tipos de sistemas domóticos para viviendas

BIM aplicado a la domótica

La integración del sistema domótico a las residencias suele ser complicada porque implica la completa reestructuración de esta (Martineck, 2022). Según (BIMma, 2022), la metodología BIM es la solución perfecta para adoptar las funciones domóticas de manera más conveniente y gestionar la información de sus elementos debido a que implica varios beneficios: actualización del sistema domótico, mayor control presupuestario, estimación de costos de construcción y mantenimiento de dispositivos,

lectura en tiempo real del consumo de energía, y eficiencia eléctrica, al igual que los sensores.

2.2 Área de estudio

2.2.1 Ubicación

El área del proyecto está ubicada en la urbanización Ciudad Celeste, en la etapa Isla Celeste Babor MZ 11 S05, en el cantón Samborondón, Guayas. La etapa cuenta con un área de 24.73 hectáreas, y el terreno donde se ubica la vivienda tiene una superficie total de 245.00 m2.

Figura 2.10

Ubicación de la vivienda

Nota. Imagen satelital obtenida desde la aplicación de Google Earth.

Las coordenadas geográficas del proyecto son -2.079866, -79.835505. El predio es de uso residencial, siendo una casa unifamiliar de dos plantas el inmueble a construir.

Tabla 2.3Retiros recomendados para viviendas

Tipo de Retiro	Dimensiones mínimas (m)
Retiro frontal	3
Retiro lateral	1

Retiro posterior	Planta baja: 3 Planta alta: 2

Nota. Valores descritos en las normas de edificación otorgadas por el Municipio de Samborondón

2.2.2 Alcance

La magnitud del proyecto abarca el diseño de la ingeniería estructural y de las instalaciones hidrosanitarias y eléctricas mediante la domótica mediante la metodología BIM.

Antes de realizar el diseño estructural, se analizan las diversas opciones acerca del sistema estructural a implementar en referencia a la información dada por el cliente acerca del proyecto. Al escoger el sistema tomando en cuenta el costo-beneficio que ofrecerá a lo largo de la vida útil del proyecto, se realiza el predimensionamiento de los elementos estructurales, siguiendo con el diseño definitivo de la superestructura y la subestructura en base a las cargas y al estudio de suelos de la zona. El diseño hidrosanitario consiste en dimensionar las tuberías para dotar de agua a la infraestructura para su funcionamiento; dimensionar el sistema de tuberías encargadas de evacuar las aguas servidas y, por último, el dimensionamiento del sistema de tuberías encargado de evacuar las aguas lluvias. Para el abastecimiento de esta, se considera la disponibilidad de la conexión y acceso a la red pública de agua potable de la urbanización; del mismo modo, se espera conectar al alcantarillado existente para las AA.SS.

2.2.3 Trabajo de campo y laboratorio

Previamente se realizó un reconocimiento del terreno para corroborar medidas mediante un levantamiento y verificar las características del estudio de suelo realizado.

2.2.4 Inspección geotécnica

Se realizo una calicata a una profundidad de 2m para el análisis respectivo, del cual se apreció un material granular arcilloso con grava color amarillo con tonalidades café. No hubo la necesidad de una profunda excavación por la aparente uniformidad de los estratos. El nivel freático se identificó a 1.30 m de profundidad. Se tiene un espesor de relleno de mejoramiento de 30 cm.

Figura 2.11
Inspección geotécnica

Nota. Imágenes obtenidas de la visita de campo.

2.2.5 Inspección hidrosanitaria

Se identifico la ubicación de una caja AA. SS domiciliaria cerca de la acera, una caja AA. SS de paso y un sumidero AA.LL. Asimismo, se observó que la acometida de agua potable también está ubicada cerca de la acera.

Figura 2.12
Sumidero de la zona

Nota. Imágenes obtenidas de la visita de campo.

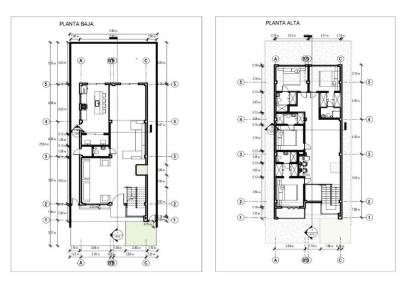
2.2.6 Inspección eléctrica

Las condiciones generales de los componentes eléctricos estarán sujetos a actualizaciones hasta obtener la aprobación correspondiente de CNEL, sin embargo, se mencionan a continuación los componentes que se identificaron en la visita de campo:

Tabla 2.4Componentes electrónicos identificados en la inspección eléctrica

Componentes Eléctricos	Descripción
Transformadores	Tipo Padmounted
Acometida eléctrica	Conexión subterránea
Postes de transmisión	Monolitos telefónicos y de tv cable.
Cajas eléctricas	Cajas de alta tensión, baja tensión, alumbrado.

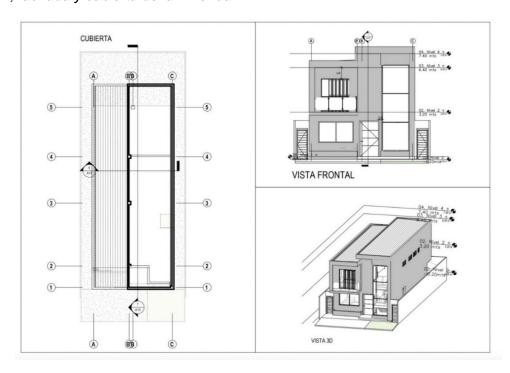
Nota. Datos obtenidos en la visita de campo


2.3 Análisis de datos

2.3.1 Diseño Arquitectónico

El cliente optó por el diseño de una vivienda de 2 plantas para economizar la construcción y optimizar su rentabilidad. Se presenta la propuesta arquitectónica:

Figura 2.13


Planta alta y baja de la vivienda.

Nota. Plano dado por el cliente.

Figura 2.14

Vistas 3D, fachada y cubierta de la vivienda

Nota. Planos dados por el cliente

2.3.2 Estudio Geotécnico

La NEC-SE-GM (2015) es la normativa ecuatoriana enfocada en el estudio geotécnico para edificaciones y diferentes tipos de estructura, con el fin de proveer criterios y recomendaciones de diseño para todo tipo de cimentaciones, muros y rehabilitación de edificaciones.

El capítulo clasifica las unidades de construcción en Baja, Media, Alta y Especial, según el número total de niveles y las cargas máximas de servicio, como se muestra en la Figura 2.15:

Figura 2.15

Clasificación de las unidades de construcción

Clasificación	Según los niveles de construcción	Según las cargas máximas de servicio en columnas (kN)
Baja	Hasta 3 niveles	Menores de 800
Media	Entre 4 y 10 niveles	Entre 801 y 4 000
Alta	Entre 11 y 20 niveles	Entre 4 001 y 8 000
Especial	Mayor de 20 niveles	Mayores de 8 000

Nota. Información recopilada de la NEC-SE-GM, 2015

En base a esta clasificación, se define el número mínimo de sondeos que se deberá efectuar en el terreno con su respectiva profundidad, mostrada en la Figura 2.16:

Figura 2.16

Número mínimo de sondeos de acuerdo a la unidad de construcción

CATEGORÍA DE LA UNIDAD DE CONSTRUCCIÓN (Véase en la sección 2.5)					
Baja	Media	Alta	Especial		
Profundidad Mínima de sondeos: 6 m.	Profundidad Mínima de sondeos: 15 m.	Profundidad Mínima de sondeos: 25 m.	Profundidad Mínima de sondeos: 30 m.		
Número mínimo de sondeos: 3	Número mínimo de sondeos: 4	Número mínimo de sondeos: 4	Número mínimo de sondeos: 5		

Nota. Información obtenida de la NEC-SE-GM, 2015

El cliente nos proporcionó un informe geotécnico realizado por medio del ensayo SPT, con perforaciones en las ubicaciones mostradas en la Figura 2.11:

Figura 2.17 *Ubicación de las perforaciones*

Nota. Datos obtenidos del estudio de suelos entregados por el cliente.

Los resultados obtenidos indican acerca del % de humedad de cada estrato, el LL, el IP, el peso específico, el # de golpes y la capacidad portante, se presenta en la Tabla 11, 12 y 13 los resultados del perfil estratigráfico de los sondeos con referencia a esta última característica y su profundidad:

Tabla 2.5Perfil estratigráfico de la perforación 1

PERFORACIÓN 1						
	Ubicación: 17S E629503,60 N9770059,20 UTM					
Profundidad	Estrato	Capacidad				
(m)						
1	Arcilla de alta plasticidad compacta	4.94				
2	Arcilla de alta plasticidad compacta	5.29				
3	Arcilla de alta plasticidad medianamente compacta	6				
4	Arcilla de alta plasticidad medianamente compacta	4.59				
5	Arcilla plástica con arena, consistencia blanda	4.23				
6	Arcilla plástica con arena, consistencia blanda	3.18				
7	Arcilla con capas de arena y finos plásticos	4.23				

Nota. Resultados del estudio de suelos.

Tabla 2.6Perfil estratigráfico de la perforación 2

	PERFORACIÓN 2				
	Ubicación: 17S E629504,50 N9770055,30 UTM				
Profundidad	Estrato	Capacidad			
(m)	Latiato	portante (kg/cm2)			
1	Arcilla de alta plasticidad compacta	6			
2	Arcilla de alta plasticidad compacta	4.94			
3	Arcilla de alta plasticidad medianamente compacta	4.59			
4	Arcilla de alta plasticidad consistencia blanda	4.23			
5	Arcilla de alta plasticidad medianamente compacta	4.23			
6	Arcilla de alta plasticidad medianamente compacta	10.23			

Nota. Resultados del estudio de suelos.

Tabla 2.7Perfil estratigráfico de la perforación 3

	PERFORACIÓN 3	
	Ubicación: 17S E629509,30 N9770046,20 UTM	
Profundidad (m)	Estrato	Capacidad portante (kg/cm2)
1	Arcilla de alta plasticidad compacta	4.98
2	Arcilla de alta plasticidad compacta	5.15
3	Arcilla de alta plasticidad medianamente compacta	5.80
4	Arcilla de alta plasticidad consistencia blanda	4.60
5	Arcilla plástica con arena, consistencia blanda	4.34
6	Arcilla plástica con arena, consistencia blanda	3.25
loto Dogultodoo	dal astudia da sualas	

Nota. Resultados del estudio de suelos.

El primer sondeo se realizó hasta una profundidad de 7 metros. el segundo y el tercero hasta los 6 metros de profundidad, con la característica que en todos aparece el NF freático a 1,30 metro de profundidad.

En estos sondeos se determina que se tiene un suelo fuerte sobre uno débil, por lo que se utilizará la fórmula de Meyerhof para calcular la capacidad admisible del suelo, así decidiendo el tipo y las dimensiones de la cimentación y la capa de mejoramiento.

2.4 Análisis de alternativas

2.4.1 Tabla de valoración

2.4.2 Escala de Likert

La escala de Likert es un método de investigación utilizado para la evaluación y percepción social sobre un tema central. El interrogatorio se puede llevar a cabo de diferentes maneras como encuestas, entrevistas o sesiones, con el fin de recabar información con respecto a la conformidad de las personas y llevadas a una matriz donde se mide mediante resultados cualitativos o cuantitativos (María, Minami, Izquierdo, 2013).

Las respuestas dadas pueden ser catalogadas con diferentes niveles de medición y su significado, por medio de una tendencia lineal. En este proyecto se utiliza una escala del 1 – 5, donde 5 significa "Muy de acuerdo" y 1 "Muy desfavorable" como se indica en la Tabla 2.8 para evaluar todas las alternativas. Así, obteniendo al final de las evaluaciones de todos los temas, el más favorable y el más desfavorable con el que se tendrá un criterio para la decisión final al escoger el sistema definitivo de cada ingeniería.

Tabla 2.8Ponderaciones de la escala de Likert

Puntuación	Descripción
5	Muy de acuerdo
4	De acuerdo
3	Ni de acuerdo ni desfavorable
2	Desfavorable
1	Muy desfavorable

Nota. Resultados del estudio de suelos.

2.4.3 Planteamiento de alternativas

2.4.3.1 Sistema Estructural

Se planteo 3 alternativas para la elección del sistema estructural de la vivienda en base a los requerimientos del cliente:

Alternativa #1: Pórticos de hormigón armado resistente a momento

Los sistemas estructurales de hormigón armado resistente a momento son uno de los sistemas más utilizados en la construcción. Los elementos que la conforman son: columnas, vigas y sistemas de arriostramiento, la unión entre columnas y vigas se le llaman pórticos.

El acero de refuerzo convierte a los elementos estructurales del hormigón en dúctiles, ya que es un material que puede fisurarse fácilmente por su fragilidad.

El movimiento sísmico golpea a la estructura en sus partes con mayor rigidez con una energía considerable que necesita ser disipada, la ductilidad es la principal propiedad de la estructura que da solución a esta cuestión por medio de cuantías mínimas de acero.

Ventajas:

- Mano de obra más accesible
- Disponibilidad inmediata de materiales
- Costos relativamente menores a otros sistemas estructurales
- Es adaptable a cualquier forma

Desventajas:

- Posee un peso más elevado que otros sistemas
- Tiene un gran impacto ambiental debido a que no es reutilizable
- Conlleva un mayor tiempo de construcción

Alternativa #2: Pórticos de estructura metálica resistente a momento

El acero estructural es un tipo de material utilizado mayoritariamente en edificaciones, el sistema de pórticos resistente a momento está conformado por vigas y columnas con secciones compactas y perfiles metálicos laminados en caliente que se encuentran en el mercado. Los métodos utilizados para el diseño son dos: ASD y LRFD, con guía en las normativas de la AISC según sea el caso.

El sistema de piso consiste en una losa de hormigón de 6-15 cm máximo de grosor, sobre una placa colaborante llamada "steel deck", la cual está apoyada sobre viguetas de acero y nervios, si se requiere, perpendicular a las vigas principales.

Las conexiones entre viga-columna es donde suelen presentarse la mayoría de las fallas de este sistema, debido a varios factores: desde una mala práctica de soldadura hasta una conexión no adecuada para lo que fue diseñada.

Ventajas:

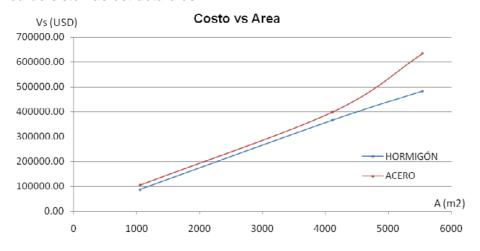
- Tiempo de construcción mucho menor
- Garantiza la resistencia y uniformidad de los materiales, al ser ya prefabricados
- Tiene un peso estructural mucho menor

Desventajas:

- Mano de obra calificada, con certificaciones por lo que se encarecería los costos
- Mayor costo
- Mantenimiento rutinario debido a la corrosión
- Tiene un tiempo de vida útil

Alternativa #3: Estructura Mixta

Según (Anilema, B. 2013), una estructura mixta es la combinación de un sistema de hormigón armado con uno de acero, por lo que ofrecen muchas ventajas que van


desde el sistema estructural y sus elementos que presentan resistencia al fuego, aparte de ser más factible constructivamente. La conexión de materiales es el objetivo principal de este tipo de estructura para compensar la baja resistencia a tracción del hormigón y aumentar la resistencia y rigidez de la edificación.

La principal ventaja de este sistema es la disminución de costos y el peso de los elementos, la combinación del hormigón armado conlleva a una reducción de costos con la estructura metálica que disminuye el peso, otorga un comportamiento deseado en la estructura tanto dúctil como en resistencia.

Planteamiento de alternativas

De acuerdo a Aguirre y Figueroa, un edificio de 3 niveles de pórticos de hormigón armado tiene una reducción en costos de un 14.3% con respecto a los pórticos de estructura metálica, la Figura 2.18 representa una curva entre la relación de costos vs Área de cada estructura, tomando en cuenta todo el proceso constructivo.

Figura 2.18
Gráfica Costo vs Área de sistemas estructurales

Nota. Gráfica referenciada del documento de Aguirre y Figueroa, 2018

El costo en ambos sistemas se mantiene cercano con una tendencia creciente hasta un área donde el costo del acero comienza a crecer exponencialmente, en el caso

de nuestro cliente el área de construcción es de 245 m2, por lo que no habría una diferencia considerable de costos.

Otro factor que influye para determinar el tipo de sistema que se utilizará es el tipo de cimentación que se requiere por el suelo de la zona y las cargas que transmita la estructura.

Tabla de Comparación

Se consideran los siguientes factores y criterios para la comparación entre las diferentes alternativas:

- Transporte: Factor que se enfoca en la distancia que se encuentran los proveedores para abastecer de los materiales necesarios para la construcción.
- Factibilidad: Parámetro que indica si el sistema estructural es el adecuado para la zona considerando todas las características del lugar, enfocado en un campo de ingeniería.
- Costos: Parámetro enfocado en los costos que se genera por cada sistema estructural donde se incluye todo el procedimiento constructivo y lo que conlleva llevarlo a cabo.
- Mano de obra: Parámetro centrado en la facilidad de conseguir personal que pueda realizar un trabajo de calidad de acuerdo al sistema estructural.
- Impacto ambiental: Indicador que se enfoca en el impacto que genera el sistema estructural al entorno ambiental.

El criterio de cada calificación para los indicadores se muestra en la Tabla 2.9:

Tabla 2.9

Criterios de calificación de alternativas del sistema estructural acuerdo a cada indicador

				Indicadores		
		Transporte	Factibilidad	Costos	Mano de obra	Impacto Ambiental
	1	Los proveedores	Sistema	Costos	Sistema requiere	I.A. muy desfavorable,
		se encuentran a	definitivamente	considerablemente	de mano de obra	con materiales de
		una distancia	desfavorable para la	elevados en comparación	altamente	construcción altamente
		considerable, en	zona, tomando en	a sus beneficios, donde	calificada con	contaminantes y sin
		otro cantón.	cuenta parámetros	influye la ingeniería de	certificados, la	opción a su
			como el peso y la	acuerdo al sistema y la	cual es	reutilización.
			instalación de la	instalación de la misma.	difícilmente	
			estructura.		accesible	
	2	Los proveedores	Sistema desfavorable	Costos altos con serias	Sistema requiere	I.A. desfavorable, con
		se encuentran en	para la zona, pero	dificultades, pero con la	de mano de obra	materiales
		la periferia del	con posibilidad de ser	posibilidad de	calificada, la cual	biodegradables y
		cantón donde se	implementado con	implementarlo.	tiene una	reciclados en menor
		realiza la obra	diversas dificultades.		disponibilidad	cantidad.
	2	Looprovoodoroo	Ciatama madarada	Costos moderados con	poco accesible	I A aquilibrada aan
	3	Los proveedores se encuentran a	Sistema moderado	algunos desafíos	Sistema requiere de mano de obra	I.A.equilibrado, con utilización moderada de
ón		una distancia	para la zona, presentando	financieros, pero con	calificada, la cual	materiales
<u>ত</u>		moderada de la	aspectos tanto	posibilidad de ser	es accesible	biodegradables y
Calificación		obra, en una zona	favorables como	reducidos.	CS accesible	reciclados con
i		céntrica.	desfavorables.	roadolado.		posibilidad de
Ü		0011111001	400.470.48.00.			reutilización
	4	Los proveedores	Sistema favorable	Costos manejables con	Sistema requiere	I.A.aceptable, con
		se encuentran a	para la zona, con	una buena relación	de mano de obra,	utilización notable de
		una distancia	desafíos menores.	costo-beneficio.	tanto calificada	materiales
		razonable de la			como no	biodegradables y
		obra, a unos 3			calificada.	reciclados con
		km.				posibilidad de
	_					reutilización.
	5	Los proveedores	Sistema ideal para la	Costos muy bajos en	Sistema puede	I.A. casi nulo, con un
		se encuentran a	zona, con una	relación a los beneficios	ser implementado	uso preferente a
		menos de 1 km	combinación de	que ofrece el sistema. La	con Mano de obra	materiales de
		de la obra.	factores como el	inversión es mínima con	no calificada con	construcción
			peso, los estudios de	relación a los resultados	disponibilidad	reutilizables, desmontables
			del entorno y la	positivos que se pueden obtener.	inmediata, sin necesidad de	
			instalación que lo hace ideal.	obtener.	experiencia previa	contribuyendo a la sostenibilidad.
			nace ideal.		experiencia previa	วบวเษาแบแนสน.

Nota. Criterios establecidos en referencia al estudio de la zona del proyecto y sus alrededores

De acuerdo con estos criterios, se realiza la comparación con la tabla de Likert, como se muestra en la Tabla 2.10:

Tabla 2.10Elección del sistema estructural, Escala de Likert.

Alternativas	Transporte	Factibilidad	Costo	Mano de obra	Impacto ambiental	Total
Pórticos de hormigón armado resistente a momento	4	2	2	4	1	13
Pórticos de estructura metálica resistente a momento	2	4	4	2	5	17
Estructura Mixta	3	3	3	3	3	15

Nota. Puntaje colocado tomando en cuenta las investigaciones previas de la zona

Con referencia al puntaje obtenido, se determina que el sistema de pórticos de estructura metálica resistente a momento es el que mayor beneficio da a nuestro cliente. Este sistema se considera ideal para la zona en el área de factibilidad, presenta menos costos que las otras alternativas y, con la posibilidad de que sus elementos estructurales de acero se puedan reutilizar en un futuro, el impacto ambiental se reduce de una manera significativa.

2.4.3.2 Sistema de distribución de agua potable

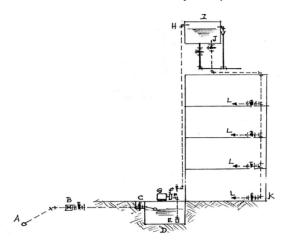
Tipo de sistema de suministro de agua potable: bomba y cisterna, tanque elevado o combinado

Alternativa 1: Sistema de abastecimiento a bombeo con cisterna

Cuando la presión de agua desde la red pública no abasta a toda la edificación se utiliza el sistema de bombeo para aumentar la presión de la red. Al momento de surgir problemas debido a mantenimientos en las zonas donde pasa la distribución de agua potable a la zona suelen haber cortes, por lo que se utiliza un reservorio llamado cisterna, donde se almacena un determinado volumen de agua a ser utilizado al momento de ocurrir estos inconvenientes.

La principal ventaja de este sistema es garantizar una fuente de agua de respaldo que proporciona el suministro continuo de agua en estas situaciones, lo que es esencial para el funcionamiento de servicios básicos.

• Alternativa 2: Sistema de abastecimiento a bombeo con tanque elevado


Es un tipo común de sistema donde se cuenta con un tanque de reservorio ubicado a una altura que supera a la edificación. La bomba abastece tanto a todas las

conexiones de agua de la vivienda, así como al tanque. La principal ventaja de este sistema radica en la capacidad de mantener un flujo de agua constante y una presión adecuada en todo momento, debido a que funciona a gravedad. Una desventaja es con respecto a la arquitectura, no es agradable a la vista de algunos clientes.

Alternativa 3: Sistema de abastecimiento a bombeo con cisterna y tanque elevado

También denominado sistema de abastecimiento mixto, este es uno de los más utilizados en edificaciones multifamiliares debido a su eficiencia (Noticias de arquitectura,). Está compuesto por un tanque que abastece como reserva en caso de cortes, y de una cisterna, que recibe agua desde la red pública, la cual es transportada hacia el tanque elevado a través de bombeo. Adicionalmente, cuando la presión de la red pública no es suficiente, el sistema puede abastecer fácilmente a las plantas altas, razón por la cual es utilizado para el diseño de edificios altos. La dotación del agua es regulada por ambos componentes, los cuales aportan 1/3 y un ¼ de la misma para el consumo de un día de la edificación (Ávila, López, Ipanaque, Núñez, 2020).

Figura 2.19
Sistema de distribución de AAPP mediante cisterna y tanque elevado en una vivienda

Nota. Gráfica obtenida del documento "Unidad IV Sistema indirecto de abastecimiento de agua" de Orta, 2023.

Debido a que se tiene que almacenar agua en la cisterna y llenar el tanque elevado, se lo considera como uno de los sistemas complejos y costosos (Ávila, López, Ipanaque, Núñez, 2020). Asimismo, existe la posibilidad de que la fuente de agua se contaminada en la cisterna y el tanque elevado si es que no se tiene un buen almacenamiento y mantenimiento.

Tabla de Comparación

Se consideran los siguientes factores y criterios para la comparación entre las diferentes alternativas:

- Instalación: Factor que evalúa la facilidad de instalación de cada sistema.
- Mantenimiento: Aspecto que indica la frecuencia que se debe darse el mantenimiento de cada sistema.
- Costos: Parámetro centrado en los costos asociados en cada sistema, incluido el proceso de instalación y lo que conlleva en los rubros.
- Funcionamiento: Parámetro que analiza el rendimiento operativo en cada sistema, tomando en cuenta las diversas dificultades que se pueden presentar, como mantenimientos en la red pública.
- Impacto ambiental: Indicador que evalúa el impacto que genera cada sistema al medio ambiente.

Tabla 2.11

Criterios de calificación de alternativas de distribución de acuerdo a cada indicador

				Indicadores		
		Instalación	Mantenimiento	Costos	Funcionamiento	Impacto Ambiental
Calificación	1	La instalación del sistema presenta complicaciones considerables y riesgos para el personal, tomando en cuenta la estructura y la zona donde se realizará	El mantenimiento del sistema es rutinario y presenta una dificultad elevada con uso de maniobras por parte del personal.	Costos son muy elevados en comparación a sus beneficios, siendo influenciado por factores como la ingeniería del sistema y la instalación de la misma.	Existen bastantes complicaciones para su funcionamiento, con un rendimiento deficiente en momentos como el mantenimiento en la red pública	I.A. muy desfavorable, con materiales de construcción altamente contaminantes y sin opción a su reutilización.

2	La instalación del sistema conlleva desafíos y riesgos moderados para el personal	El mantenimiento del sistema es de acuerdo a periodos y presenta una dificultad moderada con uso de maniobras por parte del personal.	Costos elevados con dificultades, pero con la posibilidad de implementarlo.	Existen complicaciones para su funcionamiento, con fallas que pueden ser solucionadas.	I.A. desfavorable, con materiales biodegradables y reciclados en menor cantidad.
3	La instalación del sistema conlleva desafíos menores y riesgos manejables para el personal	El mantenimiento del sistema es cada 2-6 meses y presenta dificultades menores.	Costos moderados con posibilidad de ser reducidos.	Tiene un rendimiento aceptable con moderados periodos de falla.	I.A.equilibrado, con utilización moderada de materiales biodegradables y reciclados con posibilidad de reutilización
4	La instalación del sistema conlleva desafíos mínimos y casi sin riesgos para el personal	El mantenimiento del sistema es cada 2-6 meses y presenta dificultades mínimas.	Costos manejables con una buena relación costo- beneficio.	Tiene un rendimiento ideal en cada momento con pocas complicaciones.	I.A.aceptable, con utilización notable de materiales biodegradables y reciclados con posibilidad de reutilización.
5	La instalación del sistema puede realizarlo cualquier tipo de personal debido a su facilidad, sin riesgos.	El mantenimiento del sistema es cada 2-6 meses y puede ser realizado por cualquier persona.	Relación entre costo- beneficio excelente. La inversión es mínima con relación a los resultados positivos que se pueden obtener.	Tiene un rendimiento ideal en cada momento y no tiene complicaciones, aunque se presente alguna situación.	I.A. casi nulo, con un uso preferente a materiales de construcción reutilizables, desmontables contribuyendo a la sostenibilidad.

Nota. Criterios establecidos en referencia a la arquitectura y requerimientos del cliente

De acuerdo con estos criterios, se realiza la comparación con la tabla de Likert, como se muestra en la Tabla 2.12:

Tabla 2.12Elección del sistema de abastecimiento de AAPP por medio de la Escala de Likert.

Alternativas	Instalación	Mantenimiento	Costos	Funcionamiento	Impacto ambiental	Total
Sistema de abastecimiento a bombeo con cisterna	5	5	3	4	4	22
Sistema de abastecimiento a bombeo con tanque elevado	3	3	4	3	5	18
Sistema de abastecimiento a bombeo con cisterna y tanque elevado	2	2	2	5	3	14

Nota. Puntaje obtenido de acuerdo a los requerimientos del cliente

Según los criterios, se optó por implementar un sistema de abastecimiento a bombeo con cisterna, siendo los beneficios principales una instalación y mantenimiento fácil y eficiente, un funcionamiento ideal ante complicaciones, como los mantenimientos a la red pública o cortes de agua donde se usa el reservorio de agua y se distribuye en toda la vivienda, además se da un impacto ambiental mínimo respetuoso con el medio ambiente y se tiene un aspecto arquitectónico, ya que la cisterna va debajo del nivel de terreno y no se visualiza en la fachada de la edificación.

2.4.3.3 Conectividad del sistema inalámbrico de automatización

Se instalará un sistema moderno inalámbrico para automatizar los aparatos electrónicos, por lo que se requiere un análisis para elegir el tipo de conexión que permita comunicarse los dispositivos domóticos. Se planteó 3 alternativas en este campo.

Alternativa 1: Wi-Fi

Siendo el tipo de conectividad más usado en la actualidad, Wi-Fi es una tecnología de redes inalámbricas que se emplea para la conexión de dispositivos entre sí con el fin de traspasar información a través de internet, es a lo que se denomina "red". Además, se basa en los estándares IEEE 802.1.1, estándares centrados en la arquitectura de esta red, para la conexión de aparatos domóticos siendo utilizado para la gestión y monitoreo de los distintos dispositivos eléctricos, y funciona en frecuencias de 2,4 GHz y 5 GHz.

Alternativa 2: Zigbee

Tipo de red inalámbrica basado en el estándar IEEE 802.15.4, normativa que define aspectos físicos y acceso al medio de estas redes, permitiendo la creación redes de área personal (WPAN) caracterizado por su bajo consumo de energía. Funciona a frecuencia de 2.4 GHz y es comúnmente utilizado en edificios domóticos donde es primordial una red Wi-Fi independiente para un tipo de uso especifico.

Permiten la conexión entre dispositivos sin necesidad de conectarse al Wi-Fi, lo que da ventajas al momento de tener problemas con la red de internet evitando saturaciones por alta demanda.

Alternativa 3: Bluetooth

Según Jibrin, Varol, 2019, es una tecnología de red inalámbrica caracterizada por su corto alcance basado en el estándar IEEE.802.15.1, estándares enfocados en este tipo de redes, y tener un costo relativamente bajo en comparación a otras redes. También permite la conectividad entre dispositivos y aparatos a través de un enlace por radiofrecuencia con una frecuencia de 2.4 GHz.

Tabla de Comparación

Se consideran los siguientes factores y criterios para la comparación entre las diferentes alternativas:

- Consumo de energía: Factor que evalúa la capacidad de cada tecnología en realizar sus funciones optimizando el uso de la energía.
- Costo: Factor que se enfoca en el costo de adquisición y implementación de dispositivos.
- Cobertura: Indicador que aborda la extensión, ya sea local o geográfica, que puede ser cubierta por la red de dispositivos del sistema domótico.

- **Escalabilidad:** Factor que compara la capacidad de cada red para crecer y adaptarse a medida que se incrementa el número de dispositivos entrelazados.
- Interoperabilidad: Capacidad de la red para comunicar diferentes dispositivos y lograr que trabajen de manera conjunta, incluso siendo fabricados de distintos proveedores.

Tabla 2.13Criterios de calificación de alternativas de conectividad de acuerdo a cada indicador

				Indicadores		
		Consumo de energía	Costo	Cobertura	Escalabilidad	Interoperabilidad
	1	No optimiza el consumo de energía obteniendo una reducción del 0%	Red que conlleva bastantes dificultades en su operación	Área límite menores a los 10 m	Admite entre 0 y 30 dispositivos sin presentar lentitud	Es compatible solo con dispositivos del mismo fabricante.
Calificación	2	Gestiona el consumo de energía consiguiendo una reducción entre el 1% y 5%	Red que conlleva pocas dificultades en su operación	Área límite entre 10 m y 50 m	Admite entre 30 y 500 dispositivos sin presentar lentitud	Es compatible con dispositivos de diferentes fabricantes
Calific	3	Gestiona el consumo de energía con resultados aceptables de una reducción en el 5% y 8%	Red que conlleva dificultades aceptables en su operación	Área límite entre 50 y 100 m	Admite entre 500 y 3000 dispositivos sin presentar lentitud	Es compatible con fabricantes que usen la misma red pero en escala menor.
	4	Gestiona el consumo de energía de buena manera obteniendo una reducción entre el 8% y 13%	Red que conlleva pocas dificultades en su operación	Área límite entre 100 m y 500 m	Admite entre 3000 y 6000 dispositivos sin presentar lentitud	Es compatible con fabricantes que usen la misma red pero en escala media.
	5	Gestiona el consumo de energía de una manera excepciona, consiguiendo ahorros entre el 13% y 20%	Red que conlleva más beneficios que dificultades en su operación	Área límite entre 500 m y 1000 m	Admite hasta 6000 dispositivos sin presentar lentitud	Es compatible con fabricantes que usen la misma red pero en escala mayor.

Nota. Criterios establecidos en referencia a lo requerido por el cliente

Tabla 2.14Ponderación de los criterios para la selección del sistema domótico

Alternativas	Consumo de energía	Costo	Cobertura	Escalabilidad	Interoperabilidad	Total
Wi-Fi	5	3	5	2	5	20
Zigbee	3	4	3	5	1	16
Bluetooth	1	5	1	1	3	11

Nota. Puntaje obtenido de acuerdo a los requerimientos del cliente.

Una vez realizada la respectiva comparación de alternativas, se establece que la red de Wi-Fi es la solución más apropiada para interconectar los aparatos electrónicos en el diseño domótico de la vivienda. La primera de las opciones mencionadas presenta más puntos a su favor a comparación de las demás porque se le atribuyen aspectos más favorables.

2.5.3 Selección de alternativa para diseño

Para el diseño de las ingenierías, los sistemas escogidos fueron:

- Estructural: Sistema de pórticos de estructura metálica resistente a momentos
- Hidrosanitaria: Sistema de abastecimiento de AAPP por medio de bombeo y cisterna
- **Domótico:** Red Wi-Fi

Estas alternativas definitivas son de acuerdo con los beneficios que proveen evaluando los diferentes criterios colocados con la calificación de la escala de Likert y lo requerido por el cliente.

CAPÍTULO 3

3. DISEÑOS Y ESPECIFICACIONES

3.1 Diseño arquitectónico

La propuesta arquitectónica y los planos de la vivienda fueron dadas por el cliente modelados en el software Revit.

Figura 3.1

Vista 3D de la vivienda

Nota. Modelado tomado del software Revit.

3.2 Diseño Estructural

Para el diseño estructural de la vivienda se optó por la alternativa seleccionada en el capítulo anterior, donde los elementos principales son las columnas y las vigas hechas de acero estructural. Se utilizó las normativas nacionales e internacionales ANSI/AISC 341-16/10, ANSI/AISC 360-16/10, NEC-SE-DS y la NEC-SE-AC.

3.2.1 Propiedades de los materiales

Al momento del diseño las propiedades de los materiales son fundamentales para determinar los perfiles o dimensiones de las secciones que se utilizarán.

Acero: Se utilizó el acero estructural ASTM A36 para la superestructura debido a ser el más usado en las construcciones de viviendas y edificaciones a nivel nacional, por tener una fácil disponibilidad y un costo más accesible con respecto a los beneficios que brinda. Sus propiedades son:

Tabla 3.1Propiedades del acero ASTM A36

Parámetro	Simbología	Valor
Esfuerzo de fluencia	Fy	2530 kg/cm2
Módulo de Elasticidad	E	2100000 kg/cm2
Peso específico	Ys	7850 kg/cm3
Esfuerzo de rotura	Fu	4077,80 kg/cm2

3.2.2 Estimación de cargas

Se calculó tanto la carga muerta como la carga viva para cada piso, con algunos valores tomados de la NEC-SE-SG.

3.2.3 Carga muerta

Carga de paredes: La carga de paredes para el entrepiso se la obtuvo con la relación de un paño de 1 m2 de losa con respecto a 1 m2 de pared, y con el uso de bloques de hormigón que tienen un peso de 10 kg:

$$W_{paredes} = \frac{\text{\#bloques}}{\text{m2 pared}} * \# \frac{\text{m2 pared}}{\text{m2 losa}} * \# \frac{\text{kg}}{\text{unidad}}$$

$$W_{paredes} = 13 \frac{\text{unidades}}{\text{m2 pared}} * 2 \frac{\text{m2 pared}}{\text{m2 losa}} * 10 \frac{\text{kg bloque}}{\text{unidad}} = 260 \frac{\text{kg}}{\text{m2 losa}}$$

Carga de enlucidos: Se considera un espesor 1.5 cm por cada lado de pared y con una densidad del mortero de 2200 kg/m3:

$$W_{enlucidos} = 2 \text{ capas} * e_{enlucido} * \gamma_{enlucido} * \# \frac{m2 \text{ pared}}{m2 \text{ losa}}$$

$$W_{enlucidos} = 2 \text{ capas} * 1.5 \text{ cm} * \frac{1 \text{ m}}{100 \text{ cm}} * 2200 \frac{\text{kg}}{\text{m}^3} * 2 \frac{m2 \text{ pared}}{m2 \text{ losa}} = 132 \frac{\text{kg}}{m2 \text{ losa}}$$

Carga de piso: Son todas las cargas de acabados y instalaciones, se toma los valores dados en la NEC-SE-CG como se muestra en la Tabla 3.2:

Figura 3.1
Peso propio de Cielorrasos y Cubiertas

Elementos secundarios							
G. Contrapisos y recubrimientos	kN/m ²						
Baldosa de mármol reconstituido, con mortero de cemento: por cada cm, de espesor	0.22						
Baldosa de cerámica, con mortero de cemento: por cada cm, de espesor	0.20						
Contrapiso de hormigón ligero simple, por cada cm, de espesor	0.16						
Contrapiso de hormigón simple, por cada cm, de espesor	0.22						

Nota. Tabla obtenida de la NEC-SE-CG, Tabla 8, pág. 23.

$$\begin{split} W_{cer\'{a}mica+empaste} &= 0.20 \; \frac{kN}{m^2} = 20.39 \; \frac{kg}{m^2} \\ W_{instalaciones} &= 75 \; \frac{kg}{cm^2} \\ \\ W_{piso} &= W_{cer\'{a}mica+empaste} + W_{instalaciones} = 95 \; \frac{kg}{cm^2} \end{split}$$

Carga de Losa Colaborante: Se considera una losa de 10 cm de espesor con el uso de una steel deck marca NOVALOSA de 0.75 mm, la cual, según su ficha técnica, tiene una carga de:

$$W_{\text{steeldeck}} = 7.87 \frac{\text{kg}}{\text{m}^2}$$

Se considera el dato de volumen de hormigón dado por el proveedor por m2 con un espesor de 5 cm medido desde la parte superior del nervio de la placa para calcular el peso del hormigón:

$$V_{hormigon} = 0.075 \frac{m^3}{m^2}$$

$$W_{hormig\acute{o}n} = V_{hormig\acute{o}n} * \rho_{hormig\acute{o}n} = 0.075 \frac{m^3}{m^2} * 2400 \frac{kg}{m^3} = 180 \frac{kg}{m^2}$$

Siendo el peso total de la losa colaborante:

$$W_{LosaColaborante} = W_{steeldeck} + W_{hormig\acute{o}n} = 7.87 \frac{kg}{m^2} + 180 \frac{kg}{m^2} = 187.87 \frac{kg}{m^2}$$

Carga muerta total: Es la suma de todas las cargas muertas por cada piso.

$$\begin{aligned} W_{DEntrepiso} &= W_{paredes} + W_{enlucidos} + W_{piso} + W_{LosaColaborante} \\ W_{DEntrepiso} &= 260 \frac{kg}{m^2} + 132 \frac{kg}{m^2} + 95 \frac{kg}{m^2} + 187.87 \frac{kg}{m^2} = 674.87 \frac{kg}{m^2} \end{aligned}$$

Para el piso de cubierta se toma un valor referencial con respecto al material de la cubierta utilizada, dado por proveedores.

$$W_{DCubierta} = 30 \frac{kg}{m^2}$$

3.2.4 Carga Viva

Para los valores de carga viva se tomó de referencia la Tabla 9 de la NEC-SE-CG:

Tabla 3.2
Carga viva de pisos de acuerdo a su uso

Carga Viva					
Piso Carga					
Entrepiso	203,88 kg/cm2				
Cubierta 71,36 kg/cm2					

Nota. Tabla obtenida de la NEC-SE-CG, Tabla 9, pág. 29.

3.2.5 Cargas totales

En la siguiente tabla se resume todas las cargas por cada piso:

Tabla 3.3Resumen de cargas consideradas en el diseño

Carga muerta total								
Entrepiso 674,87 kg/m2								
Cubierta	20,00	kg/m2						
Carga viva								
Entrepiso 203,88 kg/m2								
Cubierta	71,36	kg/m2						

3.2.6 Combinaciones de carga

Se utilizará el método de la última resistencia o "LRFD" con las siguientes combinaciones establecidas por la NEC 2015 como se muestra en la siguiente tabla:

Tabla 3.4
Combinaciones de carga

#	Combinaciones de carga
1	1,4D
2	1,2D+1,6L
3	1,2D+1L+1Ex
4	1,2D+1L-1Ex
5	1,2D+1L+1Ey
6	1,2D+1L-1Ey
7	0,9D+1Ex
8	0,9D-1Ex
9	0,9D+1Ey
10	0,9D-1Ey
Servicio	D+L
	Donde:
D	Carga muerta
L	Carga viva
E	Carga sísmica

Nota. Tabla obtenida de la NEC-SE-CG, pág. 19.

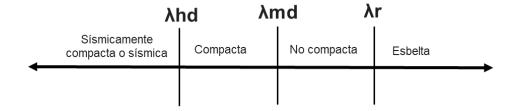
3.2.7 Evaluación de perfiles estructurales

En un sistema IMF se requieren de perfiles compactos o sísmicamente compactos, a la vez que no sufran de pandeo local, por lo que se utilizó los criterios dados por la AISC 341-10 y AISC 360-10, tanto para elementos a compresión, flexo-compresión o como a flexión.

En consecuencia, todas las secciones deben cumplir la siguiente condición:

$$\frac{(\text{h o b})}{\text{tw}} \le \lambda_{\text{md}} \tag{3.1}$$

Donde:


H: Altura de la sección

Tw: espesor del alma o ala

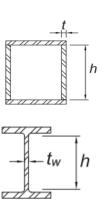
λmd: Límite para miembros moderadamente dúctiles

Y para determinar si es compacto o no compacto, se ilustró la siguiente regla con base en los códigos mencionados.

Figura 3.2
Guía de clasificación de perfiles según sus elementos.

Para elementos sometidos a flexión, las ecuaciones son las siguientes:

Tabla 3.5 *Ecuaciones para la evaluación de perfiles.*


Perfil	Elemento	λhd	λmd	λr	<u>b</u>
	Ala	$0.30 * \sqrt{\frac{E}{Fy}}$	$0.38 * \sqrt{\frac{E}{Fy}}$	$1*\sqrt{\frac{E}{Fy}}$	
I o C	Alma	$2,45 * \sqrt{\frac{E}{Fy}}$	$3,76 * \sqrt{\frac{E}{Fy}}$	$5,70 * \sqrt{\frac{E}{Fy}}$	$-t_w$

3.2.8 Evaluación de perfiles estructurales a compresión

Para elementos sometidos a compresión o flexo-compresión como las columnas, se utiliza las siguientes consideraciones:

Tabla 3.6 *Ecuaciones para la evaluación de los perfiles a flexo-compresión.*

Perfil	λhd	λmd	

Para Ca
$$\leq$$
 0,114

 $2,57\sqrt{\frac{E}{Ry*Fy}}(1-1,04Ca)$

Para Ca \leq 0,114

 $3,96\sqrt{\frac{E}{Ry*Fy}}(1-3,04Ca)$

Para Ca \geq 0,114

Para Ca \geq 0,114

Para Ca \geq 0,114

Para Ca \geq 0,114

 $1,29\sqrt{\frac{E}{Ry*Fy}}(2,12-Ca)$
 \geq 1,57 $\sqrt{\frac{E}{Ry*Fy}}$
 \geq 1,57 $\sqrt{\frac{E}{Ry*Fy}}$

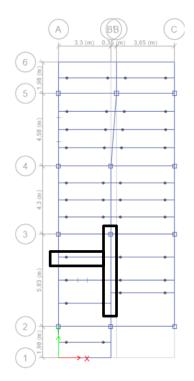
$$Ca = \frac{Pu}{\phi_c * Py} \tag{3.2}$$

$$Py = Ry * Fy * Ag$$
 (3.3)

Donde:

Фс: 0.9

Ry: Factor de sobrerresistencia


Py: Resistencia nominal a la compresión de la sección.

3.2.9 Predimensionamiento

En este apartado se tomó un solo elemento por cada parte estructural, los cálculos del prediseño de todas las secciones se encuentran en el Anexo 1.

El cálculo se realizó en base al paño más crítico del entrepiso como se muestra en la Figura 3.3:

Figura 3.3
Vista en planta del entrepiso.

3.2.9.1 Predimensionamiento de vigas secundarias

Las vigas secundarias desempeñan la función de distribuir los esfuerzos hacia las vigas principales o "cargadoras", además, sus conexiones viga-viga son a corte, por lo que están simplemente apoyadas. Al no ser elementos diseñados para soportar el sismo, su prediseño será basado en aprovechar toda su capacidad o resistencia nominal, la cual se calcula con la siguiente ecuación:

$$M_{n} = \emptyset * F_{y} * Z \tag{3.4}$$

Donde:

Mn: Momento nominal o resistencia nominal.

Ø: Factor de reducción de 0.9

Fy: Esfuerzo de fluencia del acero

Z: Módulo plástico del elemento

Para definir la sección requerida se escogió el paño más desfavorable (2-3 A-B) del entrepiso como se muestra en la Figura 3.3 con una longitud de viga de 3.3 m.

$$L_{\rm n} = 3.3 \text{ m}$$

Se calcula la carga última con la combinación más crítica, siendo la 2 de la Tabla 3.4 y los valores de cargas de la Tabla 3.3:

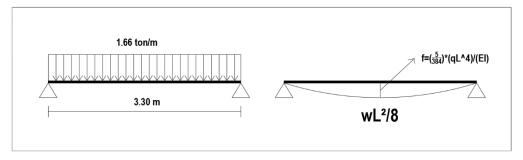
$$C_u = 1.2D + 1.6L = 1.2(674.87) + 1.6(203.88) = 1136.052 \frac{kg}{m^2}$$

$$C_{\rm u} = 1.14 \, \frac{\rm ton}{\rm m^2}$$

El número de vigas secundarias son 3 con una separación entre las mismas de:

$$at = 1.46 \text{ m}$$

Se calcula la carga que soportará la viga:


$$W_{viga} = Cu * Ln * at = 1.14 \frac{ton}{m^2} * 3.3 m * 1.46 m = 5.49 ton$$

En metros lineales:

$$WL_{viga} = \frac{W_{viga}}{Ln} = \frac{5.49 \text{ ton}}{3.3 \text{ m}} = 1.66 \frac{\text{ton}}{\text{m}}$$

Con los resultados obtenidos se calcula el momento demandante de la viga conociendo su condición de simplemente apoyada con carga distribuida como se visualiza en la Figura 3.4:

Figura 3.4Representación de la distribución de cargas y momento.

$$f = \frac{5 * WL_{serv} * L^4}{384 * EI}$$
 (3.5)

$$Mu = \frac{WL_{viga}*Ln^2}{8} = \frac{1.66*(3.3)^2}{8} = 2.26 \text{ ton } * m$$

Se calcula el módulo plástico requerido por medio de la siguiente ecuación:

$$Z_{\text{xreq}} = \frac{\text{Mu}}{\text{Ø} * \text{Fy}} = \frac{2.26 * 10^5}{0.9 * 2530} = 99.25 \text{ cm}^3$$

Para evitar deflexiones excesivas (vibraciones), se utilizó el criterio mostrado en la siguiente tabla con carga de servicio:

Figura 3.5
Límites de deflexiones para vigas

TABLA 10.1 Límites de deflexión tomados del IBC 2009								
Manhaa		Condicio	nes de carga					
Miembros	L	D + L	SoW					
Para miembros de piso	L 360	$\frac{L}{240}$	_					
Para miembros de techo que soportan plafón de yeso*	$\frac{L}{360}$	L 240	L 360					
Para miembros de techo que soportan plafones que no son de yeso*	L 240	L 180	L 240					
Para miembros de techo que no soportan plafones*	$\frac{L}{180}$	L 120	L 180					
*Todos los miembros de techo deberán investigarse en cuanto al ench	arcamie	nto.						

Nota. Fórmulas para el límite de deflexiones obtenidas del libro "Diseño de Estructuras de Acero", Tabla 10.1, pág. 313, 5ta.Ed., 2013.

Dada la ecuación 3.5 para el momento requerido, se calcula la Inercia mínima de la sección:

$$\begin{split} \text{Cu}_{\text{Servicio}} &= D + L = 674.87 + 20 = 694.87 \; \frac{\text{kg}}{\text{m}^2} \\ \text{WL}_{\text{Servicio}} &= \text{Cu}_{\text{Servicio}} * \text{at} = 704.87 \; \frac{\text{kg}}{\text{m}^2} * 1.46 \; \text{m} = 1.01 \; \frac{\text{ton}}{\text{m}} \\ &\frac{L}{240} = \frac{5 * \text{WL}_{\text{Servicio}} * \text{L}^4}{384 * \text{EI}} \\ I_{\text{min}} &= \frac{3.125 * 1.03 * 100 * (3.3 * 100)^3}{10 * 2100000} = 540,12 \; \text{cm}^4 \end{split}$$

Con estos requerimientos se escoge el siguiente perfil con sus características:

Figura 3.6

Propiedades de la sección IPE de la viga secundaria

	IPE 180							
Propiedades	Unidad	Valor	Unidad	Sección				
Ala	bf	9,10	cm					
Altura	h	18	cm	bf				
Espesor del ala	tf	0,80	cm					
Espesor del alma	tw	0,53	cm					
Radio	R	0,07	cm					
Área	Α	23,90	cm2					
Peso	Р	18,80	kg/m					
Inercia en X	lx	1320,00	cm4					
Inercia en Y	ly	101,00	cm4	h				
Modulo de sección en X	Sx	140,00	cm3] "				
Módulo de sección en Y	Sy	22,20	cm3					
Módulo elástico en X	Zx	160,85	cm3	R				
Módulo elástico en Y	Zy	35,83	cm3					
Radio de giro en X	rx	7,43	cm	<u> </u>				
Radio de giro en Y	ry	2,06	cm					
Inercia mínima	lmin	540,12	cm4					
Momento Nominal	Mn	3,66	ton*m					

Se evalúa si la sección es sísmicamente compacta o compacta con las ecuaciones de la Tabla 3.6.

Análisis del ala

$$\frac{b}{tf} = \frac{\frac{bf}{2}}{tf} = \frac{9.10}{0.80} = 3.64$$

$$\lambda_{\text{hd}} = 0.30 * \sqrt{\frac{E}{Fy}} = 0.30 * \sqrt{\frac{2100000}{2530}} = 8.64$$

$$\lambda_{\text{md}} = 0.38 * \sqrt{\frac{E}{Fy}} = 0.38 * \sqrt{\frac{2100000}{2530}} = 10.94$$

$$\frac{b}{tf} \le \lambda_{hd} y \lambda_{md}$$

El ala es sísmicamente compacta.

Análisis del alma

$$\frac{h}{tw} = \frac{h - 2tf}{tw} = \frac{18 - 2 * 0.8}{0.53} = 30.94$$

$$\lambda_{hd} = 2.45 * \sqrt{\frac{E}{Fy}} = 0.30 * \sqrt{\frac{2100000}{2530}} = 70.58$$

$$\lambda_{md} = 3.76 * \sqrt{\frac{E}{Fy}} = 0.38 * \sqrt{\frac{2100000}{2530}} = 108.33$$

$$\frac{h}{tw} \le \lambda_{hd} y \lambda_{md}$$

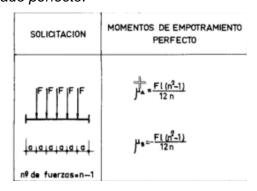
El alma es sísmicamente compacta.

Por lo tanto, es una sección sísmicamente compacta.

3.2.9.2 Predimensionamiento de vigas principales

Las vigas principales o cargadoras reciben las reacciones de las vigas secundarias y la transmiten hacia las columnas y sus conexiones viga-columna son a momento, por lo que se consideran empotradas. Se analizó el eje más crítico el cual tiene una luz libre de:

$$L_n = 5.83 \text{ m}$$


Al ser una viga en medio de dos paños con vigas secundarias, para calcular la carga equivalente que se transmite (tomando en cuenta el hueco de escalera) se usó la siguiente ecuación:

Wp =
$$\frac{W_{\text{viga}}}{2} * \left(1 + \frac{Ln_{s2}}{Ln_{s1}}\right)$$
; Ln_{s2} = 4 * 0.75 = 3 m, Ln_{s1} = 3.30 m

Wp =
$$\frac{W_{\text{viga}}}{2} * \left(1 + \frac{Ln_{s2}}{Ln_{s1}}\right) = \frac{5.49}{2} * (1 + 0.91) = 5.24 \text{ ton}$$

Se calcula el momento demandado:

Figura 3.7 *Ecuaciones de momento empotrado perfecto.*

$$Mu = \frac{Wp * L_n * (\#cargas + 1)^2}{12 * (\#cargas + 1)}$$
(3.6)

$$Mu = \frac{5.24 * 5.83 * (3 + 1)^{2}}{12 * (3 + 1)} = 10.18 \text{ ton } * m$$

Y el módulo plástico requerido:

$$Z_{xreq} = \frac{Mu}{0 * Fv} = \frac{10.18 * 10^5}{0.9 * 2530} = 447.21 \text{ cm}^3$$

Para el control de deflexiones excesivas se calcula el máximo valor permitido, el cual será verificado con los resultados del software estructural:

$$\frac{L}{240} = \frac{5.83 \text{ m}}{240} = 2.43 \text{ cm}$$

Con los resultados obtenidos se escogió el siguiente perfil:

Figura 3.8

Propiedades de la sección IPE de la viga principal

IPE 270							
Propiedades	Unidad	Valor	Unidad	Sección			
Ala	bf	13,50	cm				
Altura	h	27,00	cm	bf			
Espesor del ala	tf	1,02	cm				
Espesor del alma	tw	0,66	cm				
Radio	R	1,20	cm				
Área	Α	45,90	cm2				
Peso	Р	36,10	kg/m				
Inercia en X	lx	5790,00	cm4				
Inercia en Y	ly	420,00	cm4	h			
Módulo de sección en X	Sx	429,00	cm3				
Módulo de sección en Y	Sy	62,20	cm3	R			
Módulo elástico en X	Zx	460,54	cm3				
Módulo elástico en Y	Zy	95,67	cm3				
Radio de giro en X	rx	11,23	cm				
Radio de giro en Y	ry	3,02	cm				
Momento Nominal	ФМп	10,49	ton*m				

Donde:

$$\emptyset M_n \ge Mu$$

Cumple con el criterio de última resistencia (LRFD).

Y se realiza el análisis para definir si es compacta.

• Análisis del ala

$$\frac{b}{tf} = \frac{\frac{bf}{2}}{tf} = \frac{13.5}{2} = 6.37$$

$$\lambda_{hd} = 0.30 * \sqrt{\frac{E}{Fy}} = 0.30 * \sqrt{\frac{2100000}{2530}} = 8.64$$

$$\lambda_{md} = 0.38 * \sqrt{\frac{E}{Fy}} = 0.38 * \sqrt{\frac{2100000}{2530}} = 10.94$$

$$\frac{b}{tf} \le \lambda_{hd} y \lambda_{md}$$

El ala es sísmicamente compacta.

Análisis del alma

$$\frac{h}{tw} = \frac{h - 2tf}{tw} = \frac{27 - 2 * 1.02}{0.66} = 37.82$$

$$\lambda_{hd} = 2.45 * \sqrt{\frac{E}{Fy}} = 0,30 * \sqrt{\frac{2100000}{2530}} = 70.58$$

$$\lambda_{md} = 3.76 * \sqrt{\frac{E}{Fy}} = 0,38 * \sqrt{\frac{2100000}{2530}} = 108.33$$

$$\frac{h}{tw} \le \lambda_{hd} y \lambda_{md}$$

El alma es sísmicamente compacta.

Por lo tanto, es una sección sísmicamente compacta.

3.2.9.3 Predimensionamiento de columnas

Para el análisis se escogió la columna con la mayor área tributaria, se encuentra ubicada en el eje 3-B.

$$A_t = 18.48 \text{ m}^2$$

Las cargas que se transmitirán a la columna por piso son las siguientes:

$$\begin{aligned} \text{Cu}_{\text{entrepiso}} &= \text{Cu} = 1.14 \, \frac{\text{ton}}{\text{m}^2} \\ \text{Cu}_{\text{cubierta}} &= 1.2(20) + 1.6(71.36) = 0.14 \, \frac{\text{ton}}{\text{m}^2} \\ \text{Cu}_{\text{Total}} &= \text{Cu}_{\text{entrepiso}} + \text{Cu}_{\text{cubierta}} = 1.14 + 0.14 = 1.28 \, \frac{\text{ton}}{\text{m}^2} \end{aligned}$$

Se obtiene la carga axial última de la columna:

$$P_{u} = Cu_{Total} * A_{t}$$
 (3.7)

$$P_{ij} = 1.28 * 18.48 = 23.65 \text{ ton}$$

Para el cálculo del esfuerzo crítico se asumió una esbeltez efectiva de 50, según lo recomendado por McMormac, 2013.

$$\frac{KL}{r} = 50$$

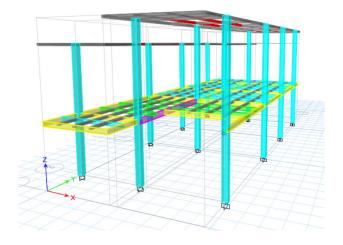
$$Fcr = 2200 \frac{kg}{cm^2}$$

Con estos resultados se obtiene el área requerida de la columna:

$$A_{req} = Pu/\emptyset c * Fcr$$
 (3.8)
 $A_{req} = \frac{23.65}{0.9 * 2200} = 11.94 \text{ cm}^2$

Se seleccionó un perfil tubular cuadrado de 250x250x4mm.

Figura 3.9


Propiedades del tubo estructural

TUBO ESTRUCTURAL								
Propiedades	Unidad	Valor	Unidad	Sección				
Base	b	25,00	cm					
Altura	h	25,00	cm					
Espesor	t	0,40	cm	b				
Área	Α	39,36	cm2					
Peso	Р	30,90	kg/m					
Inercia en X	lx	3971	cm4					
Inercia en Y	ly	3971	cm4	h				
Módulo de sección en X	Sx	318	cm3					
Módulo de sección en Y	Sy	318	cm3					
Módulo elástico en X	Zx	363	cm3					
Módulo elástico en Y	Zy	363	cm3					
Radio de giro en X	rx	10,04	cm					
Radio de giro en Y	ry	10,04	cm					

3.2.10 Modelamiento de la estructura en el software

Se utilizó un software de modelamiento estructural para obtener resultados más exactos sobre los esfuerzos transmitidos, las demandas requeridas, los modos de la estructura debido al sismo, entre otras.

Figura 3.10 Vista 3D de la edificación

Nota. Modelado en un software estructural.

3.2.11 Ingreso de los materiales

Se ingresan las propiedades de los materiales utilizados:

Figura 3.11
Propiedades del acero en software

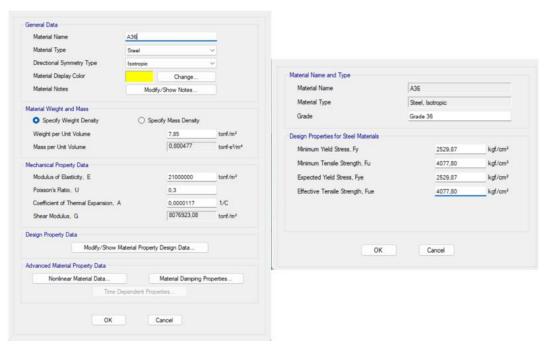
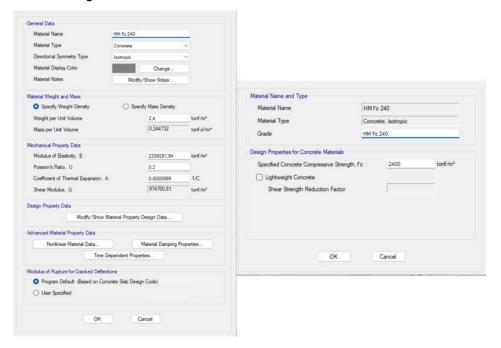



Figura 3.12
Propiedades del hormigón en el software

3.2.12 Ingreso de los perfiles de vigas, columnas y secciones de losa

Luego, se crean los perfiles obtenidos del prediseño:

Figura 3.13

Perfiles de correas, vigas y columnas en el software

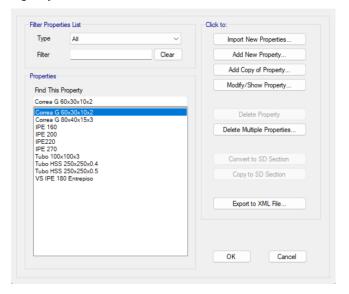


Figura 3.14

Modelado de vigas de entrepiso

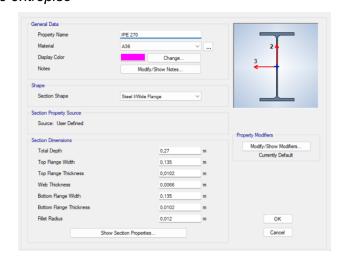


Figura 3.15

Modelado de las vigas de cubierta

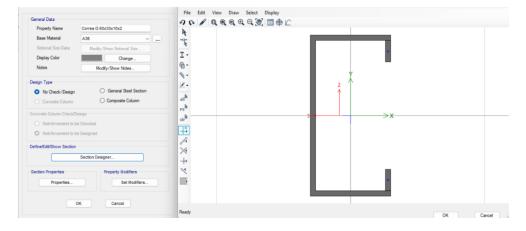


Figura 3.16

Modelamiento de columnas, vigas de cubierta y nervios entrepiso (Perfiles HSS).

Al modelar la losa, se escogió la opción de Slab Section y membrana tanto para el entrepiso como para la cubierta, ya que no se diseñan por losa colaborante.

Figura 3.17
Creación de losa de entrepiso con Slab Section.

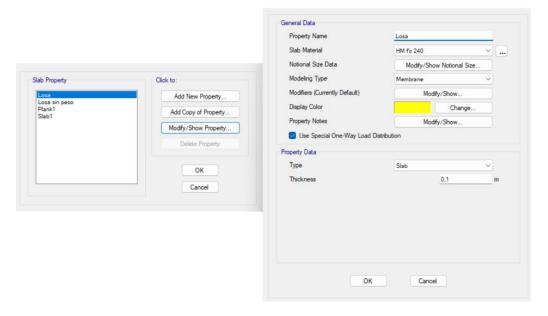
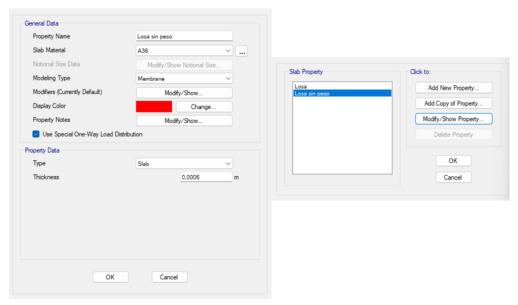



Figura 3.18
Creación de la Losa de Cubierta con Slab Section.

3.2.13 Asignación de diafragmas rígidos

Se crean los diafragmas rígidos para todos los niveles de piso, con el fin de que toda la losa tenga la misma deformación por la acción del sismo en cada piso al tener un solo centro de masa y rigidez.

Figura 3.19
Diafragma para el entrepiso

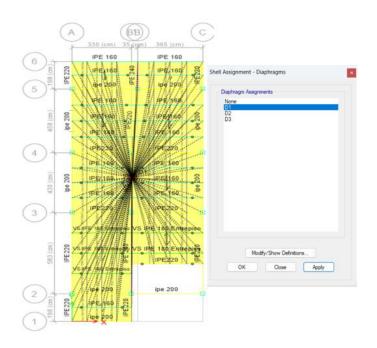


Figura 3.20
Diafragma para la primera cubierta

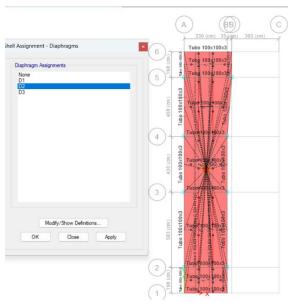
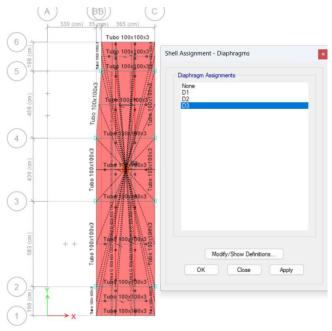
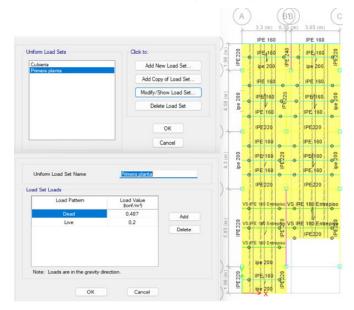
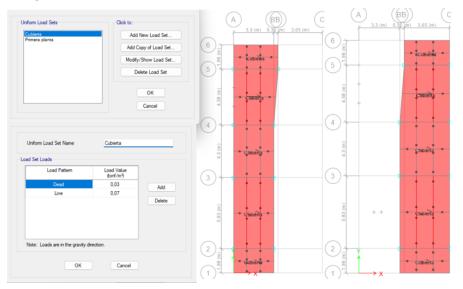



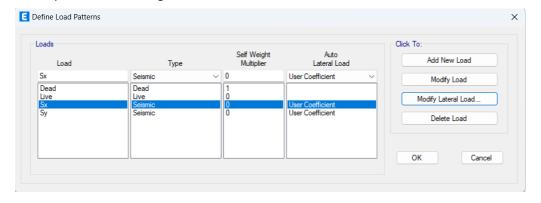
Figura 3.21
Diafragma para la segunda cubierta.

3.2.14 Asignación de cargas

Se asignan las cargas muertas y vivas correspondientes a la losa y las cubiertas, se toma en cuenta la consideración del peso propio del programa.

Figura 3.22
Asignación de cargas uniformemente distribuidas a la primera planta.


Figura 3.23
Asignación de cargas uniformemente distribuidas a las cubiertas.

3.2.15 Patrones de carga

Se definen los patrones de carga del sismo, el programa ya integra la carga muerta a la cual se le asigna un valor de 1 para considerar el peso propio y la carga viva un valor de 0.

Figura 3.24Asignación de patrones de carga.

El valor Sx corresponde al sismo en el eje X y Sy al valor del sismo en Y.

3.2.16 Análisis estático lineal

El análisis sísmico requiere de información sobre la ubicación del proyecto, el tipo de suelo donde se va a edificar, el uso de la edificación y la regularidad de la misma, según lo estipulado en la normativa NEC-SE-DS.

 Factor Z: El proyecto se encuentra ubicado en Ciudad Celeste, Etapa Babor, como se muestra en la Figura 2.3. Esto permite conocer si la zona es altamente sísmica y escoger el valor Z dado en la Tabla .

Figura 3.25
Valores de Z de acuerdo a la ubicación del proyecto.

Zona sísmica		I	II	III	IV	V	VI
Valor factor Z		0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización o peligro sísmico	lel	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Nota. Valores tomados de la NEC-SE-DS, pág. 28, 2015.

En este caso, se encuentra en una zona con alto peligro sísmico por lo que su valor:

$$Z = 0.4$$

- **Tipo de suelo:** Según el estudio de suelos entregados por el cliente, se tiene un perfil E por el índice de plasticidad (IP) y % de humedad (%w).
- Coeficientes Fa, Fd y Fs: Tomados de la Tabla 3, 4 y 5 de la NEC-SE-DS.

Figura 3.26

Factores de sitio Fa.

Tipo de perfil del subsuelo	I	II	III	IV	v	VI
Factor Z	0.15	0.25	0.30	0.35	0.40	≥0.5
Α	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
Е	1.8	1.5	1.39	1.26	1.14	0.97
F	Véase <u>Tabla 2</u> : Clasificación de los perfiles de suelo y la sección <u>10.6.4</u>					

Nota. Valores tomados de la NEC-SE-DS, pág. 31, 2015.

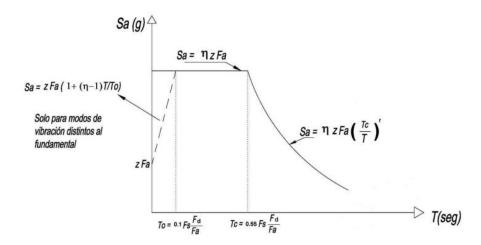
Figura 3.27
Factores de desplazamiento Fd.

Tipo de perfil del subsuelo	I	II	III	IV	v	VI
Factor Z	0.15	0.25	0.30	0.35	0.40	≥0.5
А	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.6	1.5	1.4	1.35	1.3	1.25
D	1.9	1.7	1.6	1.5	1.4	1.3
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase <u>Tabla 2</u> : Clasificación de los perfiles de suelo y <u>10.6.4</u>					

Nota. Valores tomados de la NEC-SE-DS, pág. 31, 2015.

Figura 3.28
Factores de comportamiento de suelos Fs.

Tipo de perfil del subsuelo	ı	II	III	IV	v	VI
Factor Z	0.15	0.25	0.30	0.35	0.40	≥0.5
А	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	1	1.1	1.2	1.25	1.3	1.45
D	1.2	1.25	1.3	1.4	1.5	1.65
Е	1.5	1.6	1.7	1.8	1.9	2
F	Véase Tabla 2 : Clasificación de los perfiles de suelo y 10.6.4					


Nota. Valores tomados de la NEC-SE-DS, pág. 31, 2015.

3.2.16.1 Espectro elástico e inelástico de aceleraciones

Para calcular el efecto sísmico se debe obtener la gráfica del espectro de respuesta elástico. La NEC en su capítulo de sismoresistencia muestra las fórmulas a utilizar para representar el espectro, como se indica en la Figura 3.29.

Figura 3.29

Espectro elástico de diseño

Nota. Gráfico obtenido de la NEC-SE-DS, pág. 23, 2015.

Los valores requeridos son:

Tabla 3.7Consideraciones sísmicas de acuerdo a la zona.

Consideraciones sísmicas		
Z	0,4	
Fa	1,14	
Fd	1,6	
Fs	1,9	
n (Costa)	1,8	
r (Tipo E)	1,5	

Se calcula los periodos de vibración para cada tramo límite:

To =
$$0.1 * Fs * \frac{Fd}{Fa}$$
 (3.9)
To = $0.1 * 1.9 * \frac{1.6}{1.14} = 0.27 s$
Tc = $0.55 * Fs * \frac{Fd}{Fa} = 1.46 s$

Y la aceleración sísmica Sa (g):

Para $0 \le T \le Tc$:

$$Sa = n * Z * Fa \tag{3.10}$$

$$Sa = 1.8 * 0.4 * Fa = 0.82$$

Para T > Tc:

$$Sa = n * Z * Fa * \left(\frac{Tc}{T}\right)^{r}$$
(3.11)

Por otra parte, para representar el espectro de aceleraciones inelástico se requieren los siguientes coeficientes establecidos por la NEC:

Importancia de la estructura (I)

Figura 3.30 Coeficiente de importancia.

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Nota. Valores tomados de la NEC-SE-DS, pág. 23, 2015.

Valor de R correspondiente al sistema estructural

Figura 3.31
Coeficiente R.

Sistemas Estructurales Dúctiles	R
Pórticos especiales sismo resistentes, de hormigón armado con vigas banda, con muros estructurales de hormigón armado o con diagonales rigidizadoras.	7
Pórticos resistentes a momentos	_
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	8
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	8
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	8
Otros sistemas estructurales para edificaciones	_
Sistemas de muros estructurales dúctiles de hormigón armado.	5
Pórticos especiales sismo resistentes de hormigón armado con vigas banda.	5

Nota. Valores tomados de la NEC-SE-DS, 2015.

Configuración estructural

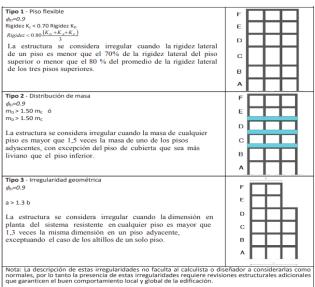

Para determinar si la estructura tiene una configuración regular o irregular, tanto en elevación como en planta se analizan los casos indicados en la NEC de sismoresistencia como se indica en la Figura 3.32 y 3.33.

Figura 3.32
Casos y coeficientes de irregularidades en planta.

Nota. Valores tomados de la NEC-SE-DS, 2015.

Figura 3.33Casos de irregularidades en elevación.

Nota. Información recopilada de la NEC-SE-DS, 2015.

Se analiza cada tipo de irregularidad con el fin de asegurar que la estructura tendrá un comportamiento satisfactorio frente al sismo.

Irregularidades de planta

Se puede inferir que tanto el tipo 3 como el tipo 4 de irregularidades no aplica en la estructura por su arquitectura, por lo tanto, se evaluará el tipo 2:

Tabla 3.8 *Evaluación de irregularidades en planta*

Α	2,25	
В	18,67	
С	4	
D	7,3	
A>0,15B	No cumple	
C>0,15D	Se cumple	
Existe Irregularidad		

Al existir irregularidad por el análisis en el tipo 2, se puede concluir lo siguiente:

$$\emptyset_{p} = 0.9$$

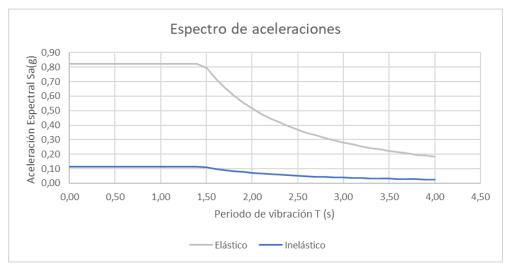
Irregularidades de elevación

Al ser una estructura de dos pisos con cubierta y no tener irregularidades en elevación considerables se puede considerar directamente:

$$\emptyset_E = 1$$

En conclusión:

Tabla 3.9Coeficiente de irregularidades de elevación, planta e importancia


I	1,00
Фр	0,90
Фе	1,00

Con los parámetros obtenidos, se procede a calcular el sismo inelástico por medio de la siguiente ecuación:

$$Cs = \frac{Sa * I}{R * \Phi p * \Phi e}$$
 (3.12)

Así, la gráfica del espectro de aceleraciones elástico e inelástico se presenta en la Figura 3.34, los cálculos se encuentran en el Anexo 1:

Figura 3.34
Espectro de diseño de la vivienda, elástico e inelástico.

3.2.16.2 Periodo fundamental de la estructura

La fuerza o demanda sísmica se obtiene a partir del periodo fundamental de la estructura y del espectro inelástico.

La NEC-SE-DS establece dos métodos para estimar el periodo:

Método 1:

Se lo puede calcular mediante la expresión:

$$T = Ct * hn^{\alpha}$$
 (3.13)

Donde:

- T: Periodo de vibración (s)
- Ct: Coeficiente de acuerdo al tipo de estructura
- Hn: Altura total de la edificación (m)

Para este caso:

Figura 3.35

Valores de acuerdo al tipo de estructura para calcular el periodo de vibración.

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75
Pórticos especiales de hormigón armado		
Sin muros estructurales ni diagonales rigidizadoras	0.047	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.049	0.75

Nota. Valores tomados de la NEC-SE-DS, 2015.

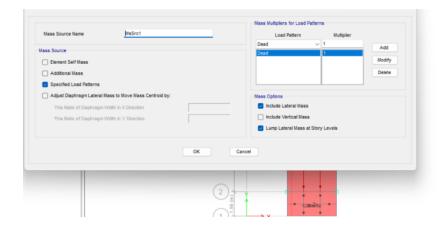
Por lo tanto, el periodo fundamental de la estructura es:

$$T1 = 0.072 * 7.70^{0.8} = 0.369 s$$

Es el mismo periodo para ambos ejes

$$T1X = T1Y = 0.369 s$$

Con guía en la gráfica de espectros de la Figura 3.34, con el periodo y la ecuación 3.12, se estima el valor de la demanda sísmica Cs(g) de forma manual:

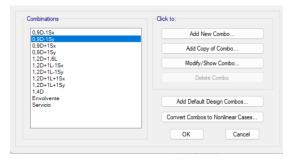

$$Cs(g) = \frac{0.82 * 1}{8 * 0.9 * 1} = 0.114 = CsX = CsY$$

3.2.16.3 Masa sísmica

Se considera la masa sísmica al 100% de la carga muerta:

Figura 3.36

Ingreso de la masa sísmica



3.2.16.4 Combinaciones de carga en el software

Se insertan las combinaciones de carga establecidas por la NEC, 2015.

Figura 3.37

Combinaciones de carga en el software

3.2.16.5 Periodo fundamental de la estructura (Método 2)

La NEC 2015 establece que el periodo fundamental obtenido del software debe ser menor al 1.3 del periodo fundamental calculado manualmente.

Tetabs =
$$0.471 \le 1.3 * 0.369 = 0.479 s$$

Se cumple por lo que no tendrá un periodo de vibración considerable tomando el menor.

El valor del coeficiente K se lo calcula a partir de las indicaciones de la Figura 3.38:

Figura 3.38
Valor K de acuerdo al periodo de vibración de la estructura

Valores de T (s)	k
≤ 0.5	1
0.5 < T ≤ 2.5	0.75 + 0.50 T
> 2.5	2

Nota. Criterio dado por la NEC-SE-DS, 2015.

Con el valor de T se calcula el valor de Cs para el programa por medio de la ecuación 3.12:

$$Csp(g) = \frac{0.82 * 1}{8 * 0.9 * 1} = 0.114 = CspX = CspY$$

El coeficiente se coloca en los patrones de carga de sismo, tanto en X como en Y del programa.

Figura 3.39
Ingreso del coeficiente sísmico en X.

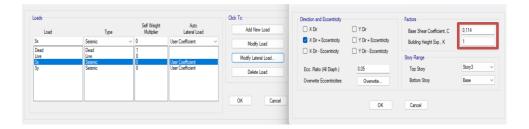
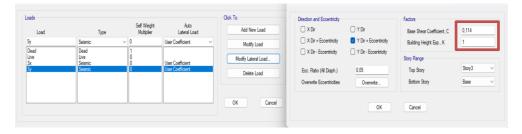



Figura 3.40
Ingreso del coeficiente sísmico en Y.

3.2.16.6 Cortante basal

El cortante basal es la fuerza que actúa lateralmente desde la base de una estructura por causa del sismo de diseño, se usará la Ecuación 3.14 para su cálculo:

$$V_{NEC} = Csp * Wp (3.14)$$

Donde:

Wp: Carga sísmica reactiva de la estructura (ton)

Csp: Coeficiente sísmico considerado del programa (g)

Siendo el valor de Wp obtenido desde el programa:

$$Wp = 100.56 \text{ ton}$$

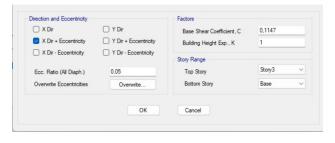
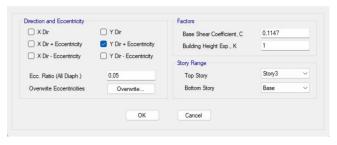

El valor de V_{NEC} se lo compara con el cortante basal dado por el programa para escalar el valor Cs según como lo indica la NEC, los resultados obtenidos son:

Tabla 3.10 *Escalado del valor Cs sísmico.*


Programa cortante basal					
VX 11,39 t					
VY	V Y 11,39				
NEC o	NEC cortante basal				
V x m 11,4638 t					
V y m 11,4638		t			
Val	Valor corregido				
Cs-Px	0,1147	g			
Cs-Py	0,1147	g			

El valor corregido del coeficiente se lo ingresa en el programa como se lo muestra en la Figura 3.41 y 3.42:

Figura 3.41
Ingreso del coeficiente sísmico escalado en X

Figura 3.42 *Ingreso del coeficiente sísmico escalado en Y*

3.2.17 Deriva admisible

La deriva es el desplazamiento horizontal medido desde los pisos de la estructura debido a la acción del sismo.

La NEC-SE-DS menciona los siguientes límites para la deriva inelástica:

Figura 3.43

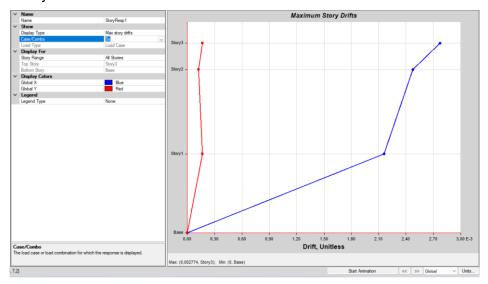
Deriva máxima permisible.

Estructuras de:	Δ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

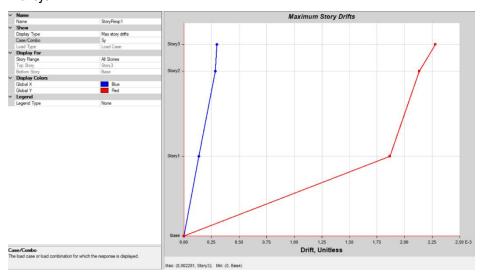
Nota. Límite dado por la NEC-SE-DS, 2015.

Para calcular la deriva máxima inelástica se usa la siguiente ecuación:

$$\Delta = 0.75 * R * \Delta p \tag{3.15}$$


Donde:

R: Factor de resistencia correspondiente al sistema estructural


Δp: Desplazamiento horizontal en cada piso dado por el programa

Asimismo, se obtienen la deriva máxima elástica por medio del software para cada eje:

Figura 3.44Deriva máxima eje X.

Figura 3.45Deriva máxima eje Y.

Por lo tanto, se comprueba si cumple con la deriva inelástica máxima permisible:

Tabla 3.11 *Verificación de deriva admisible.*

Derivas					
Sismo X Sismo Y					
Drift Ela X Max	0,002774	Drift Ela Y Max 0,002281			
Drift Ine X Max	0,016644	Drift Ine Y Max	0,013686		
Limite	0,02	Limite	0,02		
Cumple Cumple					
Cumple deriva					

Cumple con el criterio, comprobando que la estructura tendrá una respuesta satisfactoria ante algún evento sísmico sin esperar agrietamientos excesivos o fisuras.

3.2.18 Índice de estabilidad

Se debe comprobar el índice de estabilidad para cada eje de la estructura, forma parte del análisis de los efectos $P-\Delta$. Se debe cumplir que $Qi \le 0.30$.

Figura 3.46 Índice de inestabilidad y sus parámetros.

$Q_i = rac{P_i \Delta_i}{V_i h_i}$					
Dóno	de:				
Qi	Índice de estabilidad del piso i, es la relación entre el momento de segundo orden y el momento de primer orden.				
Pi	Suma de la carga vertical total sin mayorar, incluyendo el peso muerto y la sobrecarga por carga viva, del piso i y de todos los pisos localizados sobre el piso i				
Δ_{i}	Deriva del piso i calculada en el centro de masas del piso.				
$\mathbf{V_i}$	Cortante sísmico del piso i				
hi	Altura del piso i considerado				

Nota. Fórmulas obtenidas en la NEC-SE-DS, 2015.

Con los valores dados por el software para el cálculo, se obtuvo las siguientes tablas de análisis:

Tabla 3.12Comprobación del índice de estabilidad en el eje X.

Piso	Caso	Р	VX	VY	Deformación	Li: (m) Q	Qx	— Condición
PISO		tonf	tonf	tonf	Eje x (m)	Hi (m)	<0,3	Condicion
Story3	Dead	1,8159	0,6242	-0,0191				_
Story3	Live	2,5861	0,3532	-0,0011				
Story3	Sx	-0,2668	-0,5958	-0,0216	0,014619	1,00	0,11	Cumple
Story2	Dead	5,6482	0,6242	-0,0191				
Story2	Live	7,0035	0,3532	-0,0011				
Story2	Sx	-0,2668	-1,3501	-0,0216	0,012378	3,20	0,04	Cumple
Story1	Dead	100,5606	0	0				
Story1	Live	33,5106	0	0				
Story1	Sx	0	-11,464	0	0,005675	3,20	0,02	Cumple

Nota. Fórmulas obtenidas en la NEC-SE-DS, 2015.

Tabla 3.13Comprobación del índice de estabilidad en el eje Y.

Piso	Caso	Р	VX	VY	Deformación	Hi (m)	Qy	Condición
		tonf	tonf	tonf	Eje y (m)		<0,3	_
Story3	Dead	1,8159	0,6242	-0,0191				
Story3	Live	2,5861	0,3532	-0,0011				
Story3	Sy	0,0027	-0,0049	-0,5267	0,014818	1,00	0,12	Cumple
Story2	Dead	5,6482	0,6242	-0,0191				
Story2	Live	7,0035	0,3532	-0,0011				
Story2	Sy	0,0027	-0,0049	-1,2811	0,011955	3,20	0,04	Cumple
Story1	Dead	100,5606	0	0				
Story1	Live	33,5106	0	0				
Story1	Sy	0	0	-11,464	0,005397	3,20	0,02	Cumple

Nota. Fórmulas obtenidas en la NEC-SE-DS, 2015.

Cada piso de la estructura cumple con la condición de estabilidad.

3.3 Diseño estructural definitivo

3.3.1 Diseño de vigas

Con el mismo elemento estructural tomado en el prediseño de la viga principal, se realizó el diseño definitivo, siendo el eje más crítico entre 3B'- 2B', el procedimiento para todas las vigas se encuentra en el Anexo 1. Las cargas demandantes con la combinación más crítica obtenidas del software son:

Tabla 3.14Cargas demandantes soportadas por la viga.

Demandas					
Mu	8,00	ton*m			
Vu	7,33	ton			

Para obtener una reducción de peso y una mayor rigidez en la estructura por los resultados del prediseño, se propuso la implementación de "nervios" paralelos a las vigas secundarias y conectados a momento. Estos nervios son perfiles tubulares 100x100x3 mm que solo trabajan a resistencia.

A consecuencia, el valor del momento último tuvo una variación considerable con respecto al predimensionamiento, como se evidencia en la Tabla 3.14, por lo que sería óptimo usar una viga con menores dimensiones, pero en el ámbito comercial, los perfiles

menores a IPE 270 no cumplen con las demandas, por lo que se trabajó con la misma viga, en los demás elementos se evidenció una reducción considerable.

La viga trabaja a flexión, por lo que tendrá 3 estados límites:

- Fluencia
- Pandeo Torsional Lateral
- Pandeo local (a/t)

En la Tabla 1.1 de la AISC 360/10, se menciona que los estados límites para una viga sometida a flexión son la fluencia y el PTL y tanto el ala como el alma son compactos. Con esto se infiere que los arriostramientos son fundamentales para evitar este tipo de fallas.

Flexión: Para que el sistema sea IMF, se debe conseguir que la viga falle por fluencia en las rotulas plásticas, esto se logra con arriostramientos laterales.

La longitud no arriostrada de la viga se la denomina como Lb, la cual es la separación entre vigas secundarias, tiene un valor de:

$$Lb = 1.46 \text{ m} = 146 \text{ cm}$$

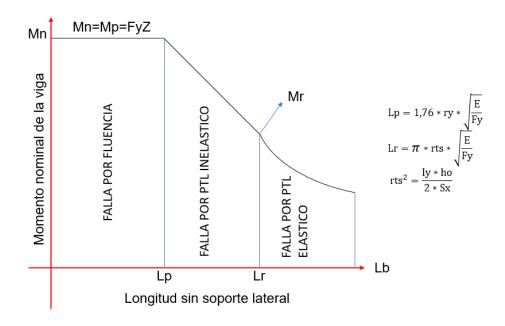
Ahora, el perfil requerido se calcula en base al momento último:

$$Z_{\text{xreq}} = \frac{Mu}{\emptyset * Fv} = \frac{8 * 10^5}{\emptyset * 2530} = 351.34 \text{ cm}^4$$

Al ser una demanda menor, se utilizará la misma sección de viga que en el prediseño.

Figura 3.47 *Propiedades de la viga IPE 270*

IPE 270						
Propiedades	Unidad	Valor	Unidad	Sección		
Ala	bf	13,50	cm			
Altura	h	27,00	cm	bf		
Espesor del ala	tf	1,02	cm			
Espesor del alma	tw	0,66	cm	T T tf		
Radio	R	1,20	cm) (
Área	Α	45,90	cm2			
Peso	Р	36,10	kg/m			
Inercia en X	lx	5790,00	cm4			
Inercia en Y	ly	420,00	cm4	h		
Módulo de sección en X	Sx	429,00	cm3			
Módulo de sección en Y	Sy	62,20	cm3	R		
Módulo elástico en X	Zx	460,54	cm3			
Módulo elástico en Y	Zy	95,67	cm3			
Radio de giro en X	rx	11,23	cm			
Radio de giro en Y	ry	3,02	cm			
Momento Nominal	ФМп	10,49	ton*m			


Dando una relación D/C:

$$\frac{D}{C} = \frac{8}{10.49} = 0.76$$

También, para que una viga cargadora se considere IMF la relación debe dar menor o igual a 0.75 D/C asumiendo que fallará por fluencia con su reducción al momento (LRFD), el valor es muy aproximado por lo que se considera aceptable.

Por lo tanto, con referencia a lo establecido por la AISC 360/10 para los límites de longitudes de la viga con relación a los diferentes tipos de falla y el momento nominal como se muestra en la Figura 3.48, se comprobará si falla por fluencia:

Figura 3.48
Estados límites de la viga a flexión de acuerdo a su longitud sin arriostrar.

Donde:

Lp: Longitud sin soporte lateral donde la sección falla por Pandeo Lateral Torsional Inelástico.

Lr: Longitud sin soporte lateral donde la sección falla por Pandeo Lateral Torsional Elástico.

$$Lp = 1.76 * 3.02 * \sqrt{\frac{2100000}{2530}} = 153.13 \text{ cm}$$
 $Lb > Lp$

La longitud sin arriostrar de la viga, por ser menor a Lp, y al comprobar en el prediseño que es una sección sísmicamente compacta, automáticamente se puede inferir que alcanzará la fluencia. El mismo procedimiento se realizó con todas las vigas, de entrepiso detallados en la sección de Anexos.

Las vigas de cubierta se diseñaron como un sistema OMF, este apartado también se encuentra en Anexos.

Cortante: Para determinar la capacidad a cortante de la viga se utiliza la Ecuación 3.16 dada por la AISC 360/10:

$$Vn = 0.6 * Aw * Fy * Cv$$
 (3.16)

Donde:

Aw: Área total del alma en cm2

Cv: 1.0

Entonces:

$$Vn = 0.6 * 27 * 0.66 * \frac{2530}{1000} * 1 = 27.05 \text{ ton}$$

$$Vu = 7.33 \text{ ton}$$

$$Vn > Vu = Es$$
 satisfactorio

Deflexiones: Para el control de deflexiones excesivas, el perfil debe tener una deflexión máxima:

$$\frac{L}{240} = 2.4 \text{ cm}$$

El programa da una deflexión de 1.43 cm, por lo que la sección cumple con el criterio.

3.3.2 Diseño de columnas

Se analizará la misma columna que en el prediseño, aumentando su grosor para dotar de mayor rigidez a la estructura en el eje más crítico 3B'.

Compresión: Las columnas pueden fallar tanto a compresión como a flexocompresión. La carga axial con la combinación más crítica dada por el software a la que se encuentra sometida la columna es:

$$Pu = 26.48 \text{ ton}$$

Las características de la sección son las siguientes:

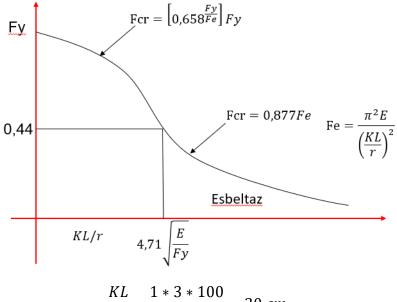
Figura 3.49
Propiedades del tubo estructural

	1	TUBO ESTRUC	TURAL	
Propiedades	Unidad	Valor	Unidad	Sección
Base	b	25,00	cm	
Altura	h	25,00	cm	· .
Espesor	t	0,50	cm	b
Área	Α	49,00	cm2	
Peso	Р	38,47	kg/m	1
Inercia en X	lx	4904	cm4	
Inercia en Y	ly	4904	cm4	h
Módulo de sección en X	Sx	392	cm3	
Módulo de sección en Y	Sy	392	cm3	1
Módulo elástico en X	Zx	450	cm3	1
Módulo elástico en Y	Zy	450	cm3	
Radio de giro en X	rx	10,00	cm	7
Radio de giro en Y	ry	10,00	cm	7

Se debe calcular el esfuerzo crítico para determinar la capacidad de resistencia de la columna, por lo que se requiere de la esbeltez efectiva en ambos ejes dada por la siguiente ecuación:

$$\frac{KL}{r} = \frac{KL}{rx} = \frac{KL}{ry} \tag{3.17}$$

Donde:


K=1

L= altura de la columna = 3 m

rx=ry: Radio de giro

Figura 3.50

Esfuerzo crítico para columnas esbeltaz, intermedias y cortas.

$$\frac{KL}{r} = \frac{1 * 3 * 100}{10.00} = 30 \ cm$$

$$4.71\sqrt{\frac{E}{Fy}} = 4.71\sqrt{\frac{2100000}{2530}} = 135.69 \text{ cm}$$

La columna se encuentra dentro de la zona de intermedias y corta, por lo que su esfuerzo crítico será:

Fe =
$$\frac{\pi^2 * E}{\left(\frac{KL}{r}\right)^2}$$
 = 23048 $\frac{kg}{cm^2}$

$$Fcr = \left(0.658 \frac{Fy}{Fe}\right) Fy = 2416 \frac{kg}{cm^2}$$

Por lo tanto, su capacidad de carga será:

$$Pp = 0.9 * Fcr * Ag = 106.56 ton$$

Y su D/C:

$$\frac{D}{C} = \frac{26.48}{106.56} = 0.25$$

Es satisfactorio a compresión

Flexo-compresión: Para determinar si la sección cumple a flexo-compresión, se tomó como referencia las ecuaciones dadas por la AISC 360/10, sección H1.1, donde se relacionan ambas cargas.

El criterio dado es:

Si
$$\frac{Pr}{Pc} \ge 0.2$$
 (carga axial grande); $\frac{Pr}{Pc} + \frac{8}{9} * \left(\frac{Mrx}{Mcx} + \frac{Mry}{Mcy}\right) \le 1$ (3.18)

Si
$$\frac{Pr}{Pc} < 0.2$$
 (carga axial pequeña); $\frac{Pr}{2Pc} + \left(\frac{Mrx}{Mcx} + \frac{Mry}{Mcy}\right) \le 1$ (3.19)

Donde:

Pc=Pp: capacidad de carga axial de la columna en ton.

Pr=Pu: Demanda de carga en ton.

Mrx: Momento requerido en x en ton*m.

Mcx: Capacidad a momento en x en ton*m.

Mry: Momento requerido en y en ton*m.

Mcy: Capacidad de Momento en y en ton*m.

Para determinar la resistencia a flexión del perfil, se utiliza la siguiente ecuación:

$$\Phi Mn = 0.9 * Fy * Zx \tag{3.20}$$

Los momentos requeridos se obtuvieron mediante el software, por lo que se evaluó las condiciones para verificar si la sección cumple a flexo-compresión como se muestra en la Tabla 3.15:

Tabla 3.15Verificación a flexo-compresión de la sección.

Combination	Pr (t)	Mry (t- m)	Mrx (t- m)	Pr/Pc	Mrx/Mcx	Mry/Mcy	Relación	Condición
1,4D	21,49	1,60	0,57	0,20	0,06	0,16	0,31	Cumple
1,2D+1,6L	26,48	1,84	0,66	0,25	0,06	0,18	0,37	Cumple
1,2D+1L+1Sx	23,72	1,67	1,91	0,22	0,19	0,16	0,46	Cumple
1,2D+1L-1Sx	23,19	1,66	2,61	0,22	0,25	0,16	0,52	Cumple
1,2D+1L+1Sy	23,47	3,40	0,57	0,22	0,06	0,33	0,50	Cumple
1,2D+1L-1Sy	23,44	1,11	0,62	0,22	0,06	0,11	0,28	Cumple
0,9D+1Sx	14,08	1,03	2,05	0,13	0,20	0,10	0,37	Cumple
0,9D-1Sx	13,55	1,02	2,47	0,13	0,24	0,10	0,40	Cumple
0,9D+1Sy	13,83	2,96	0,34	0,13	0,03	0,29	0,39	Cumple
0,9D-1Sy	13,80	1,54	0,39	0,13	0,04	0,15	0,25	Cumple

Por lo tanto, la sección es satisfactoria.

Verificación de perfil sísmicamente compacto: Para determinar si la sección es sísmica o compacta (IMF) se utilizarán las ecuaciones dadas en la Tabla 3.6.

$$\phi c P y = P p = 106.56 \text{ ton}$$

$$Ca = \frac{Pu}{\phi c * P y} = \frac{26.48}{106.56} = 0.25$$

$$\lambda m d = 1.29 \sqrt{\frac{E}{Ry * F y}} (2.12 - Ca) = 50.82$$

$$\frac{h}{t} = \frac{25 - 0.5 * 2}{0.5} = 48$$

Se verifica que $h/t < \lambda md$ por lo que es una sección compacta.

3.3.3 Diseño de pernos de anclaje y placa base

Las columnas suelen tener de base un elemento estructural llamado "Placa base". Esta placa es la encargada de transmitir los esfuerzos de las columnas hacia las zapatas por medio de un dado de hormigón que se funde debajo de esta y se encuentra anclada al mismo por medio de los pernos de anclaje.

Para el diseño se tomó como guía las especificaciones dadas en la AISC "Base Plate and Anchor Rod Design" para evitar fallas por la flexión, fractura por soldadura o fractura de los pernos.

En este apartado se analizó el diseño de la placa base de la misma columna trabajada en los subcapítulos anteriores, sus dimensiones se muestran en la Figura 3.49:

Figura 3.51

Detalle de anclaje de una placa base. Vista en corte

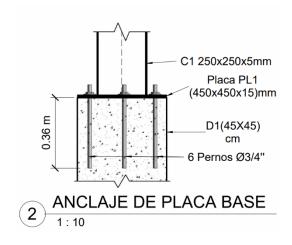
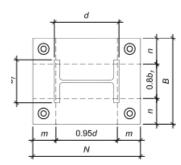



Figura 3.52

Dimensiones de una placa base estandarizadas con elemento estructural.

Nota. Imagen obtenida de la norma de la AISC, "Base Plate and Anchor Rod Design", 2006.

Donde:

N: Longitud de la placa base

B: Largo de la placa base

bf: Ancho de la columna

d: Largo de la columna

Las propiedades de los materiales de acero utilizados son los mismos descritos en la Tabla 3.1 y los de hormigón son los de la siguiente tabla:

Tabla 3.16Propiedades del hormigón

Parámetro	Simbología	Valor
Resistencia a la comprensión	f'c	210 kg/cm2

Al ser el área de la placa, igual al área máxima de la superficie de soporte (dado), el área requerida para soportar las cargas puede ser calculada como:

$$A_{g} = A_{1}$$

$$A_{g} = \frac{Pu}{\Phi * 0.85 * f'c}$$

$$A_{g} = \frac{26.48 * 1000}{0.65 * 0.85 * 210} = 228.23 \text{ cm}^{2}$$
(3.21)

Y las dimensiones requeridas:

$$N = B = \sqrt{Ag} = 15 \text{ cm}$$

Al ser dimensiones menores que los de la columna se escoge una medida conservadora:

$$N = B = 45 \text{ cm}$$

Antes de determinar su grosor, se establece si la placa está sometida a grandes o pequeños momentos con los siguientes criterios:

$$e = \frac{Mu}{Pu} = \frac{2.60}{26.48} * 100 = 9.82 \text{ cm}$$

$$e < \frac{N}{2} - \frac{Pu}{2 * q_{max}}$$

$$q_{max} = f_{pmax} * B$$

Donde:

e: excentricidad

fp: máxima tensión de apoyo entre la placa de hormigón

qmax: máxima tensión del concreto

Además, según el ACI 318:

$$f_{pmax} = \Phi * (0.85 * f'c) * \sqrt{\frac{A2}{A1}}$$

$$f_{pmax} = 0.65 * (0.85 * 210) * \sqrt{1} = 116.02 \frac{\text{kg}}{\text{cm}^2}$$

Entonces:

$$q_{\text{max}} = 116.02 * 45 = 5221.12 \frac{\text{kg}}{\text{cm}}$$

Aplicando la restricción:

$$e = 9.82 \text{ cm}$$

$$9.82 < \frac{45}{2} - \frac{26.48 * 1000}{2 * 5221.12} = 19.96$$

Cumple la condición, placa está sometida a pequeños momentos

Ahora se procede a calcular el espesor mínimo requerido de la placa según lo establecido en la AISC:

$$Y = N - 2 * e = 45 - 2 * 9.82 = 25.36 \text{ cm}$$

$$m = \frac{N - 0.95 * d}{2} = \frac{45 - 0.95 * 25}{2} = 10.62 \text{ cm}$$

$$n = \frac{B - 0.95 * bf}{2} = \frac{45 - 0.95 * 25}{2} = 10.62 \text{ cm}$$

Si Y ≥ m (LRFD):

$$t_{\rm min} = 1.5*m*\sqrt{\frac{f_p}{F_y}}$$

Si Y < m (LRFD):

En este caso Y ≥ m, por lo tanto:

$$f_p = \frac{Pu}{B * Y} = 23.20 \frac{kgf}{cm^2}$$

$$t_{min} = 1.5 * 10.62 * \sqrt{\frac{23.20}{2530}} = 1.5 \text{ cm}$$

Los pernos de anclaje se diseñan a tensión con la siguiente formula:

$$A_{\text{req}} = \frac{\text{Tu}}{0.75 * \emptyset * F_{\text{u}}}$$

Donde:

Tu: Carga a tensión=Carga axial de la columna

Entonces:

$$A_{\text{req}} = \frac{26.48}{0.75 * 0.9 * 4077.80} = 9.62 \text{ cm}^2$$

Se proponen pernos de ¾", por lo que el número de pernos requeridos son:

#pernos =
$$\frac{A_{req}}{A_{perno}} = \frac{9.62}{2.85} = 3.38$$

Se colocarán 6 pernos.

Y para calcular su longitud de anclaje, se usó las fórmulas establecidas por la ACI:

$$L_{anclaje} = 12 * d_{perno} = 12 * 2.22 = 26.67 \text{ cm}$$

3.4 Diseño de conexiones soldadas

En el presente proyecto, las conexiones de todos los elementos estructurales serán por medio de soldadura divididos en dos tipos: a momento y a cortante.

Se utilizó criterios dados por la AISC 360-16 para el método constructivo en toda la estructura, se utilizará un electrodo E7018 cuya resistencia es de 70 ksi.

Para las soldaduras donde se suelde el patín con otros elementos estructurales se tendrá una penetración completa y en el caso del alma será de filete, en este último se tomó de referencia lo indicado en la Tabla J de la AISC para determinar el tamaño mínimo de grosor del filete.

Figura 3.53
Tamaño mínimo de Soldadura de Filete

TABLA J2.4 Tamaño Mínimo de Soldadura de Filete					
Espesor de parte unida más delgada, mm	Tamaño mínimo de soldadura de filete[a], mm				
Hasta 6 inclusive	3				
Entre 6 y 13	5				
Entre 13 y 19	6				
Mayor que 19	8				
A Dimensión del pie de la sutilizar soldaduras de paso si	soldadura de filete. Se deben mple. para el tamaño máximo de				

Nota. Criterio dado por la AISC 360-16, Tabla J2.4.

Las ecuaciones para determinar la resistencia de la soldadura nominal a corte del patín y del alma se presenta en la siguiente Tabla:

Tabla 3.17

Datos y ecuaciones requeridas para el cálculo de la resistencia a corte de la soldadura.

Datos	Símbolo	Ecuación
Momento último	Mu	Resistencia nominal corte del patín
Cortante último	Vu	
Resistencia del electrodo	F_{EEX}	$\emptyset R_n = \emptyset * Fy * b_f * t_f$
Esfuerzo de fluencia del acero	Fy	$\phi \mathbf{R}_{\mathbf{n}} = \phi * \mathbf{r} y * \mathbf{b}_{\mathbf{f}} * \mathbf{t}_{\mathbf{f}}$
Espesor mínimo de la sección	tmin	
Ancho mínimo de soldadura	а	Resistencia nominal corte del alma
Ancho del patín (Longitud total)	bf	
Espesor del patín	tf	$\emptyset R_n = \emptyset * 0.6 * F_{FFX} * (0.707 * a) * I$
Factor de reducción de carga	Ф	$\varphi_{\text{In}} = \varphi \cdot \sigma_{\text{JO}} \cdot \Gamma_{\text{EEX}} \cdot (\sigma_{\text{J}}, \sigma_{\text{J}} \cdot \sigma_{\text{J}}) \cdot \Gamma_{\text{EEX}}$
Longitud de soldadura	I	

3.4.1 Conexiones soldadas a momento (columna-viga)

Este tipo de conexiones tienden a ser extremadamente rígidas cuya rotación se da cuando se aplican grandes momentos a la viga comportándose similar a un nudo de hormigón armado. Se aplica cuando se conecta una columna con una viga, tanto para vigas cargadoras como para no cargadoras o sísmicas.

Se suelda tanto patín superior como inferior y el alma de la viga para unir con la columna.

Soldadura de viga principal cargadora en el eje Y

Para el diseño se tomó la columna más crítica C14 en el eje 3B' con la viga cargadora B76 del eje 2-3 B', los datos del elemento se toman de la Figura 3.49 y 3.47. Los datos para la el diseño de la soldadura son:

Tabla 3.18

Datos de la viga cargadora para el cálculo de resistencia de la soldadura.

Datos	Valor	Unidad	
Mu	800000	kgf*cm	
Vu	7330	kgf	
$\mathbf{F}_{\mathbf{EEX}}$	4921,5	kgf/cm2	
Fy	2530	kgf/cm2	
tmin	0,4	cm	
a	0,3	cm	
bf	13,5	cm	
tf	1,02	cm	
Фpatin	0,9		
ФаІта	0,75		

Para determinar la resistencia a corte del patín se utiliza la ecuación dada en la Tabla 3.17:

$$\emptyset R_n = 0.9 * 2530 * 13.5 * 1.02 = 31354.29 \text{ kgf}$$

$$\emptyset R_n \ge Vu = 7330 \text{ kgf Cumple}$$

Para determinar la resistencia a corte del alma se debe estimar la longitud de la soldadura, se lo calcula con la siguiente ecuación:

$$I = \frac{Vu}{\emptyset R_n} = \frac{7330}{31354.29} = 0.25 \text{ cm}$$

En este caso se soldará toda el alma, por lo que:

$$\emptyset R_n = 0.75*0.6*4921.5*(0.707*0.3)*24.96*2 = 23449.04$$
 kgf
$$\emptyset R_n \geq Vu = 7330$$
 kgf Cumple

La soldadura de la viga cargadora cumple con las resistencias demandadas.

Soldadura de viga principal no cargadora en el eje X

Se tomó la viga más crítica, el elemento B97 del eje 3 A-B' para el diseño, se repite el mismo procedimiento dado en la viga cargadora.

Tabla 3.19

Datos de la viga principal no cargadora para el cálculo de resistencia de la soldadura.

Datos	Valor	Unidad	
Mu	375610	kgf*cm	
Vu	5079,9	kgf	
$\mathbf{F}_{\mathbf{EEX}}$	4921,5	kgf/cm2	
Fy	2530	kgf/cm2	
tmin	0,5	cm	
а	0,3	cm	
bf	11	cm	
tf	0,92	cm	
Фpatin	0,9		
ФаІта	0,75		

Se determina la resistencia a corte del patín:

$$\emptyset R_n = 0.9 * 2530 * 11 * 0.92 = 23043.24 \text{ kgf}$$

$$\emptyset R_n \ge Vu = 5079.9 \text{ kgf Cumple}$$

Y del patín, tomando en consideración que la longitud de soldadura es en toda el alma:

$$\emptyset R_n = 0.75*0.6*4921.5*(0.707*0.3)*20.16*2 = 18939.62$$
 kgf
$$\emptyset R_n \geq Vu = 7330 \text{ kgf Cumple}$$

Por lo tanto, la soldadura para elementos resistentes a momento soportará las demandas impuestas. El mismo procedimiento se realiza con todos los elementos estructurales de este tipo por lo que se concluye que todos cumplen los requerimientos solicitados.

3.4.2 Conexiones soldadas a corte (viga-viga)

Se consideran conexiones flexibles al movimiento en el instante que se aplica un momento flector. Se da usualmente al conectar una viga secundaria a una viga cargadora o principal.

En este tipo de conexiones se suelda únicamente el alma de la viga dejando los patines libres. Se diseñará el soldado de la viga secundaria B102 entre los ejes 3 A-B' usando las ecuaciones dadas en la Tabla 3.17 para este caso.

Tabla 3.20

Datos de la viga secundaria para el cálculo de resistencia de la soldadura.

Datos	Valor	Unidad	
Mu	221150	kgf*cm	
Vu	2790	kgf	
$\mathbf{F}_{\mathbf{EEX}}$	4921,5	kgf/cm2	
Fy	2530	kgf/cm2	
а	0,3	cm	
bf	9,1	cm	
tf	0,8	cm	
Фpatin	Φpatin 0,9		
ФаІта	0,75		

Entonces, su resistencia a corte del alma:

$$\label{eq:resolvent} \begin{split} \text{\emptysetR}_n = 0.75*0.6*4921.5*(0.707*0.3)*16.4*2 = 15407.22 \text{ kgf} \\ \\ \text{\emptysetR}_n \geq \text{Vu} = 2790 \text{ kgf Cumple} \end{split}$$

La soldadura cumple con las solicitaciones, el mismo procedimiento se repetirá para todas las vigas soldadas a corte.

Siendo así, se puede concluir que la soldadura para todos elementos sometidas a corte soportará las demandas impuestas.

3.5 Diseño de cimentaciones

La transmisión de cargas hacia el suelo del terreno debe ser tal que se eviten asentamientos, volteos, entre otras fallas. Por ese motivo es fundamental un diseño de cimentación óptimo, tanto para cumplir los requerimientos de resistencia del suelo como un costo-beneficio de acuerdo al tipo de zapata a colocar.

El cliente dio el informe del estudio de suelos que se realizó en la zona, donde se obtuvieron los siguientes resultados:

Figura 3.54
Información del estudio de suelos realizado en la zona.

Prof (mts)	Muestra	Clasificación	Descripción	Humedad %	LL %	IP %	γ kg/m3	qu kg/cm2
0,5								
1	1	CH	Arcilla plástica, consistencia compacta	41,49	73,19	44,4	1795	1,26
1,5								
2	2	CH	Arcilla plástica, consistencia compacta	46,94	82,69	52,61	1753	1,21
2,5								
3	3	CH	Arcilla plástica, medianamente compacta	50,06	88,08	57,4	1726	0,95
3,5								
4	4	CH	Arcilla plástica, medianamente compacta	57,5	68,05	36,4	1642	0,73
4,5								
5	5	CH	Arcilla plástica, consistencia medianamente blanda	68,65	73,56	42,16	1587	0,48
5,5								
6	6	CH	Arcilla plástica, consistencia blanda	67,61	67,05	37,82	1540	0,39

Siendo:

%Humedad: Porcentaje de humedad

• LL%: Limite liquido

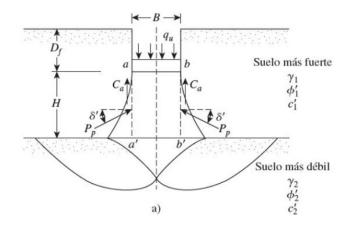
y: Peso específico del estrato (kg/m3)

qu: Resistencia a la compresión simple del estrato (kg/cm2)

Se puede evidenciar que todas las capas del suelo donde se construirá la estructura presentan un peso específico bajo y el NF se observa a -1.30 m desde el nivel de terreno, por lo que el Ingeniero Geotécnico dio las siguientes recomendaciones:

 Colocar una capa de mejoramiento de cascajo grueso compactado con una altura medida por debajo de la base de la zapata entre un intervalo de 0.30 m a 1.50 m, de acuerdo al diseño.

- El nivel de desplante a 1 metro de profundidad.
- Utilizar la zapata corrida en una dirección para evitar zapatas con grandes dimensiones.


3.5.1 Capacidad de carga última (qult)

Para determinar las dimensiones de la zapata a utilizar se debe calcular la capacidad de carga admisible. Es la capacidad que tiene un suelo para soportar cargas aplicadas sin sufrir una falla o deformaciones excesivas. Esta se ve afectada por factores como la textura del suelo, la consolidación, la presencia de agua, la cohesión y la fricción del estrato.

El análisis de cimentaciones superficiales en suelos estratificados se toma en referencia a las características de los estratos y sus mecanismos de rotura. En este caso se utilizó el criterio de Meyerhoff y Hanna (1978) en la combinación de un suelo granular denso sobre arcilla blanda, correspondiente a un estrato fuerte sobre estrato débil para el cálculo de la capacidad admisible. Según Coduto (2016), el mecanismo de falla depende de H/B para este tipo suelo estratificado, como se presenta en la Figura 3.55:

Figura 3.55

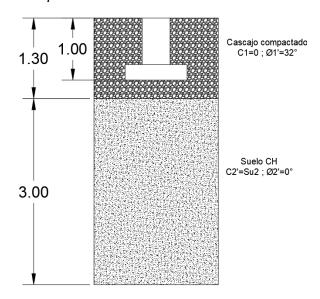
Mecanismo de falla. Suelo fuerte sobre suelo débil. H/B pequeño.

Nota. Gráfico obtenido del libro "Foundation Design Principles and Practices" de Coduto, 2016.

Donde:

H: Profundidad contada a partir de la base de la zapata cuando se detecta el estrato débil (m).

B: Base de la zapata (m).


Df: Desplante de la zapata (m).

Las fallas se presentan en dos fases, la primera a una falla por punzonamiento en la capa superior más fuerte y la siguiente es una falla por corte en la capa inferior más débil.

Se propuso una altura del estrato de mejoramiento H=0.3 m y B=1 m, así dando una relación de 0.3 m siendo un valor mínimo por lo que presentará estos mecanismos de rotura. El detalle de la cimentación se presenta en la Figura 3.56 con las características de cada estrato:

Figura 3.56

Detalle de los estratos analizados para el diseño.

Las ecuaciones y consideraciones de Meyerhoff-Hanna para el cálculo de qadm son las siguientes:

$$\Phi 2 = 0$$

$$q_{ult,2} = 5.14C_{u,2}S_{c2} + \gamma_1(Df + H)$$
(3.22)

$$q_{ult} = 5.14C_{u,2}S_{c2} + \gamma_1 H^2 \left(1 + \frac{B}{L}\right) \left(1 + \frac{2D_f}{H}\right) \frac{K_s \tan(\Phi 1')}{B} + \gamma_1 D_f \le q_{ult,1}$$
 (3.23)

$$q_{\text{ult,1}} = \gamma_1 D_f N_{q,1} S_{q,1} + 0.5 \gamma_1 B N_{\gamma,1} S_{\gamma,1}$$
(3.24)

Donde:

 $\Phi = \text{Ángulo de fricción de cada estrato (grados)}$

 q_{ult} = Capacidad de carga combinada de los estratos $(\frac{kg}{m2})$

 $q_{ult,1} = Capacidad de carga del estrato más fuerte <math>(\frac{kg}{m2})$

 $q_{ult,2} = Capacidad de carga del estrato más débil (<math>\frac{kg}{m2}$)

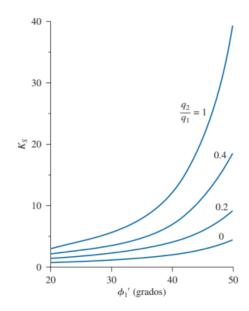
 γ_1 = Peso específico del estrato más fuerte $(\frac{kg}{m3})$

 γ_2 = Peso específico del estrato más débil $(\frac{kg}{m3})$

 ${\rm N_q}, {\rm N_c}, {\rm N_{\gamma}} = {\rm Factores}$ de carga dependiente del ángulo de fricción de cada estrato

 S_q , S_c , S_γ = Factores de forma de acuerdo a cada estrato

L = Largo de zapata


 $C_{u,2}=$ Resistencia al corte no drenado del estrato más débil

 $K_s = Coeficiente de punzamiento$

El coeficiente de punzonamiento se obtiene a partir del siguiente ábaco mostrado en la Figura 3.57.

Figura 3.57

Ábaco para determinar el coeficiente de punzonamiento en función de q2/q1 y Φ1.

Nota. Gráfico obtenido del libro "Foundation Design Principles and Practices" de Coduto, 2016. Ks está en función de q1 y q2 cuya ecuación es:

$$\frac{q_2}{q_1} = \frac{5.14C_{u,2}S_{c2}}{0.5\gamma_1 BN_{\gamma,1}}$$
(3.25)

Y para determinar el valor de Cu en el estrato más débil se consideró los estratos 3 metros debajo de la zona de influencia:

$$\begin{aligned} C_{u,2} &= S_{u,2} = \frac{q_{uprom,2}}{2} \\ q_{uprom,2} &= \frac{0.95 + 0.73 + 0.48}{3} * 10000 = 7200 \; \frac{kg}{m^2} \end{aligned}$$

Así, por recomendaciones del geotécnico y las consideraciones tomadas se tienen los siguientes datos de la cimentación analizando el eje B' mostrado en la Tabla 3.21:

Tabla 3.21Datos y propiedades de la cimentación y de los estratos.

Datos de cimentación				
В	1	m		
L=b	15	m		
H total	1,3	m		
Df	1	m		
Н	0,3	m		
Р	88,5	ton		
qu	7200,00	kg/m2		

Su1	0	kg/m2
Su2	3600,00	kg/m2
Cu1'	0	kg/m2
Cu2'	3600,00	kg/m2
Ф1	32	grados
Ф2	0	grados
γ1	1900	kg/m3
γ2	1651,67	kg/m3
yw	1000	kg/m3

Para los factores de capacidad de carga y forma en ambos estratos se usó la siguiente tabla y ecuaciones:

Figura 3.58
Factores de capacidad de carga según la teoría de Meyerhoff.

ϕ'	No	N_q	N _r	ϕ'	N.	N_q	N,
0	5.14	1.00	0.00	26	22.25	11.85	12.54
1	5.38	1.09	0.07	27	23.94	13.20	14.47
2	5.63	1.20	0.15	28	25.80	14.72	16.72
3	5.90	1.31	0.24	29	27.86	16.44	19.34
4	6.19	1.43	0.34	30	30.14	18.40	22.40
5	6.49	1.57	0.45	31	32.67	20.63	25.99
6	6.81	1.72	0.57	32	35.49	23.18	30.22
7	7.16	1.88	0.71	33	38.64	26.09	35.19
8	7.53	2.06	0.86	34	42.16	29.44	41.06
9	7.92	2.25	1.03	35	46.12	33.30	48.03
10	8.35	2.47	1.22	36	50.59	37.75	56.31
11	8.80	2.71	1.44	37	55.63	42.92	66.19
12	9.28	2.97	1.69	38	61.35	48.93	78.03
13	9.81	3.26	1.97	39	67.87	55.96	92.25
14	10.37	3.59	2.29	40	75.31	64.20	109.41
15	10.98	3.94	2.65	41	83.86	73.90	130.22
16	11.63	4.34	3.06	42	93.71	85.38	155.55
17	12.34	4.77	3.53	43	105.11	99.02	186.54
18	13.10	5.26	4.07	44	118.37	115.31	224.64
19	13.93	5.80	4.68	45	133.88	134.88	271.76
20	14.83	6.40	5.39	46	152.10	158.51	330.35
21	15.82	7.07	6.20	47	173.64	187.21	403.67
22	16.88	7.82	7.13	48	199.26	222.31	496.01
23	18.05	8.66	8.20	49	229.93	265.51	613.16
24	19.32	9.60	9.44	50	266.89	319.07	762.89
25	20.72	10.66	10.88				

Nota. Gráfico obtenido del libro "Foundation Design Principles and Practices" de Coduto, 2016.

Y los factores de forma por medio de las siguientes ecuaciones:

Para
$$\Phi=0$$
;
$$S_c=1+0.2\left(\frac{B}{L}\right)$$

$$S_q=S_{\gamma}=1$$

$$S_c=1+0.2\left(\frac{B}{L}\right)\tan^2\left(45+\frac{\Phi}{2}\right)$$

$$S_{q} = S_{\gamma} = 1 + 0.1 \left(\frac{B}{L}\right) tan^{2} \left(45 + \frac{\Phi}{2}\right)$$

Con el uso de las ecuaciones dadas, los resultados para ambos estratos son los siguientes:

Tabla 3.22
Coeficientes de forma

	Meyerhoff y Hanna			
Ф1	32	Ф2	0	
Nc1	35,49	Nc2	5,14	
Nq1	23,18	Nq2	1	
Ny1	22,02	Ny2	0	
Sc1	1,04	Sc2	1,01	
Sq1	1,02	Sq2	1	
Sy1	1,02	Sy2	1	

Calculando Ks con el uso del ábaco de la Figura 3.57 y las ecuaciones 3.22, 3.23 y 3.24, el qult de cada estrato es:

$$\frac{q_2}{q_1} = \frac{5.14 * 7200 * 1.01}{0.5 * 1900 * 1 * 1} = 0.90$$

$$Ks = 6$$

$$q_{ult,1} = 1900 * 1 * 23.18 * 1.02 + 0.5 * 1900 * 1 * 22.02 * 1.02 = 66370.48 \frac{kg}{m^2}$$

$$q_{ult,2} = 5.14 * 3600 * 1.01 + 1900 * (1 + 0.3) = 21220.72 \frac{kg}{m^2}$$

Con los resultados obtenidos se reemplaza en la ecuación 3.23 para calcular el qult:

$$\begin{split} q_{ult} &= \frac{5.14*3600*1.01+1900*0.3^2\left(1+\frac{1}{15}\right)\left(1+\frac{2*1}{0.3}\right)\frac{6*tan(32)}{1}+1900*1}{1000} \\ &= 25.89\frac{ton}{m^2} \leq q_{ult,1} = 66.37\frac{ton}{m^2} \end{split}$$

Se escoge la menor capacidad de carga de la comparación:

$$q_{\rm ult} = 25.89 \frac{\rm ton}{\rm m^2}$$

3.5.2 Esfuerzo de contacto (qcontacto)

Para determinar que el esfuerzo de contacto sea menor a la qult, siendo este un estado límite de falla del suelo, se usa el siguiente criterio dado por la NEC Geotecnia:

$$q_{contacto} < \frac{q_{ult}}{FS} = q_{adm} = \frac{25.89}{3} = 8.63 \frac{ton}{m^2}$$

Figura 3.59
Factores de seguridad mínimos admisibles para determinada condición.

CONDICIÓN	F.S.I.M. ADMISIBLE	
Carga Muerta + Carga Viva Normal	3.0	
Carga Muerta + Carga Viva Máxima	2.5	
Carga Muerta + Carga Viva Normal + Sismo de Diseño pseudo estático	1.5	

Nota. Tabla tomada de la NEC 2015 en su capítulo de Geotecnia.

Entonces, el gcontacto se calculó de la siguiente fórmula:

$$q_{contacto} = \frac{P/b + Wf/b}{B}$$
 (3.26)

Donde:

$$\frac{P}{b}$$
 = Carga lineal total en el eje $(\frac{ton}{m})$

$$\frac{\text{Wf}}{\text{b}}$$
 = Peso de la cimentación + Peso del suelo por encima de la cimentación $(\frac{\text{ton}}{\text{m}})$

B = Base de la zapata (m)

Reemplazando en la ecuación 3.26 se determina lo siguiente:

Tabla 3.23Comparación y validación de esfuerzos.

Esfuerzo de	e contact	:O
Grosor zapata	0,25	m
Wf	1,1	ton/m
q contacto	6,975	ton/m2

Cumple

En conclusión, se cumple con el criterio dado por la NEC por lo que la sección establecida es satisfactoria.

3.5.3 Dimensiones de la zapata.

El ancho de la cimentación se lo estima con la carga axial de servicio lineal y la capacidad de carga admisible:

$$B = \frac{P/L}{q_{adm}} = \frac{5.9 \frac{ton}{m}}{8.63 \frac{ton}{m^2}} = 0.70 \text{ m}$$

Se escogió una base de 1 metro para la zapata.

Ahora, se debe verificar la capacidad de falla por punzonamiento de la zapata para determinar su grosor.

Según la ACI 318-14 para verificar este tipo de falla se debe calcular el esfuerzo resistente máximo y solicitante a cortante en una dirección de una columna, la escogida es la más crítica analizada anteriormente.

Se procede con la revisión:

Esfuerzo resistente a cortante

$$\Phi V_n = \max \begin{cases} 0.33 * \sqrt{f'c} \\ 0.17 * \left(1 + \frac{2}{\beta}\right) * \sqrt{f'c} \\ 0.083 * \left(2 + \frac{40 * d}{bo}\right) * \sqrt{f'c} \end{cases}$$

$$\beta = \frac{L1}{L2}$$

Esfuerzo demandante

$$\Phi V_{u} = \frac{Pu}{bo * d}$$
; bo = 2(L1 + d) + 2 * (L2 + d)

$$d = Hc - r - \frac{1}{2}\Phi 1$$
; en una dirección

Donde:

Pu = Carga axial (N)

d = Peralte de la zapata (mm)

f'c = Resistencia a la compresión del concreto (MPa)

L1 = Sección X de la columna (mm)

L2 = Sección Y de la columna (mm)

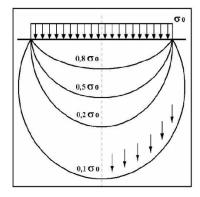
bo = Superficie de falla por punzonamiento (mm)

Hc = Grosor de la cimenctación (mm)

 Φ = Diametro del acero de refuerzo longitudinal y transversal de la zapata (mm)

Se asume un Hc = 0.25 m y un diámetro de acero de refuerzo de 12 mm, por lo que se procede con los cálculos resumidos en la Tabla 3.24:

Tabla 3.24 *Validación de resistencia al cortante por punzonamiento*


Punzona	miento	
Columna	Eje 3B'	
L1	450	mm
L2	450	mm
d	204	mm
P ult	337355,2	Ν
b0	2616	mm
Vu	0,63	N/mm2
β	1	
f'c	24	MPa
Vn1	1,62	MPa
Vn2	2,5	MPa
Vn3	2,08	MPa
¿Cumple cortante?	Cum	ple

Cumple a punzonamiento por lo que se puede concluir que el grosor es satisfactorio, así con todas las columnas.

3.5.4 Asentamientos

Para determinar si la cimentación propuesta cumple los criterios del estado límite de servicio se tiene que determinar los asentamientos producidos por los esfuerzos transmitidos al suelo. Así mismo, se debe analizar la zona de influencia por la distribución de esfuerzos, en la Figura 3.60 se muestra el bulbo de presiones generado por los esfuerzos transmitidos de una zapata, ya sea aislada o corrida.

Figura 3.60
Bulbo de presiones basado en la solución elástica de Boussinesq para una cimentación flexible.

Nota. Representación tomada del libro de Braja M. Das, Fundamentos de Ingenieria Geotécnica.

El primer paso para determinar el asentamiento de la zapata es determinar el esfuerzo inicial efectivo tomando de referencia los pesos específicos de cada estrado con guía en la Tabla 3.21 y el NF en el estrato más débil.

$$\sigma'_{vo} = \gamma_1 H + H2(\gamma_2 - \gamma_w) \tag{3.27}$$

Donde:

$$\sigma'_{vo} = \text{Esfuerzo inicial efectivo } (\frac{tonf}{m2})$$

 γ_1 = Peso efectivo del estrato fuerte $(\frac{\text{kgf}}{\text{m3}})$

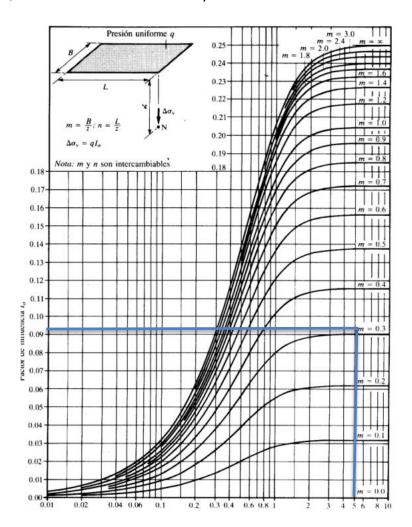
H = Altura del estrato fuerte desde el nivel base de la zapata hasta el estrato débil (m).

H2 = Distancia hasta la zona de influencia (m)

 γ_2 = Peso efectivo del estrato débil ($\frac{\text{kgf}}{\text{m3}}$)

 γ_2 = Peso efectivo del agua $(\frac{\text{kgf}}{\text{m3}})$

Entonces, reemplazando los valores en la ecuación 3.27:


$$\sigma'_{vo} = 1900 * 0.3 + 3 * \frac{(1651.67 - 1000)}{1000} = 2.52 \frac{ton}{m^2}$$

Ahora, se debe determinar el factor de influencia por medio de la siguiente ecuación:

$$I = 4 * Iz$$

El valor de lz se lo obtiene por el siguiente ábaco:

Figura 3.61
Ábaco de Fadum, factor de influencia inducido por el esfuerzo vertical en un área rectangular.

Nota. Ábaco tomado del libro de Braja M. Das, Fundamentos de Ingenieria Geotécnica.

Donde depende de los factores de n y m, los cuales se determinan analizando el área de influencia como se muestra en la Figura 3.62:

Figura 3.62

Área de influencia en la zapata corrida.

$$m = \frac{B/2}{Z} \; ; \quad \ n = \frac{L/2}{Z}$$

Donde:

Z = Profundidad hasta el punto de influencia más bajo.

El valor de Z se lo tomó como un dato conservador sin considerar el mejoramiento debido a la resistencia que este ejerce:

$$Z = \frac{H2}{2}$$

$$Z = \frac{3}{2} = 1.5$$

Entonces:

$$m = \frac{1/2}{1.5} = 0.33$$
; $n = \frac{15/2}{1.5} = 5$

Por lo que, en guía con el ábaco se obtiene:

$$Iz = 0.092$$

Y el factor de influencia:

$$I = 4 * Iz = 0.368$$

Con este dato se calcula el esfuerzo inducido:

$$\Delta\sigma_v = I*q_{contacto} = 0.368*6.975 = 2.57 \ \frac{ton}{m^2} \label{eq:deltastate}$$

Para estimar el asentamiento se tiene los siguientes datos dados por el Ingeniero Geotécnico:

$$OCR = 1.5$$

$$Cc = 1.58$$

$$Cs = 0.286$$

$$e0 = 2.85$$

$$\sigma'_{p} = 0.41 \frac{\text{kg}}{\text{cm}^{2}} = 4.1 \frac{\text{ton}}{\text{m}^{2}}$$

Donde:

 ${\sigma'}_p = Esfuerzo de preconsolodicación (\frac{tonf}{m2})$

 e_0 = Relación de vacios

Se calcula el esfuerzo por consolidación:

$$\sigma'_{c} = OCR * \sigma'_{vo} = 1.5 * 2.52 = 3.78 \frac{ton}{m^{2}}$$

Entonces se tiene el esfuerzo efectivo total:

$$\Delta \sigma'_{vfinal} = \Delta \sigma_v + \sigma'_c = 2.57 \frac{ton}{m^2} + 3.78 \frac{ton}{m^2} = 6.35 \frac{ton}{m^2}$$

Se estima un suelo sobreconsolidado por lo que el asentamiento es:

$$S1 = \frac{C_s H_c}{1 + e_0} \log \frac{\sigma'_p}{\sigma'_{vo}} + \frac{C_c H_c}{1 + e_0} \log \frac{\Delta \sigma_v + \sigma'_c}{\sigma'_p}$$

$$S1 = \frac{0.286 * 3}{1 + 2.85} \log \frac{4.1 \frac{\text{ton}}{\text{m}^2}}{2.52 \frac{\text{ton}}{\text{m}^2}} + \frac{1.58 * 3}{1 + 2.85} \log \frac{6.35 \frac{\text{ton}}{\text{m}^2}}{4.1 \frac{\text{ton}}{\text{m}^2}} = 0.28 \text{ m}$$

3.5.5 Armadura de la zapata

El acero requerido de la zapata en ambas direcciones se lo determina con el análisis a flexión de la misma, ejercida por el esfuerzo demandante del suelo debido a las cargas de la columna. Para el cálculo se idealiza la zapata como una viga y todas las columnas del eje como un muro con carga lineal b=45 cm, por lo que se utilizarán las siguientes ecuaciones:

$$\begin{split} M_u &= 1m*\left(\frac{B-b}{2}\right)*\left(\frac{B-b}{4}\right)*q_{adm} \\ \\ M_u &= 1m*\left(\frac{1-0.45}{2}\right)*\left(\frac{1-0.45}{4}\right)*8.63 = 0.32 \text{ ton } *m \end{split}$$

Por lo que el acero de refuerzo requerido es:

Asreq =
$$\frac{Mu}{0.9^2 * d * fy}$$
 = $\frac{0.32 * 1000 * 100}{0.9^2 * 24 * 4200}$ = 0.39 cm2

A la vez se determina el acero mínimo y máximo:

$$As_{min} = max \begin{cases} \frac{\sqrt{f'c}}{Fy} * b * d = \frac{\sqrt{210}}{4200} * 45 * 20.4 = 3.16 \text{ cm2} \\ \frac{14}{Fy} * b * d = \frac{14}{4200} * 45 * 20.4 = 3.06 \text{ cm2} \end{cases}$$

Al ser el Asmin mayor al Asreq se toma el Asmin como el acero de refuerzo demandante.

Se propone un diámetro de varilla de 12 mm con 6 varillas longitudinales con una separación de 15 cm a lo largo de cada eje, por lo tanto:

$$A_s = \frac{\pi * \Phi^2}{4} * \text{#varillas} = 6.78 \text{ cm}^2 \ge As_{min} = 3.16 \text{ cm}^2$$

Se comprueba la separación entre varillas:

$$S = \frac{100 \text{ cm}}{n} = \frac{100 \text{ cm}}{6} = 16.66 \text{ cm} = 15 \text{ cm}$$

Se toma el valor estimado de 15 cm de separación por lo que, en resumen, el diseño estructural de la cimentación queda resumida en la Tabla 3.25:

Tabla 3.25Dimensiones y armadura de la cimentación

Zapata cori	rida	
В	1	m
L	15	m
Н	0,25	m
Df	1	m
H mej	0,3	m
Φ long	12	mm
Φ transversal	12	mm

Se aplica en el eje más crítico de la estructura y sus ejes paralelos

3.6 Diseño de instalaciones de AAPP

3.6.1 Criterios de Diseño

3.6.1.1 Caudal en tuberías de agua fría

Se dimensiona la red interior bajo las condiciones normales de funcionamiento, y los caudales instantáneos mínimos proveídos en la Tabla 16.1

3.6.1.2 Caudal en tuberías de agua caliente

Se considera un 67% del caudal instantáneo mínimo de agua fría para el caudal instantáneo mínimo de agua caliente en aquellos aparatos que requieren el uso de agua caliente.

3.6.1.3 Diámetro

El diseño de distribución de agua potable se basa en la selección del tamaño de tuberías, de modo que, las condiciones de salidas de las tuberías y el suministro de accesorios trabajen a demanda máxima con un caudal instantáneo mínimo y presión recomendada. Asimismo, el diámetro de las tuberías para cada uno de los aparatos no debería ser menores a los valores establecidos en la tabla mencionada anteriormente.

3.6.1.4 Presión

Se provee un sistema de bombeo mediante un equipo de presión porque la presión en la red es insuficiente. Además, la presión en cualquier nudo de consumo no deberá ser mayor que 50 m c.a. (71.12 psi); y, siempre se deberá tomar en cuenta la presión recomendada por el fabricante del aparato a instalar. Por último, todas las tuberías pertenecientes a la red deben de resistir la presión de 150 m c.a.

3.6.1.5 Velocidad

La norma establece que la velocidad de diseño del agua en las tuberías debe fluctuar entre 0.6 m/s y 2.5 m/s, y que el valor óptimo de velocidad es de 1.2 m/s.

3.6.2 Depósito de almacenamiento

El volumen útil del depósito de almacenamiento corresponde al consumo que se requiere en la vivienda para el suministro estimado en 24 horas. Por otro lado, las paredes del depósito deben levantarse 0.30 m sobre el nivel del piso. La boca de

inspección del depósito debe ser de mínimo 0.60 m x 0.60 m, y debe de ser ubicados a una distancia horizontal mayor que 3.0 m y a mínimo 0.50 m por arriba de la clave del conducto de los desagües de aguas negras. Con relación a los muros de lindero, el depósito se deberá separar mínimo 2.0 m

3.6.3 Diseño de la Cisterna

El agua potable para el consumo de la vivienda será suministrada por la red pública de distribución del cantón de Samborondón, la cual se almacenará en una cisterna.

3.6.3.1 Demanda de Agua

La cisterna debe estar diseñada para garantizar que el agua esté libre de contaminantes y disponible las 24 horas del día, cuyo volumen de almacenamiento depende únicamente de la demanda de agua del hogar. La capacidad de la cisterna en nuestro sistema de suministro de agua deberá abastecer la demanda del hogar según lo exige el capítulo 16 del código NEC-11 con referencia a la Tabla 3.22.

Figura 3.63

Dotaciones para edificaciones de uso específico.

Tipo de edificación	Unidad	Dotación	
Bloques de viviendas	L/habitante/día	200 a 350	
Bares, cafeterías y restaurantes	L/m² _{área útil} /día	40 a 60	
Camales y planta de faenamiento	L/cabeza	150 a 300	
Cementerios y mausoleos	L/visitante/día	3 a 5	
Centro comercial	L/m² área útil /día	15 a 25	
Cines, templos y auditorios	L/concurrente/día	5 a 10	
Consultorios médicos y clínicas con hospitalización	L/ocupante/día	500 a 1000	
Cuarteles	L/persona/día	150 a 350	
Escuelas y colegios	L/estudiante/dia	20 a 50	
Hospitales	L/cama/día	800 a 1300	
Hoteles hasta 3 estrellas	L/ocupante/día	150 a 400	
Hoteles de 4 estrellas en adelante	L/ocupante/día	350 a 800	
Internados, hogar de ancianos y niños	L/ocupante/día	200 a 300	
Jardines y ornamentación con recirculación	L/m²/día	2 a 8	
Lavanderías y tintorerías	L/kg de ropa	30 a 50	
Mercados	L/puesto/día	100 a 500	
Oficinas	L/persona/día	50 a 90	
Piscinas	L/m² área útil/día	15 a 30	
Prisiones	L/persona/día	350 a 600	
Salas de fiesta y casinos	L/ m² área útil /día	20 a 40	
Servicios sanitarios públicos	L/mueble sanitario/día	300	
Talleres, industrias y agencias	L/trabajador/jornada	80 a 120	
Terminales de autobuses	L/pasajero/día	10 a 15	
Universidades	L/estudiante/dia	40 a 60	
Zonas industriales, agropecuarias y fábricas*	L/s/Ha	1 a 2	

Nota: Obtenido de la NEC, NHE, cap 16, 2011

La demanda media de agua oscila entre 200 litros por persona y día y 350 litros por persona y día según el cuadro anterior. Se ha encontrado que el uso de agua en los hogares está directamente correlacionado con la cantidad de personas que viven en la zona, por lo que se estableció que allí vivirán 4 personas. El consumo interno de este hogar será de 250 litros/habitante/día.

3.6.4 Volumen de almacenamiento

El cálculo de dicho volumen se basará en la demanda de agua establecida en el apartado anterior. El volumen de almacenamiento se puede calcular con la siguiente ecuación:

$$V = C \cdot D \tag{3.28}$$

Donde:

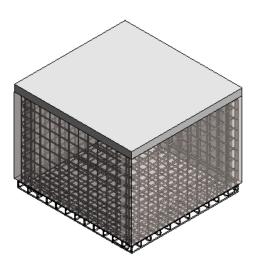
- C: Consumo promedio diario $\left[\frac{lts}{dia}\right]$
- *D*: *Dias de reserva* [dias]

Considerando el número de personas que viven en el hogar, la demanda de agua para 3 días de reserva, el volumen de almacenamiento requerido es el siguiente:

$$V = 250 \cdot \frac{lts}{habitante \cdot dia} \cdot 4 \cdot habi \tan t \cdot es \cdot 3 \cdot dias = 3000 \cdot litros$$

$$V = 3 \cdot m^{3}$$

3.6.5 Dimensiones


Para obtener las dimensiones de la cisterna, se necesita por lo menos de una dimensión: largo, ancho y profundidad de la cisterna. Considerando que la altura es de 2 m con 30 cm para aeración, se tiene lo siguiente:

$$A = \frac{Volumen}{h} = \frac{3.0 \text{ m}^3}{1.7 \text{ m}} = 1.764$$

$$\alpha = \sqrt{A} = \sqrt{1.764} = 1.32 \approx 1.30$$

Se tiene una cisterna de hormigón de 1.3x1.3x1.7

Figura 3.64
Cisterna

3.6.6 Ubicación de la cisterna

Se colocará la cisterna cerca del garaje por su proximidad a la entrada de agua del medidor, el cual está ubicado cerca de la cera.

Figura 3.65 Vista en 3D de la vivienda.

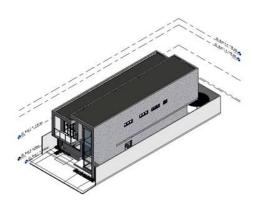


Figura 3.66
Ubicación de la cisterna en vista PB.

3.6.7 Características de la cisterna

La cisterna se construirá principalmente de hormigón armado porque, entre todos los demás materiales disponibles, el hormigón armado es el mejor para evitar fugas y mantener el agua lo más limpia posible. Además, suministrará agua a la vivienda a través de un sistema de plomería. El armado de la cisterna se caracteriza principalmente por tener muros armados de $\emptyset 10\,$ y de $\emptyset 12\,$.

Los aparatos que se consideraron para el análisis son los siguientes:

Tabla 3.26 *Aparatos Sanitarios y caudales instantáneos.*

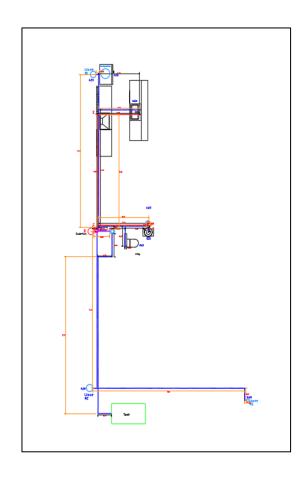
Apartas Sanitarios	Cantidad	Qi (l/s)	Qi total (I/s)
Inodoro	5	0,10	0,50
Ducha	4	0,20	0,80
Fregadero cocina	1	0,20	0,20
Lavabo	5	0,10	0,50
Máquina para lavar ropa	1	0,20	0,20
Grifo para manguera	3	0,20	0,60
Refrigeradora	1	0,10	0,10
Ducha	4	0,13	0,54
Fregadero cocina	1	0,13	0,13
Lavadora	1	0,13	0,13
Total	20	1,10	0,74

3.7 Líneas de distribución de agua

Se colocaron las tuberías de agua fría y caliente de acuerdo con la ubicación de cada aparato sanitario como se muestra en los planos de distribución en la sección de Anexos.

3.7.1 Prediseño

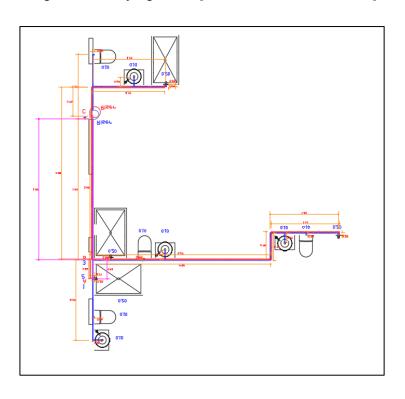
3.7.2 Estimación de caudales


3.7.2.1 Definición de Tramos

Para evitar sobredimensionar, se optó en separar por tramos y así obtener los diámetros correspondientes a cada uno de ellos.

• Planta Baja:

Figura 3.67


Tramos en PB.

• Planta Alta:

Figura 3.68

Tramos de tubería de agua caliente y agua fría [Fuente: Fuel, Tobar, 2023]

3.7.2.2 Identificación de aparatos sanitarios en cada tramo y caudales instantáneos

Los elementos sanitarios con sus caudales instantáneos para el tramo 1 se presentan en la siguiente Tabla:

Tabla 3.27 *Aparatos Sanitarios y caudales instantáneos.*

Aparatos Sanitarios	Cantidad	Agua Fría Qi (I/s)	Agua Caliente Qi (I/s)
Ducha	1	0,20	0.134
Total	1	0.20	0.134

Para el tramo de agua caliente, se considera:

$$q_i = 0.67 * \sum q_i \tag{3.29}$$

3.7.2.3 Caudal Máximo Probable

Se lo calcula con el coeficiente de simultaneidad (ks) mediante la siguiente formula:

$$Q_{MP} = k_{S} \cdot \sum q_{i} \tag{3.30}$$

Donde:

• q_i : Caudal ins $\tan e o \min i \mod e$ cada aparato $\left[\frac{lts}{s}\right]$

Representa el caudal que circula en cada uno de los tramos definidos anteriormente.

3.7.2.4 Coeficiente de Simultaneidad

El coeficiente se lo obtiene mediante la siguiente ecuación:

$$k_s = \frac{1}{\sqrt{n-1}} \tag{3.31}$$

Donde:

• n: Numero total de aparatos servidos

3.7.2.5 Velocidad

El valor óptimo de velocidad es de 1.5 m/s.

Diámetro interior de tuberías

$$Q = V \cdot A \tag{3.32}$$

Donde:

- A: Area de la sec c ion transversal de la tuberia $[m^2]$
- V: $Velocidad de flujo <math>\left[\frac{m}{s}\right]$

$$A = \frac{\pi \cdot D^2}{4}$$

Reemplazando, se obtiene:

$$Q = V \cdot \frac{\pi \cdot D^2}{4}$$

El diámetro de la tubería es de:

$$D = \sqrt{\frac{4 \cdot Q}{V \cdot \pi \cdot 1000}} \tag{3.33}$$

Para el primer tramo, se tiene lo siguiente:

Número total de aparatos

$$n = 1$$

Coeficiente de simultaneidad

$$k_s = \frac{1}{\sqrt{n-1}} = \frac{1}{\sqrt{1-1}} = 1$$

Como se tiene una indeterminación $\frac{1}{0}$, por defecto $k_s = 1$.

• Caudal máximo probable (QMP)

$$Q_{MP} = k_s \cdot \sum q_i = 1.00 * \left(0.20 \frac{l}{s}\right) = 0.20 \frac{l}{s}$$

Velocidad

Debe estar en el rango de 0,6 a 1,5 m/s.

$$v = 1.5 \; \frac{m}{s}$$

Diámetro

$$D = \sqrt{\frac{4 \cdot Q_{MP}}{v \cdot \pi \cdot 1000}} = \sqrt{\frac{4 \cdot \left(0.20 \frac{l}{s}\right) * 1000 \left(\frac{m^3}{l}\right)}{\left(1.5 \frac{m}{s}\right) \cdot \pi}} = 13.03 \ mm$$

Eligiendo el diámetro comercial inmediato superior, se tiene:

$$D=\frac{1}{2} in$$

Se muestran a continuación los diámetros provisionales de los tramos según las ecuaciones definidas anteriormente:

Tabla 3.28

Predimensionamiento de tuberías de agua fría y caliente.

	V	D (mm)	D (in)
Tubería de	1.50	13.03	1/2
Agua Fría	1.50	15.49	1/2
	1.50	18.98	1/2
	1.50	22.62	3/4
	1.50	23.33	3/4
	1.50	29.75	1
	1.50	26.75	1
Tubería de	1.50	7.54	1/2
Agua	1.50	16.38	1/2
Caliente	1.50	14.57	1/2
	1.50	13.91	1/2

Los diámetros fueron escogidos según los resultados obtenidos en la tabla, los cuales fueron comparados con los valores comerciales de diámetros disponibles en catálogo de tuberías roscables PP de Plastigama:

Tabla 3.29Diámetros de tuberías comerciales.

Plg	mm	Espesor de pared	Longitud [mm]
1/2	20	3.4	6
3/4	25	3.9	6
1	32	4.9	6
1 1/4	40	5.7	6
1 1/2	50	6.3	6
2	63	7.5	6

Nota: Tabla obtenida del catálogo Presión PVC Roscable de Plastigama.

Se toma el diámetro comercial inmediatamente superior al obtenido.

3.7.3 Dimensionamiento

3.7.3.1 Identificación de aparato critico

Se considera la ducha como el aparato más crítico ubicado en la planta alta del baño 1, por lo que se traza la ruta crítica hasta dicho aparato.

3.7.3.2 Separación de tramos

Separamos en tramos la ruta crítica para evitar dimensionar:

3.7.3.3 Presión recomendada del aparato critico

Según la tabla de presiones recomendadas, se tiene que:

$$P = 10 \text{ m. c. a}$$

3.7.3.4 Unidades del aparato critico

Según la tabla, el número de unidades de la ducha para uso público es de:

$$Unidades = 2$$

Figura 3.69
Unidades de descarga de aparato más crítico

Aparatos		Público			Privado	
	Fría	Caliente	Total	Fría	Caliente	Total
Ducha o tina	2.00	2.00	4.00	1.50	1.50	2.00
Bidé o lavamanos				1.00	1.00	2.00
Lavaplatos				1.50	1.50	2.00
Lavaplato eléctrico	3.00	3.00	6.00	2.00	2.00	3.00
Lavadora	2.00	2.00	4.00	2.00	1.00	3.00
Inodoro con Fluxometro	10.00		10.00	6.00		6.00
Inodoro de tanque	5.00		5.00	3.00		3.00
Orinal de fluxometro	10.00		10.00			
Orinal de llave	2.00		2.00			
Lavamanos de llave	4.00		4.00			
Fregadero uso hotel	4.00		4.00	1.0		1.0
Lavadero				2.0		2.0

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

Esta consideración se aplica solamente al aparato más crítico.

3.7.3.5 Unidades de los demás tramos

El número de unidades para los demás tramos equivalen al número de aparatos sanitarios de los respectivos tramos.

3.7.3.6 Tablas de Flamant

Se tomaron los valores de Q, v, hv, C y J en las tablas de Flamant, las cuales están categorizadas por diámetro de tubería. Para el primer tramo, se encontró que era necesario un diámetro mínimo de $\frac{1}{2}$ in, por lo que buscamos entra las tablas la correspondiente a ese diámetro. Además, seleccionamos los valores que correspondan al número de unidades del tramo, que en este caso es del aparato más crítico:

Figura 3.70
Tablas de Flamant para tuberias de 1/2".

L/	2‴		j = 40	(V ^{1,75} /	D 1,2	Q = AV	'	j = 6,10	C (Q ^{1,75} /	D ^{4,75})
		Caudal Q		v	hv	Pérdidas por fricción en m/m				m
des		Caudai Q		•			Coeficie	nte de fr	icción C	
Unidades	gal/min	l/min	l/s	m/s	m	Fundido 0,00031	Galva- nizado 0,00031	Acero 0,00018	Cobre 0,00012	P.V.C. 0,00010
1	3,79	0.06	0,47	0,01	0,079	0,058	0,046	0,030	0,025	
2	2	7,57	0,13	1,03	0,05	0,304	0,226	0,177	0,118	0,098
3	3	11,35	0,19	1,50	0,11	0,591	0,439	0,343	0,229	0,191
5	4	15,14	0,25	1,97	0,20	0,956	0,709	0,555	0,370	0,308
6	5	18,92	0,32	2,53	0,33	1,472	1,092	0,855	0,570	0,475
7	6	22,71	0,38	3,00	0,46	1,989	1,475	1,155	0,770	0,642
8	7	26,50	0,44	3,49	0,62	2,587	1,919	1,502	1,001	0,834
10	8	30,28	0,50	3,98	0,81	3,267	2,424	1,897	1,265	1,054
12	9	34,07	0,57	4,48	1,02	4,015	2,979	2,331	1,554	1,295
14	10	37,85	0,63	4,98	1,26	4,828	3,582	2,804	1,869	1,558
16	12	45,42	0,76	5,98	1,82	6,643	4,929	3,857	2,571	2,143
20	14	52,99	0,88	6,97	2,48	8,700	6,455	5,052	3,368	2,806

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

Es importante revisar que se cumplan los criterios de diseño, en caso de que la velocidad no cumpla, es decir supere la velocidad máxima se prueba con el diámetro inmediato superior. Como se está trabajando con tuberías de PVC:

Se tiene que:

Tabla 3.30Dimensionamiento de tuberías de agua fría

			Unidad	Q	٧	hv	С	j				
Descripción	Punto/ Segmento	Punto/ Segmento	U	Lt/s	m/s	m	Fricción	m/m				
Planta Alta - Tubería de Agua Fria												
Ducha		1										
Tuberia	1-2	1-2	2	0.13	1.03	0.05	0.0001	0.098				

1.1.1 Cálculo de perdidas en tuberías y accesorios

Las perdidas por fricción en tuberías se calculan mediante ecuaciones desarrolladas empíricamente.

3.7.3.7 Coeficiente de Fricción de accesorios

El coeficiente de fricción C se lo toma según la rugosidad interna de la tubería. Se trabaja con tuberías de PVC, por lo que el coeficiente de fricción es de 150 según la tabla a continuación:

Figura 3.71
Valores de coeficiente de fricción según el material de la tubería

Coeficiente de fricción	С
Según catálogo	80
Según catálogo	90
Hierro galvanizado y acerado	100
Hierro fundido	120
Asbesto cemento	130
Cobre y fibra de vidrio	140
PVC	150

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

3.7.3.8 Método de las longitudes equivalentes

Se considera las perdidas locales de los accesorios comprendidos de las tuberías como codos, Tees, válvulas, reducciones, etc. Este método consiste en la suma de la longitud del tubo, las longitudes que corresponden a la misma perdida de carga, y la longitud adicional por cada accesorio. Dichos valores se los obtiene mediante tablas, los cuales fueron calculados mediante la fórmula de Darcy-Weisbach.

Le =
$$(0.52\emptyset + 0.04) * \left(\frac{120}{C}\right)^{1.85}$$
 (3.33)

Las longitudes son calculadas para tuberías de PVC, (C=150).

3.7.3.9 Cálculo de longitudes

Se tienen las siguientes longitudes:

Longitud Horizontal

$$H = 0.04 \text{ m}$$

Longitud Vertical

$$V = 2.00 \text{ m}$$

Longitud equivalente por accesorios

Se tienen 2 codos de radio corto 90 °, por lo que consultando a la tabla se tiene:

Figura 3.72

Método de longitudes equivalente para un codo de radio corto.

Tabla 3.17					
				Codo rad ongitudes equi 0,76φ + 0,17] ((120 / C) ^{1,85}
φ″	100	120	130	140	Coeficientes 150
1/2	0,77	0,55	0,47	0,41	0,36
3/4	1,04	0,74	0,64	0,56	0,49
1	1,30	0,93	0,80	0,70	0,62
1 1/4	1,57	1,12	0,97	0,84	0,74
1 1/2	1,84	1,31	1,13	0,98	0,87
2	2,37	1,69	1,46	1,27	1,12
2 1/2	2,90	2,07	1,78	1,56	1,37
3	3,43	2,45	2,11	1,84	1,62
4	4,50	3,21	2,77	2,41	2,12
6	6,63	4,73	4,08	3,56	3,13
8	8,76	6,25	5,39	4,70	4,14
10	10,89	7,77	6,70	5,84	5,14
12	13,02	9,29	8,01	6,98	6,15
14	15,15	10,81	9,32	8,13	7,15

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

$$Le = 2 * 0.36 = 0.72$$

Se consideran todos los accesorios del tramo:

$$Fitting = \sum Le = 0.72$$

3.7.3.10 Pérdida Total

Se considera la suma de las longitudes obtenidas anteriormente:

$$L_{total} = H + V + Fitting$$
 (3.34)

$$L_{total} = 0.04 + 2 + 0.72 = 2.76 \text{ m}$$

3.7.3.11 Pérdida por fricción

De la tabla de accesorios, se tiene el valor de j para tuberías de PVC con coeficiente de fricción de 150:

$$J = j * Total$$
 (3.35)
 $J = 0.098 * 2.76 m$
 $J = 0.27$

3.7.3.12 Presión

Se calculan las presiones finales de los tramos mediante la siguiente expresión:

$$P_{\text{final}} = J + hv + V + P_{n-1}$$
 (3.36)

Reemplazando los valores, se tiene:

$$P_{final} = (0.27 + 0.05 + 2 + 10) \text{ mca}$$
 $P_{final} = 12.32 \text{ m. c. a}$

Tabla 3.31

Cálculo de presiones de tuberías de agua fría

-		D	Longit	J	Presión			
Descripción	Punto/ Segmento	in	Horiz.	Vert.	Fittin.	Total	m	m.c.a.
Ducha	1							10
Tuberia	1-2	1/2	0.04	2	0.72	2.76	0.270	12.320
Tuberia	2-3	1/2	0.52	0	0.4	0.92	0.176	12.606
Tuberia	3-4	3/4	3.84	3	1.52	8.36	1.580	17.386
Tuberia	4-5	1	0.1	0	1.87	1.97	0.532	18.051
Tuberia	5-6	1	0.54	0	1.28	1.82	0.247	18.432

Tabla 3.32

Cálculo de presiones de tuberías de agua caliente

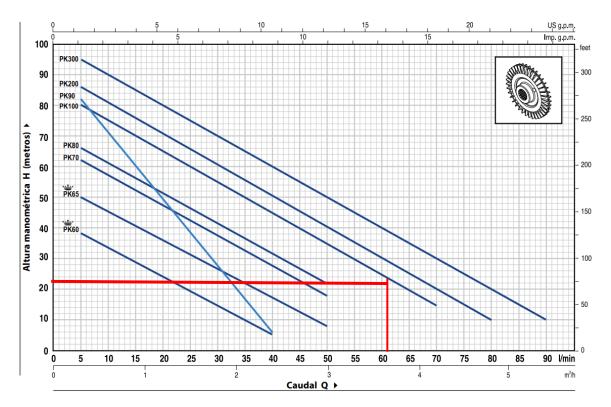
Descripción D	Longitud de la tuberia en m	J	Presión
---------------	-----------------------------	---	---------

	Punto/ Segmento	in	Horiz.	Vert.	Fittin.	Total	m	m.c.a.
Ducha	1							10
Tubería	1-2	1/2	0.65	2	1.44	4.09	0.40082	12.45082
Tubería	2-3	1/2	3.9	0	0.76	4.66	0.6524	13.32322
Tubería	3-4	3/4	0.26	0	0.5	0.76	0.05244	13.43566

3.8 Elección de Bomba

3.8.1 Presión

Se lo obtiene mediante la siguiente expresión:


Altura manometrica =
$$1.7 + 18.43 = 20.43$$
 m.c.a

3.8.2 **Caudal**

$$Q = 1.026 \frac{l}{s}$$

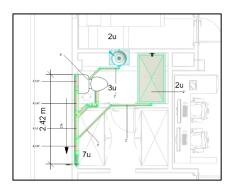
Figura 3.73

Modelos de bomba PK CATALOGO GENERAL 60 Hz

Nota: Obtenido del Catalogo Pedrollo.

Se tiene la bomba PK-100.

3.9 Diseño de instalaciones de aguas servida


3.9.1 Ubicación de bajantes y colectores

La ubicación de las bajantes y cajas de recolección se encuentra en el plano AASS en la parte de Anexos.

3.9.2 Identificación de aparatos sanitarios y unidades de descarga

Se tiene el siguiente tramo:

Figura 3.74Ramal de aguas servidas

Los aparatos sanitarios de la vivienda se presentan en la siguiente Tabla:

Tabla 3.33
Unidades de descarga y aparatos sanitarios

Piso	Aparatos Sanitarios	D (mm)	D (in)	Unidades de Descarga	Cantidad	Total
1	W/C	110	4	3	1	3
	Fregadero de cocina	50	2	2	1	2
	Lavabo	50	2 1/2	2	1	2
	Lavadora	50	2	2	1	2
2	W/C	110	4	3	4	12
	Lavabo	50	2 1/2	2	4	8
	Ducha	75	3	2	4	8
-		Т	otal UD			37

3.10 Diseño de bajante

3.10.1 Número máximo de unidades de descarga por bajante

Se tienen 7 unidades para cada una de las 3 bajantes, por lo que el máximo número de unidades por bajante es de 30. Se podría usar un diámetro de 75mm, sin embargo, se tiene el inodoro como parte del sistema sanitario, tal hecho requiere una tubería de diámetro de 110 mm mínimo. En este tipo de instalaciones no puede haber reducciones, por lo que las unidades máximas son de 240.

Figura 3.75 *Máximo número de unidades por bajante.*

	Bajante	Más de 3 pisos				
ф	Hasta 3 pisos	Total por bajante	Total por piso			
3	30	60	16			
4	240	500	90			
6	960	1900	350			
8	2200	3600	600			
10	3800	5600	1000			
12	6000	8400	1500			

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

3.10.2 Caudal

Según las unidades totales de cada bajante, consultamos la siguiente la tabla para identificar el caudal que va a circular:

Figura 3.76Caudales para fluxómetro.

		Cauda		, .		Caudal	
Unidades	gal/min	I/min	l/s	Unidades	gal/min	I/min	I/s
10	27.0	102.0	1.69	500	140,29	531,0	8,85
12	28,6	108,3	1,81	600	154,08	583,2	9,72
14	30,5	114,3	1,91	700	167,24	633,0	10,55
16	31,8	120,4	1,99	800	182,30	690,0	11,50
18	33,4	126,0	2,09	900	194,98	738,0	12,30
20	35,0	132,5	2,19	1,000	207,66	786,0	13,10
25	38,0	143,8	2,38	1,100	220,34	834,0	13,90
30	41,0	155,2	2,56	1,200	235,40	891,0	14,85
35	43,8	165,8	2,74	1,300	245,71	930,0	15,50
40	46,5	176,0	2,91	1,400	256,80	972,0	16,20
45	49,0	185,5	3,06	1,500	269,48	1,020,0	17,00
50	51,5	195,0	3,22	1,600	280,58	1,062,0	17,70
60	55,0	208,2	3,44	1,700	293,26	1,100,0	18,50
70	58,5	221,4	3,66	1,800	304,36	1,152,0	19,20
80	62,0	234,7	3,88	1,900	315,45	1,194,0	19,90
90	64,8	245,3	4,05	2,000	323,38	1,224,0	20,40
100	67,5	255,5	4,22	2,100	336,06	1,272,0	21,20
120	72,5	274,4	4,53	2,200	347,16	1,314,0	21,90
140	77,5	293,3	4,84	2,300	358,25	1,356,0	22,60
160	82,5	312,3	5,16	2,400	370,94	1,404,0	23,40
180	87,0	329,3	5,44	2,500	380,45	1,440,0	24,00
200	89,25	337,8	5,63	2,600	391,54	1,482,0	24,70
210	90,36	342,0	5,70	2,700	404,23	1,530,0	25,50
220	92,58	350,4	5,84	2,800	413,74	1,566,0	26,10
230	95,11	360,0	6,00	2,900	423,25	1,602,0	26,70
240	98,28	372,0	6,20	3,000	432,76	1,638,0	27,30
250	100,98	382,2	6,37	3,100	443,86	1,680,0	28,00
260	102,72	388,8	6,48	3,200	454,95	1,722,0	28,70
270	104,62	396,0	6,60	3,300	464,46	1,758,0	29,30
280	106,37	402,6	6,71	3,400	480,32	1,818,0	30,30
290	108,27	409,8	6,83	3,500	489,83	1,854,0	30,90
300	110,01	416,4	6,94	3,600	500,92	1,896,0	31,60
320	113,03	427,8	7,13	3,700	512,02	1,938,0	32,30
340	116,04	439,2	7,32	3,800	521,53	1,974,0	32,90
360	119,21	451,2	7,52	3,900	532,63	2,016,0	33,60
380	122,22	462,6	7,71	4,000	548,48	2,076,0	34,30
400	125,23	474,0	7,90	4,100	553,24	2,094,0	34,90
420	128,24	485,4	8,09	4,200	564,33	2,136,0	35,60
440	131,25	496,8	8,28	4,300	575,43	2,178,0	36,30
460	134,27	508,2	8,47	4,400	584,94	2,214,0	36,90
480	137,28	519,6	8,66	4,500	596,04	2,256,0	37,60

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

Como se tienen 7 unidades, se redondea al número inmediato mayor de unidades disponible en la tabla. Se consideran 10 unidades de descarga para la bajante, y se tiene el siguiente caudal:

$$Q = 1.69 \frac{l}{s}$$

3.10.3 Resultados

Tabla 3.34Dimensionamiento de bajantes de agua servidas

			Bajante								
Numero de bajante	Pisos servidos	Unidades	Dimensiones								
Unid	ad de cada p	oiso	Total de Unidades	Máximas unidades	Q (L/s)	L	Ø plg	Ø mm			
1	2	7	7	240	1.69	3.20	4	110			
2	2	7	9	240	1.69	3.20	4	110			
3	2	7	7	240	1.69	3.20	4	110			

3.10.4 Diseño de colectores

3.10.4.1 Separación por ramales

Se identifican 6 colectores en total:

Planta Alta: 3 colectores principales

• Planta baja: 3 colectores principales

Por cada planta se contabilizaron 3 colectores

3.10.4.2 Unidades descargas del colector

Se tiene un inodoro en cada ramal, por lo que el diámetro mínimo de tubería es de 110mm. Conociendo el diámetro de tuberías, se tiene el número máximo de unidades del colector según la siguiente tabla:

Figura 3.77

Máximo número de unidades de descarga para los colectores horizontales.

Diametro	UD	Caudales
mm		L/s
75	20	2.19
110	160	5.16
160	620	10.3
220	1400	23.4

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición El número máximo de unidades de descarga por colector es de 160.

3.10.4.3 Pendiente del ramal

Se considera una pendiente del 2%.

3.10.4.4 Longitud del colector

Se tiene como longitud:

$$L = 2.40 m$$

3.10.4.5 Caudal del colector

Con el número total de unidades del colector, consultamos la tabla de caudales para fluxómetro para obtener el caudal:

Figura 3.78

Caudales para fluxómetro.

Tabla 5.3.	. Caudales p	ara fluxóme	tro				
		Caudal		11-14-4		Caudal	
Unidades -	gal/min I/min I/s	Unidades	gal/min	I/min	I/s		
10	27,0	102,0	1,69	500	140,29	531,0	8,85
12	28,6	108,3	1,81	600	154,08	583,2	9,72
14	30,5	114,3	1,91	700	167,24	633,0	10,55
16	31,8	120,4	1,99	800	182,30	690,0	11,50
18	33,4	126,0	2,09	900	194,98	738,0	12,30
20	35,0	132,5	2,19	1,000	207,66	786,0	13,10
25	38,0	143,8	2,38	1,100	220,34	834,0	13,90
30	41,0	155,2	2,56	1,200	235,40	891,0	14,85
35	43,8	165,8	2,74	1,300	245,71	930,0	15,50

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

$$Q = 1.69 \frac{l}{s}$$

3.10.4.6 Caudal y velocidad de diseño

De acuerdo con las tablas de Manning para una tubería de 110mm y una pendiente del 2%, se tiene el siguiente caudal y velocidad de diseño:

Figura 3.79

Tabla de Manning para una tubería de 4".

4″			n = 0.0	200		Manni	ina
4	0.60-	77.04.		J03	0.60		
	9,60√s	77,84√s	250∳S		9,60√s	77,84√s	250∳S
S %	V	Q	F,	S %	V	Q	F _t
	m/s	l/s	kg/m²		m/s	l/s	kg/m
0,4	0,61	4,92	0,10	5,2	2,19	17,75	1,32
0,5	0,68	5,50	0,13	5,4	2,23	18,09	1,37
0,6	0,74	6,03	0,15	5,6	2,27	18,42	1,42
0,7	0,80	6,51	0,18	5,8	2,31	18,75	1,47
0,8	0,86	6,96	0,20	6,0	2,35	19,07	1,52
0,9	0,91	7,38	0,23	6,2	2,39	19,38	1,57
1,0	0,96	7,78	0,25	6,4	2,43	19,69	1,63
1,1	1,01	8,16	0,28	6,6	2,47	20,00	1,68
1,2	1,05	8,53	0,30	6,8	2,50	20,30	1,73
1,3	1,09	8,88	0,33	7,0	2,54	20,59	1,78
1,4	1,14	9,21	0,36	7,2	2,58	20,89	1,83
1,5	1,18	9,53	0,38	7,4	2,61	21,17	1,88
1,6	1,21	9,85	0,41	7,6	2,65	21,46	1,93
1,7	1,25	10,15	0,43	7,8	2,68	21,74	1,98
1,8	1,29	10,44	0,46	8,0	2,72	22,02	2,03
1,9	1,32	10,73	0,48	8,2	2,75	22,29	2,08
2,0	1,36	11,01	0,51	8,4	2,78	22,56	2,13
2,1	1,39	11,28	0,53	8,6	2,82	22,83	2,18
2,2	1,42	11,55	0,56	8,8	2,85	23,09	2,24
2,3	1,46	11,81	0,58	9,0	2,88	23,35	2,29
2,4	1,49	12,06	0,61	9,2	2,91	23,61	2,34

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

$$Q_o = 11.01 \frac{l}{s}$$

$$V_o = 1.36 \frac{m}{s}$$

3.10.4.7 Q/Qo

Se calcula la siguiente relación:

$$\frac{Q}{Q_o} = \frac{1.69 \frac{l}{s}}{11.01 \frac{l}{s}} = 0.15$$

3.10.4.8 Tirante de diseño y velocidad

Se busca el valor obtenido de Q/Qo en la siguiente tabla:

Figura 3.80

Relaciones hidráulicas en tubería.

Qo = Caudal a tubo lleno Q = Caudal de diseño Y = Profundidad de lamina

= Diámetro de la tubería

D = Profundidad hidráulica

Tabla 5.43 Relaciones hidráulicas en tubería n/N ≠ 1 Vo = Velocidad a tubo lleno V = Velocidad real Ao = Área a tubo lleno A = Área del agua

Q/Qo	Υ/φ	V/Vo	D/ф	A/Ao	Q/Qo	Υ/φ	V/Vo	D/ф	A/Ao
.010	.061	.272	.041	.025	.540	.587	.881	.487	.610
.020	.099	.327	.067	.051	.550	.594	.886	.494	.618
.030	.126	.366	.086	.073	.560	.600	.891	.502	.626
.040	.148	.398	.102	.092	.570	.600	.891	.502	.626
.050	.168	.426	.116	.110	.580	.613	.901	.518	.642
.060	.185	.450	.128	.127	.590	.619	.905	.526	.650
.070	.200	.473	.140	.143	.600	.625	.910	.534	.658
.080	.215	.495	.151	.157	.610	.632	.915	.542	.666
.090	.228	.515	.161	.172	.620	.638	.919	.550	.674
.100	.241	.534	.170	.185	.630	.644	.924	.559	.681
.110	.253	.553	.179	.199	.640	.651	.928	.561	.689
.120	.264	.564	.180	.211	.650	.657	.933	.575	.697
.130	.275	.575	.197	.224	.660	.663	.937	.585	.704
.140	.286	.586	.205	.236	.670	.670	.942	.595	.712
.150	.296	.596	.213	.248	.680	.676	.946	.604	.720
.160	.306	.606	.221	.259	.690	.683	.950	.614	.727
.170	.316	.616	.229	.271	.700	.689	.954	.623	.735
.180	.325	.626	.236	.282	.710	.695	.959	.633	.742
.190	.334	.636	.244	.293	.720	.702	.963	.644	.750
.200	.343	.645	.251	.304	.730	.709	.967	.654	.757
.210	.352	.655	.258	.314	.740	.715	.971	.665	.765
.220	.361	.664	.266	.325	.750	.721	.975	.677	.772
.230	.369	.673	.273	.335	.760	.728	.978	.688	.772
.240	.377	.681	.280	.345	.770	.735	.982	.700	.787
.250	.385	.390	.287	.355	.780	.741	.986	.713	.795
.260	.393	.699	.294	.365	.790	.748	.990	.725	.802
.270	.401	.707	.300	.375	.800	.755	.993	.739	.810
.280	.409	.715	.307	.385	.810	.761	.997	.753	.817
.290	.417	.724	.314	.394	.820			.767	.824
		.724			.830	.768	1.000		
.300	.424		.321	.404		.775	1.003	.783	.832
.310	.432	.740	.328	.413	.840	.782	1.007	.798	.839
.320	.439	.747	.334	.422	.850	.789	1.010	.815	.847
.330	.446	.755	.341	.432	.860	.796	1.013	.833	.854
.340	.453	.763	.348	.441	.870	.804	1.016	.852	.861
.350	.460	.770	.354	.450	.880	.811	1.019	.871	.869
.360	.468	.778	.361	.459	.890	.818	1.022	.892	.876
.370	.475	.785	.368	.468	.900	.826	1.024	.915	.883
.380	.482	.792	.374	.476	.910	.834	1.027	.940	.891
.390	.488	.799	.381	.485	.920	.842	1.029	.966	.896
.400	.495	.806	.388	.494	.930	.850	1.032	.995	.906
.410	.502	.813	.395	.503	.940	.858	1.034	1.027	.913
.420	.509	.820	.402	.511	.950	.867	1.036	1.063	.921
.430	.516	.827	.408	.520	.960	.875	1.037	1.103	.928
.440	.522	.833	.415	.528	.970	.884	1.039	1.149	.936
.450	.529	.840	.422	.537	.980	.894	1.040	1.202	.943
.460	.535	.846	.429	.545	.990	.904	1.047	1.265	.951
.470	.542	.853	.436	.553	1.000	.914	1.047	1.344	.958
.480	.549	.859	.443	.562	1.010	.925	1.047	1.445	.966
.490	.555	.865	.450	.570	1.020	.938	1.046	1.584	.974
.500	.561	.861	.458	.578	1.030	.952	1.044	1.803	.982
.510	.568	.866	.465	.586	1.040	969	1.040	2.242	.991
.520	.574	.871	.472	.594					
.530	.581	.876	.479	.602					

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición Se obtienen los siguientes valores de tirante y velocidad respectivamente:

$$\frac{y}{0} = 0.296$$

$$\frac{v}{vo} = 0.596$$

Se verifica que se cumplan las siguientes condiciones:

$$y < 0.75 * \emptyset \tag{3.38}$$

$$v > 0.6 * v_o \tag{3.39}$$

Se cumple el requisito de diseño del tirante. Verificando el valor de la velocidad, se obtiene:

$$v = 0.6 * 0.596 \frac{m}{s}$$

$$v = 0.81 \frac{m}{s}$$

3.10.4.9 Cotas

$$\Delta h = \frac{L * S}{100} = \frac{2.54 * 0.002}{100} = 0.002$$

3.10.4.10 Resultados

Tabla 3.35Dimensionamiento de colectores horizontales de aguas servidas

						Co	lectores	Horizont	ales						
		Flow			Dimer	sion	Slope			Diseño)		Elevaciones		
Segmento	U	nidades		S	L	Ø	S	Qo	Vo	Q/Qo	V/Vo	V	Δh	Inicial	Final
	Propias	Acum	Max	%	m	plg	%	L/s	m/s			m/s	m	m	m
1 PA	7	7	160	2	2.54	4	2%	11.01	1.36	0.15	0.596	0.8105	0.0508	3.026	2.975
2 PA	7	7	160	2	1.79	4	2%	11.01	1.36	0.15	0.596	0.8105	0.0358	3.063	3.027
3 PA	7	9	160	2	3.47	4	2%	11.01	1.36	0.15	0.596	0.8105	0.0694	3.039	2.970
4 PA	7	7	160	2	2.42	4	2%	11.01	1.36	0.15	0.596	0.8105	0.0484	3.042	2.994
5 PB	7	7	160	2	17.47	4	2%	11.01	1.36	0.15	0.596	0.8105	0.3494	-0.220	- 0.569
6 PB	37	37	160	2	20.85	4	2%	11.01	1.36	0.26	0.699	0.9506	0.417	-0.256	0.673

3.10.5 Ventilación

Es necesario basarnos en el diámetro de cada una de las bajantes para dimensionar el sistema de ventilación principal.

3.10.5.1 Diámetro mínimo de ventilación

Figura 3.81
Diámetros para el tubo de ventilación principal.

Diámetro	Unidades		Dián	netro requ	uerido par	ra el tubo	de <mark>Ventil</mark> a	ación prin	cipal	
de la bajante	de Descarga	11/4"	1 1/2"	2"	21/2"	3"	4"	5"	6"	8"
en pulg.	ventiladas			Lon	gitud máx	ima del t	ubo en me	etros		
1 1/4"	2	9,0								
1 1/2"	8	15,0	45,0							
1 1/2"	42		9,0	30,0	90,0					
2"	12	9,0	23,0	60,0						
2"	20	8,0	15,0	45,0						
2 1/2"	10	9,0	30,0							
3"	10		9,0	30,0	60,0	180,0				
3"	30			18,0	60,0	150,0				
3"	60			15,0	24,0	120,0				
4"	100			11,0	30,0	78,0	300,0			
4"	200			9,0	27,0	75,0	270,0			
4"	500			6,0	21,0	54,0	210,0			
5"	200				11,0	24,0	105,0	300,0		
5"	500				9,0	21,0	90,0	270,0		
5"	1,100				6,0	15,0	60,0	210,0		
6"	350				8,0	15,0	60,0	120,0	390,0	
6"	620				5,0	9,0	38,0	90,0	330,0	
6"	960					7,0	30,0	75,0	300,0	
6"	1,900					6,0	21,0	60,0	210,0	
8"	600						15,0	54,0	150,0	390,0
8"	1,400						12,0	30,0	120,0	360,0
8"	2,200						9,0	24,0	105,0	330,0
8"	3,600						8,0	18,0	75,0	240,0
10"	1,000							23,0	38,0	200,0
10"	2,500							15,0	30,0	150,0
								15,0	24,0	105,0
								8,0	18,0	75,0

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

Se tiene una tubería de 2 pulgadas, es decir de 50mm, con una longitud máxima de 11 metros. Como la cantidad de unidad de descarga forma parte del rango que

muestra en la tabla, esta tubería de ventilación se puede aplicar a cada una de las bajantes.

3.11 Diseño de instalaciones de agua Iluvia

3.11.1 Criterios de diseño

Se considera lo siguiente:

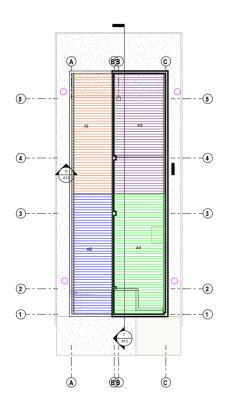
Velocidad

La velocidad mínima a tubo lleno, para arrastrar pequeñas partículas en suspensión y evitar la decantación, es de 0.8 m/s. Es preferible utilizar 1,0 m/s.

Caudal

La capacidad de caudal depende de la pendiente que se deja hacia el bajante.

Tirante


El agua ocupa el 70% de la altura y se deja el restante.

3.11.2 Identificación del recorrido del agua según los niveles.

Se tienen 4 bajantes para drenar el agua de las dos cubiertas que se tienen:

Figura 3.82

Distribución de áreas para las bajantes.

3.11.3 Intensidad de Iluvia

Suponiendo que se tiene una intensidad de lluvia de $100\frac{mm}{hr-m^2}$ y una frecuencia de 15 años, se tiene que:

$$I = \frac{100}{3600} = 0.0278 \frac{mm}{s - m^2}$$

3.11.4 Diseño de bajante

3.11.4.1 Áreas propias y acumuladas

Se tienen las siguientes áreas para cada una de las bajantes identificadas:

Tabla 3.36 Áreas de las bajantes.

Secciones	Area [m2]	Area acumulada [m2]	Bajante
1	31.36	62.72	Α
2	31.36		В
3	40.85	81.70	С
4	40.85		D

3.11.4.2 Área servida y diámetro de la bajante

De acuerdo con la siguiente tabla y suponiendo que el diámetro de la tubería es de 2" para una intensidad de lluvia de $100\frac{mm}{hr-m^2}$, se tiene la siguiente área servida:

$$A = 65 m^2$$

Figura 3.83

Proyección horizontal en m2 de área servida.

ø		Inte	nsidad de la	lluvia en m	nm/h	
_	50	75	100	125	150	200
2	130	85	65	50	40	30
2.5	240	160	120	95	80	60
3	400	270	200	160	135	100
4	850	570	425	340	285	210
5	1.570	1.050	800	640	535	400
6	2.450	1.650	1.200	980	835	625
8	5.300	3.500	2.600	2.120	1.760	1.300
С	0.0139	0.0208	0.0278	0.0347	0.0417	0.0556

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

Se comprueba que el área propia para la bajante forma parte del área servida, por lo que el diámetro elegido para la bajante es el correcto:

$$A_1 < A$$

$$31.36 \ m^2 < 65 \ m^2 \rightarrow Cumple$$

3.11.4.3 Caudal

Se lo obtiene mediante la siguiente expresión:

$$Q = C * I * A \tag{3.40}$$

Para la bajante A, se tiene el siguiente caudal:

$$Q = 1 * 0.0278 \frac{mm}{s - m^2} * 31.36 m^2 = 0.872 \frac{l}{s}$$

3.11.4.4 Resultados

Se tienen las siguientes dimensiones para las bajantes:

Tabla 3.37

Dimensionamiento de las bajantes de agua Iluvia.

Bajante		Diseño		
	Propia	Diámetro		
	[m2]	[m2]	l/s	[in]
Α	31.36	31.36	0.872	2
В	31.36	31.36	0.872	2
С	40.85	40.85	1.136	2
D	40.85	40.85	1.136	2

3.11.5 Diseño de colectores

3.11.5.1 Caudal

Se lo obtiene mediante la siguiente expresión:

$$0 = C * I * A$$

Para la bajante A, se tiene el siguiente caudal:

$$Q = 1 * 0.0278 \frac{mm}{s - m^2} * 31.36 m^2 = 0.872 \frac{l}{s}$$

3.11.5.2 Área servida, pendiente y diámetro

Suponiendo una pendiente del 2% para una tubería de 3" con una intensidad de lluvia de $100\frac{mm}{hr-m^2}$, se tiene la siguiente área servida:

$$A = 105 \text{ m}^2$$

Comparando el área de la bajante A, vemos que forma parte del rango del área servida, por lo que podemos trabajar con una pendiente de 2%:

$$A_1 < A$$

$$31.36 \ m^2 < 105 \ m^2 \rightarrow \text{Cumple}$$

3.11.5.3 Caudal y velocidad de diseño

De acuerdo con las tablas de Manning con n=0.009 para una tubería de 75mm y una pendiente del 2%, se tiene el siguiente caudal y velocidad de diseño:

Figura 3.84
Tabla de Manning para una tubería de 3".

bla 5.5							
3″			Manning				
	7,93√s	36,14√s	250∮S		7,93√s	36,14√s	250¢S
S %	V	Q	F,	S %	٧	Q	F,
	m/s	I/s	kg/m²		m/s	I/s	kg/m²
0,6	0,61	2,80	0,11	5,6	1,88	8,55	1,07
0,7	0,66	3,02	0,13	5,8	1,91	8,70	1,10
0,8	0,71	3,23	0,15	6,0	1,94	8,85	1,14
0,9	0,75	3,43	0,17	6,2	1,97	9,00	1,18
1,0	0,79	3,61	0,19	6,4	2,01	9,14	1,22
1,1	0,83	3,79	0,21	6,6	2,04	9,28	1,26
1,2	0,87	3,96	0,23	6,8	2,07	9,42	1,30
1,3	0,90	4,12	0,25	7,0	2,10	9,56	1,33
1,4	0,94	4,28	0,27	7,2	2,13	9,70	1,37
1,5	0,97	4,43	0,29	7,4	2,16	9,83	1,41
1,6	1,00	4,57	0,30	7,6	2,19	9,96	1,45
1,7	1,03	4,71	0,32	7,8	2,21	10,09	1,49
1,8	1,06	4,85	0,34	8,0	2,24	10,22	1,52
1,9	1,09	4,98	0,36	8,2	2,27	10,35	1,56
2.0	1.12	5.11	0.38	8.4	2,30	10,47	1,60
2,1	1,15	5,24	0,40	8,6	2,33	10,60	1,64
2,2	1,18	5,36	0,42	8,8	2,35	10,72	1,68
2,3	1,20	5,48	0,44	9,0	2,38	10,84	1,71
2,4	1,23	5,60	0,46	9,2	2,41	10,96	1,75
2,5	1,25	5,71	0,48	9,4	2,43	11,08	1,79
2,6	1,28	5,83	0,50	9,6	2,46	11,20	1,83

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

$$Q_o = 5.11 \frac{l}{s}$$

$$v_o = 1.12 \frac{l}{s}$$

3.11.5.4 Q/Qo

Se calcula la siguiente relación:

$$\frac{Q}{Q_o} = \frac{0.872 \frac{l}{s}}{5.11 \frac{l}{s}} = 0.1706$$

3.11.5.5 Tirante de diseño y velocidad

Se busca el valor obtenido de Q/Qo en la siguiente tabla:

Figura 3.85
Relaciones hidráulicas en tuberías.

Qo = Caudal a tubo lleno
Q = Caudal de diseño
Y = Profundidad de Iamina Relacio
φ = Diámetro de la tubería
D = Profundidad hidráulica

Tabla 5.43 Vo = Velocidad a tubo lleno V = Velocidad real Relaciones hidráulicas en tubería <math>Ao = Area a tubo lleno A = Area del agua

Q/Qo	Υ/φ	V/Vo	D/ф	A/Ao	Q/Qo	Υ/φ	V/Vo	D/ф	A/Ao
.010	.061	.272	.041	.025	.540	.587	.881	.487	.610
.020	.099	.327	.067	.051	.550	.594	.886	.494	.618
.030	.126	.366	.086	.073	.560	.600	.891	.502	.626
.040	.148	.398	.102	.092	.570	.600	.891	.502	.626
.050	.168	.426	.116	.110	.580	.613	.901	.518	.642
.060	.185	.450	.128	.127	.590	.619	.905	.526	.650
.070	.200	.473	.140	.143	.600	.625	.910	.534	.658
.080	.215	.495	.151	.157	.610	.632	.915	.542	.666
.090	.228	.515	.161	.172	.620	.638	.919	.550	.674
.100	.241	.534	.170	.185	.630	.644	.924	.559	.681
.110	.253	.553	.179	.199	.640	.651	.928	.561	.689
.120	.264	.564	.180	.211	.650	.657	.933	.575	.697
.130	.275	.575	.197	.224	.660	.663	.937	.585	.704
.140	.286	.586	.205	.236	.670	.670	.942	.595	.712
.150	.296	.596	.213	.248	.680	.676	.946	.604	.720
.160	.306	.606	.221	.259	.690	.683	.950	.614	.727
.170	.316	.616	.229	.271	.700	.689	.954	.623	.735
.180	.325	.626	.236	.282	.710	.695	.959	.633	.742
.190	.334	.636	.244	.293	.720	.702	.963	.644	.750
.200	.343	.645	.251	.304	.730	.709	.967	.654	.757

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición Se obtienen los siguientes valores de tirante y velocidad respectivamente:

$$\frac{y}{\emptyset} = 0.316$$

$$\frac{v}{vo} = 0.616$$

Se verifica que se cumplan las siguientes condiciones:

$$y \le 0.70 * \emptyset$$

$$0.8 < v > 1 \frac{m}{s}$$

Se cumple el requisito de diseño del tirante. Verificando el valor de la velocidad, se obtiene:

$$v = \frac{v}{vo} * vo = 0.616 * 1.12 \frac{m}{s} = 0.69 \frac{m}{s}$$

Vemos que la velocidad no cumple con el criterio de diseño, por lo que se necesita cambiar de diámetro o de pendiente. En este caso, se opta por trabajar a una pendiente del 4%. Cuando se tiene dicha pendiente, se consulta la siguiente tabla:

Figura 3.86

Máxima área de proyección en m2.

	Máxima área de proyecc, en m ²							
φ	0.5	1%	2%	4%				
3	16	22	32	45				
4	34	47	67	95				
5	58	82	116	164				
6	89	126	178	257				
7	128	181	256	362				
8	185	260	370	520				
10	344	474	668	730				

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición Se tiene para una tubería de 3" con una pendiente del 4%, el área servida es de:

$$A = 45 m^2$$

Se comprueba que el área propia para la bajante es menor a la del área servida, por lo que el diámetro elegido para la bajante es el correcto:

$$A_1 < A$$

$$31.36 \ m^2 < 45 \ m^2 \rightarrow Cumple$$

De acuerdo con las tablas de Manning con n=0.009 para una tubería de 75mm y una pendiente del 4%, se tiene el siguiente caudal y velocidad de diseño:

Figura 3.87

Tabla de Manning para una tubería de 3".

3″			n = 0.0	009		Manning		
	7,93√s	36,14√s	250∮S		7,93√s	36,14√s	250∳5	
s %	٧	Q	F,	S %	V	Q	F,	
	m/s	I/s	kg/m²		m/s	I/s	kg/m	
0,6	0,61	2,80	0,11	5,6	1,88	8,55	1,07	
0,7	0,66	3,02	0,13	5,8	1,91	8,70	1,10	
0,8	0,71	3,23	0,15	6,0	1,94	8,85	1,14	
0,9	0,75	3,43	0,17	6,2	1,97	9,00	1,18	
1,0	0,79	3,61	0,19	6,4	2,01	9,14	1,22	
1,1	0,83	3,79	0,21	6,6	2,04	9,28	1,26	
1,2	0,87	3,96	0,23	6,8	2,07	9,42	1,30	
1,3	0,90	4,12	0,25	7,0	2,10	9,56	1,33	
1,4	0,94	4,28	0,27	7,2	2,13	9,70	1,37	
1,5	0,97	4,43	0,29	7,4	2,16	9,83	1,41	
1,6	1,00	4,57	0,30	7,6	2,19	9,96	1,45	
1,7	1,03	4,71	0,32	7,8	2,21	10,09	1,49	
1,8	1,06	4,85	0,34	8,0	2,24	10,22	1,52	
1,9	1,09	4,98	0,36	8,2	2,27	10,35	1,56	
2,0	1,12	5,11	0,38	8,4	2,30	10,47	1,60	
2,1	1,15	5,24	0,40	8,6	2,33	10,60	1,64	
2,2	1,18	5,36	0,42	8,8	2,35	10,72	1,68	
2,3	1,20	5,48	0,44	9,0	2,38	10,84	1,71	
2,4	1,23	5,60	0,46	9,2	2,41	10,96	1,75	
2,5	1,25	5,71	0,48	9,4	2,43	11,08	1,79	
2,6	1,28	5,83	0,50	9,6	2,46	11,20	1,83	
2,7	1,30	5,94	0,51	9,8	2,48	11,31	1,87	
2,8	1,33	6,05	0,53	10,0	2,51	11,43	1,91	
2,9	1,35	6,15	0,55	10,5	2,57	11,71	2,00	
3,0	1,37	6,26	0,57	11,0	2,63	11,99	2,10	
3,1	1,40	6,36	0,59	11,5	2,69	12,26	2,19	
3,2	1,42	6,46	0,61	12,0	2,75	12,52	2,29	
3,3	1,44	6,57	0,63	12,5	2,80	12,78	2,38	
3,4	1,46	6,66	0,65	13,0	2,86	13,03	2,48	
3,5	1,48	6,76	0,67	13,5	2,91	13,28	2,57	
3,6	1,50	6,86	0,69	14,0	2,97	13,52	2,67	
3,7	1,53	6,95	0,70	14,5	3,02	13,76	2,76	
3,8	1,55	7,04	0,72	15,0	3,07	14,00	2,86	
3,9	1,57	7,14	0,74	15,5	3,12	14,23	2,95	
4,0	1,59	7,23	0,76	16,0	3,17	14,46	3.05	

Nota: Obtenido del libro Instalaciones Hidrosanitarias y de Gas para edificaciones, 6ta Edición

$$Q_o = 7.23 \frac{l}{s}$$

$$v_0 = 1.59 \frac{l}{s}$$

Se tiene la siguiente relación Q/Qo:

$$\frac{Q}{Q_o} = \frac{0.872 \frac{l}{s}}{7.23 \frac{l}{s}} = 0.1205$$

Revisando la Tabla 3.47 con la relación dada, se obtienen los siguientes valores de tirante y velocidad respectivamente:

$$\frac{y}{\emptyset} = 0.264$$

$$\frac{v}{v_0} = 0.564$$

Se verifica que se cumplan las siguientes condiciones:

$$y \le 0.70 * \emptyset$$

$$0.8 < v > 1 \frac{m}{s}$$

Se cumple el requisito de diseño del tirante. Verificando el valor de la velocidad, se obtiene:

$$v = \frac{v}{vo} * vo = 0.564 * 1.59 \frac{m}{s} = 0.897 \frac{m}{s}$$

Se cumple las condiciones especificadas.

3.11.6 Resultados

Tabla 3.38Dimensionamiento de colectores horizontales de agua lluvia.

Bajante	Ø	Q。	Ft	q/Q _o	Y/Ø	V/V _o	٧	L[m]	Δh	Inicial	Final
	[in]								[m]	m	m
А	3	7.23	0.76	0.1205	0.264	0.564	0.89676	7.98	0.32	-8.08	-8.40
В	3	7.23	0.76	0.1205	0.264	0.564	0.89676	7.98	0.32	-8.08	-8.40
С	3	7.23	0.76	0.1570	0.306	0.606	0.96354	7.98	0.32	-8.08	-8.40
D	3	7.23	0.76	0.1570	0.306	0.606	0.96354	7.98	0.32	-8.08	-8.40

3.12 Diseño de instalaciones eléctricas

3.12.1 Estimación de demanda eléctrica

Para obtener la estimación de la demanda eléctrica de este proyecto se debe considerar:

- Circuitos de tomacorrientes
- Circuitos de iluminación
- Circuitos para aparatos eléctricos especiales: aires acondicionados.
- Número de tableros

Este proyecto tiene dos plantas por lo tanto se necesitarán dos tableros más uno para el aire acondicionado, lo cual está establecido en la normativa ya que el aire acondicionado es un aparato eléctrico con una carga especial. En total, el número de tableros considerados para este proyecto será ().

3.12.1.1 Mínimo número de circuitos

Es necesario clasificar la edificación según su área de construcción como lo establece la siguiente normativa: NEC-SB-IE

Figura 3.88
Clasificación de las viviendas según el área de construcción.

TIPO DE VIVIENDA	ÁREA DE CONSTRUCCIÓN (m²)	Número Mínim	no de Circuitos
		lluminación	Tomacorrientes
Pequeña	A < 80	1	1
Mediana	80 < A < 200	2	2
Mediana grande	201 < A < 300	3	3
Grande	301 < A < 400	4	4
Especial	A > 400	1 por cada 100 m² o fracción de 100 m²	1 por cada 100 m² o fracción de 100 m²

Nota. Obtenido en la norma NEC-SB-IE, 2015.

Se considera que el área de la vivienda es de 245 m². De acuerdo con el cuadro anterior, debemos referirnos a nuestro hogar como un hogar mediano grande cuya área de construcción se encuentra dentro del siguiente rango: 201<A<300, y requiere de 3 circuitos mínimos de iluminación y enchufes cada uno.

3.12.1.2 Cargas

3.12.1.3 Tomacorrientes y luminarias

Según el código NEC, para los cálculos de diseño se deben considerar los siguientes parámetros:

- Iluminación: Se debe considerar una carga máxima de 100 Watts (W) por cada salida de iluminación.
- Tomacorrientes: Se debe considerar una carga de 200 W por cada toma de corriente.

3.12.1.4 Cargas Especiales

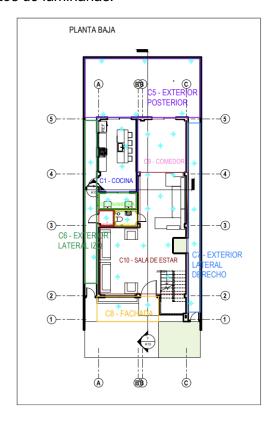
Además de las cargas de iluminación y tomacorrientes de uso general, se deben considerar las potencias de placa de cargas especiales, entre otras según la siguiente tabla:

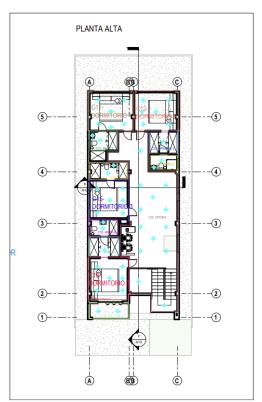
Figura 3.89
Cargas especiales por aparato eléctrico.

EQUIPO ELÉCTRICO	POTENCIA MEDIA (W)
Ducha eléctrica	3.500
Horno eléctrico	3.000
Cocina eléctrica	6.000
Calefón eléctrico	8.000
Aire acondicionado	2.500
Calentador eléctrico	3.000
Cargador para vehículo eléctrico	7.500

Nota: Obtenido en la norma NEC-SB-IE, 2015.

3.12.1.5 **Circuitos**

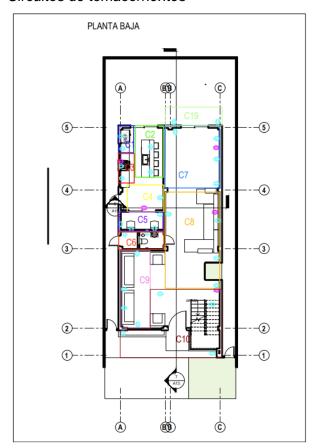

Es importante resaltar que los conductores de alimentadores y circuitos deben estar dimensionados para soportar una corriente no menor al 125% de la corriente de

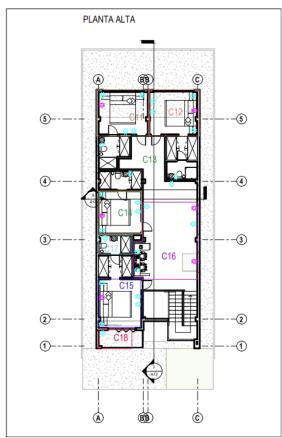

carga máxima a servir. Los circuitos considerados para este proyecto en cada uno de los pisos se muestran a continuación:

3.12.1.6 Circuitos de Iluminación

Es importante considerar que los circuitos de iluminación deben diseñarse para suministrar una carga máxima de 15 amperios y no exceder los 15 puntos de iluminación.

Figura 3.90
Circuitos de luminarias.




3.12.1.7 Circuitos de tomacorrientes

Debido a la configuración de la placa, los circuitos alternan entre la fase A, B o si es necesario AB. Según el NEC cuando se desconoce el consumo se debe considerar un valor de 200 W, en este caso para los tomacorrientes. Además, los circuitos de salida

deben diseñarse considerando salidas polarizadas (fase, neutro y tierra) para soportar una capacidad máxima de 20 amperios de carga por circuito y no exceder las 10 salidas.

Figura 3.91
Circuitos de tomacorrientes

3.12.1.8 Potencial Total

Es necesario considerar el número de luminarias y tomacorrientes de cada circuito para obtener el valor de potencia total:

Potencia
$$Total = Potencia * Cantidad$$
 (3.41)

Para el primer circuito, se tiene 4 tomacorriente de 110v, cuya potencia es de 200w cada uno. Se tiene la siguiente potencia total:

Potencia Total =
$$200 \text{ w} * 4 = 800 \text{ w}$$

3.12.1.9 Fase

Se asignan las fases a cada circuito intercalando entre la fase A, B. El primer circuito se lo asigna a la fase A, mientras que el segundo al B, al tercero al A hasta acabar los circuitos. Es importante notar que a los circuitos especiales se les asigna una fase AB.

3.12.1.10 Potencia

La potencia de la fase es aquella potencia total del circuito:

Potencia Fase A = Potencia Total = 800 w

3.12.1.11 Corriente

$$I = \frac{P}{V} \tag{3.42}$$

Donde:

- I: Corriente del circuito [A]
- P: Potencia total del circuito [W]
- V: Voltaje [V]

Para el primer circuito, se tiene la siguiente corriente:

$$I = \frac{800 \text{ w}}{110 \text{ V}} = 7.27 \text{ A}$$

3.12.1.12 Corriente Aparente

Los conductores del alimentador y del circuito deben dimensionarse para soportar una corriente no inferior al 125% de la corriente de carga máxima en servicio.

Corriente Aparente =
$$I * 1.25$$
 (3.43)

La corriente aparente del primer circuito es de:

Corriente Aparente =
$$7.27 \text{ A} * 1.25 = 9.09 \text{ A}$$

A partir de la corriente aparente, se elige el valor del superior inmediato de la corriente comercial disponible en el mercado. Se tiene una corriente de 10 A para el breaker de ese circuito.

3.12.1.13 Selección del Cable

Circuitos de iluminación

En circuitos de iluminación se utiliza conductor de cobre aislado tipo THHN de sección mínima 2,5 mm2 (14 AWG) para el conductor de fase, neutro y tierra.

Circuitos de tomacorrientes

Para fase y neutro se utiliza conductor de cobre aislado tipo THHN con sección mínima de 4mm2 (12 AWG).

Circuitos de carga especiales

Para fase y neutro se utiliza conductor de cobre aislado tipo THHN con una sección mínima de 5,26 mm2 (10 AWG). Para el primer circuito, se tiene una corriente de 10 A, por lo que el tipo del cable es TW con calibre 16 AWG. Se tiene entonces:

Sin embargo, hay que regirnos según lo establecido en la norma para evitar sobredimensionar. El cable quedaría de la siguiente manera:

Figura 3.92Selección de diámetros.

		FORMACION				Capacidad de corriente			Altern	
Calibre AWG ó MCM	Sección mm2	AWG ó mm2	No. de Hilos por diámetro en mm.	ESP ESOR AISLAMIENTO mm	DIAMETRO EXTERIOR mm	PESO TOTAL Kg/Km	Para 1 cond. al aire libre Amp.	Para 3 cond. en conduit Amp.	TIPO	de embal.
20	0.52	1 x 0.813	0.76	2.33	9.81	6	7	TF	A.E	
18	0.82	1 x 1,02	0.76	2.54	13.16	6	7	TF	A.E	
16	1.31	1 x 1 29	0.76	2.81	18 10	10	8	TE	A B	
14	2.08	1 x 1.63	0.76	3,15	26.10	20	15	TW	A.B	
12	3.31	1 x 2,05	0.76	3.57	38.30	25	20	TW	A,C	
8	8.34	1 x 3,26	1.14	5.54	95.20	60	40	TW	A,B	
14	2.08	7 × 0,62	0.76	3.38	27.80	20	15	TW	A,B	
12	3.31	7 x 0,78	0.76	3.86	40.10	25	20	TW	A,C	
10	5.26	7 x 0,98	0.76	4.46	59.90	40	30	TW	A,D	
8	8.37	7 x 1,23	1.14	5.97	105.20	60	40	TW	A,B,E	
6	13.30	7 x 1,55	1.52	7.69	170.40	80	55	TW	A,E	
4	21.15	7 x 1,96	1.52	8.92	255.50	105	70	TW	A,E	
2	33.62	7 x 2,47	1.52	10.45	388.90	140	95	TW	A,E	
1	42.36	7 x 2,78	2.03	12.40	482.90	165	110	TW	A,D,E	
1/0	53.49	19 x 1,89	2.03	13.51	621.00	195	125	TW	D,E,Z	
2/0	67.43	19 x 2,12	2.03	14.66	778.00	225	145	TW	D,E,Z	
3/0	85.01	19 x 2,39	2.03	16.01	934.00	260	165	TW	D,E,Z	
4/0	107.20	19 x 2,68	2.03	17.46	1159.00	300	195	TW	D,E,Z	
250	127.00	37 x 2,09	2.41	19.45	1368.00	340	215	TW	z	
300	152.00	37 x 2,29	2.41	20.85	1623.00	375	240	TW	Z	
350	177.00	37 x 2,47	2.41	22.11	1876.00	420	260	TW	Z	
400	203.00	37 x 2,64	2.41	23.30	2128.00	455	280	TW	Z	
500	253.00	37 x 2,95	2.41	25.47	2631.00	515	320	TW	Z	
600	304.00	37 x 3,23	2.79	28.19	3174.00	575	355	TW	Z	
650	329.00	37 x 3,37	2.79	29.17	3345.00	600	370	TW	Z	
700	355.00	37 x 3,49	2.79	30.01	3609.00	630	385	TW	Z	

Nota. Obtenido de la norma NEC-SB-IE, 2015.

3.12.1.14 Selección del diámetro del conducto

El diámetro del tubo se elige en función del número total de conductores y cables que puedan encajar en él, según la siguiente tabla:

Figura 3.93

Número máximo de conductores y cables de aparate en tubo.

Letras	Tamaño n cal		Diámetro nominal en mm					
de tipo	mm²	AWG kcmil	16	21	27	35	41	53
RH	2,082	14	4	8	15	27	37	61
	3,307	12	3	7	12	21	29	49
RHH, RHW	2,082	14	3	6	10	19	26	43
RHW-2	3,307	12	2	5	9	16	22	36
							17	
RH, RHH, RHW	5,26	10	1	4	7	13	9	29
RHW-2	8,367	8	1	1	3	6	7	15
	13,3	6	1	1	3	5	6	12
	21,15	4	1	1	2	4	5	9
	26,67	3	1	1	1	3	4	88
	33,62	2	0	1	1	3	3	7
	42,41	1	0	1	1	1	2	5
	53,48	1/0	0	0	1	1	1	4
	67,43	2/0	0	0	1	1	1	3
	85,01	3/0	0	0	1	1	1	3
	107,2	4/0	0	0	1	1	1	2
	126,67	250	0	0	0	1	1	1
	152,01	300	0	0	0	1	1	1
	177,34	350	0	0	0	1	1	1
	202,68	400	0	0	0	1	1	1
	253,35	500	0	0	0	0	1	1

Nota: Obtenido de la norma NEC-SB-IE, 2015.

El número máximo de conductores para un tubo de diámetro de 16mm es de 4. Si lo comparamos con el número de conductores, que es de 3 (1 fase, 1 neutro y 1 tierra), se comprueba que se encontró el diámetro indicado.

3.12.2 Dimensionamiento de los tableros de distribución

3.12.2.1 Potencia de las fases

Se calcula respectiva la suma de la potencia para cada una de las fases de la planta baja:

Potencia Total Fase
$$A = \sum$$
 Potencia Total = 13100 w

Potencia Total Fase
$$B = \sum$$
 Potencia Total = 12000 w

3.12.2.2 Corriente

Para el valor de la corriente, se tiene:

$$I = \frac{\text{(Mayor Potencia entre fase A y B)}}{V} = \frac{P}{V} = \frac{P}{110v}$$
$$I = \frac{13100 \text{ w}}{110 \text{ v}} = 119.09 \text{ w} \approx 120 \text{ w}$$

3.12.3 Dimensionamiento del medidor

3.12.3.1 Potencia

Se considera la potencia total de las fases de cada uno de los tableros establecidos:

Potencia Fase A =
$$\sum$$
 (TD1 Potencia Fase A + TD2 Potencia Fase A) (3.44)

Potencia Fase B =
$$\sum$$
 (TD1 Potencia Fase B + TD2 Potencia Fase B)

Se tienen los siguientes valores:

Potencia Fase
$$A = 25250 \text{ w}$$

Potencia Fase
$$B = 22650 \text{ w}$$

Se elige el mayor entre los dos:

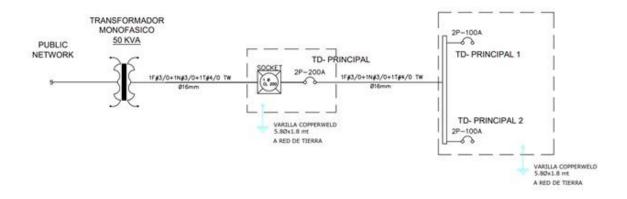
$$P = Max(Potencia Fase A, Potencia Fase B) = 22650 w$$

3.12.3.2 Corriente

$$I = \frac{P}{V} = \frac{P}{110v}$$

$$I = \frac{25250 \text{ w}}{110 \text{ y}} = 229.54 \text{ A} \approx 250 \text{ A}$$

Se tiene un medidor de 2 fases de 250 A.


3.12.3.3 Resultados

Se encuentran detallados en la sección de nexos. Se presenta el diagrama unifilar:

Figura 3.94

Diagrama unifilar.

DIAGRAMA UNIFILAR

3.13 Domótica

El proceso para la domotización de la vivienda es de acuerdo al pedido del cliente.

Los principales requerimientos son los siguientes:

- Automatización de luces
- Automatización de tomacorrientes para la sala y sala de estar del piso superior.
- Automatización de aparatos electrónicos como el Air Fryer o aires acondicionados.
- Cámaras que permitan la vigilancia de la vivienda en cualquier parte del mundo.

La alternativa escogida en el Capítulo 2 es un sistema de automatización inalámbrico, por lo que se escogió que el medio de transmisión entre sistemas domotizados sea el Wifi, por su costo-beneficio.

Para cada sistema domótico existe un "Cerebro" que transmite las ordenes hacia los demás dispositivos, el más conocido en el mercado es "Alexa", el asistente virtual creado por Amazon, la cual es compatible con miles de dispositivos para interconectar.

En este caso el cliente optó por implementar "Alexa". En la presente tabla se describe los dispositivos que serán compatibles con el cerebro en cada ubicación de la casa.

Cerebro principal Alexa

Tabla 3.39

Dispositivos conectados a Alexa para la vivienda.

alexa						
Lugar de instalación	Aparato	Imagen	Marca			
	Ojos de buey	The second of th	Smart+Lighting Ojos de Buey 15W			
Sala (planta	Tomacorrientes		SONOFF Enchufe inteligente			
baja y primera planta)	Control universal para aire acondicionado		Control Inteligente BR- RM4C			
	Cámaras de vigilancia		Zmodo Cámara de seguridad inalámbrica			

	Ojos de buey	ART + reamon	Smart+Lighting Ojos de Buey 15W
Cocina	Freidora de aire	CASCAS	COSORI Freidora de aire
	Tomacorrientes		SONOFF Enchufe inteligente
Habitaciones (ambos pisos)	Tomacorrientes	Sidness	SONOFF Enchufe inteligente
(dillbos pisos)	Control universal para aire acondicionado		Amazon Smart thermostat
	Ojos de buey	Section 19 19 19 19 19 19 19 19 19 19 19 19 19	Smart+Lighting Ojos de Buey 15W
	Cámaras de vigilancia		Zmodo Cámara de seguridad inalámbrica
Exteriores	Bombillas domóticas		Kasa - Bombilla inteligente regulable

Por cada aparato se instala un punto de luz, como se muestra en los planos eléctricos ubicados en los Anexos.

3.14 Especificaciones técnicas

3.14.1 Estructura metálica y hormigón armado

Las normativas y recomendaciones utilizadas para el diseño son las siguientes:

- NEC-SE-AC, Normativa Ecuatoriana de la Construcción para Estructuras de Acero, 2014.
- Para un diseño sismorresistente con características de un sistema IMF se usó las especificaciones de la AISC 341-16, Seismic Provisions for Structural Steel Buildings, USA, 2016.
- Para los demás requerimientos del diseño se utilizó la AISC 360-16, Specification for Structural Steel Buildings, USA, 2016.
- NEC-SE-DS, Peligro sísmico sismorresistente, Ecuador, 2014.
- Proceso de soldadura precalificada AWS.
- AISC: Base Plate and Anchor Rod Design, USA, 2005.

3.14.2 Limpieza interna de escombros

Descripción. -

Antes de comenzar la construcción, el contratista realizará la limpieza y despeje del terreno, eliminando cualquier material enterrado como obras antiguas, escombros, maderas, troncos, hierbas y vegetación. Este proceso incluirá un margen de 1 metro alrededor de la construcción y se llevará a cabo de acuerdo con el estudio de suelos para eliminar todo material orgánico. Además, se deberá mantener el área de trabajo libre de agua mediante bombas u otros métodos.

Procedimiento de trabajo:

Se identificará los escombros a ser eliminados, empleando si es necesaria maquinaria.

Materiales. -

Ninguno

Equipos. -

Pico, Pala, herramientas menores

Personal calificado. -

Albañil, Peón.

Medición y pago. -

Las cantidades de limpieza interna de escombros se medirán en metros cuadrados (M2), medidos en obra con respecto a su posición original y de acuerdo a lo especificado en los planos.

3.14.3 Trazado y replanteo

Descripción. -

Se define como replanteo el trazado en el terreno, confirmación de longitudes y niveles llevados de los planos.

Procedimiento de trabajo:

Es necesario establecer referencias fijas para los ejes que se mantendrán constantes durante todo el proceso de construcción. Los trabajos de replanteo y nivelación se llevarán a cabo utilizando herramientas de precisión certificadas.

Para delimitar las áreas de construcción, se utilizarán estacas de madera y cuerdas. Luego, se determinará con precisión la ubicación exacta para rellenos y excavaciones, siguiendo las coordenadas y cotas del proyecto indicadas en los planos y las instrucciones del fiscalizador.

Materiales. -

- Herramienta manual menor
- Clavo 3" x 9
- Cuartón de Encofrado 2.5" x 2.5" x 4m3"

Equipos. -

Ninguno

Personal calificado. -

Albañil, Peón.

Medición y pago. -

La cuantificación de los costos se llevará a cabo de manera secuencial, comenzando con el replanteo en el terreno, seguido por el replanteo de la cimentación. El área considerada para estos cálculos se encontrará comprendida entre los ejes de la construcción. El método de pago se establecerá en función de la medición en metros cuadrados (m²).

3.14.4 Excavación con maquinaria para cimentación

Descripción. -

Actividad que consiste en la excavación en todo tipo de terreno incluyendo el desalojo que se presenten durante la obra. Si el material excavado tiene características

que resulten beneficiosas para la construcción, se lo reutilizará para cualquier fase constructiva a criterio del Fiscalizador.

Procedimiento de trabajo:

Se utilizarán diferentes maquinarias para realizar la excavación del material, de acuerdo con los planos y las ingenierías conjunto a las disposiciones del Fiscalizador,

Materiales. -

Ninguno

Equipos. -

- Maquinaria de excavación (retroexcavadoras)
- Volquetas
- Pico, Pala, herramientas menores

Personal calificado. -

Maestro mayor, Albañil, Peón.

Medición y pago. -

Las cantidades de excavación y desalojo se medirán en metros cúbicos (M3), medidos en obra con respecto a su posición original y de acuerdo a lo especificado en los planos. También se tomará en cuenta la naturaleza del material y su dificultad para ser excavado y removido.

3.14.5 Relleno compactado con material de mejoramiento H= 1 m

Descripción. -

Este rubro consiste en los trabajos para rellenar una determinada altura desde el suelo excavado con material mejorado y compactado según indica los planos. También se indican medidas específicas con respecto a la medida.

Procedimiento de trabajo:

Antes de realizar la actividad se debe escoger el material granular para el mejoramiento, este relleno deberá ser aprobado por el fiscalizador. Al momento de compacta se debe cumplir con un espesor máximo de capas compactadas de 20 cm, y su densidad de compactación debe ser por lo menos de 95%.

Materiales. -

Material granular, bien graduado que debe cumplir con los requisitos de granulometría indicados en las normas ACI.

Equipos. -

- Compactador mecánico
- Herramienta menor

Personal calificado. -

Maestro mayor, Peón.

Medición y pago. -

El precio incluye el relleno y la compactación del mismo, con suministro de equipo, mano de obra y las distintas herramientas, aparte de incluir los estudios para definir el material óptimo para ser usado. Su unidad de medida es en m3.

3.14.6 Relleno compactado con material de sitio

Descripción. -

Este rubro consiste en los trabajos para rellenar una determinada altura desde el suelo excavado con material de sitio luego de poner el mejoramiento. Las medidas están en los planos y el material debe ser aprobado por el fiscalizador.

Procedimiento de trabajo:

Se toma el material que proviene de la excavación hecha colocándolo donde se lo requiera.

Materiales. -

Agua

Equipos. -

Compactador mecánico

Herramienta menor

Personal calificado. -

Maestro mayor, Peón.

Medición y pago. -

El precio unitario incluye mano de obra y las distintas herramientas, aparte de incluir los estudios para definir el material óptimo para ser usado. Su unidad de medida es en m3.

3.14.7 Limpieza y desalojo del material excavado

Descripción. -

Este rubro consiste en los trabajos realizados luego de realizar las excavaciones para colocar las distintas estructuras en las zonas indicados en los planos y aprobado por el fiscalizador.

Procedimiento de trabajo:

El material excavado se colocará en un lugar determinado del terreno y será transportado en una volqueta, a la vez que se realiza la limpieza del lugar

Materiales. -

Equipos. -

Herramienta menor

Personal calificado. -

Maestro mayor, Peón, Volquetero

Medición y pago. -

Se incluye la mano de obra, los viajes de la volqueta y las horas trabajadas por el volquetero. Se mide en m3.

3.14.8 Placa colaborante (Steel deck = 0.75 mm) y malla electrosoldada Ø5.5MM C/150MM

Descripción. -

El trabajo consiste en la construcción de una losa colaborante de hormigón armado fundido con una malla electrosoldada y soportado sobre un encofrado tipo plancha de acero denominado "Steel deck". Las medidas serán en base a lo establecido en los planos y aprobados por el Fiscalizador.

Procedimiento de trabajo:

Se utilizarán diferentes maquinarias para realizar la excavación del material, de acuerdo a los planos y las ingenierías conjunto a las disposiciones del Fiscalizador,

Materiales. -

- Placa colaborante "Steel deck" con e=0.75 mm
- Malla electrosoldada con alambres corrugados cuyo fy=5000 kg/cm2

Equipos. -

- Soldadora
- Andamio

Personal calificado. -

Maestro mayor, técnico electromecánico, Peón.

Medición y pago. -

Las actividades realizadas se las medirá por metro cuadrado (m2).

3.14.9 Suministro, fabricación y montaje de acero estructural ASTM A36

Descripción. -

Este capítulo se presentan los requisitos para el suministro, la fabricación, transporte, descarga y montaje de los elementos metálicos en obra. Se deben cumplir las disposiciones establecidas en los planos para la construcción en todas sus etapas.

Procedimiento de trabajo:

Fabricación: Se fabrica los perfiles en el taller, deben cumplir todas las especificaciones técnicas establecidas en las normativas de la AISC y AWS

Montaje: Al momento del montaje, se debe contar con personal calificado y los adecuados equipos de seguridad para evitar accidentes. Todos los procedimientos de unión de perfiles con soldadura o pernos de anclaje debe ser en guía de las normas requeridas como la AWS para soldadura.

Acabados: Se debe colocar pintura anticorrosiva ante la presencia del nivel freático a solo un metro debajo del nivel de acera.

Materiales. -

Todos los elementos de acero estructural deberán cumplir como mínimo con la norma ASTM A-36 (toda la estructura), con referencia a lo indicado en los planos, esto incluye también los elementos de anclaje.

Los materiales de soldadura deberán cumplir con las especificaciones de las normas ASTM.

Equipos. -

- Soldadora
- Cortadora
- Dobladora
- Compresor

Personal calificado. -

Maestro mayor, técnico electromecánico, Peón.

Medición y pago. -

La medición será de acuerdo con la cantidad de acero estructural en kilogramos (kg) que se fabriquen, suministren e instalen en la estructura, con guía en los planos y las cantidades del modelado en el software Revit.

3.14.10 Instalaciones hidrosanitarias

Las normativas utilizadas para el diseño son las siguientes:

- NEC-11 CAPÍTULO 16, NORMA HIDROSANITARIA NHE AGUA, 2011.
- International Plumbing Code, 2018
- National Standard Plumbing Code 2006
- Para consultas de tablas, se utilizó Instalaciones Hidrosanitarias y de Gas para edificaciones Sexta Edición.

3.14.11 Puntos de Agua Fria

Descripción

Hace referencia al conjunto de tuberías, accesorios y actividades que se realizan para la instalación de dichos componentes. El propósito de dichas actividades es proveer agua potable fría a cada uno de los aparatos sanitarios disponibles: lavamanos, fregaderos, inodoros, llaves de patio, etc. Se lo realiza en base a los datos proporcionados por los planos hidrosanitarios, específicamente para aquellas tuberías de diámetro de ½", y los accesorios correspondientes, los cuales se conectarán a mangueras para alimentar la grifería, u otro aparato, etc.

Procedimiento de trabajo

Se realiza la prueba de Presión Hidrostática, que consisten en llenar la tubería lentamente de agua, alimentando la misma desde la parte más baja. Se lo realiza con el objetivo de eliminar todo el aire inicialmente presente en las tuberías. Después, se aplica la presión mediante una bomba adecuada para pruebas de este tipo, hasta alcanzar la

presión de prueba requerida, que en el presente caso es de 120 PSI. Esta presión tiene que mantenerse de manera continua durante 24 horas cuando menos, sin que se presenten fugas de agua y consecuentemente la caída de presión. Este ensayo se realizará en presencia del fiscalizador

Materiales

Los materiales son los siguientes:

- Tubos róscales de diámetro mínimo de ½" de longitud promedio de 1.50m.
- Sellador de tuberías
- Accesorios como unión PP de diámetro de ½, codos, tees y llave de pasos de
 ½"

Equipos

Se necesita de:

- Equipo para prueba de tubería.
- Herramienta menor
- Acanalador
- Amoladora
- Tornillo de banco o prensa
- Tarraja para tubería de PVC
- Taladro.
- Herramienta menor especializada

Personal Calificado

El procedimiento de trabajo lo realiza el personal calificado con experiencia, las herramientas y los equipos necesarios. Se hace uso de personal de estructura ocupacional, E2, D2.

Medición y pago.

Se cuantifican los puntos de entrada y salida de agua que hayan sido ejecutados en obra, en unidades enteras y que hayan sido verificados por el fiscalizador.

Código	Rubro	Unidad
9.11	Puntos de agua fria	ptos
9.12	Puntos de agua caliente	ptos

3.14.12 Tubería de ½" PVC Roscable (Agua Fria)

Descripción

Consiste en la implementación de un sistema de tuberías destinado al suministro de agua potable. Su finalidad es conectar con una o varias salidas, siguiendo los diámetros indicados en los planos, para abastecer un dispositivo sanitario o una toma de agua destinada a diversos usos. En este proceso, se emplea material de PVC de presión con uniones roscables.

Procedimiento de trabajo

Antes de llevar a cabo la instalación de la red de tuberías, se realizarán acciones preliminares que incluyen la revisión detallada de los planos para verificar diámetros y tipo de material de las tuberías. También se identificarán todos los artefactos sanitarios y servicios necesarios, como lavadoras, tanques calentadores, llaves de manguera, entre otros. El proceso de instalación comenzará desde el punto de conexión en cada área, extendiéndose hacia los baños o áreas de servicio, culminando con la colocación de los puntos de agua en dichas áreas.

Para determinar la longitud de los tramos de tuberías, se colocarán accesorios en los extremos y se medirá con el traslape necesario para su conexión. El roscado se llevará a cabo con una tarraja adecuada para tuberías PVC, asegurando precisión y

limpieza en los filetes. Se utilizará un sellante, como cinta teflón o sella roscas, para garantizar una junta estanca al conectar accesorios y tuberías.

Materiales

- Codo 90 gr. PVC roscable 1/2"
- Tee PVC roscable 1/2"
- Unión PVC roscable 1/2"
- Permatex 2A 1 1/2 onzas
- Tubería PVC (presión roscable) 1/2" (420psi) PLASTIGAMA
- Cinta 1 Teflon 12mm X 10m C/Carrete PLASTIGAMA

Equipo

• Herramientas menores % M.O

Personal Calificado

- Peón (ESTRUC. OCUP. E2)
- Plomero (ESTRUC. OCUP. D2)
- Maestro de Obra (ESTRUC. OCUP. C2)

Medición y pagos

Se mide en ml de tubería.

Código	Rubro	Unidad	
9.13	Tubería de ½" PVC Roscable (Agua fría)	ml	ptos
9.14	Tubería de 3/4" PVC Roscable (Agua Fría)	ml	
9.15	Tubería de 1" PVC Roscable (Agua Fría)	ml	
9.16	Tubería de 2" PVC Roscable (Agua Fría)	ml	
9.17	Tubería de 1/2" PVC Roscable (Agua Caliente)) ml	
9.18	Tubería de 3/4" PVC Roscable (Agua Caliente)) ml	

3.14.13 Llave de Jardín

Descripción

Suministrar e instalar una llave de jardín de acuerdo con las indicaciones del diseño en los planos. Es necesario obtener la aprobación anticipada de la dirección arquitectónica antes de proceder con la instalación de los dispositivos mencionados.

Procedimiento de trabajo

Los dispositivos y las diversas griferías a instalarse en cada uno de los aparatos serán proporcionados por la entidad contratante o su representante. Además, el contratista se encargará de incluir en esta actividad los elementos de conexión, tales como acoflex, grapas para muro, adaptadores para sifón en muro y bridas para sanitario.

Materiales

Llave Jardinera Cromo Liviana Grival Cromada

Equipos

Herramientas manuales (5% M.O)

Personal calificado

Peón, Maestro mayor, Electricista

Medición y pago

La unidad de medida serán las unidades que se coloquen. La forma de pago se encuentra detallada en base a los precios unitarios determinados para el proyecto.

3.14.14 Puntos de desagüe

Descripción

Los puntos de desagüe captan, drenan y evacuan las aguas producidas por los inodoros, los cuales están conformados por tuberías cuya boca deben alinearse al sitio de los puntos para que se puedan acoplar a los aparatos. El material más apropiado son tuberías de PVC para uso sanitario y E/C unión por cemento solvente

Procedimiento de trabajo:

Materiales

- Tuberías PVC Tipo B para uso sanitario: diámetros de tuberías, accesorios están establecidos en los planos
- Codos y accesorios de conexión
- Solvente limpiador y soldadura para PVC rígido.

Equipos

Herramienta menor especializada

Personal calificado

Estructura Ocupacional, E2, D2.

Medición y pago

La medición y pago se realiza por punto de desagüe, y se requieren que sean verificados en obra con planos del proyecto. Incluye material y trabajo ejecutado gasta la bajante y que se conecte a la caja de revisión a la que se descarga.

3.14.15 Bajantes de aguas servidas PVC 110 mm

Descripción

Esta especificación hace referencia a los puntos de desagüe que captan las aguas servidas y son conducidas a través de tuberías instaladas verticalmente denominadas

como bajantes. La función de estas tuberías es captar las aguas servidas de cada planta de la edificación y transportarlas hasta los colectores que se ubican en la planta baja.

Procedimiento de trabajo:

Materiales

- Tuberías de PVC de uso sanitario Tipo B
- Codos, uniones y más accesorios
- Limpiador y soldadura para PVC rígido
- Soporte de tubería de 1/32"
- Tacos Fisher
- Tornillos

Equipos

• Herramienta menor especializada

Personal calificado

Estructural ocupacional E2, D2

Medición y pago

Se hace por metro lineal de bajante instalado indicando el diámetro de la tubería, que se debe verificar en los planos del proyecto y en obra.

Código	Rubro	Unidad
9.32	Bajantes de agua lluvia tubería 3"	ml

3.14.16 Rejillas de piso

Descripción

La rejilla de piso hace referencia al punto de desagüe, cuyo objetivo es drenar el agua que se produce en el baño después de realizar la limpieza. Se compone por una tubería cuya boca debe de estar ubicada y alineada en el mismo lugar de la rejilla para que pueda acoplarse a ella.

Procedimiento de trabajo:

Materiales

Rejilla de aluminio FV o similar

Equipos

Herramienta menor especializada

Personal calificado

Estructural ocupacional E2, D2

Medición y pago

La medición y pago se lo realiza por unidad de rejilla instalada.

3.14.17 Suministro e Instalación de Lavamanos completo (para empotrar, línea hogar, tipo Elea Oval)

Descripción

Se refiere a la instalación de piezas sanitarias como el lavamanos, que dependerá de lo estipulado en el contrato. La instalación puede ser realizada por el contratista.

Procedimiento de trabajo:

Los puntos deberían de estar listos para conectar a la línea de desagüe los suministros de agua a la grifería. Es muy importante basarse en los planos de diseño para instalarlo. Asimismo, es necesario utilizar las herramientas adecuadas para evitar rayones o fisuras en los acabados. La ubicación del aparato depende de las

especificaciones de los planos As Built donde se detalla toda la red de agua.

Posteriormente, se realizan pruebas de funcionamiento, inspecciones para la detección

de fugas, entre otros. Finalmente, todas las actividades serán supervisadas y verificadas

por fiscalización.

Materiales

• Inodoro de porcelana vitrificada y pegantes

Anillos de cera y silicón

Teflón y sellador

Equipos

Herramienta menor

Personal calificado

Plomero Cat. D2, Peón Cat. D2

Medición y pago

Se mide por número de unidades instalados de acuerdo con los planos,

especificaciones y aprobación de fiscalización.

3.14.18 Suministro e Instalación de Fregaderos uno. de cocina (1 pozo con

escurridor) (Incluye grifería y herrajes)

Descripción

Se refiere a la instalación de piezas sanitarias como el fregadero de cocina, que

dependerá de lo estipulado en el contrato. La instalación puede ser realizada por el

contratista.

Procedimiento de trabajo

179

Los puntos deberían de estar listos para conectar a la línea de desagüe los suministros de agua a la grifería. Es muy importante basarse en los planos de diseño para instalarlo. Asimismo, es necesario utilizar las herramientas adecuadas para evitar rayones o fisuras en los acabados. La ubicación del aparato depende de las especificaciones de los planos As Built donde se detalla toda la red de agua. Posteriormente, se realizan pruebas de funcionamiento, inspecciones para la detección de fugas, entre otros. Finalmente, todas las actividades serán supervisadas y verificadas por fiscalización.

Materiales

- Fregadero de pozo simple y simple
- Anillo de cera y silicón
- Teflón y sellador

Equipos

Herramienta menor

Personal calificado

Plomero Cat. D2, Peón Cat. D2

Medición y pago.

Se mide por número de unidades instalados de acuerdo con los planos, especificaciones y aprobación de fiscalización.

Código	Rubro	Unidad
9.22	Suministro e instalación de inodoro WC	u
	Kingsley Elongado A/Prato SD Blanco	
	Brigss.	

u

3.14.19 Tubería de 3" PVC

Descripción

Se refiere a la instalación de tuberías para el drenaje de aguas servidas y aguas lluvias en las plantas de un edificio, que se conducen con bajantes hasta los colectores horizontales para evacuarlos al alcantarillado público. Los colectores se los instala de forma subterránea hasta su descarga de acuerdo con las especificaciones de los planos del proyecto e indicaciones del fiscalizador en obra.

Procedimiento de trabajo:

Materiales

- Tuberías de PVC de uso sanitario tipo B
- Accesorios: codos, yes, reducciones entre otros
- Limpiador y soldadura para PVC rígido
- Arena

Equipos

Herramienta menor especializada

Personal calificado

Estructura Ocupacional, E2, D2.

Medición y pago

Se lo realiza por metro lineal de tubería instalado. El diámetro de la tubería tiene que ser indicado y se tiene que verificar con los planos del proyecto y observaciones del fiscalizador en obra. El rubro no incluye actividades preliminares como excavación y relleno.

Código	Rubro	Unidad
9.34	Tubería de 4" PVC	ml
9.36	Tubería de 2" PVC	ml

3.14.20 Suministro e instalación de calefón

Descripción

Se refiere a la instalación del calefón para la provisión de agua caliente a los aparatos correspondientes y tuberías.

Procedimiento de trabajo

Se coordina la labor del instalador del calefón con los instaladores de otras infraestructuras que puedan influir en su montaje y en la instalación final del equipo. Se verifica que la situación coincida con la planificación del proyecto y que la ubicación esté completamente finalizada y preparada.

Se presentan los componentes, el ensamblaje del calefón y sus accesorios, así como la conexión a las redes de suministro de agua, gas, sistemas de salubridad, electricidad y al conducto de evacuación de los subproductos de la combustión. Se lleva a cabo la planificación y ejecución del conducto para la evacuación de los productos generados por la combustión.

Se realiza el replanteo, la instalación, la fijación y la conexión a la red de los elementos de regulación y control, seguido por el proceso de puesta en marcha del sistema.

Materiales

- Tubería
- Tornillos
- Pie de amigo

- Calefón a gas capacidad 5 lts/min
- Abrazaderas de cobre
- Válvulas de gas

Equipo

Herramienta menor

Personal calificado

Estructura Ocupacional, E2, D2.

Medición y pago

Se mide el número de unidades para realizar el pago según las especificaciones del proyecto

3.14.21 Puntos de ventilación

Descripción

Consiste en cada salida de ventilación debe contar con un tapón de ventilación de 2 pulgadas para prevenir bloqueos.

Procedimiento de trabajo

- Establecer y mantener los sistemas de referencia planimétrica y altimétrica.
- Delimitar y identificar de manera adecuada los ejes de las tuberías y la ubicación de los puntos hidráulicos.
- Utilizar un nivel de manguera para determinar las alturas de los puntos hidráulicos.
- Comprobar la calidad de los materiales que se instalarán.
- Verificar el alineamiento y los niveles del enlucido en muros o placas de piso, si es necesario, para la instalación de las tuberías.
- Colocar las tuberías suspendidas debajo de las placas de piso o empotradas en el muro, asegurando su protección contra golpes y daños durante la construcción.

 Instalarlas de manera que garantice un flujo continuo y facilite el drenaje del sistema.

Materiales

- Tuberías PVC Tipo B para uso sanitario: diámetros de tuberías, accesorios están establecidos en los planos
- Codos y accesorios de conexión
- Solvente limpiador y soldadura para PVC rígido.

Equipos

Herramienta menor especializada

Personal calificado

Estructura Ocupacional, E2, D2.

Medición y pago

La medición será por puntos (PTO) de VENTILACIÓN DE 2" colocado

3.14.22 Cajas de registro

Descripción

Engloba las acciones requeridas para suministrar, transportar e instalar cajas de registro prefabricadas de concreto, incluyendo los insumos necesarios para su montaje.

Procedimiento de trabajo

Condiciones: Las cajas de registro se fabricarán según las dimensiones específicas para cada tubería o, en su defecto, utilizando dimensiones más estándar, si cumplen con su finalidad. Estas cajas se colocarán sobre un solado de concreto con un espesor de 0.10 metros. El interior de la caja será revocado con una mezcla de 1:3 (cemento: arena) con esquinas redondeadas.

El fondo de la caja presentará una media caña modelada por un tramo de tubo de PVC, con un diámetro igual al del tubo que sale de la caja; las bermas tendrán una inclinación con una pendiente de 1:4. La tapa será de concreto y su acabado podrá adaptarse al entorno donde se encuentre ubicada dentro de la institución educativa.

Materiales

- Arena gruesa
- Piedra 3/4"
- · Cemento fuerte
- Agua potable
- Cuarton encofrado s-d 5v 2"x3"
- Tabla de encofrado (20cm) dos usos
- Clavos de 2" a 4"
- Malla electrosoldada 10x10x5mm

Equipo

- Herramienta menor (5% MO)

Personal calificado

- Maestro albañil
- Peón
- Maestro mayor en ejecucion de obras civiles

Medición y pago

Se realiza por unidad.

3.14.23 Instalaciones Eléctricas

Normas

Todo lo especificado a continuación se rige bajo las siguientes normas:

National Electrical Code (NEC) de National Fire Protection Association (NFPA)

American National Standards Institute (ANSI)

National Electrical Manufactures Association (NEMA)

Underwriters Laboratories (UL)

American Society for testing and Materials (ASTM)

Insulated Cables Engineers Association (ICEA)

3.14.24 Suministro e instalacion de tablero de distribución eléctrica 2 POLO

10-32 AMPS SQUARE D

Descripción

Se refiere a la instalación de los medidores en un lugar que sea de libre acceso

para su control y que este ubicado cerca del punto de conexión a la red de distribución.

Proceso de trabajo

Se debe de conectar solo un conductor a cada uno de los terminales eléctricos de

las bases sockets. Se dice que, si el base de socket es para un servicio de 220/240v, se

debería de disponer de un quinto terminal para ser conectado a tierra. La base se instala

de forma nivelada, y no se permite dicha instalación en ambientes con alta humedad,

temperatura como: cuartos de bombas, calderos, etc.

Materiales

Medidor bifásico a 120/240 o 127/220 V electrónico 3 Hilos, 2 elementos, multitarifa,

forma 13A, medición directa.

Equipo

Personal Calificado

Medición y pago

186

3.14.25 Tablero de distribución principal

Descripción

Se refiere al suministro del tablero de distribución en baja tensión de acuerdo con lo establecido en las normas.

Proceso de trabajo

Se diseña el tablero de distribución para su futura ampliación donde cada una de las puertas tienen que ser de chapa de acero de 2 mm de espesor con acabado superficial de pintura en polvo. Se tiene una ventilación natural para el tablero. Dependiendo de los detalles del diagrama unifilar, se tiene el sistema de soporte para los cortocircuitos.

Materiales

Tablero de arancador 17 hp 220 vac

Equipo

Herramienta menor 5% MO

Personal Calificado

Electricista, Ayudante de electricista, Maestro eléctrico / liniero / subestación

Medición y pago

Se mide por unidades de tableros instalados.

3.14.26 Varilla COOPERWELD 5/8" X 6'(PUESTA A TIERRA)

Descripción

Se refiere al conjunto de elementos conductores de un sistema eléctrico que une los equipos eléctricos con el suelo denominado la puesta a tierra. Comprende de todos los elementos puestos a tierra para los transformadores.

Proceso de trabajo

Representa la resistencia específica del suelo a cierta profundidad, obtenida al procesar medidas de campo. La magnitud de dicha resistencia se expresa en Ohm-m, y se lo define como la diferencia de potencial en un material y la densidad de corriente.

Materiales

- Varilla de cobre 5/8 x 1,8 m alta camada
- Soldadura exotérmica de 90 gr
- Conductor TTU #1/0
- Mineral G

Equipo

Herramienta menor 5%MO.

Personal Calificado

Electricista, Ayudante de electricista, Maestro eléctrico / liniero / subestación

Medición y pago

Se lo mide a través de las unidades de varillas instaladas y el pago se lo realiza referente a los establecido en el contrato de obra.

3.14.27 PUNTOS DE ILUMINACION 110 V

Descripción

Se refiere a la instalación de puntos de iluminación, cajas de empotre de acuerdo con lo especificado en las normas y exigencias del usuario.

Procedimiento de trabajo

Se empotran todas las tuberías de iluminación en paredes de hormigón armado para después ubicar los conectores a los tubos para que estos puedan llegar a las cajas y a los puntos de iluminación. Las cajas de iluminación empotradas en los muros se colocan a partir del suelo referente a la caja de salida, y unas dimensionémonos específicas de la jamba lateral de las puertas. Finalmente, se instalan las cajas de salida o conexión de chicotillo de 10 cm. Cabe especificar que el material de las tuberías donde se van a colocar los conductores es de PVC, un material fácil de manipular.

Materiales

- Cable flexible #14 AWG Tipo TW
- Tubo Conduit liviano ½"
- Accesorios de emt ø 1/2" (codos, uniones, conectores)
- Caja octogonal grande
- Caja rectangular profunda nacional

Equipo

Herramienta menor 5% MO

Personal Calificado

Electricista

Medición y pago

Se mide los puntos instalados de iluminación.

Código	Rubro	Unidad
12.17	PUNTOS DE ILUMINACION 110 V	ptos.

3.14.28 PUNTOS DE TOMACORRIENTE 110 V.

Descripción

Se refiere a todas las actividades relacionadas a la instalación, tuberías, cajas, conductores y piezas eléctricas para hacer funcionar correctamente los aparatos o equipos eléctricos.

Procedimiento de trabajo

Empieza desde la ejecución del sistema de tomas fuerza, desde el tablero de control interno, cuyos procedimientos se basan en el detalle de los planos de instalaciones eléctricas del proyecto, observaciones e indicaciones de los planos arquitectónicos y el fiscalizador. Es necesario verificar replanteos, trazados para la colocación posterior de las tuberías en paredes. Se nivelan los cajetines en paredes, se realizan los picados en muros para el empotramiento de las cajas de tomacorrientes. Además, se procede a realizar la conexión de las piezas eléctricas, verificar el voltaje y posibles circuitos.

Materiales

- THHN 600V-90C 14AWG (unilay)
- Tubo Conduit EMT 1/2" x 3mts.
- THHN 600V-90C 12AWG (unilay)
- Cinta aislante
- Caja rectangular profunda
- Conector para tubo EMT 1/2"
- Tomacorriente doble polarizado 110V
- Unión Conduit EMT 1/2"
- Abrazadera Conduit EMT 1/2"
- Tornillos Autoperforantes / clavos de acero 1 1/2"

Equipo

Herramienta menor 5%MO

Personal Calificado

- Electricista
- Ayudante de electricista
- Maestro eléctrico / liniero / subestación

Medición y pago

Se mide los puntos instalados de tomacorriente de 110v.

Código Rubro Unidad

12.17 PUNTOS DE TOMACORRIENTE 110 V. pto

3.14.29 Puntos de tomacorriente 220 v

Descripción

Se refiere a todas las actividades relacionadas a la instalación, tuberías, cajas, conductores y piezas eléctricas para hacer funcionar correctamente los aparatos o equipos eléctricos.

Procedimiento de trabajo

Empieza desde la ejecución del sistema de tomas fuerza, desde el tablero de control interno, cuyos procedimientos se basan en el detalle de los planos de instalaciones eléctricas del proyecto, observaciones e indicaciones de los planos arquitectónicos y el fiscalizador. Es necesario verificar replanteos, trazados para la colocación posterior de las tuberías en paredes. Se nivelan los cajetines en paredes, se realizan los picados en muros para el empotramiento de las cajas de tomacorrientes. Además, se procede a realizar la conexión de las piezas eléctricas, verificar el voltaje y posibles circuitos.

Materiales

- THHM FLEX 10 AWG
- Tubería Conduit EMT 3/4" x 3mts

- THHN AWG 12 (Unilay) 38
- Cinta aislante
- Caja rectangular
- Conector para tubo EMT 3/4"
- Tomacorriente empotrable 250V/50A/con tapa
- Unión Conduit EMT 3/4"
- Abrazadera Conduit EMT 3/4"
- Tornillos autoperforantes / clavos de acero 1 ½

Equipo

Herramienta menor 5%MO

Personal Calificado

- Electricista
- Ayudante de electricista
- Maestro eléctrico / liniero / subestación

Medición y pago

Se mide los puntos instalados de tomacorriente de 220v.

Código	Rubro	Unidad
12.18	PUNTOS DE TOMACORRIENTE 220V.	pto

3.14.30 PORTERO ELECTRICO

Descripción

Se refiere al suministro e instalación de un portero eléctrico de sobreponer con techo (protección contra intemperie), conteniendo un Portero Eléctrico F8 NTL y un intercomunicador modelo AZ01.

Procedimiento de trabajo

Fabricado en aluminio y plástico ABS permite la instalación de hasta 3 extensiones (un interfono que acompaña el Kit y más 2 interfonos sueltos modelos LD.01 o AZ.01). Su diseño actual y pequeñas dimensiones combinan con diferentes ambientes de instalación. Posee alarma anti-violación para el panel del portero eléctrico, ajuste de audio externo y acciona cerraduras eléctricas HDL.

Materiales

Portero Eléctrico F8 NTL y un intercomunicador modelo AZ01.

Equipo

Herramienta menor

Personal Calificado

• Estructura ocupacional B3, B1, D2, E2.

Medición y pago

Se lo realiza por unidad y lo que se acordó en el contrato de obra.

Código	Rubro	Unidad
12.22	PORTERO ELECTRICO	u

3.14.31 CAMARA DE SEGURIDAD

Descripción

Se refiere a una cámara de video vigilancia IP tipo bala visión día y noche full HD.

Procedimiento de trabajo

Es importante verificar la ubicación de los equipos de acuerdo con los detalles de los planos y tener la aprobación del fiscalizador previo a realizar la actividad. Para la instalación del equipo, se debe tener un sitio limpio y es necesario el uso aquellos elementos útiles para facilitar la instalación y empotramiento al techo de la cámara. Por

último, es importante no olvidar realizar la configuración, asignación de dirección IP para el funcionamiento.

Materiales

Cámara IP tipo bala visión día y noche full HD.

Equipo

Herramienta menor.

Personal Calificado

• Estructura ocupacional B3, B1, D2, E2.

Medición y pago

Se lo realiza por unidad de cámaras instaladas.

Código	Rubro	Unidad
12.23	Camara de seguridad	u

3.14.32 Suministro de instalación de luminarias de ojos de buey

Descripción

Corresponde a la provisión e instalación eléctrica de una luminaria para emergencia.

Procedimiento de trabajo

Se colocan sobrepuestas en aquellas áreas indicadas en los planos de instalaciones eléctricas. Entre las características de la luminaria, se destacan el tipo de luminaria: Ojos de buey.

Materiales

Ojos de buey

Equipo

• Herramienta menor.

Personal Calificado

Categorías III y IV

Medición y pago

La medición y pago se la efectuará en forma unidad "u" de acuerdo con los precios unitarios establecidos en el contrato

Código	Rubro	Unidad	
12.25	Suministro e instalacion de luminarias de	u	
	ojos de buey.		

3.14.33 Suministro de instalación de luminarias de led de pared up & down Angulo ajustable

Descripción

Corresponde a la provisión e instalación eléctrica de una luminaria tipo luminarias de led de pared up & down ángulo ajustable.

Procedimiento de trabajo

Se colocan sobrepuestas en aquellas áreas indicadas en los planos de instalaciones eléctricas. Entre las características de la luminaria, se destacan el material de plafón sobrepuestos con bordees rectos cuadrados.

Materiales

• Luminaria Led de Pared Up & Town Angulo Ajustable

Equipo

Herramienta menor.

Personal Calificado

Categorías III y IV

Medición y pago

La medición y pago se la efectuará en forma unidad "u" de acuerdo con los precios unitarios establecidos en el contrato

3.14.34 Suministro e instalación de piezas de tomacorrientes

Descripción

Se refiere al suministro e instalación eléctrica de un enchufe doble con polaridad para diversas aplicaciones.

Procedimiento de trabajo

La instalación de enchufes dobles con polaridad se llevará a cabo de acuerdo con lo planificado en los diseños y planos eléctricos. Este componente abarca todas las salidas de enchufes dobles polarizados estándar a 127 V.

En el caso específico de los enchufes dobles polarizados, el contratista debe tener en cuenta la trayectoria del conductor y la tubería de los circuitos de energía (enchufes) desde el panel de interruptores hasta el inicio del primer elemento de cada circuito, y desde el primer elemento hasta el siguiente, y así sucesivamente. La unidad individual (enchufe doble polarizado) y su instalación son consideradas en este proceso.

Materiales

Tomacorrientes 110v

Equipos

Herramienta menor

Personal Calificado

Peón est. oc. d2

Albañil est, oc. d2

• Electricista (estruc. ocup. d2)

Maestro de obra (estruc. ocup. c2)

Medición y pago

Se realiza con la unidad de tomacorriente.

3.14.35 Suministro e instalación de interruptores

Descripción

Este ítem implica colocar tubería metálica EMT, junto con sus accesorios correspondientes, desde un cajetín octogonal empotrado en la losa hasta un cajetín rectangular empotrado en la pared, situado a 1.40 metros del nivel del piso acabado. A través de esta tubería, se llevarán a cabo la instalación de los conductores destinados a alimentar un interruptor sencillo.

Procedimiento de trabajo

Este concepto comprende la instalación de un interruptor sencillo de 15 A y 127 V. Esto incluye una tapa con bornes de conexión diseñada para alojar dos conductores de calibre #14 AWG. Los tornillos presentan bornes de conexión con cabeza mixta y operan en un rango de temperatura de -40 grados a 85 grados. Están fabricados con resina ABS resistente al fuego y a impactos, cuentan con contactos de latón recubiertos de níquel de 0.04", son tierra aislada y certificados UL y CSA. El costo abarca tanto la mano de obra para el montaje como la instalación.

Materiales

• Interruptores de dos vias

Equipos

Herramienta menor 5% (M.O)

Personal Calificado

- Peón est. oc. d2
- Albañil est. oc. d2
- Electricista (estruc. ocup. d2)

Medición y pago

Se hace con unidad de interruptores.

3.14.36 Colocación de tubería electrica awg 3x2*1x4*1x5

Descripción

Esta canalización se destina a la instalación del cableado eléctrico subterráneo, ya sea de voltaje medio o bajo. Se implementará en los planos señalados y requiere incluir una capa de arena en su ruta.

Este ítem abarca las tuberías, arena, separadores y otros accesorios necesarios para la conexión con las cajas adyacentes.

Procedimiento de trabajo

Todos los materiales a utilizarse serán nuevos y de primera calidad debiendo cumplir las normas respectivas.

Materiales

- Conectores etm
- Tubo conduit pesado
- Cinta aislante
- Cable electrico awg 3x2*1x4*1x5

Equipos

- Herramienta menor (5 % de MO)

Personal Calificado

Peón est. oc. d2

Albañil est. oc. d2

• Electricista (estruc. ocup. d2)

Maestro de obra (estruc. ocup. c2)

Medición y pago

Se hace mediante metro lineal de tubería.

3.14.37 Salidas de antenas tv

Descripción

Se refiriere a la instalación de puntos de conexión en los que se conecta la antena de televisión al sistema de televisión en una vivienda o edificio. Estas salidas permiten la transmisión de la señal de televisión desde la antena a los receptores de televisión ubicados en el interior.

Procedimiento de trabajo

El procedimiento para instalar salidas de antena de TV incluye varias etapas para garantizar una conexión eficiente entre la antena y los dispositivos receptores de televisión. A continuación, se presenta una orientación general para el proceso:

Planificación:

- Identifica la ubicación óptima para instalar la antena y determina dónde se ubicarán las salidas de antena en las diferentes habitaciones.
- Verifica que haya acceso cercano a una fuente de alimentación para los amplificadores de señal, en caso de ser necesario.

Materiales

- Tubo conduit emt 1/2" x 3m
- Caja pvc rectangular 103x60x45mm plastidor
- Union emt 1/2"

• Cable negro coaxial

Equipos

• Herramienta menor (5% de MO)

Personal Calificado

- Peón est. oc. d2
- Albañil est. oc. d2
- Electricista (estruc. ocup. d2)
- Maestro de obra (estruc. ocup. c2)

Medición y pago

Se lo realiza por puntos.

CAPÍTULO 4

4. ESTUDIO DE IMPACTO AMBIENTAL

4.1 Objetivos

Objetivo General

Evaluar los posibles impactos ambientales producidos a partir del desarrollo del proyecto para la reducción de estos a través de la innovación y sostenibilidad del diseño propuesto.

Objetivos Específicos

- Cumplir con los siguientes objetivos de desarrollo sostenible: ODS 9: "Industria, innovación e infraestructura", ODS 11: "Ciudades y comunidades sostenibles" y el ODS 8: "Trabajo decente y crecimiento económico".
- Establecer una matriz de identificación de impactos ambientales para el análisis de las alternativas de diseño seleccionadas.
- Realizar una valoración cuantitativa de los impactos encontrados.

Descripción del proyecto

El presente estudio contempla el impacto ambiental enfocado en la etapa de construcción de la vivienda de 2 pisos, ubicada en la Urbanización Ciudad Celeste.

Figura 4.1
Imagen satelital del predio.

Nota. Imagen recopilada de Google Earth Pro.

La zona está en un amplio lugar árido, con vegetación alrededor, requiriendo estudios de flora y fauna que permitan desarrollar planes de manejo ambiental para conservar la biodiversidad local, enfatizando la tecnología constructiva que se usará en el proyecto mediante maquinarias, procesos, equipos y materiales involucrados.

La zona mencionada forma parte de una de las nuevas urbanizaciones, por lo que es importante destacar que la vivienda se construirá en un área totalmente antropizada, la cual ha sufrido una serie de cambios previos a ser sometidos a las futuras fases constructivas debido a su uso para atraer a nuevos residentes mediante la venta de terrenos.

Por otro lado, se eligieron los objetivos de desarrollo sostenible a partir de la selección de alternativas de diseño del sistema estructural. Estos se alinean a las fases constructivas de la siguiente manera:

ODS 8 - Trabajo Decente y Crecimiento Económico

Se genera empleo bajo condiciones de seguridad laboral, capacitación técnica y trato equitativo para los trabajadores.

Se promueve el crecimiento económico local al contratar mano de obra y servicios de la zona para la construcción.

ODS 9 - Industria, Innovación e Infraestructura

La implementación de medidas como la reutilización del acero y sistemas domóticos promoverán infraestructuras y tecnologías ambientalmente racionales.

• ODS 11 - Ciudades y Comunidades Sostenibles

La vivienda diseñada presentará parámetros de eficiencia energética, hídrica y de confort térmico para sus habitantes.

El uso de materiales reciclables/reciclados y prácticas de conservación de la vegetación contribuirán al desarrollo de asentamientos humanos que protegen el medio ambiente.

4.2 Línea base ambiental

Para el diagnóstico ambiental, hay que evaluar las áreas de influencia del proyecto, cada medio predominado. Se describen las condiciones de estos y los elementos que lo componen. La información presentada se basa en el documento "Diseños Definitivos del Proyecto Culebrillas" preparado por el M. Sc. Rubén Jerves Cobo para el presente estudio.

4.2.1 Medio físico

Calidad del Aire

Por lo general, se opta por elaborar la mezcla de hormigón in situ o recurrir a empresas para el transporte de le mezcla para las construcciones de vivienda de 2 plantas. Una de las desventajas de esta actividad es la producción constante de polvos y gases, dichas partículas son dispersas por el viento y transportadas a diferentes lugares.

Ruido

La zona de la vivienda de tipo residencial por lo que no se presentan altos niveles de contaminación acústica, es decir los niveles de ruido son bajos. No se aprecian establecimientos que puedan causar altos niveles de ruido como fabricas industriales o mercados, sin embargo, si se tiene en cuenta la generación de vibraciones.

Hidrología

Se refieren a los cuerpos de agua dulce y salobre circundantes al islote: un cauce fluvial al este, y el océano que lo delimita en los otros puntos. Se conoce que el área donde se diseñara la vivienda está localizada en la Cuenca del Guayas, caracterizado por poseer un área de 32.130 km2, y una extensión de 55 km. Se lo considera como el sistema fluvial más importante con un ancho entre 1.5 km y 3km, el cual se divide en dos ramales que bordean la Isla Santay. (INOCAR, 1998).

Perdida de suelo y Alteración de la calidad de suelo

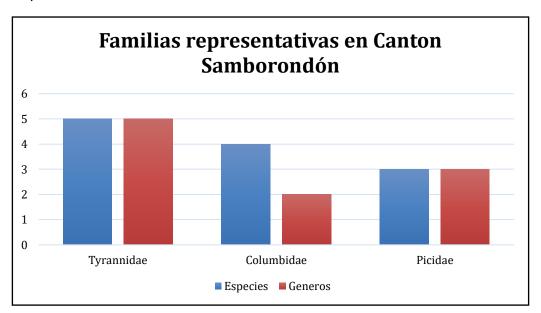
Los resultados de la prospección geotécnica realizada anteriormente demostraron que hay suelo fuerte sobre uno débil, con arcilla de alta plasticidad compacta. Por el movimiento de tierra y excavaciones futuras, el suelo se verá afectado, a pesar de que hay evidencias de alteración antropogénica en el terreno de la vivienda.

Alteración de paisaje

El proyecto se localiza en un islote costero de origen sedimentario, rodeado por un cauce fluvial y por el mar. Presenta playas arenosas y una zona central más elevada con el bosque húmedo descrito. Esta unidad de paisaje es representativa en la zona.

4.2.2 Medio biótico

Flora: Vegetación Natural


La zona presenta abundante vegetación de tipo secundaria, con especies nativas propias del ecosistema insular costero, como manglares, cocoteros y árboles tropicales que conforman un bosque húmedo. Según el Plan de Ordenamiento Territorial, el cantón de Samborondón tiene un área con cobertura vegetal de 2419.28 ha, los cuales están constituido por las siguientes zonas: Bosque seco con Cochlosperun vitifolium cuenta con una extensión de 447 ha, Brownea coccinia con 17 ha, mientras que tambien se tiene Matorral seco con Guazuma ulmifolia, Leucaena sp, y por último se tiene

Vegetación herbácea seca con Cynophalla ecuadorica, entre otras.La cobertura vegetal abarca el 6.22% del área total del cantón, demostrando el dominio antropogénico que se ha tenido en las últimas décadas. (Gobierno Autónomo Descentralizado Municipal del Cantón Samborondón, 2015)

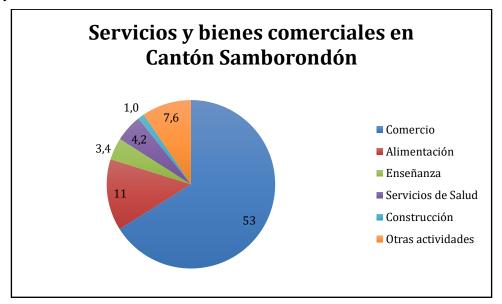
Fauna

El cantón esta caracterizado por poseer diversas especies de animales, de las cuales la avifauna destaca por estar representada por 44 especies. Se presenta a continuación la distribución de las familias más representativas del cantón en términos del número de especie y géneros, que pueden ser encontrados en sectores como el Cerro Santa Ana, Hacienda Monterrey, etc.

Figura 4.2
Familias representativas del cantón Samborondón

Nota. Información obtenida del GAD de Samborondón, 2015.

Existe una lista larga de mamíferos, reptiles, anfibios identificados y registrados en el Cantón en el artículo "Samborondón desde Adentro/ Revista de investigación No.1, escrita por Nancy Hilgert 1996-2009.


4.2.3 Medio socioeconómico

Empleo

Samborondón esta caracterizado por ser uno de los cantones que generan más empleo en Guayas por sus diversas actividades empresariales. Según El Universo, 2023, la cercanía al mar y a los cultivos de arroz, los cuales ocupan el 70% del territorio, son factores que generan trabajo con acceso a seguridad social en la zona urbana más poblada del país. Se estima que el porcentaje de participación del sistema mercantil, empresarial, y marginal es de 14.67%, 4.84%, y 1.33% respectivamente. Por los diferentes sectores mencionados, existen muchas oportunidades de empleo y mano de obra destinado a la producción nacional y local lo cual ayuda a impulsar la economía del país (Gobierno Autónomo Descentralizado Municipal del Cantón Samborondón, 2015).

Asimismo, existen 1458 establecimientos comerciales que ofrecen servicios y bienes, cuyas actividades se desarrollan en la zona de la Puntilla, una de las zonas comerciales más reconocidas en el país. Entre los centros y plazas comerciales, destacan Riocentro, Village Plaza, La Piazza entre otros. Se muestran los principales servicios y bienes que se ofertan en el cantón:

Figura 4.3
Servicios y bienes comerciales ofrecidos en Samborondón.

Nota. Información obtenida del GAD de Samborondón, 2015.

4.3 Actividades del proyecto

4.3.1 Hormigón

Extracción de la materia prima

El hormigón es un material de construcción hecho a base de la combinación de cemento, agua, agregados finos y gruesos, además de la adición de un aditivo. Uno de los componentes más importantes y que conforma gran parte del porcentaje de este material es el cemento, el cual está hecho a base de clinker, compuesto por diferentes óxidos como el calcio. Por lo general, se obtiene el óxido de calcio a través de la calcinación del carbonato de calcio a temperaturas mayores a 900C, lo cual genera graves consecuencias para el medio ambiente (Medina, 2016). En cambio, los agregados se los obtiene de forma natural, mediante la descomposición de rocas, o de manera artificial, mediante el procesamiento industrial de ciertos materiales inorgánicos (Durand, 2017).

Elaboración del material

Se pueden realizar diferentes tipos de mezclas y proporciones de los diferentes componentes para el diseño del hormigón dependiendo de su uso. Este puede ser ligero, normal o pesado, el cual va a depender mucho de los elementos añadidos a su composición puesto a que se pueden obtener diferentes resultados en cuanto a la calidad del hormigón en términos de durabilidad y resistencia. (Instituto Costarricense del Cemento y del Concreto [ICCYC], 2006).

El proceso de elaboración de dicho material empieza por el diseño de la dosificación de la mezcla, seguido por la adición de agua al tambor y de los demás elementos. Se realiza el mezclado correspondiente a través de instrumentos o equipos hasta obtener el color y la apariencia deseada. Una vez obtenido el hormigón, se procede a realizar el mezclado y vertido en el encofrado de manera vertical y horizontal. (ICCYC, 2006).

Otro de los aspectos más importantes en cuanto a este procedimiento, es la consolidación, para lo cual se compacta la mezcla y se realiza la vibración. Después, se cura el hormigón, es decir se lo humedece para que alcance su resistencia y cumpla con las características del diseño. El principal componente del curado es el agua, el cual representa el 40% de la muestra y, además, es utilizado también en el lavado de los materiales. (Kosmatka et al., n.d.).

Uso del material

Se lo utiliza para la fabricación de elementos de construcción: vigas, viguetas, bloques, prefabricados, placas, losas, etc. Una de las ventajas de este material es su adaptabilidad, el cual es capaz de moldearse dependiendo de la forma del recipiente donde lo contenga antes de que se endurezca. Por lo general, se utilizan los encontrados en obras de construcción.

Ciclo de vida

Se estima una vida útil de 50 años para edificios de hormigón, pero se los pueden mantener dependiendo de las condiciones del material y de otros parámetros. Una vez que el hormigón haya superado su estado de servicio, se procede a la reparación de la estructura, para lo cual materiales desechados son reutilizados en construcciones nuevas de hormigón. Sin embargo, se realizan evaluaciones para medir el límite de degradación sin daña donde se analiza hasta qué punto los materiales se pueden reutilizar. (Amaya & Cornejo Martínez, 2016).

4.3.2 Acero

Extracción de materia prima

Se obtiene a partir de la aleación de hierro y carbono, cuyo porcentaje de carbono debe de estar entre el 0.15% y 1.7 para ser considerado como tal. (McCormac & Csernak, 2013). Tras el proceso de extracción del material a través de explotaciones mineras, se tiene consecuencias ambientales negativas como las siguientes: contaminación de aguas, desgate del suelo, etc.

Fabricación del acero

La fabricación de este material se lo puede realizar de diferentes maneras, una de ellas siendo mediante el uso de un horno eléctrico, el cual se basa en la fusión de la chatarra por medio de una corriente eléctrica. Los diferentes tipos de hornos que se utilizan para esta actividad son: hornos de hogar abierta, horno eléctrico de arco, y el convertidor. El horno eléctrico de arco fabrica acero a través de la fusión de la chatarra de hierro y gránulos de hierro mientras que el convertidor lo hace mediante la inyección de aire u oxígeno en el hierro. La producción del material a través de los hornos eléctricos genera polvos y vapores, los cuales perjudican al medio ambiente y a la salud humana. (Moffit, 2012).

Después de la fundición del material, se procede a verterlo en unas máquinas de colada continua para obtener componentes como placas, palanquillas o tochos, los cuales se los puede moldear en lingoteras. Se siguen otros procedimientos para la fabricación de aceros especiales, donde es necesario incorporar otros elementos metálicos dependiendo del uso requerido. Según Katzs, 2011, se tienen alrededor de 2.000 millones de toneladas métricas al año y por cada tonelada de metal se liberan a la atmosfera.

Fase constructiva

Se muestra el listado de actividades de la fase constructiva que se deberán incluir para el desarrollo del proyecto, las cuales fueron agrupadas en diferentes categorías, las cuales se caracterizan por tener tareas que cumplen con el mismo objetivo. Dichas actividades son aquellas susceptibles a generar impactos.

Tabla 4.1Actividades en fase constructiva.

Actividad resumen	Tareas o subactividades
Actividades preliminares	Localización y replanteo
	Desbroce y limpieza
	Transporte, carga y descarga de materiales
Cimentación	Excavación y retiro de material
	Suministro de concreto para zapatas
	Suministro de concreto para riostras
	Suministro de acero
	Compactación para cimentación
	Contrapiso de concreto
Estructura	Montaje de columnas
	Montaje de vigas
	Montaje de correas
	Ejecución de soldadura de los diferentes
	elementos
	Pintura anticorrosiva
Mampostería	Muro de bloques de hormigon
Cubierta	Suministro e instalacion de correas para
	cubierta
Instalaciones hidrosanitarias	Suministro e instalación de puntos de agua
	potable.
	Suministro e instalación de puntos sanitarios
	Suministro e instalación de puntos de drenaje
Instalaciones eléctricas	Suministro e instalación de componentes
	eléctricos

4.4 Identificación de impactos ambientales

Se han identificado los siguientes factores ambientales susceptibles de recibir impactos a partir de las acciones sugeridas anteriormente. Una vez identificados todos los posibles impactos, se determinarán acciones para la prevención y mitigación de los efectos negativos de dichos impactos.

Tabla 4.2
Impactos ambientales

Entorno	Elemento	Componente ambiental	Actividad	Potenciales Impactos
	Atmosfera	Calidad de aire	Transporte de materiales y maquinaria Excavación y movimiento de tierra. Montaje de elementos constructivos Elaboración de hormigón para cimentación	Emisiones de CO2 por el uso constante de combustibles por las maquinarias utilizadas como la retroexcavadora durante la etapa de construcción Generación de polvo y gases emitidos por la maquinaria y actividades. Exposición a micropartículas de polvo
Medio físico		Ruido		Generación de ruido por el uso de maquinarias como la retroexcavadora
	Agua	Calidad de aguas superficiales	Cimentación	Infiltración y contaminación del agua cerca del nivel freático por los residuos de los materiales de construcción utilizados. Contaminación por aceites o
	Suelo	Perdida de suelo	Excavación de material y movimiento de tierra	gasolina utilizados para el acero. Generación de residuos de materiales de construcción los cuales pueden representar riesgos al personal.
	Guoio	Alteración de la calidad de suelo	Construcción de cimentación	Aumento de la compactación del suelo afectando la permeabilidad del suelo
	Geomorfolo gía	Estabilidad de taludes y laderas	Instalaciones hidrosanitaria s	Formación de erosión por socavación, cambio en el uso del terreno y deslizamiento en ladera del río
	Medio perceptual	Alteración de paisaje	Todas las actividades	Paisaje alterado por la construcción de las urbanizaciones
Medio biótico	Flora	Vegetación Natural	Todas las actividades	Afectación del relieve durante la etapa de construcción debido a la remoción de la capa de la cobertura vegetal.

	Fauna	Especies endémicas y amenazadas	Todas las actividades	Erosión de zonas con cubertura y generación de zonas vulnerables a procesos erosivos por la precipitación y viento. Afectación abaja a especies debido a que la vivienda se encuentra en una zona urbanizada. Generación de hábitat por la futura siembra de especies nativas para adecuar la zona
	Ecosistema s frágiles	Ecosistemas naturales terrestres	Todas las actividades	Deforestación, erosión y acumulación de residuos
Medio socioeconó mico	Economía	Empleo	Todas las actividades	Oferta alta de trabajo por las diferentes fases del proyecto. Contratación de personal como peones, obreros, maestros, etc. Contratación de personal calificado como ingenieros, topógrafos, etc.

4.5 Valoración de impactos ambientales

Es necesario realizar la valoración de los impactos ambientales identificados en las actividades listadas anteriormente. Se realiza la valoración mediante la matriz de Leopold, un método que evalúa el posible impacto ambiental de la ejecución de un proyecto. Este utiliza una lista de verificación que incluye información cualitativa sobre relaciones causa-efecto de las actividades de dicho proyecto.

4.5.1 Métodos para valorar el impacto ambiental

Para obtener un valor representativo que evalúe el impacto ambiental del sistema estructural a implementar, se procederá a realizar una valoración cuantitativa según la fórmula de Tito (2020):

$$Imp = (We * E) + (Wd * D) + (Wr * R)$$
 (4.1)

$$We + Wd + Wr = 1 (4.2)$$

$$IA = \frac{+}{\sqrt{Imp * |Mag|}}$$
 (4.3)

Donde:

Imp = Valor de importância de impacto ambiental

We = Peso de extensión

E = Valor de extensión

Wd = Peso de duración

D = Valor de duración

Wr = Peso de reversibilidad

R = Reversibilidad

Magn = Valor de magnitud (+) si es beneficioso, (-) si es perjudicial

IA = Valor de Impacto Ambiental

Según Sinche (2015), se puede asumir los siguientes pesos tomando en cuenta que los valores están sujetos a cambios, de acuerdo al criterio del profesional:

Peso de extensión: 0.40

• Peso de duración: 0.20

Peso de reversibilidad: 0.20

Y con referencia a Tito (2020), la escala cuantitativa de los valores y resultado del IA es la siguiente:

Tabla 4.3Criterios de evaluación cuantitativa de factores

Característica			Puntaje				
	1	2,5	5	7,5	10		
Extensión Puntual		Particular	Local	Generalizada	Regional		
Duración	Esporádica	Temporal	Periódica	Recurrente	Permanente		
Reversibilidad Completamente Reversible		Medianamente Parcialmente M Reversible Irreversible		Medianamente Irreversible	Completamente Irreversible		
Magnitud	Poca inc	cidencia	Mediana incidencia	Alta in	cidencia		

Nota. Criterio con referencia al artículo de Tito, 2020.

Tabla 4.4 *Escala de valoración cualitativa*

Calificación del Impacto	Valor de índice de Impacto					
Ambiental	Ambiental					
Altamente significativo	$ IA \ge 6.5$					
Significativo	$6.5 > IA \ge 4.5$					
Despreciable	IA < 4.5					
Benéfico	$ IA \geq 0$					

Nota. Criterio con referencia al artículo de Tito, 2020.

4.5.2 Matriz de Leopold

A continuación, se llevará a cabo el cálculo del "Valor de Importancia" para la actividad de "Excavación y movimiento de tierra" en relación con el impacto en la "Perdida de suelo". Este cálculo se realizará con la Ecuación 4.1 en base a las tablas previamente presentadas, las cuales contienen los valores de peso y magnitud correspondientes.

$$E = 1$$
 $D = 5$
 $R = 10$

$$Imp = (0.40 * 1) + (0.20 * 5) + (0.20 * 10) = 3.4$$

$$Magn = 8 \text{ (va en negativo)}$$

Se repetirá el mismo procedimiento para los demás impactos, mostrando los resultados en siguiente Matriz de Leopold de la Figura 4.4:

Figura 4.4

Matriz de Leopold

hormigón Comentación de la cimentación de plodues de producción de pr	amposteria, Instalaciones hidrosanitarias y eléctricas Suministro e de agua potable pur l'assignation de formation de l'assignation de l'assignation de l'ectricos (+) Suministro de missa antique por l'assignation de l'ectricos (-) Diffurura de missa de mis
-7 -5 5 -1 1 5 -7 -2 3 -4	de agua potable Suministro e instalacionde puntos sanitarios y densile Suministro de instalacion de componentes electricos Dimpactos (+) E Impactos (+) E Impactos (+)
5 -7 -2 3 -4 6	3 3 3 9 9
[
° / 5 / ° / °	
3 5 5	0 3 3
-7 5	0 2 2
4 -7 5 -1 4	-1 4 -1 4 -6 3 0 8 8
-6 4 4	0 4 4
2 -3 2	0 5 5
-6 3 2 -1 3	1 3 1 3 0 7 7
1 -5 2 -1 3	1 3 1 3 0 7 7
2 -5 4 -1 3	-1 1 1 0 8 8
3 9 3 9 4 9 2	
1 1 1	1 1 1 10 62 72
	6 6 3 62 Total
/3 / /4 / /2 / /1 /2 /	-5 5 3 6 6 -5 5 7 7 5 7 7 5 7 1 4 4 7 3 2 7 1 3 3 2 7 1 3 3 5 2 7 1 3 3 3 3 3 4 9 2 2

Con los resultados obtenidos, se procede a calcular por medio de la ecuación 3 el Impacto Ambiental (IA) en relación con las actividades consideradas. Los resultados se muestran en la siguiente matriz, donde se hace uso de los criterios dados para IA en la Figura 4.5:

Figura 4.5

Matriz de Impacto ambiental

Magnitud: 1-10 ACCIONES CON POSIBLES EFECTOS																
			Importancia: 1-10	1. Actividades preliminares, Cimentación y Estructura					2. Mamposteria, Instalaciones hidrosanitarias y eléctricas				tricas			
	Valoración	Magnitud: 10 = Grande, 5 = Mediano, 1 = Pequeña	Importancia 1 = Nada, 10 = Alta	Transporte de materiales y maquinaria	Excavación y movimiento de Tierra	Montaje de elementos constructivos	Elaboración de hormigón	Construcción de la cimentación	Muro de bloques de hormigon	Suministro e instalacionde puntos de agua potable	Suministro e instalacionde puntos sanitarios y drenaje	Suministro de instalacion de componentes electricos	Pintura	IA (+)	IA (-)	IA TOTAL
		1. Atmósfera	Calidad del aire	-4,00	-4,24	-4,24	0,00	-5,92	-5,00	-1,00	-4,24	-4,24	-4,24	0	-37,13	37,13
		i. Aunosiera	Ruido	0,00	-4,24	-2,00	-6,71	-5,92	-2,45	-4,90	-2,00	-2,00	-2,83	0	-33,04	33,04
	sico	2. Agua	Calidad de aguas superficiales	0,00	-3,46	0,00	-3,87	-5,00	0,00	0,00	0,00	0,00	0,00	0	-12,34	12,34
MES	A. Medio físico	3. Suelo	Perdida de suelo	0,00	-5,66	0,00	0,00	-5,92	0,00	0,00	0,00	0,00	0,00	0	-11,57	11,57
SIENT/	А. М	5. Suelo	Alteración de la calidad de suelo	-1,41	-4,90	0,00	-5,66	-5,92	0,00	-2,00	-2,00	-2,00	-4,24	0	-28,13	28,13
FACTORES AMBIENTALES		4. Geomorfología	Estabilidad de taludes y laderas	-4,00	-1,41	0,00	0,00	-4,90	0,00	-4,00	0,00	0,00	0,00	0	-14,31	14,31
TORE		5. Medio perpectual	Alteración de paisaje	-4,00	-3,16	-4,24	-3,16	0	-2,45	0,00	0,00	0,00	0,00	0	-17,02	17,02
FAC	ótico	1. Flora	Vegetación Natural	-2,83	-4,00	0,00	0,00	-4,24	-2,45	-1,73	-1,73	-1,73	0,00	0	-18,72	18,72
	B. Medio biótico	2. Fauna	Especies endémicas y amenazadas	0,00	-3,16	-1,00	-1,00	-3,16	0,00	-1,73	-1,73	-1,73	0,00	0	-13,52	13,52
	В. Ме	3. Ecosistemas frágiles	Ecosistemas naturales terrestres	-1,00	-3,46	-1,00	-3,16	-4,47	0,00	-1,73	-1,00	-1,00	0,00	0	-16,83	16,83
	C. Med io soci oec óno mic	1. Economía	Empleo	5,20	5,20	5,20	5,20	5,20	6,00	4,24	4,24	4,24	4,24	48,95	0	48,95
		IA (+)		5,20	5,20	5,20	5,20	5,20	6,00	4,24	4,24	4,24	4,24	48,95	-202,61	251,56
	IA (-)			-17,24	-37,71	-12,49	-23,56	-45,44	-12,35	-17,10	-12,71	-12,71	-11,31	-202,61	То	tal
		IA TOTAL		22,44	42,90	17,68	28,76	50,64	18,35	21,34	16,95	16,95	15,56	251,56		

Como se evidencia en la Tabla 4.7, el Impacto Ambiental total de las actividades realizadas en el proyecto da un valor de 251,56. Para usar la clasificación dada en la Tabla 23, se relaciona el valor obtenido con el total de impactos considerados:

IAProyecto =
$$\frac{251.56}{72}$$
 = 3.49

4.5.3 Interpretación de resultados

El Impacto Ambiental del proyecto da un valor de 3.49, el cual es considerado despreciable según la Tabla 4.4, eso tomando en cuenta las actividades analizadas. En el caso de ser un proyecto con mayor alcance y de mayor magnitud, este valor subiría por todas las actividades a realizar y se debería realizar mayores medidas de mitigación.

4.6 Medidas de prevención/mitigación,

Hormigón

Tabla 4.5 *Medidas de prevención del uso del hormigón como material.*

Actividad	Impacto	Medida de prevención
Extracción de materia prima	Grandes distancias de transporte	Reciclaje de agregados para la reducción de emisiones de CO2 equivalentes y consumo de materias primas.
Fabricación del material	Altas emisiones de CO2 asociadas a la producción de cemento Portland procedente de la descomposición de la piedra caliza y la combustión de combustibles fósiles en el horno. Uso intensivo de energía para su producción.	Reemplazo parcial del clinker Portland
Aplicación del material	Altas emisiones de CO2	Uso de residuos cerámicos y recursos naturales para la reducción de las emisiones

Acero

Tabla 4.6

Medidas de prevención del uso del acero como material.

Actividades	Impacto	Medida de prevención
Extracción de materia prima	Degradación de ecosistemas, perdidas de biodiversidad, contaminación del agua y del suelo, hasta la emisión de gases de efecto invernadero.	Uso de tecnologías más eficientes y sostenibles para la extracción de materia prima como la minera subterráneo y obtención de minerales de fuentes alternativa.
Fabricación del material	Generación de residuos tóxicos y químicos. Otros contaminantes del aire. Emisiones de gases de efecto invernadero y otros contaminantes del aire, ya que requiere una gran cantidad de energía y combustibles fósiles para generar el calor y la energía necesarios	Uso de tecnologías más eficientes y sostenibles, que incluyen la utilización de energía renovable y de materiales reciclados, la implementación de tecnologías de captura y almacenamiento de carbono y de tecnologías de recuperación del calor y la mejora de la eficiencia energética (con la utilización de hornos de alta eficiencia y el reciclaje de calor, entre otros), etc.
Aplicación del material	Degradación de la tierra, del agua y del aire si no hay un buen mantenimiento.	Sistemas de tratamiento de aguas servidas para todos los procesos de fabricación de hierro y acero, y reciclaje de este.

4.6.1 Actividades durante la fase de construcción

Tabla 4.7

Medidas de prevención durante la fase de construcción.

Actividades	Impacto	Medida de prevención
Actividades preliminares	Alteraciones geomorfológicas	Optimización de movimiento
,	· ····· g······ g······ g······	de tierras en trazado.
		Aprovechamiento de huecos
		de extracción de materiales
		de préstamo como
		vertedores
Cimentación	Afectación de la calidad del aire,	Reciclaje y reutilización de
	calidad del agua, y suelo debido a	materiales como el hormigón
	las actividades propias como	para la fabricación de los
	movilización de equipos, cortes,	elementos como las vigas,
	excavaciones, eliminación de	columnas para reducir el
	material excedente, etc.	deterioro de algunos
Fatuuratuura	Diagram de accompanie de	elementos.
Estructura	Riesgo de ocurrencia de	Capacitaciones de seguridad
	accidentes y riesgo afectación de	y salud laboral al equipo de
Mampostería	la salud ocupacional. Explotación de la arcilla como	trabajo. Reemplazo de la
Mamposteria	principal materia prima del ladrillo	mampostería con alternativas
	con minas a cielo abierto	sostenibles como la
	Generación de emisiones	mampostería con ladrillos de
	atmosféricas (vapores de pinturas	arena-cemento que no
	y solventes a ser utilizados)	requieren cocción ni otro tipo
	Riesgo de deterioro de la calidad	de energía para su
	de aire y afectación a la salud	elaboración.
	ocupacional.	
Cubierta	Generación de polvo en la	Capacitación al personal con
	elaboración de planchas de	respecto a los impactos
	perfiles y piezas.	ambientales para una mejor
	Alto riesgo de accidente durante el	comprensión del tema.
	transporte de material y el	Mejor control de distribución
	almacenamiento de estos.	de las actividades.
	Generación de ruido durante la instalación.	
Instalaciones hidrosanitarias	Problemas ambientales asociados	Desarrollo de herramientas y
mstaraciones mai osamtarias	al empleo de materiales de	estrategias de gestión
	arrastre y pétreo, el uso del suelo.	ambiental que permitan
	Se realizan instalaciones en suelos	proteger el medio ambiente a
	protegidos, cercanos a cuerpos de	través de la prevención y
	agua y en algunos casos la	minimización de los impactos
	intervención de numerosos	generados en la
	árboles.	organización.
Instalaciones eléctricas	Corta de bosques	Optimización ambiental de
	Fragmentación del hábitat	diseño de líneas de
	Visibilidad de las torres de alta	transmisión eléctrica
	tensión y el cruce por zonas.	mediante la determinación de
	Obstrucción visual por la	la ruta optima haciendo uso
	instalación de torres de alta tensión.	de aplicaciones sig.
	tension.	

CAPÍTULO 5

5. PRESUPUESTO

5.1 Estructura Desglosada del trabajo

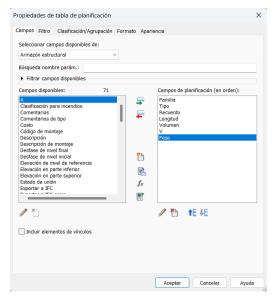
Para el presupuesto general de la obra se utilizó el formato mostrado en la Tabla 5.1.

Tabla 5.1Presupuesto general de obra.

	PRESUPUESTO DE OBRA						
	O DE CONSTRUCCIÓN DE LA RESIDENCIA:	PROYECTO CIUDAD CELESTE					
	DE TRÁMITE:						
	D/MM/AA CONSTRUCCIÓN: m²				8/1/2024 288,45		
IILA DE	construction. III				200,43		
CODIGO	DETALLE	UNIDAD	UN	PRECIOS NITARIOS luido IVA)	VOLUMEN DE OBRA	COSTO TOTAL	
1	MOVIMIENTO DE TIERRA					5.711,2	
1,01	Limpieza Interna de Escombros	m2	\$	1,03	245,00	252,3	
1,02	Trazado y replanteo	m2	\$	1,21	245,00	296,4	
1,03	Excavación con maquinaria para cimentación	m3	\$	15,90	177,58	2.823,5	
1,04	Relleno compactado con material de mejoramiento H=1 m	m3	\$	16,01	68,30	1.093,4	
1,05	Relleno compactado con material de sitio	m3 m3	\$	4,29	65,86	282,5 962,8	
2	Limpieza y desalojo del material excavado HORMIGONES / ESTRUCTURA	III3	Ş	6,63	145,23	55.029,6	
2.1	CIMENTACIONES					9.756,7	
2,01	Hormigón en Replantillo Ho. S. f'c=140 kg/cm², h=10 cm	m³	\$	129,30	6,83	883,0	
2,02	Hormigón premezclado en Zapatas y Dados f'c=210 kg/cm², incl. encofrado	m³	\$	148,03	22,92	3.392,8	
2,03	Acero de refuerzo fy=4200 kg/cm² en Zapatas y Dados	kg	\$	2,19	1.471,87	3.223,4	
2,04	Acero estructural (Placa base e=1,2 cm y pernos de 3/4") , ASTM A36 Fy=2530 kg/cm2	kg	\$	6,23	362,34	2.257,3	
2.2	SUPERESTRUCTURA		_	4		45.272,9	
2,05	Hormigón premezclado en Escaleras f'c=210 kg/cm² incl. encofrado	m³	\$	148,03	3,00	444,0	
2,06	Hormigón premezclado en Losa f'c=210 kg/cm², incl. encofrado Acero de refuerzo fy=4200 kg/cm² en Escalera	m³ kg	\$	143,32 2,19	12,76 450,00	1.828,7 985,5	
2,07	Placa colaborante Steel Deck e=0,75 mm	m ²	Ś	25,93	121,54	3.151,5	
2.09	Acero Estructural (Perfiles IPE, HSS, G), ASTM A36, Fy=2530 kg/cm2	kg	\$	6,23	5.814,28	36.222,9	
2,1	Malla electrosoldada 5,5 c/200x200 mm, Fy=5000 kg/cm2	m²	\$	4,74	121,55	576,1	
2,11	Cubierta Steel Panel e=0,45 mm	m²	\$	14,75	139,93	2.063,9	
9	INSTALACIONES SANITARIAS					11.641,6	
9,1	AGUA POTABLE					4.848,2	
9,11	PUNTOS DE AGUA FRIA	ptos	\$	40,40	21,00	848,4	
9,12	PUNTOS DE AGUA CALIENTE	ptos	\$	53,95	6,00	323,7	
9,13 9,14	TUBERIA DE 1/2" PVC ROSCABLE (AGUA FRIA)	ml	\$	15,71	18,20	285,9	
9,14	TUBERIA DE 3/4" PVC ROSCABLE (AGUA FRIA) TUBERIA DE 1" PVC ROSCABLE (AGUA FRIA)	ml ml	S	16,21 54,29	18,53 36.05	300,3 1.957,1	
9,16	TUBERIA DE 2" PVC ROSCABLE (AGUA FRIA)	ml	ŝ	75.83	2.98	225.9	
9,17	TUBERIA DE 1/2" PVC LINEA DORADA (AGUA CALIENTE)	ml	\$	25,52	26,05	664,8	
9,18	TUBERIA DE 3/4" PVC LINEA DORADA (AGUA CALIENTE)	ml	\$	29,15	9,48	241,9	
9,2	PIEZAS SANITARIAS					1.088,2	
9,21	SUMINISTRO E INSTALACION DE LAVAMANOS COMPLETO (PARA EMPOTRAR, LINEA HOGAR, TIPO ELEA OVAL)	u	\$	80,82	5,00	404,1	
9,22	SUMINISTRO E INSTALACION DE INODORO TANQUE BAJO (DOS PIEZAS, LINEA HOGAR - TIPO MILAN)	u	\$	84,52	5,00	422,6	
9,23	SUMINISTRO E INSTALACION DE FREGADERO INOX. DE COCINA 1 pozo con escurridor) SUMINISTRO E INSTALACION DE DUCHAS	u	\$	40,84 38,09	1,00 4,00	40,8 152,3	
9,24	I LAVE DE LARDIN	U.	Ś	22.77	3.00	152,3	
9,3	AGUAS SERVIDAS	ŭ.	Ť	LL,,,,	3,00	5.705,2	
9,31	PUNTOS DE DESAGUE	ptos	\$	50,51	8,00	404,0	
9,32	BAJANTES DE AGUA SERVIDA TUBERIA DE 4" PVC	ml	\$	25,05	4,00	100,2	
9,33	BAJANTES DE AGUA LLUVIA TUBERIA DE 3" PVC	ml	\$	15,12	4,00	60,4	
9,34	TUBERIA DE 4" PVC	ml	\$	18,13	71,06	1.288,3	
9,35	TUBERIA DE 3" PVC	ml	\$	26,56	50,93	1.352,7	
9,36	TUBERIA DE 2" PVC SUMINISTRO E INSTALACION DE CALEFON	ml	\$	15,71	37,54	589,7	
9,37	PUNTOS DE VENTILACION	u ptos	\$	463,24 23.39	1,00 4,00	463,2 93,5	
9,39	CAJAS DE REGISTRO	u u	Ś	102,08	13,00	1.327,0	
9,4	REJILLAS DE PISO	u	\$	6,46	4,00	25,8	
10	INSTALACIONES ELECTRICAS					14.809,7	
10,01	PUNTOS DE ILUMINACION 110 V.	ptos	\$	28,69	84,00	2.409,9	
10,02	PUNTO DE TOMACORRIENTES DE 110V	ptos	\$	43,46	55,00	2.390,3	
10,03	PUNTO DE TOMACORRIENTES DE 220V	ptos	\$	59,58	11,00	655,3	
10,04	SUMINISTRO E INSTALACION DE LUMINARIAS DE OJOS DE BUEY	u	\$	27,90	68,00	1.897,2	
10,05	SUMINISTRO E INSTALACION DE LUMINARIAS DE LED DE PARED UP & DOWN ANGULO AJUSTABLE SUMINISTRO E INSTALACION DE PIEZAS DE TOMACORRIENTES	u	\$	52,13 19,91	16,00 66,00	834,0 1.314,0	
10,06	SUMINISTRO E INSTALACION DE PIEZAS DE TOMACORRIENTES SUMINISTRO E INSTALACION DE TABLEROS DE DISTRIBUCION ELECTRICA 1 POLO 10-32 AMPS SQUARE D	u	\$	404,25	2.00	808,5	
10,08	SUMINISTRO E INSTALACION DE CAMARA DE SEGURIDAD	u	\$	303,50	4,00	1.214,0	
10,09	SUMINISTRO E INSTALACION DE PORTERO ELECTRICO	u	\$	106,50	1,00	106,5	
10,10	SUMINISTRO E INSTALACION DE INTERRUPTORES	u	\$	23,61	37,00	873,5	
10,11	COLOCACION DE TUBERIA ELECTRICA AWG 3X2*1X4*1X5	ml	\$	3,21	703,95	2.259,6	
10,12	VARILLA COOPERWELD 5/8" X 6'(PUESTA A TIERRA)	u	\$	18,31	1,00	18,3	
10,13	SALIDAS DE ANTENAS TV	ptos	\$	28,25	1,00	28,2	
11	APARATOS DOMÓTICOS					87.192,3	
12	ADICIONALES / OBRAS EXTERIORES						
	Limpieza final de la obra	u.	\$		1,00		
					2,00		

5.2 Rubros y análisis de precios unitarios (fusión)

Para la definición de rubros y su respectivo análisis (APUs) se tomó como guía, tanto de valores por costo/hora y de rendimiento, en el portal web de Obras Públicas del Ecuador, la de los GADs como Simón Bolivar, también con guía en diferentes presupuestos de tesis anteriores con un proyecto similar y por medio de la página web de INSUCONS. Las tablas del presupuesto general donde se definen los rubros y los APUS se encuentran en la parte de ANEXOS.


5.3 Descripción de cantidades de obra

Las cantidades de obra en el capítulo estructural se lo obtuvo mediante el software Revit. El programa, al tener la facilidad de cuantificar cualquier tipo de material y tener un presupuesto actualizado por su manejo BIM, dependiendo de cómo lo definamos, se pudo cuantificar tanto:

- Acero estructural
- Hormigón
- Acero de refuerzo
- Arquitectura
- Instalaciones Hidrosanitarias
- Instalaciones Eléctricas

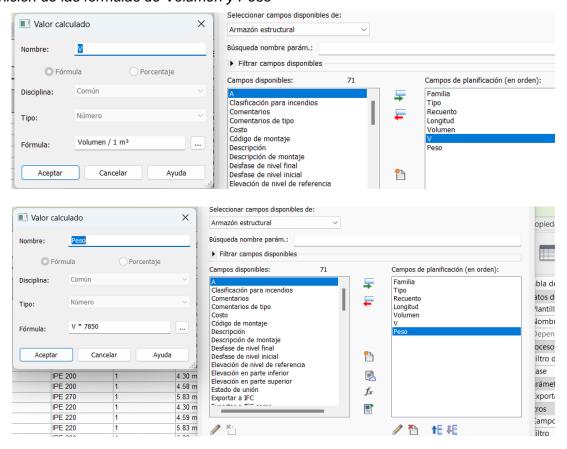

Esto se lo obtuvo mediante la herramienta "Tablas de planificación", donde se lo clasificó por Familia y Tipo. Además, los elementos estructurales al ser su unidad de medida en Kg se establecen fórmulas en el campo de planificación para que el software calcule directamente el peso de cada estructura como se indica en la Figura ():

Figura 5.1Definición de campos de planificación

Se establecen los campos de V y Peso con su respectiva fórmula:

Figura 5.2Definición de las formulas de Volumen y Peso

Así con lo requerido para cada ingeniería. Con esto definido, se procedió a calcular las cantidades de todos los elementos.

Armazones Estructurales

Figura 5.3 *Tabla de planificación de armazones estructurales.*

Α	В	С	D	E	F
Familia	Tipo	Recuento	Longitud	Volumen	Peso
Correa (80x40x15x3)mm	Correa (80x40x15)	-214	18.63 m	0.01 m²	73.941618
PERFIL G ASTM			18.63 m	0.01 m ^s	73.941618
	Correa (80x40x15				
PERFIL G ASTM PERFIL G ASTM	Correa (80x40x15:		18.60 m 18.60 m	0.01 m ^s	73.82255 73.82255
	Correa (80x40x15:	x3 1			
Correa (80x40x15x3)mm: 4			74.46 m	0.04 m ^s	295.528336
PE 160 Viga I Beam	IPE 160 Viga I	1	3.65 m	0.01 m ^s	54.603544
Beam	IPE 160 Viga I	1	3.65 m	0.01 m²	54.564203
Beam	IPE 160 Viga I	1	3.30 m	0.01 m²	49.272119
Beam	IPE 160 Viga I	1	3.44 m	0.01 m²	54.564203
Beam	IPE 160 Viga I	1	3.50 m	0.01 m²	54.564203
Beam	IPE 160 Viga I	1	3.30 m	0.01 m ^s	49.302952
Beam	IPE 160 Viga I	1	3.30 m	0.01 m²	49.302952
Beam	IPE 160 Viga I	1	3.30 m	0.01 m²	49.302952
Beam	IPE 160 Viga I	1	4.00 m	0.01 m ^s	59.948873
Beam		1	4.00 m	0.01 m ^s	59.948873
Beam	IPE 160 Viga I	1	4.00 m	0.01 m ^s	59.948873
Beam	IPE 160 Viga I IPE 160 Viga I	1	4.00 m 3.74 m	0.01 m ^s	59.948873
Beam	IPE 160 Viga I	1	3.82 m	0.01 m³	57.285965
Beam	IPE 160 Viga I	1	3.91 m	0.01 m ^a	58.616705
Beam	IPE 160 Viga I	1	3.56 m	0.01 m³	53.293745
Beam	IPE 160 Viga I	1	3.48 m	0.01 m ^s	51.963004
Beam PE 160 Viga I: 17	IPE 160 Viga I	1	3.39 m 61.34 m	0.01 m ^s 0.12 m ^s	50.632264 923.070656
eam	IPE 180	1	3.30 m	0.01 m²	59.045954
leam	IPE 180	1	3.30 m	0.01 m ^a	59.045954
	IPE 180	1	4.00 m		
Beam				0.01 m ^s	71.808326
leam	IPE 180	1	4.00 m	0.01 m ^s	71.808326
eam E 180: 5		1			
Beam E 180: 5 E 200	IPE 180		4.00 m 17.90 m	0.01 m ^s 0.04 m ^s	71.808326 320.754512
leam E 180: 5 E 200 leam	IPE 180	1	4.00 m 17.90 m	0.01 m ^s 0.04 m ^s 0.01 m ^s	71.808326 320.754512 65.247038
Beam E 180: 5 E 200 Beam Beam	IPE 200 IPE 200	1	4.00 m 17.90 m 3.30 m 4.00 m	0.01 m ^s 0.04 m ^s 0.01 m ^s 0.01 m ^s	71.808326 320.754512 65.247038 80.202702
9eam E 180: 5 E 200 9eam 9eam	IPE 200 IPE 200 IPE 200 IPE 200	1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m	0.01 m² 0.04 m² 0.01 m² 0.01 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324
Beam E 180: 5 E 200 Beam Beam Beam	IPE 180 IPE 200 IPE 200 IPE 200 IPE 200 IPE 200	1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m	0.01 m² 0.04 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214
Beam E 180: 5 E 200 Beam Beam Beam	IPE 200	1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m	0.01 m² 0.04 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214
Beam E 180: 5 E 200 Beam Beam Beam Beam Beam Beam	IPE 200	1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.58 m	0.01 m² 0.04 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324
Beam E 180: 5 E 200 Beam Beam Beam Beam Beam Beam Beam Beam	IPE 180 IPE 200	1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.58 m 3.65 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487
eam 5	IPE 200	1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.30 m 3.65 m 3.65 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487
eam 5	IPE 180 IPE 200	1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m	0.01 m ² 0.04 m ⁸ 0.01 m ⁸	71.808326 320.754512 66.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 68.553348
E 180: 5 E 200 Eam Jeam	IPE 200	1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.30 m 3.65 m 3.65 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487
E 180: 5 E 200 Eam eam eam eam eam eam eam eam	IPE 180 IPE 200	1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.36 m 3.65 m 3.65 m 3.65 m 3.65 m	0.01 m ⁸ 0.04 m ⁸ 0.01 m ⁹	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 717.515902
E 180: 5 = 200 E 200	IPE 200	1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 4.30 m 4.56 m 3.65 m 3.65 m 3.30 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 72.72487 74.72487 75.755902 76.947828
eam 5 180: 5 5 200 eam	IPE 180 IPE 200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.30 m 3.65 m 3.30 m 3.564 m	0.01 m² 0.04 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 68.553348 717.515902 76.947828 94.5855
eam E 180: 5 E 200 eam eam eam eam eam eam eam e	IPE 180 IPE 200 IPE 220 IPE 220 IPE 220	1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.65 m 3.30 m 35.64 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 76.855348 717.515902 76.947828 94.5855 76.947828
E 180: 5	IPE 180 IPE 200 IPE 220 IPE 220 IPE 220 IPE 220 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.58 m 3.65 m 3.65 m 3.30 m 3.00 m 4.00 m	0.01 m² 0.04 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 72.72487 768.553348 717.515902 76.947828 94.5855 76.947828 94.5855
E 180: 5 E 180: 5 E 200 eeam	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.30 m 3.564 m 3.30 m 4.00 m 4.00 m	0.01 m² 0.04 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 72.72487 68.553348 717.515902 76.947828 94.5855 76.947828 94.5855 102.037114
eam 1 180: 5 5 200 eam eam eam eam eam eam eam e	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.65 m 3.30 m 4.00 m 4.00 m 4.00 m 4.00 m	0.01 m² 0.04 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 68.553348 717.515902 76.947628 94.5855 76.947628 94.5855 76.947628 94.5855
E 180: 5 E 180: 5 E 200 Eam Eeam	IPE 180	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.65 m 3.30 m 35.64 m 3.30 m 4.00 m 4.30 m	0.01 m ² 0.04 m ² 0.01 m ²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 76.53348 717.515902 76.947828 94.5855 76.947828 94.5855 102.037114 109.418326 140.758263
E 180: 5 = 200 E 200	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.30 m 35.64 m 3.30 m 4.00 m 4.30 m 4.58 m 3.55 m 3.65 m 3.70 m 3.70 m 4.70 m	0.01 m² 0.04 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 72.72487 76.947828 94.5855 76.947828 94.5855 102.037114 109.418326 140.758263
Beam E 180: 5 E 200 Beam Beam Beam Beam Beam Beam Beam Beam	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.30 m 35.64 m 3.30 m 4.00 m 4.59 m 4.00 m 5.83 m 4.00 m 4.30 m 4.00 m 5.83 m 5.84 m	0.01 m² 0.04 m² 0.01 m² 0.02 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 92.510324 72.72487 72.72487 68.553348 717.515902 76.947828 94.5855 76.947828 94.5855 102.037114 109.418326 140.758263 440.758263 48.05456
E 180: 5 E 200 Beam	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.30 m 35.64 m 3.30 m 4.00 m 4.58 m 2.00 m 4.00 m 3.30 m 4.00 m 3.30 m 4.00 m 3.30 m 4.00 m 3.30 m	0.01 m² 0.04 m² 0.01 m² 0.02 m² 0.02 m² 0.02 m² 0.02 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 72.72487 68.553348 717.515902 76.947828 94.5855 76.947828 94.5855 109.418326 140.758263 140.758263 140.758263
E 180: 5 E 200 eeam eeam eeam eeam eeam eeam eeam ee	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.30 m 4.56 m 3.365 m 3.30 m 35.64 m 3.30 m 4.00 m 4.30 m 4.30 m 4.00 m 4.30 m 4.00 m 4.30 m	0.01 m² 0.04 m² 0.01 m² 0.02 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 72.72487 72.72487 76.947828 94.5855 102.037114 104.756263 140.758263 140.758263 140.758263
Beam E 180: 5 E 200 Beam Beam Beam Beam Beam Beam Beam Beam	IPE 180 IPE 200 IPE 220	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 m 17.90 m 3.30 m 4.00 m 4.58 m 4.30 m 4.58 m 3.65 m 3.65 m 3.30 m 35.64 m 3.30 m 4.00 m 4.58 m 2.00 m 4.00 m 3.30 m 4.00 m 3.30 m 4.00 m 3.30 m 4.00 m 3.30 m	0.01 m² 0.04 m² 0.01 m² 0.02 m² 0.02 m² 0.02 m² 0.02 m² 0.01 m²	71.808326 320.754512 65.247038 80.202702 92.510324 86.521214 86.521214 92.510324 72.72487 72.72487 68.553348 717.515902 76.947828 94.8855 76.947828 94.8855 109.418326 140.758263 140.758263 140.758263

I Beam	IPE 240 1	5.83 m	0.02 m³	162.880522
l Beam	IPE 240 1	1.95 m	0.01 m ^s	54.585369
IPE 240: 2		7.78 m	0.03 m ^s	217.465892
Nervios 100x100x3				
Steel Rectangular Tube	Nervios 100x100x3 1	0.98 m	0.00 m ^s	8.420706
Steel Rectangular Tube	Nervios 100x100x3 1	0.98 m	0.00 m ^s	8.420706
Steel Rectangular Tube	Nervios 100x100x3 1	0.98 m	0.00 m ^s	8.420706
Steel Rectangular Tube	Nervios 100x100x3 1	0.95 m	0.00 m ^s	8.146584
Steel Rectangular Tube	Nervios 100x100x3 1	0.95 m	0.00 m ^s	8.146584
Steel Rectangular Tube	Nervios 100x100x3 1	0.95 m	0.00 m ^s	8.146584
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m³	12.765989
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.765989
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.765989
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m³	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 ms	12.783838
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m ^s	12.745656
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m³	12.745656
Steel Rectangular Tube	Nervios 100x100x3 1	1.46 m	0.00 m²	12.745656
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m³	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m³	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m ^s	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m ^s	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m³	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m ^s	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m ^s	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m³	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m²	9.313011
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m²	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m ^s	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m²	9.257004
Steel Rectangular Tube	Nervios 100x100x3 1	1.07 m	0.00 m²	9.257004
Oteel (tectaligular Tube	INCINIOS TOUX TOUX	1.07 111	0.00 111	3.237004
Steel Rectangular Tube	Nervios 100x100x3 1	1.02 m	0.00 m ^s	9.916955
Steel Rectangular Tube	Nervios 100x100x3 1	1.02 m	0.00 m ^s	9.916955
Steel Rectangular Tube	Nervios 100x100x3 1	0.91 m	0.00 m ^s	7.790942
Steel Rectangular Tube	Nervios 100x100x3 1	0.91 m	0.00 m²	7.790942
Steel Rectangular Tube	Nervios 100x100x3 1	0.91 m	0.00 m ^s	7.790942
Vervios 100x100x3: 87		99.02 m	0.11 m ^s	861.788201
bo 100x100x3 eel Rectangular Tube	Tubo 100x100x3 1	1.77 m	0.00 m ^a	16.127502
otangalai rubo	Tubo 100x100x3 1	1.77 m	0.00 m²	16.127502
eel Rectangular Tube		1.77 111	V.VV III	10.121302
eel Rectangular Tube				
-				
el Rectangular Tube	Tubo 100x100x3 1	1.98 m	0.00 m³	16.858494
el Rectangular Tube	Tubo 100x100x3	1.98 m 4.00 m	0.00 m ^s	16.858494 35.997692
rel Rectangular Tube rel Rectangular Tube rel Rectangular Tube rol 100x100x3: 32				
el Rectangular Tube el Rectangular Tube to 100x100x3: 32 to 100x100x3 correas	Tubo 100x100x3 1	4.00 m 117.90 m	0.00 m ^s 0.13 m ^s	35.997692 1017.746907
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1	4.00 m 117.90 m 3.70 m	0.00 ms 0.13 ms 0.00 ms	35.997692 1017.746907 33.785305
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m	0.00 ms 0.13 ms 0.00 ms	35.997692 1017.746907 33.785305 32.190291
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m	0.00 ms 0.13 ms 0.00 ms	35.997692 1017.746907 33.785305
el Rectangular Tube el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m	0.00 ms 0.13 ms 0.00 ms	35.997692 1017.746907 33.785305 32.190291
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube el Rectangular Tube el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m	0.00 ms 0.13 ms 0.00 ms 0.00 ms 0.00 ms	35.997692 1017.746907 33.785305 32.190291 30.11547
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor1 Tubo 100x100x3 cor1 Tubo 100x100x3 cor1 Tubo 100x100x3 cor1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m	0.00 ms 0.13 ms 0.00 ms 0.00 ms 0.00 ms 0.00 ms	35.997692 1017.746907 33.785305 32.190291 30.11547 30.595277
el Rectangular Tube el Rectangular Tube to 100x100x3: 32 to 100x100x3 correas el Rectangular Tube el Rectangular Tube el Rectangular Tube	Tubo 100x100x3 or 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m 3.27 m 3.64 m	0.00 m ² 0.13 m ² 0.00 m ² 0.00 m ² 0.00 m ² 0.00 m ³ 0.00 m ³ 0.00 m ³ 0.00 m ³	35.997692 1017.746907 33.785305 32.190291 30.11547 30.595277 29.914915 33.305498
el Rectangular Tube el Rectangular Tube to 100x100x3: 32 to 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m 3.27 m 3.64 m 3.82 m	0.00 m ² 0.13 m ² 0.00 m ²	35.997692 1017.74690; 33.785305 32.190291 30.11547 30.595277 29.914915 33.305498 34.900512
el Rectangular Tube el Rectangular Tube to 100x100x3: 32 to 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m 3.27 m 3.64 m 3.82 m 3.99 m	0.00 m ² 0.13 m ³ 0.00 m ² 0.00 m ² 0.00 m ³	35.997692 1017.746907 33.785305 32.190291 30.11547 30.595277 29.914915 33.305498 34.900512 36.454027
el Rectangular Tube el Rectangular Tube io 100x100x3: 32 io 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m 3.27 m 3.64 m 3.82 m 3.99 m 3.99 m	0.00 m ² 0.13 m ² 0.00 m ²	35.997692 1017.746907 33.785305 32.190291 30.11547 30.595277 29.914915 33.305498 34.900512 36.454027 36.495526
el Rectangular Tube el Rectangular Tube to 100x100x3: 32 to 100x100x3 correas el Rectangular Tube	Tubo 100x100x3 1 Tubo 100x100x3 cor 1	4.00 m 117.90 m 3.70 m 3.52 m 3.30 m 3.35 m 3.27 m 3.64 m 3.82 m 3.99 m	0.00 m ² 0.13 m ³ 0.00 m ² 0.00 m ² 0.00 m ³	35.997692 1017.746907 33.785305 32.190291 30.11547 30.595277 29.914915 33.305498 34.900512 36.454027

Dando un total de 5814,29 kg de peso en los armazones estructurales

Pilares Estructurales

Figura 5.4 *Tabla de planificación de pilares estructurales.*

	В	C	D	E	F	G
Familia	Tipo	Recuento	Longitud	Volumen	V	Peso
Steel Rectangular Column	C2	1	6.59 m	0.03 m ^s	0.032267	253.292027
Steel Rectangular Column	C1	1	6.59 m	0.03 m ^s	0.025919	203.460698
Steel Rectangular Column	C1	1	6.59 m	0.03 m ^s	0.025919	203.460698
Steel Rectangular Column	C2	1	6.59 m	0.03 m ^s	0.032267	253.292027
Steel Rectangular Column	C1	1	7.99 m	0.03 m³	0.031429	246.717338
Steel Rectangular Column	C2	1	7.59 m	0.04 m ^s	0.037167	291.757027
Steel Rectangular Column	C1	1	7.99 m	0.03 m ^s	0.031429	246.717338
Steel Rectangular Column	C1	1	7.99 m	0.03 m ^s	0.031429	246.717338
Steel Rectangular Column	C1	1	7.59 m	0.03 m ^s	0.029855	234.358298
Steel Rectangular Column	C1	1	7.99 m	0.03 m³	0.031429	246.717338
Steel Rectangular Column	C2	1	7.59 m	0.04 m ^s	0.037167	291.757027
Steel Rectangular Column	C1	1	7.59 m	0.03 m ^s	0.029855	234.358298

El programa dio un resultado de 2952, 60 kg de peso en pilares estructurales.

Dados de hormigón armado

Figura 5.5 *Tabla de planificación de dados estructurales.*

А	ט	·	ט	L
Familia	Tipo	Recuento	Longitud	Volumen
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m ^s
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m ^s
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column	D1(45X45) cm	1	1.00 m	0.20 m³
Concrete-Rectangular-Column: 12	·	2.43 m ^s		

Se obtuvo un resultado de 2.43 m3 de hormigón en los dados.

Conexiones estructurales (pernos y placa base)

Figura 5.6

Tabla de planificación de conexiones estructurales.

Ancla lisa	Perno Ø3/4"	1	0.00 m ^a	0.000135	1.058466
Ancla lisa: 72				0.009708	76.209562
Placa base rectang	Placa PL1 (450x450	1	0.00 m ^a	0.003038	23.844375
Placa base rectang	ular: 12			0.03645	286.1325

Se obtuvo un resultado de 362.33 kg de pernos y placa base

Metros lineales de tubería

Figura 5.7 *Tabla de planificación de medición de tuberías.*

<0.1 Medicion de tuberias>					
A	В	С	D		
System Type	Туре	Size	Length		
<varies></varies>	Plastigama PVC Presión AF Roscable	1 ø	0.16 m		
<varies>: 1</varies>			0.16 m		
IS - Agua Caliente	<varies></varies>	1 ø	35.53 m		
IS - Agua Caliente: 31		<u> </u>	35.53 m		
IS - Agua Potable	<varies></varies>	1ø	72.86 m		
IS - Agua Potable	Plastigama PVC Presión AF Roscable	2ø	2.98 m		
IS - Agua Potable: 92			75.84 m		
IS - Desague Aguas Negras	PLASTIGAMA Sanitaria PVC Desagüe	2ø	26.14 m		
IS - Desague Aguas Negras	PLASTIGAMA Sanitaria PVC Desagüe	4ø	71.06 m		
IS - Desague Aguas Negras: 97			97.20 m		
IS - Ventilacion	PLASTIGAMA Sanitaria PVC Ventilación	2ø	11.40 m		
IS - Ventilacion: 8			11.40 m		
IS- Aguas Pluviales	PLASTIGAMA Sanitaria PVC Desagüe	3ø	59.93 m		
IS- Aguas Pluviales	PLASTIGAMA Sanitaria PVC Desagüe	4ø	0.00 m		
IS- Aguas Pluviales: 9		·	59.94 m		
Grand total: 238			280.07 m		

Aparatos Sanitarios

Figura 5.8 *Tabla de planificación de aparatos sanitarios.*

<0.2 Aparatos Sanita	rios>	
A	В	С
Family	Туре	Count
Ourlie Lawrence Time 1	0.40 x 0.50m	-
Ovalin + mueble Tipo 1		5
E-47	E-47	4
Refrigeration-Dacor-Epicure-36_French_Door_Freestanding1	EF36BNNFSSCH 2	1
Electronics_Appliances_Electrolux-Brasil_Essential-Care-Jet-Clean-Ultra-Filter-14	LED14	2
Llave De Jardin Pesada	Llave De Jardin Pesada	3
Plato de ducha rectangular	Shwr Pan 30 x 36	4
Sink-Double_Basin-Kohler-Lawnfield-5841_4U	Vitreous_China-Almond-47	1
WC con cisterna (3)	WC con cisterna (3)	5
Grand total: 25		

Accesorios de tubería

Tabla de planificación de accesorios de tubería.

<0.3 Uniones de Tuberias>				
A	В	С		
Family	Size	Count		
PlastigamaWavin Unionesdetubería LineaDoradaCodo	1"ø-1"ø	11		
PlastigamaWavin Unionesdetubería LineaDoradaCodo	1"ø-1/2"ø	4		
PlastigamaWavin Unionesdetubería LineaDoradaCodo	1/2"ø-1/2"ø	30		
PlastigamaWavin Unionesdetubería LineaDoradaCodo	2"ø-2"ø	4		
PlastigamaWavin Unionesdetubería LineaDoradaCodo1	1"ø-1"ø	1		
PlastigamaWavin Unionesdetubería LineaDoradaCodo1	1"ø-1/2"ø	2		
PlastigamaWavin Unionesdetubería LineaDoradaCodo1	1/2"ø-1/2"ø	10		
PlastigamaWavin Unionesdetubería LineaDoradaReductor	1"ø-1/2"ø	6		
PlastigamaWavin Unionesdetubería LineaDoradaReductor	2"ø-1"ø	1		
PlastigamaWavin Unionesdetubería LineaDoradaTee	1"ø-1"ø	4		
PlastigamaWavin Unionesdetubería LineaDoradaTee	1"ø-1"ø-1/2"ø	11		
PlastigamaWavin Unionesdetubería LineaDoradaTee	1"ø-1/2"ø-1/2"ø	2		
PlastigamaWavin Unionesdetubería LineaDoradaTee	1/2"ø-1/2"ø	2		
PlastigamaWavin Unionesdetubería LineaDoradaTee	2"ø-1"ø-1"ø	1		
PlastigamaWavin Unionesdetubería LineaDoradaTee1	1"ø-1"ø	1		
PlastigamaWavin Unionesdetubería LineaDoradaTee1	1"ø-1/2"ø-1/2"ø	1		
PlastigamaWavin Unionesdetubería LineaDoradaTee1	1/2"ø-1/2"ø	3		
PlastigamaWavin Unionesdetubería LineaDoradaZNoUsarReductor		8		
PlastigamaWavin Unionesdetubería LineaDoradaZNoUsarReductor1		1		
PlastigamaWavin Unionesdetubería LineaDoradaZNoUsarUnión		7		
PlastigamaWavin Unionesdetubería PresiónPVCBujeReductor		1		
PlastigamaWavin Unionesdetubería PresiónPVCZNoUsarAdaptadorMR		2		
PlastigamaWavin Unionesdetubería SanitariaCajaDomiciliaria	4 1/2"ø-4 1/2"ø-4 1/2"ø-3"ø	1		
PlastigamaWavin Unionesdetubería SanitariaCajaDomiciliaria	4 1/2"ø-4 1/2"ø-4 1/2"ø	12		
PlastigamaWavin Unionesdetubería SanitariaCodo	2"ø-2"ø	32		
PlastigamaWavin Unionesdetubería SanitariaCodo	4 1/2"ø-4 1/2"ø	16		
PlastigamaWavin Unionesdetubería SanitariaMultiReductorExcéntrico	4 1/2"ø-2"ø	4		
PlastigamaWavin Unionesdetubería SanitariaRejillaDesagüe50-110mm	2"ø	4		
PlastigamaWavin Unionesdetuberia SanitariaSifón50mm-110mm	2"ø-2"ø	2		
PlastigamaWavin Unionesdetubería SanitariaTapón	4 1/2"ø	4		
PlastigamaWavin Unionesdetubería SanitariaTeeYeeconReducciones	2"ø-2"ø-2"ø	1		
PlastigamaWavin Unionesdetubería SanitariaTeeYeeconReducciones	4 1/2"ø-4 1/2"ø-2"ø	11		
PlastigamaWavin Unionesdetubería SanitariaTeeYeeconReducciones	4 1/2"ø-4 1/2"ø-4 1/2"ø	9		
PlastigamaWavin Unionesdetubería SanitariaZNoUsarCodo(Nested)		2		
PlastigamaWavin Unionesdetubería SanitariaZNoUsarReductorExc(Nested)		4		
PlastigamaWavin Unionesdetubería SanitariaZNoUsarSifón(Nested)		2		
Grand total: 217		<u> </u>		

Metros lineales de tubería eléctrica

Figura 5.10

Tabla de planificación de medición de tubería eléctrica.

<1.0 Circuitos>					
Α	В	С			
Panel	Circuit Number	Length			
	1.0				
Modificable, 127 V/220 V, Single Phase, 3 Wires	10	9.57 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	11	9.68 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	12	7.26 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	13	7.08 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	14	8.53 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	15	4.14 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	18	10.43 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	16	19.60 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	17	17.06 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	19	15.18 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	23	18.19 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	24	21.69 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	25	21.00 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	26	10.11 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	28	10.76 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	30	14.52 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	27	2.34 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	29	6.16 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	1	9.80 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	2	5.03 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	3	2.02 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	4	3.58 m			
Modificable, 127 V/220 V, Single Phase, 3 Wires	5	28.31 m			

Modificable, 127 V/220 V, Single Phase, 3 Wires	6	28.03 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	7	28.89 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	9	39.20 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	8	15.89 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	20,21	11.39 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	22,23	7.62 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	24,25	16.61 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	28,29	13.10 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	26,27	12.77 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	19	19.83 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	20	23.30 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	21	11.74 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	22	9.57 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	1	12.82 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	2	4.05 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	3	3.75 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	4	12.49 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	5	10.15 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	6	15.74 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	7	14.07 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	8	48.31 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	31,32	5.45 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	11,12	10.23 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	9,10	13.09 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	13,14	5.25 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	15,16	12.35 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	17,18	20.32 m
Modificable, 127 V/220 V, Single Phase, 3 Wires	30	15.88 m
Modificable, 127 V/220 V, Single Phase, 3 Wires: 51		703.95 m

Tomacorrientes

Figura 5.11

Tabla de planificación de Tomacorrientes.

<2.0 Componentes Electricos>						
A B C						
Type	Count					
Contacto 110V	ontacto 110V Contacto 110v 1F 55					
Contacto 220V	Contacto 220v 2F	11				

Luminarias

Figura 5.12

Tabla de planificación de lluminación.

<3.0 Iluminacion>					
A B C					
Family	Count				
Arbotante basada en cara	16				
Spot empotrado basado en cara	Spot empotrado basado en cara	68			

Interruptores

Figura 5.13

Tabla de planificación de Interruptores.

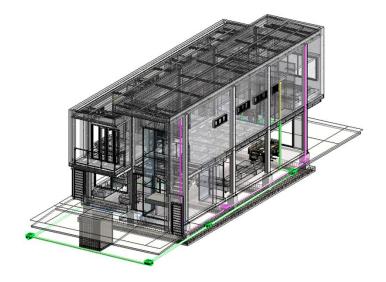
<4.0 Interruptores>						
A B C						
Family Type		Count				
Apagador 2 vías	Apagador 2 vías	11				
Apagador 3 vías (Escalera)	Apagador 3 vías (Escalera)	26				

5.4 Valoración integral del costo del proyecto

El costo total del proyecto, incluida todas las instalaciones de \$87.192,37. El proyecto tiene un área de construcción de 245 m2, por lo que el precio unitario x m2 de construcción es:

$$\frac{\$}{\text{m}^2} = \frac{\$87.192,37}{245 \text{ m}^2} = 356 \frac{\$}{\text{m}^2}$$

Un costo de 356 dólares por m2 de construcción, lo que se considera un precio estándar para una vivienda con las características similares.


5.5 Colisiones del modelado y cronograma de obra

Para realizar el cronograma de obra y revisar las colisiones se usó el programa de Autodesk "Navisworks" debido a las ventajas que ofrece en la aplicación de BIM, desde detectar colisiones en el modelo hasta realizar un cronograma que se enlaza a otro programa de planificación para optimizar la construcción de una manera eficiente.

El modelado de las ingenierías se lo presenta en la Figura 5.13:

Figura 5.13

Modelado en Revit.

El programa Navisworks nos da información acerca de las posibles colisiones que existan en el modelado en Revit que pueden ocasionar problemas en obra y costos excesivos.

En la Figura 5.1 y 5.2 se muestra lo modelado en Naviswork para todas las ingenierías.

Figura 5.12

Modelado Estructural en Navisworks

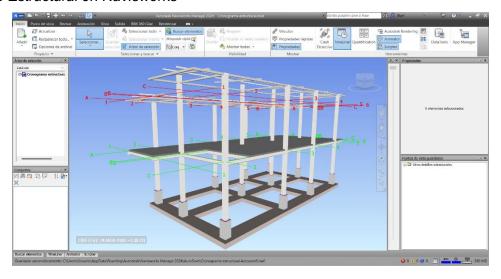
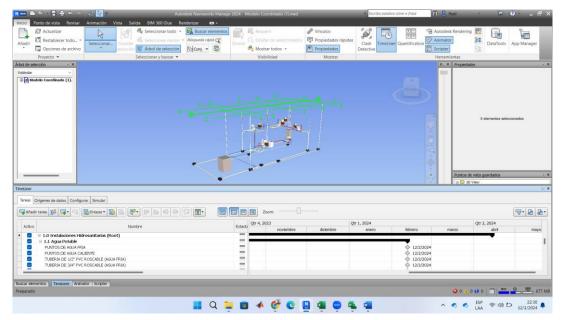



Figura 5.13

Modelado de Instalaciones en Navisworks

Al terminar el análisis de colisiones y la planificación realizada en Navisworks, se corrige en el modelado Revit y se lo exporta al software de cronogramas para realizar cambios y perfeccionar el mismo hasta dar con un cronograma definitivo. El cronograma se encuentra en la parte de ANEXOS: CRONOGRAMA DE OBRA.

CAPÍTULO 6

6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

De acuerdo con el diseño del proyecto, se concluye lo siguiente:

- La arquitectura de la vivienda es un factor fundamental al momento de realizar el diseño de las ingenierías, influye tanto en los costos como en la fase constructiva por lo que se obtuvo un presupuesto general de "".
- El uso de nervios estructurales (Tubos HSS de 100x100x3) en la ingeniería estructural de la vivienda es un elemento necesario para dotar de una mayor rigidez y mejor distribución de esfuerzos a la estructura, lo que ayuda a cumplir los criterios establecidos por la NEC 2015 para el análisis sísmico, como el cumplimiento de los límites de deriva dando un 1.7% siendo el máximo 2%.
- La estructura es sismorresistente cumpliendo los criterios de un sistema IMF, por los resultados dados en la relación de demanda/capacidad de cada elemento con resultados menores al 75%, así asegurando la falla por fluencia.
- Un estudio de suelos en suelos similares con las características del terreno donde se encuentra ubicada la vivienda es necesaria por la distribución de estratos dentro del mismo y ayuda a realizar una ingeniería estructural eficiente.
- Se realizo el diseño de instalaciones de agua potable, tanto fría como caliente, por lo que se instalaron generadores de agua caliente y por ende puntos eléctricos.
- Los aparatos domóticos generan un aumento de gasto en los rubros de instalación eléctrica, esto debido al aumento de puntos eléctricos.
- Se colocaron "Alexas" en cada cuarto de la vivienda por los requerimientos del cliente, también cámaras y termostatos para el aire acondicionados

- Las tuberías de las instalaciones de agua potable tienen diámetros de ½", ¾" y 1" respectivamente.
- Las bajantes y colectores horizontales de las instalaciones de agua servida tienen diámetros de 110mm.
- Las bajantes de las instalaciones de agua lluvia tienen diámetros de 75mm.
- Las tuberías del sistema de ventilación primaria tienen diámetros de 50mm.
- Se determino que, para abastecer la vivienda de dos plantas de agua potable, es necesario una tubería de 1" para la acometida, una cisterna con dimensiones
 1.3mx1.3mx1.7m, y una bomba PK-100 de 1.5 HP.
- El diseño hidrosanitario y eléctrico se basaron en los criterios de diseño establecidos por la normativa hidrosanitaria y eléctrica local respectivamente.
- Se elaboraron los planos correspondientes al diseño estructural, hidrosanitario y eléctrico obtenido respectivamente mediante el software de REVIT.
- Se obtuvo un presupuesto referencial de la obra de \$87.192,37 y un tiempo de duración de 109 días. Los rubros correspondientes fueron desglosados mediante el análisis de precios unitarios y la cuantificación de los materiales correspondientes.
- Se implemento de manera eficiente la metodología BIM para optimizar costos y tiempos durante la fase de diseño del proyecto.
- El uso de BIM dentro de cualquier proyecto ingenieril es imprescindible por todos los beneficios que provee, por medio del cual se logra mayor productividad y eficiente durante la ejecución de un proyecto.
- La instalación de aparatos domóticos permite un ahorro de energía del 15%.
- La red Wi-Fi permite tener varias opciones de objetos domóticos debido a ser la red más usada en el mundo.

6.2 Recomendaciones

- Se recomienda dar un mantenimiento rutinario a las estructuras metálicas debido al alto nivel freático en el suelo del terreno y su ubicación, existe posibilidades de corrosión.
- Se recomienda trabajar con 2 bombas con una capacidad del 70% cada una de manera no simultanea para tener un respaldo en caso de falla o mantenimiento.
- Realizar el diseño de las instalaciones de agua servida considerando que la tubería trabaja al 75% de su capacidad para optimizar recursos, ya que se hubiese obtenido pendientes menores.
- Realizar la programación de las instalaciones domóticas en un software especializado para la continuación del proyecto multidisciplinario en un futuro.
- Trabajar en una nube colaborativa que permita realizar el modelado y tener todas las ingenierías en un solo archivo.
- Clasificar correctamente los elementos durante el modelado para una más fácil cuantificación de materiales.
- Se recomienda utilizar programas que identifiquen colisiones en los modelados como lo es "Navisworks" para evitar la cuantificación de materiales extras y errores al inicio y durante la obra.
- Realizar un presupuesto referencial para el plan de mitigación de la evaluación de impacto ambiental.

Bibliografía en caso de utilizar norma APA:

- Mella, C. (2023) La inseguridad en Ecuador Escala a niveles históricos y se impone como Prioridad del próximo gobierno, El País. Disponible de: https://elpais.com/internacional/2023-07-10/la-inseguridad-en-ecuador-escala-a-niveles-historicos-y-se-impone-como-prioridad-del-proximo-gobierno.html
- Belencervantes. (2022, 28 diciembre). Una Navidad más segura en Samborondón.

 Primicias. https://www.primicias.ec/noticias/patrocinado/una-navidad-mas-segura-en-samborondon/
- NEC-HM. (2015). *Estructuras de Hormigón Armado*. Disponible de: https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/8.-NEC-SE-HM-Hormigon-Armado.pdf.
- Cruz, C. (2017). Diseño de una residencia universitaria de estructura metálica de 6 niveles en el campus Gustavo Galindo de la ESPOL. Escuela Superior Politécnica del Litoral.
- AISC. (2010). Steel Construction Manual, 14th Edition. AISC 360-10.
- Quinde Martínez, P. y Reinoso Angulo, E. Estudio de Peligro Sísmico de Ecuador y propuesta de espectros de diseño para la ciudad de cuenca, Ingeniería sísmica.

 De: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-092X2016000100001.
- Informe Sísmico Especial n. 13 2016 Instituto Geofísico EPN IGEPN. De: https://www.igepn.edu.ec/servicios/noticias/1317-informe-sismico-especial-n-13-2016.

- BIM FORUM CHILE. (2017). *Guía inicial para implementar BIM en las organizaciones*.

 De: https://www.bimforum.cl/wp-content/uploads/2017/07/Gu%C3%ADa-inicial-para-implementar-BIM-en-las-organizaciones-versi%C3%B3n-imprenta.pdf
- NEC-SE-DS. (2015). *Peligro sísmico. Diseño sismoresistente*. Disponible de:

 https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/2.-NEC-SE-DS-Peligro-Sismico-parte-1.pdf
- Mendez, S. (2019). Guía para la implementación de herramientas BIM en el proceso de control de un proyecto. De: http://hdl.handle.net/1992/44077.
- Dimensiones BIM (2021) ORFISA IKC. De: https://www.orfisaikc.com/dimensiones-bim/.
- Ormaza, J. y Tinoco, Y. (2021). Diseño Estructural de una edificación de 4 pisos ubicado en Manta, implementando la Metodología BIM. Escuela Superior Politécnica del Litoral.
- Suarez, I. Vidal, L. y Levya, C. (2019). Ventajas para la implementación de la metodología BIM utilizando Revit en el desarrollo de proyectos de edificaciones. Serie Científica de la Universidad de las Ciencias Informáticas.
- NEC-SE-GM. (2015). *Geotécnia y Cimentaciones*. De: https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/7.-NEC-SE-GC-Geotecnia-y-Cimentaciones.pdf.
- Minami, H. Fabila, A. y Izquierdo, M. (2013). *La Escala de Likert en la evaluación docente:*acercamiento a sus características y principios metodológicos. De:

 https://ri.ujat.mx/jspui/bitstream/20.500.12107/2706/1/-589-494-A.pdf.
- Anilema, B. (2017). Análisis estructural y económico comparativo entre sistemas constructivos de hormigón armado, acero y mixto para edificaciones de 3 y 5 pisos con luces de 4 y 6 metros. Universidad Nacional De Chimborazo.

- Aguirre, C. Figueroa, A. (2008). Análisis técnico-económico entre proyectos de construcción de estructura metálica y hormigón armado para edificios. De: https://bibdigital.epn.edu.ec/bitstream/15000/607/1/CD-1570%282008-06-30-03-17-36%29.pdf
- Jibrin, D. Varol, A. (2019). Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless

 Technologies Used in Home Automation. De:

 <a href="http://www.kresttechnology.com/krest-academic-projects/krest-mtech-projects/ECE/M-TECH%20EMBEDDED%20%202019-20/2019%20IEEE%20BASE%20PAPERS/37.Comparison%20of%20Zigbee,%20Z-Wave,%20Wi-Fi,%20and.pdf.
- Tito, T. (2020). La vulneración del derecho al buen vivir a un ambiente sano, de los habitantes de la parroquia Tarqui del cantón guayaquil, por los efectos ambientales causados por la explotación de canteras. De: http://repositorio.ulvr.edu.ec/bitstream/44000/4167/1/T-ULVR-3482.pdf.
- Fisher, J. y Lawrence, K. (2006). Design Guide 1: Base Plate and Anchor Rod Design (Second Edition). AISC.
- Nico. (2021, 17 mayo). Sistemas domóticos: tipos y estándares. Electrónica Edimar. https://edimar.com/sistemas-domoticos-tipos-y-estandares/
- Primicias. (2023, 16 junio). BIM, la metodología para construcciones más Eficientes.

 https://www.primicias.ec/nota_comercial/hablemosde/construccion/innovacion/bim-construcciones-eficientes/
- Sistemas constructivos ventajas y desventajas, debido al desarrollo. (s. f.).

 https://www.eumed.net/cursecon/ecolat/ec/2017/sistemas-constructivos-ecuador.html

- Bticino. (s. f.). Artículos técnicos Proyecto domótico: Instalación de un sistema BUS. https://www.bticino.es/novedades/ArticulosTecnicos_news.php?id=1
- De Arquitectura, B. (s. f.). Sistemas de abastecimiento de agua para instalaciones sanitarias interiores. Noticias de Arquitectura Buscador de Arquitectura. https://noticias.arq.com.mx/Detalles/15703.html#:~:text=Sistema%20indirecto%2 0de%20agua%20(por%20gravedad)&text=En%20una%20variante%2C%20el%2 0agua,los%20distintos%20puntos%20por%20gravedad.
- Ruiz, G. (2021, 11 octubre). Tipos de sistemas domóticos para viviendas. PENTADOM Edificios Inteligentes. https://pentadom.com/sistemas-domoticos-para-viviendas/
- Ruiz, G. (2022, 30 marzo). Domótica inalámbrica: características y ventajas.

 PENTADOM Edificios Inteligentes. https://pentadom.com/domotica-inalambrica/
- Sistemas domóticos existentes, tipos y estándares. (s. f.). Domótica Sistemas. https://domoticasistemas.com/tienda/tutoriales/1_sistemas-existentes-tipos-y-estandares.html
- Tipos de instalaciones domóticas | SONIMALAGA. (2021, 26 mayo). SONIMALAGA. https://www.sonimalaga.com/blog/tipos-de-instalaciones-domoticas/
- Unidad IV Sistema indirecto de abastecimiento de agua. (s. f.). PPT.

 https://es.slideshare.net/dragonsilvers/unidad-iv-sistema-indirecto-de-abastecimiento-de-agua

Libros

Gonzales (2011). Instalaciones domóticas (1ra ed.) España

MA: McGraw

Carmona (2010). Instalaciones hidrosanitarias y de gas para edificaciones (6ta ed.)

MA: EcoEdiciones

NORMA ECUATORIANA DE LA CONSTRUCCIÓN NEC-11 CAPÍTULO 16 NORMA HIDROSANITARIA NHE AGUA

PLANOS Y ANEXOS

CALCULOS: DISEÑO ESTRUCTURAL

					viga secui	
			_	Entre	Eje A-B' y 2	2-3
	Materiales				Diseño	
Α	36	ksi		L viga	3,30	m
f'c	210	kg/cm2		# Vigas	3	u
Dato	s Arquitectó	nicos		at	1,46	m
L viga	3,30	m			ОК	
L perp	5,83	m		W viga	5,48	t
				Wlineal	1,66	t/m
CM	0,67	t/m2		Mu	2,21	t-m
Cv	0,20	t/m2		Datos de	e la viga se	cundaria
fy acero	2530	kg/cm2		bf	9,10	SISM
Cu	1,12	t/m2	Ī	tf	0,80	cm
E	2100000	kg/cm2	Ī	h	18	SISM
cte	28,81		Ī	tw	0,53	cm
cf1	8,64			Cb	1,00	
cf2	10,95		Ī	Α	23,25	cm2
cw1	70,59		Ī	Peso	18,25	kg/m
cw2	108,33		l	lx	1272,45	cm4
Jc	4,00	cm4	Ī	ly	100,68	cm4
ho	17,20	cm	Ī	Sx	141,38	cm3
rts	2,47	cm	Ī	Sy	22,13	cm3
cte2	0,001645			Zx	160,85	cm3
Lr	379		Ī	Zy	34,28	cm3
	•		•	rx	7,40	cm
				ry	2,08	cm

		1			
	Verificació	n			
Mn	366243	kg-cm			
Мр	3,66	t-m			
Lp	106	cm			
Apoyo	3	u			
Lb	82,50	cm			
M resist	3,66	t-m			
D/C	0,60				
Cur	nple dema	nda			
Imin	678,11	cm4			
Cumple con deflexiones					

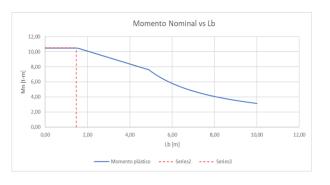
			D	iseño de viga princi	pal cargado	ora					
				Entre Eje 2-3	3 y B'						
Vi	ga principal			Verific	ación		Dise	eño a corte			
As	36	ksi		Мр	1048594	kg-cm	h/tw	40,9	91		
Lt	5,83	m		Wip	10,49	t-m	a	583,	00		
#cargas	3,00	u		Lp	153	cm	Kv	5,0	0		
L2	3,65	m		Apoyo	3	u	Cv	1,0	0		
Pi	5,77	ton		Lb	146	cm	Vn	25,01	t		
Tipo	EN	ИP		M resist	10,49	t-m	Vu	7,48	t		
Mu	8,00	t-m		D/C	0,76		Cum	ple cortante	?		
ФМр	10,49	t-m		Cumple d	emanda						
D/C	0,	76		L software	1,10	cm					
Apoyos	C	ОК		L límite	2,43	cm					
Corte	0	lk		Cumple con deflexiones							
Datos d	de la viga principal		Datos de la viga pri								
bf	14	SISM									
tf	1,02	cm									
h	27	SISM									
tw	0,66	cm									
As	45,90	cm2									
Peso	36,10	kg/m									
lx	5790,00	cm4									
ly	420,00	cm4									

cm4 cm3

cm3

cm

cm cm

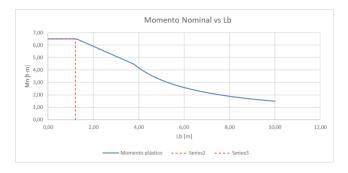

428,89 62,22

460,54 95,67 11,23

3,02 153

ry Lp

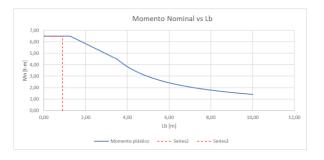

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ФMn (t-m)	ΦMn (t-m)
0,00	0	0	26338572729326400	1,00	26338572729327300	10,49	10,49
0,10	10	8	2633857	1,00	2634737	10,49	10,49
0,20	20	31	658464	1,00	659343	10,49	10,49
0,30	30	71	292651	1,00	293529	10,49	10,49
0,40	40	126	164616	1,01	165493	10,49	10,49
0,50	50	197	105354	1,01	106230	10,49	10,49
0,60	60	283	73163	1,01	74037	10,49	10,49
0,70	70	385	53752	1,02	54625	10,49	10,49
0,80	80	503	41154	1,02	42024	10,49	10,49
0,90	90	637	32517	1,03	33385	10,49	10,49
1,00	100	786	26339	1,03	27204	10,49	10,49
1,10	110	951	21767	1,04	22630	10,49	10,49
1,20	120	1132	18291	1,05	19150	10,49	10,49
1,30	130	1329	15585	1,05	16441	10,49	10,49
1,40	140	1541	13438	1,06	14291	10,49	10,49
1,50	150	1769	11706	1,07	12555	10,49	10,49
1,60	160	2012	10289	1,08	11133	10,43	10,43
1,70	170	2272	9114	1,09	9955	10,34	10,34
1,80	180	2547	8129	1,10	8966	10,26	10,26
1,90	190	2838	7296	1,11	8128	10,17	10,17
2,00	200	3144	6585	1,13	7412	10,09	10,09
2,10	210	3467	5972	1,14	6795	10,00	10,00
2,20	220	3805	5442	1,15	6260	9,91	9,91
2,30	230	4159	4979	1,16	5792	9,83	9,83
2,40	240	4528	4573	1,18	5381	9,74	9,74
2,50	250	4913	4214	1,19	5017	9,66	9,66
2,60	260	5314	3896	1,20	4694	9,57	9,57
2,70	270	5731	3613	1,22	4406	9,49	9,49
2,80	280	6163	3360	1,23	4147	9,40	9,40
2,90	290	6611	3132	1,25	3914	9,31	9,31
3,00	300	7075	2927	1,27	3703	9,23	9,23
3,10	310	7555	2741	1,28	3512	9,14	9,14
3,20	320	8050	2572	1,30	3338	9,06	9,06
3,30	330	8561	2419	1,31	3179	8,97	8,97
3,40	340	9087	2278	1,33	3033	8,89	8,89
3,50	350	9630	2150	1,35	2899	8,80	8,80
3,60	360	10188	2032	1,37	2776	8,71	8,71
3,70	370	10762	1924	1,38	2662	8,63	8,63
3,80	380	11352	1824	1,40	2557	8,54	8,54
3,90	390	11957	1732	1,42	2459	8,46	8,46
4,00	400	12578	1646	1,44	2368	8,37	8,37



Materiales						
Α	36	ksi				
f'c	210	kg/cm2				
	Datos Arq					
Lv	3,65	m				
Lt	5,83	m				
CM	0,67	t/m2				
Cv	0,20	t/m2				
fy acero	2530	kg/cm2				
Cu	1,12	t/m2				
E	2100000	kg/cm2				
cte	28,81					
cf1	8,64					
cf2	10,95					
cw1	70,59					
cw2	108,33					
Jc	7,22	cm4				
ho	21,08	cm				
rts	2,93	cm				
cte2	0,001358					
Lr	425					

Viga principal						
As	36	ksi				
Lt	5,83	m				
#cargas	3,00	u				
L2	0,00	m				
Pi	3,03	ton				
Tipo	EMP)				
Mu	4,55	t-m				
Mresist	6,49	t-m				
D/C	0,70					
Apoyos	OK					
Corte	Ok					
Datos de la viga principal: IPE 220						
bf	11	SISM				
tf	0,92	cm				
h	22	SISM				
tw	0,59	cm				
As	33,40	cm2				
Peso	26,22	kg/m				
lx	2772,00	cm4				
ly	205,00	cm4				
Sx	252,00	cm3				
Sy	37,27	cm3				
Zx	285,00	cm3				
Zy	58,10	cm3				
rx	9,11	cm				
ry	2,48	cm				
Lp	126	cm				

					rx	9	,11	cm
					ry	2	,48	cm
					Lp	1	26	cm
Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fc	r	ΦMn (t-m)	ΦMn (t-m)
0,00	0	0	12680022337287800	1,00	126800223	37289100	6,49	6,49
0,10	10	16	1268002	1,00	1269	330	6,49	6,49
0,20	20	65	317001	1,00	3183	326	6,49	6,49
0,30	30	147	140889	1,01	1422	211	6,49	6,49
0,40	40	261	79250	1,02	805	67	6,49	6,49
0,50	50	408	50720	1,03	520	31	6,49	6,49
0,60	60	588	35222	1,04	365	26	6,49	6,49
0,70	70	800	25878	1,05	271	73	6,49	6,49
0,80	80	1045	19813	1,06	210	99	6,49	6,49
0,90	90	1323	15654	1,08	169	30	6,49	6,49
1,00	100	1633	12680	1,10	139	45	6,49	6,49
1,10	110	1976	10479	1,12	117	32	6,49	6,49
1,20	120	2351	8806	1,14	100-		6,49	6,49
1,30	130	2760	7503	1,16	873	31	6,45	6,45
1,40	140	3200	6469	1,19	768	34	6,37	6,37
1,50	150	3674	5636	1,21	683	36	6,29	6,29
1,60	160	4180	4953	1,24	613	19	6,21	6,21
1,70	170	4719	4388	1,27	555	i9	6,13	6,13
1,80	180	5291	3914	1,30	507	1	6,05	6,05
1,90	190	5895	3512	1,33	465	55	5,97	5,97
2,00	200	6532	3170	1,36	429	18	5,89	5,89
2,10	210	7201	2875	1,39	398	38	5,81	5,81
2,20	220	7903	2620	1,42	371	.8	5,73	5,73
2,30	230	8638	2397	1,45	348	30	5,65	5,65
2,40	240	9405	2201	1,49	327	0	5,57	5,57
2,50	250	10206	2029	1,52	308	33	5,49	5,49
2,60	260	11038	1876	1,55	291	.6	5,41	5,41
2,70	270	11904	1739	1,59	276	55	5,33	5,33
2,80	280	12802	1617	1,63	262	29	5,25	5,25
2,90	290	13733	1508	1,66	250)6	5,17	5,17
3,00	300	14696	1409	1,70	239	13	5,09	5,09
3,10	310	15692	1319	1,74	229	90	5,01	5,01
3,20	320	16721	1238	1,77	219	16	4,93	4,93
3,30	330	17782	1164	1,81	210	19	4,85	4,85
3,40	340	18876	1097	1,85	202	29	4,77	4,77
3,50	350	20003	1035	1,89	195	55	4,69	4,69
3,60	360	21162	978	1,93	188	36	4,61	4,61
3,70	370	22354	926	1,97	182	12	4,53	4,53
3,80	380	23579	878	2,01	176	52	4,44	4,44
3,90	390	24836	834	2,05	170	16	4,30	4,30
4,00	400	26126	793	2,09	165		4,17	4,17


	Diseño de viga secundaria							
			_	Entre	Eje A-B' y	3-4		
	Materiales				Diseño			
Α	36	ksi		Lv	3,65	m		
f'c	210	kg/cm2		# Vigas	3	u		
Dato	s Arquitecto	nicos		at	1,08	m		
Lv	3,65	m			Ok			
Lt	4,30	m		W viga	4,50	t		
				Wlineal	1,23	t/m		
CM	0,67	t/m2		Mu	1,60	t-m		
Cv	0,20	t/m2		Datos de la viga secundaria				
fy acero	2530	kg/cm2		bf	8,20	SISM		
Cu	1,12	t/m2		tf	0,74	cm		
E	2100000	kg/cm2		h	16	SISM		
cte	28,81			tw	0,50	cm		
cf1	8,64			Cb	1,00			
cf2	10,95			Α	19,40	cm2		
cw1	70,59			Peso	15,23	kg/m		
cw2	108,33		İ	lx	834,63	cm4		
Jc	2,88	cm4		ly	68,15	cm4		
ho	15,26	cm		Sx	104,33	cm3		
rts	2,23	cm	ĺ	Sy	16,62	cm3		
cte2	0,001810			Zx	118,95	cm3		
Lr	352		ĺ	Zy	25,79	cm3		
				rx	6,56	cm		
				ry	1,87	cm		

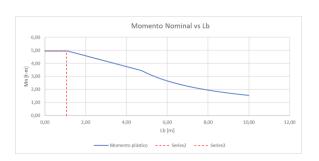
ı	/erificaciór	1			
ФМр	270838	kg-cm			
Ψινιρ	2,71	t-m			
Lp	95	cm			
Apoyo	3	u			
Lb	91,25	cm			
M resist	2,71	t-m			
D/C	0,59				
Cumple demanda					
Imin	679,91	cm4			
Cumple con deflexiones					

	Viga prin	r			
As	36	ksi			
Lt	4,30	m			
#cargas	3,00	u			
L2	3,65	m			
Pi	4,50	ton			
Tipo		EMP			
Mu	4,80	t-m			
ФМр	6,49	t-m			
D/C		0,74			
Apoyos		ОК			
Corte	Ok				
Datos de la viga principal					
bf	11	SISM			
tf	0,92	cm			
h	22	SISM			
tw	0,59	cm			
As	33,40	cm2			
Peso	26,20	kg/m			
lx	2770,00	cm4			
ly	205,00	cm4			
Sx	251,82	cm3			
Sy	37,27	cm3			
Zx	285,00	cm3			
Zy	57,41	cm3			
rx	9,11	cm			
ry	2,48	cm			
Lp	126	cm			

Disaño de viga principal carandora								
	Diseño de viga principal cargadora							
Entre Eje 3-4 y B'								
	Verificad	ión	Di	seño a corte				
ФМр	648911	kg-cm	h/tw	37,2	29			
Ψίνιρ	6,49	t-m	a	430,	00			
Lp	126	cm	Kv	5,00				
Apoyo	3	u	Cv	1,00				
Lb	90	cm	Vn	18,05	t			
M resist	6,49	t-m	Vu	4,95	t			
D/C	0,74		Cur	nple cortante	2			
	Cumple der	manda						
L software	0,50	cm						
L límite	1,79	cm]					
Cun	Cumple con deflexiones							

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ΦMn (t-m)	ФMn (t-m)
0,00	0	0	10320193932558500	1,00	10320193932560000	6,49	6,49
0,10	10	20	1032019	1,00	1033480	6,49	6,49
0,20	20	80	258005	1,01	259462	6,49	6,49
0,30	30	181	114669	1,01	116121	6,49	6,49
0,40	40	321	64501	1,02	65947	6,49	6,49
0,50	50	502	41281	1,03	42717	6,49	6,49
0,60	60	722	28667	1,05	30093	6,49	6,49
0,70	70	983	21062	1,07	22476	6,49	6,49
0,80	80	1284	16125	1,09	17526	6,49	6,49
0,90	90	1625	12741	1,11	14127	6,49	6,49
1,00	100	2006	10320	1,13	11691	6,49	6,49
1,10	110	2428	8529	1,16	9883	6,49	6,49
1,20	120	2889	7167	1,19	8504	6,49	6,49
1,30	130	3391	6107	1,22	7426	6,45	6,45
1,40	140	3932	5265	1,25	6566	6,36	6,36
1,50	150	4514	4587	1,28	5869	6,27	6,27
1,60	160	5136	4031	1,31	5295	6,18	6,18
1,70	170	5798	3571	1,35	4816	6,09	6,09
1,80	180	6500	3185	1,38	4411	6,00	6,00
1,90	190	7243	2859	1,42	4066	5,91	5,91
2,00	200	8025	2580	1,46	3768	5,82	5,82
2,10	210	8848	2340	1,50	3510	5,73	5,73
2,20	220	9710	2132	1,54	3283	5,64	5,64
2,30	230	10613	1951	1,58	3084	5,55	5,55
2,40	240	11556	1792	1,62	2907	5,46	5,46
2,50	250	12539	1651	1,66	2748	5,37	5,37
2,60	260	13562	1527	1,71	2606	5,29	5,29
2,70	270	14626	1416	1,75	2478	5,20	5,20
2,80	280	15729	1316	1,79	2362	5,11	5,11
2,90	290	16873	1227	1,84	2257	5,02	5,02
3,00	300	18056	1147	1,88	2160	4,93	4,93
3,10	310	19280	1074	1,93	2072	4,84	4,84
3,20	320	20544	1008	1,98	1990	4,75	4,75
3,30	330	21848	948	2,02	1915	4,66	4,66
3,40	340	23193	893	2,07	1846	4,57	4,57
3,50	350	24577	842	2,11	1781	4,48	4,48
3,60	360	26001	796	2,16	1721	4,33	4,33
3,70	370	27466	754	2,21	1665	4,19	4,19
3,80	380	28971	715	2,26	1612	4,06	4,06
3,90	390	30515	679	2,30	1563	3,94	3,94
4,00	400	32100	645	2,35	1517	3,82	3,82

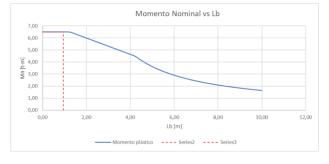
Materiales						
Α	36	ksi				
f'c	210	kg/cm2				
	Datos Arq					
Lv	3,65	m				
Lt	4,30	m				
CM	0,67	t/m2				
Cv	0,20	t/m2				
fy acero	2530	kg/cm2				
Cu	1,12	t/m2				
E	2100000	kg/cm2				
cte	28,81					
cf1	8,64					
cf2	10,95					
cw1	70,59					
cw2	108,33					
Jc	5,26	cm4				
ho	19,15	cm				
rts	2,65	cm				
cte2	0,002635					
Lr	477					


cm cm

Viga principal lateral								
Eje C	entre 3-4							
	Verificación			Diseño a corte				
ФМр	493855	kg-cm	h/tw	35,71				
Ψίνιρ	4,94	t-m	a	430,00				
Lp	113	cm	Kv	5,00				
Apoyo	3	u	Cv	1,00				
Lb	108	cm	Vn	15,56	t			
M resist	4,94	t-m	Vu	2,68	t			
D/C	0,54		С	umple cortan	te			
Cu	Cumple demanda							
L software	0,37	cm						
L límite	1,79	cm						
Cump	le con deflex	iones						

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ФМn (t-m)	ФМn (t-m)
0,00	0	0	14511222058762900	1,00	14511222058765000	4,94	4,94
0,10	10	14	1451122	1,00	1453249	4,94	4,94
0,20	20	57	362781	1,01	364902	4,94	4,94
0,30	30	128	161236	1,01	163350	4,94	4,94
0,40	40	228	90695	1,02	92799	4,94	4,94
0,50	50	357	58045	1,04	60135	4,94	4,94
0,60	60	514	40309	1,05	42384	4,94	4,94
0,70	70	699	29615	1,07	31671	4,94	4,94
0,80	80	913	22674	1,09	24710	4,94	4,94
0,90	90	1156	17915	1,11	19930	4,94	4,94
1,00	100	1427	14511	1,14	16503	4,94	4,94
1,10	110	1726	11993	1,16	13959	4,94	4,94
1,20	120	2055	10077	1,19	12018	4,91	4,91
1,30	130	2411	8587	1,22	10501	4,87	4,87
1,40	140	2797	7404	1,25	9291	4,83	4,83
1,50	150	3210	6449	1,29	8309	4,79	4,79
1,60	160	3653	5668	1,32	7500	4,74	4,74
1,70	170	4124	5021	1,36	6825	4,70	4,70
1,80	180	4623	4479	1,40	6255	4,66	4,66
1,90	190	5151	4020	1,43	5768	4,62	4,62
2,00	200	5707	3628	1,47	5348	4,58	4,58
2,10	210	6292	3291	1,51	4983	4,54	4,54
2,20	220	6906	2998	1,56	4664	4,50	4,50
2,30	230	7548	2743	1,60	4382	4,46	4,46
2,40	240	8219	2519	1,64	4131	4,41	4,41
2,50	250	8918	2322	1,68	3908	4,37	4,37
2,60	260	9645	2147	1,73	3707	4,33	4,33
2,70	270	10402	1991	1,77	3526	4,29	4,29
2,80	280	11186	1851	1,82	3362	4,25	4,25
2,90	290	12000	1725	1,86	3213	4,21	4,21
3,00	300	12842	1612	1,91	3076	4,17	4,17
3,10	310	13712	1510	1,95	2951	4,12	4,12
3,20	320	14611	1417	2,00	2835	4,08	4,08
3,30	330	15538	1333	2,05	2729	4,04	4,04
3,40	340	16494	1255	2,10	2630	4,00	4,00
3,50	350	17479	1185	2,14	2539	3,96	3,96
3,60	360	18492	1120	2,19	2453	3,92	3,92
3,70	370	19533	1060	2,24	2374	3,88	3,88
3,80	380	20604	1005	2,29	2299	3,84	3,84
3,90	390	21702	954	2,34	2229	3,79	3,79
4,00	400	22829	907	2,39	2164	3,75	3,75

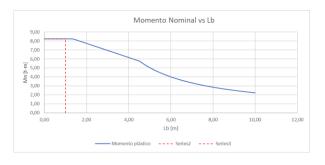
ry


Lp

	Diseño de viga secundaria								
Entre Eje A-B y 4-5									
	Materiales			Cálculos		1	/erificació	1	
Α	36	ksi	Lv	3,65	m	ФМр	270838	kg-cm	
f'c	210	kg/cm2	# Vigas	3	u	ψινιρ	2,71	t-m	
	Datos Arq		at	1,15	m	Lp	95	cm	
Lv	3,65	m		Ok		Apoyo	3	u	
Lt	4,58	m	W viga	4,76	t	Lb	91,25	cm	
			Wlineal	1,31	t/m	M resist	2,71	t-m	
CM	0,67	t/m2	Mu	1,71	t-m	D/C	0,63		
Cv	0,20	t/m2	Datos d	e la viga se	cundaria	Cun	nple dema	nda	
fy acero	2530	kg/cm2	bf	8,20	SISM	Imin	720,83	cm4	
Cu	1,12	t/m2	tf	0,74	cm	Cumpl	e con defle	exiones	
Е	2100000	kg/cm2	h	16	SISM				
cte	28,81		tw	0,50	cm				
cf1	8,64		Cb	1,00					
cf2	10,95		Α	19,40	cm2				
cw1	70,59		Peso	15,23	kg/m				
cw2	108,33		lx	834,63	cm4				
Jc	7,22	cm4	ly	68,15	cm4				
ho	21,08	cm	Sx	104,33	cm3				
rts	2,93	cm	Sy	16,62	cm3				
cte2	0,001359		Zx	118,95	cm3				
Lr	425		Zy	25,79	cm3				
			rx	6,56	cm				
			ry	1,87	cm				

			Diseño	de viga principa	al cargadora		
				Entre Eje 4-5	у В		
	Viga principal			Verificación		D	iseño a corte
As	36	ksi	ФМр	648911	kg-cm	h/tw	37,29
Lt	4,58	m	Фр	. 6,49 t-m		a	458,00
#cargas	3,00	u	Lp	126	cm	Kv	5,00
L2	3,65	m	Apoyo	3	u	Cv	1,00
Pi	4,76	ton	Lb	115	cm	Vn	18,05
Tipo	EMP		M resist	6,49	t-m	Vu	5,79
Mu	5,90	t-m	D/C	0,91		Cu	mple cortante
Mresist	6,49	t-m		umple demanda	3		
D/C	0,91		L software	0,77	cm		
Apoyos	OK		L límite	1,91	cm		
Corte	Ok		Cun	nple con deflexio	nes		
Dato:	s de la viga prin	cipal					
bf	11	SISM					
tf	0,92	cm					
h	22	SISM					
tw	0,59	cm					
As	33,40	cm2					
Peso	26,20	kg/m					
lx	2770,00	cm4					
ly	205,00	cm4					
Sx	251,82	cm3					
Sy	37,27	cm3					
Zx	285,00	cm3					
Zy	57,41	cm3					

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ФМn (t-m)	ФМn (t-m)
0,00	0	0	17765849506570400	1,00	17765849506571500	6,49	6,49
0,10	10	12	1776585	1,00	1777682	6,49	6,49
0,20	20	47	444146	1,00	445243	6,49	6,49
0,30	30	105	197398	1,01	198493	6,49	6,49
0,40	40	186	111037	1,01	112129	6,49	6,49
0,50	50	291	71063	1,02	72153	6,49	6,49
0,60	60	420	49350	1,02	50435	6,49	6,49
0,70	70	571	36257	1,03	37338	6,49	6,49
0,80	80	746	27759	1,04	28836	6,49	6,49
0,90	90	944	21933	1,05	23005	6,49	6,49
1,00	100	1165	17766	1,06	18832	6,49	6,49
1,10	110	1410	14683	1,07	15742	6,49	6,49
1,20	120	1678	12337	1,09	13390	6,49	6,49
1,30	130	1970	10512	1,10	11558	6,46	6,46
1,40	140	2284	9064	1,11	10103	6,39	6,39
1,50	150	2622	7896	1,13	8926	6,32	6,32
1,60	160	2984	6940	1,15	7962	6,26	6,26
1,70	170	3368	6147	1,16	7161	6,19	6,19
1,80	180	3776	5483	1,18	6489	6,12	6,12
1,90	190	4207	4921	1,20	5918	6,05	6,05
2,00	200	4662	4441	1,22	5429	5,99	5,99
2,10	210	5140	4029	1,24	5007	5,92	5,92
2,20	220	5641	3671	1,26	4640	5,85	5,85
2,30	230	6165	3358	1,29	4319	5,78	5,78
2,40	240	6713	3084	1,31	4035	5,71	5,71
2,50	250	7284	2843	1,33	3784	5,65	5,65
2,60	260	7878	2628	1,35	3560	5,58	5,58
2,70	270	8496	2437	1,38	3360	5,51	5,51
2,80	280	9137	2266	1,40	3180	5,44	5,44
2,90	290	9801	2112	1,43	3017	5,38	5,38
3,00	300	10489	1974	1,45	2869	5,31	5,31
3,10	310	11200	1849	1,48	2734	5,24	5,24
3,20	320	11934	1735	1,51	2611	5,17	5,17
3,30	330	12692	1631	1,53	2499	5,10	5,10
3,40	340	13473	1537	1,56	2395	5,04	5,04
3,50	350	14277	1450	1,59	2299	4,97	4,97
3,60	360	15104	1371	1,61	2211	4,90	4,90
3,70	370	15955	1298	1,64	2129	4,83	4,83
3,80	380	16829	1230	1,67	2053	4,77	4,77
3,90	390	17726	1168	1,70	1982	4,70	4,70
4,00	400	18647	1110	1,73	1916	4,63	4,63

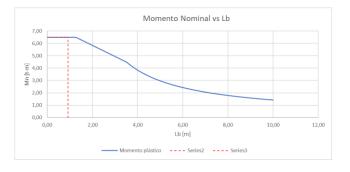


			_	Disaño d	e viga secu	ındəriə	_	
			-		Eje A-B y		_	
	Materiales		Г		Cálculos		Г	
Α	36	ksi		Lv	3,65	m	1	
f'c	210	kg/cm2		# Vigas	1	u	1	ФМ
Datos Arq				at	0,99	m	1	Lp
Lv	3,65	m			Ok		1	Apoy
Lt	1,98	m		W viga	4,12	t	1	Lb
				Wlineal	1,13	t/m	1	M res
CM	0,67	t/m2		Mu	0,63	t-m	1	D/C
Cv	0,20	t/m2		Datos de la viga secundaria				
fy acero	2530	kg/cm2		bf	8,20	SISM	1	Imi
Cu	1,12	t/m2		tf	0,74	cm	1	Cui
Е	2100000	kg/cm2		h	16	SISM	1	
cte	28,81			tw	0,50	cm	1	
cf1	8,64			Cb	1,00		1	
cf2	10,95			Α	19,40	cm2	1	
cw1	70,59			Peso	15,23	kg/m	1	
cw2	108,33			lx	834,63	cm4]	
Jc	2,88	cm4		ly	68,15	cm4		
ho	15,26	cm		Sx	104,33	cm3		
rts	2,23	cm		Sy	16,62	cm3		
cte2	0,001810			Zx	118,95	cm3]	
Lr	352			Zy	25,79	cm3		
				rx	6,56	cm		
				ry	1,87	cm		

DMp 270838 kg-r-c 2,71 t-m Lp 95 cm poyo 3 u tb 91,25 cm resist 2,71 t-m 0/C 0,23 Cumple demanda Imin 623,25 cm Cumple con deflexiones	DMp 2,71 t-n Lp 95 cm poyo 3 u Lb 91,25 cm resist 2,71 t-n D/C 0,23 Cumple demanda	71 t-n 5 cm 25 cn 71 t-n
2,71 t-m	2,71 t-n Lp 95 cm poyo 3 u Lb 91,25 cm resist 2,71 t-n D/C 0,23 Cumple demanda	5 cm u 25 cn 71 t-n
poyo 3 u Lb 91,25 cm resist 2,71 t-m D/C 0,23 Cumple demanda Imin 623,25 cm4	poyo 3 u Lb 91,25 cm resist 2,71 t-n D/C 0,23 Cumple demanda	25 cn 71 t-n
Lb 91,25 cm resist 2,71 t-m D/C 0,23 Cumple demanda Imin 623,25 cm4	Lb 91,25 cm resist 2,71 t-n D/C 0,23 Cumple demanda	25 cn 71 t-n
resist 2,71 t-m D/C 0,23 Cumple demanda Imin 623,25 cm4	resist 2,71 t-n D/C 0,23 Cumple demanda	71 t-n 23
D/C 0,23 Cumple demanda Imin 623,25 cm4	D/C 0,23 Cumple demanda	3
Cumple demanda Imin 623,25 cm4	Cumple demanda	
lmin 623,25 cm4		
		lemanda
Cumple con deflexiones	min 623,25 cm	,25 cm
	Cumple con deflexione	deflexione

			Diseño de	viga principal carg	adora			
			E	ntre Eje 5-6 y B				
	Viga principal			Verificación		D	iseño a corte	
As	36	ksi	ФМр	821954	kg-cm	h/tw	38,71	
Lt	1,98	m	ΦΙνΙΡ	8,22	t-m	а	198,00	
#cargas	1,00	u	Lp	137	cm	Kv	5,00	
L2	3,65	m	Apoyo	1	u	Cv	1,00	
Pi	4,12	ton	Lb	99	cm	Vn	20,74	t
Tipo	EMP		M resist	8,22	t-m	Vu	4,96	t
Mu	7,10	t-m	D/C	0,86		Cumple cortante		9
Mresist	8,22	t-m		Cumple demanda				
D/C	0,86		L software	0,23	cm			
Apoyos	ОК		L límite	0,83	cm			
Corte	Ok		Cur	mple con deflexion	es			
Dato	s de la viga prin	cipal						
bf	12	SISM						
tf	0,98	cm						
h	24	SISM						
tw	0,62	cm						
As	39,10	cm2						
Peso	30,70	kg/m						
lx	3890,00	cm4						
ly	284,00	cm4						
Sx	324,17	cm3						
Sy	47,33	cm3						
Zx	361,00	cm3						
Zy	74,00	cm3						
rx	9,97	cm						

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ФMn (t-m)	ФMn (t-m)
0,00	0	0	20878721402899700	1,00	20878721402900800	8,22	8,22
0,10	10	10	2087872	1,00	2088893	8,22	8,22
0,20	20	40	521968	1,00	522988	8,22	8,22
0,30	30	89	231986	1,00	233005	8,22	8,22
0,40	40	159	130492	1,01	131509	8,22	8,22
0,50	50	248	83515	1,01	84530	8,22	8,22
0,60	60	357	57996	1,02	59009	8,22	8,22
0,70	70	486	42610	1,02	43619	8,22	8,22
0,80	80	635	32623	1,03	33629	8,22	8,22
0,90	90	803	25776	1,04	26778	8,22	8,22
1,00	100	992	20879	1,05	21876	8,22	8,22
1,10	110	1200	17255	1,06	18248	8,22	8,22
1,20	120	1428	14499	1,07	15487	8,22	8,22
1,30	130	1676	12354	1,08	13336	8,22	8,22
1,40	140	1944	10652	1,09	11629	8,19	8,19
1,50	150	2231	9279	1,10	10250	8,11	8,11
1,60	160	2539	8156	1,12	9120	8,04	8,04
1,70	170	2866	7224	1,13	8182	7,96	7,96
1,80	180	3213	6444	1,15	7395	7,88	7,88
1,90	190	3580	5784	1,16	6728	7,80	7,80
2,00	200	3967	5220	1,18	6157	7,72	7,72
2,10	210	4373	4734	1,20	5664	7,64	7,64
2,20	220	4800	4314	1,21	5236	7,57	7,57
2,30	230	5246	3947	1,23	4862	7,49	7,49
2,40	240	5712	3625	1,25	4532	7,41	7,41
2,50	250	6198	3341	1,27	4240	7,33	7,33
2,60	260	6704	3089	1,29	3981	7,25	7,25
2,70	270	7229	2864	1,31	3749	7,17	7,17
2,80	280	7775	2663	1,33	3540	7,09	7,09
2,90	290	8340	2483	1,35	3352	7,02	7,02
3,00	300	8925	2320	1,37	3181	6,94	6,94
3,10	310	9530	2173	1,39	3026	6,86	6,86
3,20	320	10155	2039	1,41	2885	6,78	6,78
3,30	330	10799	1917	1,44	2755	6,70	6,70
3,40	340	11464	1806	1,46	2636	6,62	6,62
3,50	350	12148	1704	1,48	2527	6,54	6,54
3,60	360	12852	1611	1,51	2426	6,47	6,47
3,70	370	13576	1525	1,53	2332	6,39	6,39
3,80	380	14320	1446	1,55	2246	6,31	6,31
3,90	390	15084	1373	1,58	2165	6,23	6,23
4,00	400	15867	1305	1,60	2090	6,15	6,15



	Materiales							
Α	36	ksi						
f'c	210	kg/cm2						
	Datos Arq							
Lv	3,65	m						
Lt	1,98	m						
CM	0,67	t/m2						
Cv	0,20	t/m2						
fy acero	2530	kg/cm2						
Cu	1,12	t/m2						
E	2100000	kg/cm2						
cte	28,81							
cf1	8,64							
cf2	10,95							
cw1	70,59							
cw2	108,33							
Jc	2,88	cm4						
ho	15,26	cm						
rts	2,23	cm						
cte2	0,001810							
Lr	352							

Viga principal						
As	36	ksi				
Lt	1,98	m				
#cargas	1,00	u				
L2	0,00	m				
Pi	2,06	ton				
Tipo	EMP					
Mu	2,79	t-m				
Mresist	6,49	t-m				
D/C	0,43					
Apoyos	OK					
Corte	Ok					
Datos de la viga principal						
bf	11	SISM				
tf	0,92	cm				
h	22	SISM				
tw	0,59	cm				
As	33,40	cm2				
Peso	26,20	kg/m				
lx	2770,00	cm4				
ly	205,00	cm4				
Sx	251,82	cm3				
Sy	37,27	cm3				
Zx	285,00	cm3				
Zy	57,41	cm3				
rx	9,11	cm				
ry	2,48	cm				
Lp	126	cm				

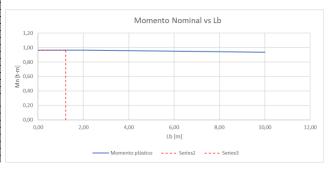
Viga nri	Viga principal lateral								
	A entre 3-4	-							
	Verificación			Diseño a corte	?				
414	648911	kg-cm	h/tw	37,29					
ФМр	6,49	t-m	a	198,00					
Lp	126	cm	Kv	5,00					
Apoyo	1	u	Cv	1,00					
Lb	99	cm	Vn	18,05	t				
M resist	6,49	t-m	Vu	4,96	t				
D/C	0,43		Cı	ımple cortan	te				
Cu	mple deman	da							
L software	0,12	cm							
L límite	0,83	cm							
Cump	le con deflex	ciones							

Lb	Lb (cm)	Esbeltez	fcr1	fcr2	Fcr	ФМn (t-m)	ФМn (t-m)
0,00	0	0	10320193932558500	1,00	10320193932560000	6,49	6,49
0,10	10	20	1032019	1,00	1033480	6,49	6,49
0,20	20	80	258005	1,01	259462	6,49	6,49
0,30	30	181	114669	1,01	116121	6,49	6,49
0,40	40	321	64501	1,02	65947	6,49	6,49
0,50	50	502	41281	1,03	42717	6,49	6,49
0,60	60	722	28667	1,05	30093	6,49	6,49
0,70	70	983	21062	1,07	22476	6,49	6,49
0,80	80	1284	16125	1,09	17526	6,49	6,49
0,90	90	1625	12741	1,11	14127	6,49	6,49
1,00	100	2006	10320	1,13	11691	6,49	6,49
1,10	110	2428	8529	1,16	9883	6,49	6,49
1,20	120	2889	7167	1,19	8504	6,49	6,49
1,30	130	3391	6107	1,22	7426	6,45	6,45
1,40	140	3932	5265	1,25	6566	6,36	6,36
1,50	150	4514	4587	1,28	5869	6,27	6,27
1,60	160	5136	4031	1,31	5295	6,18	6,18
1,70	170	5798	3571	1,35	4816	6,09	6,09
1,80	180	6500	3185	1,38	4411	6,00	6,00
1,90	190	7243	2859	1,42	4066	5,91	5,91
2,00	200	8025	2580	1,46	3768	5,82	5,82
2,10	210	8848	2340	1,50	3510	5,73	5,73
2,20	220	9710	2132	1,54	3283	5,64	5,64
2,30	230	10613	1951	1,58	3084	5,55	5,55
2,40	240	11556	1792	1,62	2907	5,46	5,46
2,50	250	12539	1651	1,66	2748	5,37	5,37
2,60	260	13562	1527	1,71	2606	5,29	5,29
2,70	270	14626	1416	1,75	2478	5,20	5,20
2,80	280	15729	1316	1,79	2362	5,11	5,11
2,90	290	16873	1227	1,84	2257	5,02	5,02
3,00	300	18056	1147	1,88	2160	4,93	4,93
3,10	310	19280	1074	1,93	2072	4,84	4,84
3,20	320	20544	1008	1,98	1990	4,75	4,75
3,30	330	21848	948	2,02	1915	4,66	4,66
3,40	340	23193	893	2,07	1846	4,57	4,57
3,50	350	24577	842	2,11 1781		4,48	4,48
3,60	360	26001	796	2,16 1721 4,		4,33	4,33
3,70	370	27466	754	2,21 1665 4,1		4,19	4,19
3,80	380	28971	715	2,26	1612	4,06	4,06
3,90	390	30515	679	2,30	1563	3,94	3,94
4,00	400	32100	645	2,35	1517	3,82	3,82

				Diseño de	correa pa	ra cubierta	1
	Entre E	je A-B' y 2	3	(Mismo res	sultado pai	ra todas las	s co
	Materiales				Cálculos		
Α	36	ksi		Lv	2,92	m	
f'c	210	kg/cm2		# Vigas	2	u	
	Datos Arq			at	1,22	m	
Lv	2,92	m			ОК		
Lt	3,65	m		W viga	0,37	t	
				Wlineal	0,13	t/m	
CM	0,03	t/m2		Mu	0,18	t-m	1
Cv	0,07	t/m2		VS Cor	rea G 80x4	0x15x3	
fy acero	2530	kg/cm2		b	4,00	cm	
Cu	0,10	t/m2		h	8,00	cm	
E	2100000	kg/cm2		С	1,50	cm	
cte	28,81			e	0,30	cm	
cf1	8,64			Cb	1,00		
cf2	10,95			Α	5,11	cm2	
cw1	70,59			Peso	4,01	kg/m	
cw2	108,33			lx	49,04	cm4	
Jc	98,08	cm4		ly	5,28	cm4	
ho	6,50	cm		Sx	12,26	cm3	
rts	1,18	cm		Sy	2,64	cm3	
cte2	1,230769			Zx	12,26	cm3	
Lr	4292			Zy	3,18	cm3	
				rx	3,10	cm	
				ry	1,02	cm	

rreas de cubierta)									
V	erificación								
Мр	27915	kg-cm							
IVIP	0,28	t-m							
Lp 52 cm									
Apoyo 0 u									
Lb	291,50	cm							
M resist	0,28	t-m							
D/C	0,66								
Cum	ple demar	nda							
L software	0,99	cm							
L límite 1,21 cm									
Cumple con deflexiones									

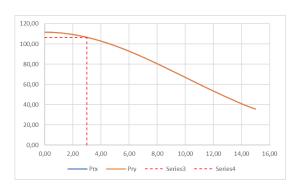
		Diseño de	e v	/iga secund	laria	
En	tre Eje A-B' y 2-3				todas las VS de cul	bierta
	Viga secundaria		Г		Verificación	
As	36	ksi		4	96435	kg-c
Lt	3,65	m		ФМр	0,96	t-m
#cargas	2	u		Lp	201	cm
L2	2,92	m		Apoyo	2	u
Pi	0,37	ton		Lb	122	cm
Tipo	ART			M resist	6,49	t-m
Mu	0,57	t-m		D/C	0,09	
Mresist	0,96	t-m				
D/C	0,59	•				
Apoyos	ОК					
Corte	ОК					
Datos	de la viga secur	ndaria				
b	10,00	cm				
h	10,00	cm				
e	0,30	cm				
		cm				
As	11,64	cm2				
Peso	9,14	kg/m				
lx	182,71	cm4				
ly	182,71	cm4				
Sx	36,54	cm3				
Sy	36,54	cm3				
Zx	42,35	cm3				
Zy	42,35	cm3				
rx	3,96	cm				
ry	3,96	cm				
Imin	96,483	cm4				
Lp	201	cm				


kg-cm t-m cm

cm t-m

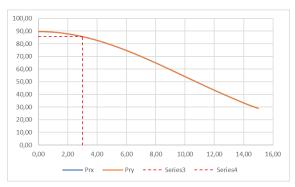
		Entre Eje B' y 2
	Viga principal	citie cje b y z
As	36	ksi
Lt	5,83	m
#cargas	1	u
L2	0,00	m
Pi	0,54	ton
Tipo	EMP	
Mu	0,61	t-m
Mresist	0,96	t-m
D/C	0,63	
Apoyos	Ok	
Corte	Ok	
Dat	os de la viga prir	ncipal
b	10,00	cm
h	10,00	cm
e	0,30	cm
As	11,64	cm2
Peso	9,14	kg/m
lx	182,71	cm4
ly	182,71	cm4
Sx	36,54	cm3
Sy	36,54	cm3
Zx	42,35	cm3
Zy	42,35	cm3
rx	3,96	cm
ry	3,96	cm
Lp	201	cm

				Diseño de v	riga principal				_
	Er	ntre Eje B' y 2	2-3 (n	nismo resulta	do para toda	as las VP de c	ubierta)		Ξ
	Viga principal				Verificación		D	iseño a corte	
٩s	36	ksi		ФМр	96435	kg-cm	h/tw	33,33	
Lt	5,83	m		Φίνιρ	0,96	t-m	a	583,00	
irgas	1	u		Lp	201	cm	Kv	5,00	
_2	0,00	m		Apoyo	1	u	Cv	1,00	
Pi	0,54	ton		Lb	292	cm	Vn	4,28	
ipo	EMP			M resist	0,96	t-m	Vu	0,37	
Лu	0,61	t-m		D/C	0,64		Cu	mple cortant	e
esist	0,96	t-m		Cu	mple deman	da			
/C	0,63			L software	1,70	cm			
oyos	Ok			L límite	2,43	cm			
orte	Ok			Cump	le con deflex	dones			
D	atos de la viga princ	ipal							
b	10,00	cm							
h	10,00	cm							
e	0,30	cm							
٩s	11,64	cm2							
eso	9,14	kg/m							
lx	182,71	cm4							
ly	182,71	cm4							
Sx	36,54	cm3							
Sy	36,54	cm3							
Zx	42,35	cm3							
Zy	42,35	cm3							
rx	3,96	cm							
ry	3,96	cm							
р	201	cm							


Lb	Lb (cm)	Esbeltez	tcr1	tcr2	Fcr	ΦMn (t-m)	ΦMn (t-m)
0,00	0	0	50210013000000000	1,00	50210013000832500	0,96	0,96
0,10	10	4	5021001	1,15	5793977	0,96	0,96
0,20	20	16	1255250	1,53	1914571	0,96	0,96
0,30	30	37	557889	2,00	1113597	0,96	0,96
0,40	40	66	313813	2,51	788011	0,96	0,96
0,50	50	103	200840	3,05	612148	0,96	0,96
0,60	60	148	139472	3,60	501664	0,96	0,96
0,70	70	202	102469	4,15	425566	0,96	0,96
0,80	80	264	78453	4,71	369832	0,96	0,96
0,90	90	334	61988	5,28	327183	0,96	0,96
1,00	100	412	50210	5,84	293459	0,96	0,96
1,10	110	499	41496	6,41	266102	0,96	0,96
1,20	120	594	34868	6,98	243453	0,96	0,96
1,30	130	697	29710	7,55	224385	0,96	0,96
1,40	140	808	25617	8,12	208105	0,96	0,96
1,50	150	928	22316	8,70	194042	0,96	0,96
1,60	160	1056	19613	9,27	181769	0,96	0,96
1,70	170	1192	17374	9,84	170963	0,96	0,96
1,80	180	1336	15497	10,41	161375	0,96	0,96
1,90	190	1489	13909	10,99	152809	0,96	0,96
2,00	200	1649	12553	11,56	145110	0,96	0,96
2,10	210	1819	11385	12,13	138152	0,96	0,96
2,20	220	1996	10374	12,71	131832	0,96	0,96
2,30	230	2181	9491	13,28	126067	0,96	0,96
2,40	240	2375	8717	13,86	120787	0,96	0,96
2,50	250	2577	8034	14,43	115931	0,96	0,96
2,60	260	2788	7428	15,01	111452	0,96	0,96
2,70	270	3006	6888	15,58	107307	0,96	0,96
2,80	280	3233	6404	16,15	103460	0,96	0,96
2,90	290	3468	5970	16,73	99879	0,96	0,96
3,00	300	3711	5579	17,30	96539	0,96	0,96
3,10	310	3963	5225	17,88	93415	0,96	0,96
3,20	320	4223	4903	18,45	90487	0,96	0,96
3,30	330	4491	4611	19,03	87737	0,96	0,96
3,40	340	4767	4343	19,60 85150		0,96	0,96
3,50	350	5052	4099	20,18 82711		0,96	0,96
3,60	360	5344	3874	20,75 80408		0,96	0,96
3,70	370	5645	3668	21,33 78230		0,96	0,96
3,80	380	5955	3477			0,96	0,96
3,90	390	6272	3301	22,48	74210	0,96	0,96
4,00	400	6598	3138	23,06	72351	0,96	0,96

			Diseño	de columna esqu	uineras							
	EJE 2A (Misma sección para todas las columnas esquineras)											
	Materiales			Solicitación		Verificación demanda						
Α	36	ksi	Pu	11,68	Pp	106,56	t					
f'c	210	kg/cm2		Datos de colum	na	Dema	nda capa	cidad				
Datos	Arquitecton	icos	b	25	SISM	Pu/fi*Pp	0,11	Pequeño				
L1	3,65	m	h	25	SISM	Flex	o-compre	sión				
L2	4,00	m	е	0,5	cm	Mcx	10,25	ton*m				
L3	4,30	m	K	1,00		Mcy	10,25	ton*m				
L4	5,83	m	Area	49,00	cm2	Mrx	0,79	ton*m				
Pisos	1	u	Peso	38,47	kg/m	Mry	2,50	ton*m				
He	3,00	m	lx	4904	cm4							
Cm	0,67	t/m2	ly	4904	cm4							
Cv	0,20	t/m2	Sx	392	cm3							
			Sy	392	cm3							
fy	2530	kg/cm2	Zx	450	cm3							
Cu	1,12	t/m2	Zy	450	cm3							
E	2100000	kg/cm2	rx	10,00	cm							
cte esbeltez	28,81		ry	10,00	cm							
cte total e	136											
Ca	0,105											
SISM	63,71											
COMP	77,13											

Combination	Pr (t)	Mry (t-m)	Mrx (t-m)	Pr/Pc	Mrx/Mcx	Mry/Mcy	Relación	Condicón
1,4D	9,55	0,61	1,08	0,09	0,11	0,06	0,21	Cumple
1,2D+1,6L	11,68	0,70	1,24	0,11	0,12	0,07	0,24	Cumple
1,2D+1L+1Sx	9,66	0,56	1,07	0,09	0,10	0,05	0,20	Cumple
1,2D+1L-1Sx	11,09	0,70	2,20	0,10	0,21	0,07	0,34	Cumple
1,2D+1L+1Sy	9,97	1,66	1,08	0,09	0,11	0,16	0,31	Cumple
1,2D+1L-1Sy	10,78	1,94	1,17	0,10	0,11	0,19	0,35	Cumple
0,9D+1Sx	5,42	0,32	1,29	0,05	0,13	0,03	0,18	Cumple
0,9D-1Sx	6,86	0,46	1,98	0,06	0,19	0,05	0,27	Cumple
0,9D+1Sy	5,74	1,71	0,65	0,05	0,06	0,17	0,26	Cumple
0,9D-1Sy	6,54	1,89	0,74	0,06	0,07	0,18	0,29	Cumple


L	L (cm)	KL/rx	KL/ry	fex	fey	fcrx	fcry	Prx	Pry	ФРг
0,00	0	0,0	0,0	2074353806448000	2074353806448000	2530	2530	111,57	111,57	111,57
0,10	10	1,0	1,0	20743538	20743538	2530	2530	111,56	111,56	111,56
0,20	20	2,0	2,0	5185885	5185885	2529	2529	111,54	111,54	111,54
0,30	30	3,0	3,0	2304838	2304838	2529	2529	111,52	111,52	111,52
0,40	40	4,0	4,0	1296471	1296471	2528	2528	111,48	111,48	111,48
0,50	50	5,0	5,0	829742	829742	2527	2527	111,42	111,42	111,42
0,60	60	6,0	6,0	576209	576209	2525	2525	111,36	111,36	111,36
0,70	70	7,0	7,0	423338	423338	2524	2524	111,29	111,29	111,29
0,80	80	8,0	8,0	324118	324118	2522	2522	111,20	111,20	111,20
0,90	90	9,0	9,0	256093	256093	2519	2519	111,11	111,11	111,11
1,00	100	10,0	10,0	207435	207435	2517	2517	111,00	111,00	111,00
1,10	110	11,0	11,0	171434	171434	2514	2514	110,88	110,88	110,88
1,20	120	12,0	12,0	144052	144052	2511	2511	110,75	110,75	110,75
1,30	130	13,0	13,0	122743	122743	2508	2508	110,61	110,61	110,61
1,40	140	14,0	14,0	105834	105834	2505	2505	110,46	110,46	110,46
1,50	150	15,0	15,0	92194	92194	2501	2501	110,29	110,29	110,29
1,60	160	16,0	16,0	81029	81029	2497	2497	110,12	110,12	110,12
1,70	170	17,0	17,0	71777	71777	2493	2493	109,93	109,93	109,93
1,80	180	18,0	18,0	64023	64023	2488	2488	109,74	109,74	109,74
1,90	190	19,0	19,0	57461	57461	2484	2484	109,53	109,53	109,53
2,00	200	20,0	20,0	51859	51859	2479	2479	109,31	109,31	109,31
2,10	210	21,0	21,0	47038	47038	2474	2474	109,08	109,08	109,08
2,20	220	22,0	22,0	42859	42859	2468	2468	108,84	108,84	108,84
2,30	230	23,0	23,0	39213	39213	2462	2462	108,59	108,59	108,59
2,40	240	24,0	24,0	36013	36013	2457	2457	108,33	108,33	108,33
2,50	250	25,0	25,0	33190	33190	2450	2450	108,06	108,06	108,06
2,60	260	26,0	26,0	30686	30686	2444	2444	107,78	107,78	107,78
2,70	270	27,0	27,0	28455	28455	2437	2437	107,49	107,49	107,49
2,80	280	28,0	28,0	26459	26459	2431	2431	107,19	107,19	107,19
2,90	290	29,0	29,0	24665	24665	2424	2424	106,88	106,88	106,88
3,00	300	30,0	30,0	23048	23048	2416	2416	106,56	106,56	106,56
3,10	310	31,0	31,0	21585	21585	2409	2409	106,23	106,23	106,23
3,20	320	32,0	32,0	20257	20257	2401	2401	105,89	105,89	105,89
3,30	330	33,0	33,0	19048	19048	2393	2393	105,53	105,53	105,53
3,40	340	34,0	34,0	17944	17944	2385	2385	105,17	105,17	105,17
3,50	350	35,0	35,0	16934	16934	2377	2377	104,80	104,80	104,80
3,60	360	36,0	36,0	16006	16006	2368	2368	104,43	104,43	104,43
3,70	370	37,0	37,0	15152	15152	2359	2359	104,04	104,04	104,04
3,80	380	38,0	38,0	14365	14365	2350	2350	103,64	103,64	103,64
3,90	390	39,0	39,0	13638	13638	2341	2341	103,23	103,23	103,23
4,00	400	40,0	40,0	12965	12965	2331	2331	102,82	102,82	102,82

	Diseño de columna laterales													
	EJE 6B (Misma sección para todas las columnas laterales)													
	Materiales		Solicitación				Verificación demanda							
Α	36	ksi	Pu				Pр	85,63	t					
f'c	210	kg/cm2		Datos de colum	na		Der	manda ca	pacidad					
	Datos Arq		b	25	SISM		Pu/fi*Pp	0,27	Es grande					
L1		m	h	25	SISM		Fl	exo-comp	resión					
L2		m	е	0,4	cm		Mcx	8,27	ton*m					
L3		m	K	1,00			Mcy	8,27	ton*m					
L4		m	Area	39,36	cm2		Mrx	0,79	ton*m					
Pisos	1	u	Peso	30,90	kg/m		Mry	2,50	ton*m					
He	3,00	m	lx	3971	cm4									
Cm	0,67	t/m2	ly	3971	cm4									
Cv	0,20	t/m2	Sx	318	cm3									
			Sy	318	cm3									
fy	2530	kg/cm2	Zx	363	cm3									
Cu	1,12	t/m2	Zy	363	cm3									
E	2100000	kg/cm2	rx	10,04	cm									
cte esbeltez	28,81		ry	10,04	cm									
cte total e	136			·		-								
Ca	0,259													
SISM	59,26													
COMP	66,83													

Combination	Pr (t)	Mry (t-m)	Mrx (t-m)	Pr/Pc	Mrx/Mcx	Mry/Mcy	Relación	Condicón
1,4D	18,88	0,73	0,13	0,22	0,02	0,09	0,21	Cumple
1,2D+1,6L	23,20	0,83	0,14	0,27	0,02	0,10	0,25	Cumple
1,2D+1L+1Sx	20,59	0,73	2,06	0,24	0,25	0,09	0,46	Cumple
1,2D+1L-1Sx	20,55	0,78	2,32	0,24	0,28	0,09	0,49	Cumple
1,2D+1L+1Sy	21,12	1,39	0,23	0,25	0,03	0,17	0,32	Cumple
1,2D+1L-1Sy	20,02	1,83	0,06	0,23	0,01	0,22	0,34	Cumple
0,9D+1Sx	12,16	0,45	2,10	0,14	0,25	0,05	0,38	Cumple
0,9D-1Sx	12,12	0,49	2,27	0,14	0,28	0,06	0,41	Cumple
0,9D+1Sy	12,69	1,47	0,18	0,15	0,02	0,18	0,27	Cumple
0,9D-1Sy	11,59	1,75	0,03	0,14	0,00	0,21	0,28	Cumple

L	L (cm)	KL/rx	KL/ry	fex	fey	fcrx	fcry	Prx	Pry	ФРг
0,00	0	0,0	0,0	2091003906942720	2091003906942720	2530	2530	89,62	89,62	89,62
0,10	10	1,0	1,0	20910039	20910039	2530	2530	89,61	89,61	89,61
0,20	20	2,0	2,0	5227510	5227510	2529	2529	89,60	89,60	89,60
0,30	30	3,0	3,0	2323338	2323338	2529	2529	89,58	89,58	89,58
0,40	40	4,0	4,0	1306877	1306877	2528	2528	89,55	89,55	89,55
0,50	50	5,0	5,0	836402	836402	2527	2527	89,50	89,50	89,50
0,60	60	6,0	6,0	580834	580834	2525	2525	89,45	89,45	89,45
0,70	70	7,0	7,0	426735	426735	2524	2524	89,40	89,40	89,40
0,80	80	8,0	8,0	326719	326719	2522	2522	89,33	89,33	89,33
0,90	90	9,0	9,0	258149	258149	2520	2520	89,25	89,25	89,25
1,00	100	10,0	10,0	209100	209100	2517	2517	89,17	89,17	89,17
1,10	110	11,0	11,0	172810	172810	2514	2514	89,07	89,07	89,07
1,20	120	11,9	11,9	145209	145209	2511	2511	88,97	88,97	88,97
1,30	130	12,9	12,9	123728	123728	2508	2508	88,85	88,85	88,85
1,40	140	13,9	13,9	106684	106684	2505	2505	88,73	88,73	88,73
1,50	150	14,9	14,9	92934	92934	2501	2501	88,60	88,60	88,60
1,60	160	15,9	15,9	81680	81680	2497	2497	88,46	88,46	88,46
1,70	170	16,9	16,9	72353	72353	2493	2493	88,32	88,32	88,32
1,80	180	17,9	17,9	64537	64537	2489	2489	88,16	88,16	88,16
1,90	190	18,9	18,9	57923	57923	2484	2484	87,99	87,99	87,99
2,00	200	19,9	19,9	52275	52275	2479	2479	87,82	87,82	87,82
2,10	210	20,9	20,9	47415	47415	2474	2474	87,64	87,64	87,64
2,20	220	21,9	21,9	43203	43203	2469	2469	87,45	87,45	87,45
2,30	230	22,9	22,9	39527	39527	2463	2463	87,25	87,25	87,25
2,40	240	23,9	23,9	36302	36302	2457	2457	87,04	87,04	87,04
2,50	250	24,9	24,9	33456	33456	2451	2451	86,83	86,83	86,83
2,60	260	25,9	25,9	30932	30932	2445	2445	86,60	86,60	86,60
2,70	270	26,9	26,9	28683	28683	2438	2438	86,37	86,37	86,37
2,80	280	27,9	27,9	26671	26671	2431	2431	86,13	86,13	86,13
2,90	290	28,9	28,9	24863	24863	2424	2424	85,88	85,88	85,88
3,00	300	29,9	29,9	23233	23233	2417	2417	85,63	85,63	85,63
3,10	310	30,9	30,9	21759	21759	2410	2410	85,36	85,36	85,36
3,20	320	31,9	31,9	20420	20420	2402	2402	85,09	85,09	85,09
3,30	330	32,9	32,9	19201	19201	2394	2394	84,81	84,81	84,81
3,40	340	33,9	33,9	18088	18088	2386	2386	84,52	84,52	84,52
3,50	350	34,8	34,8	17069	17069	2378	2378	84,23	84,23	84,23
3,60	360	35,8	35,8	16134	16134	2369	2369	83,93	83,93	83,93
3,70	370	36,8	36,8	15274	15274	2360	2360	83,62	83,62	83,62
3,80	380	37,8	37,8	14481	14481	2351	2351	83,30	83,30	83,30
3,90	390	38,8	38,8	13748	13748	2342	2342	82,97	82,97	82,97
4,00	400	39,8	39,8	13069	13069	2333	2333	82,64	82,64	82,64

ANÁLISIS DE PRECIOS UNITARIOS (APUS)

Rubros compartidos para el diseño estructural e instalaciones hidrosanitarias, eléctricas y domóticas.

	А	NÁLISIS DE	PRECIO UN	NITARIO (API	u)	
CÓDIGO	FECHA DE CREACIÓN				ÓN DE LA RESIDEN	CIA:
1	8/1/2024			ROYECTO CIUD		
CAPITULO	MOVIMIENTO DE TIERR	Λ	<u> </u>	NOTECTO CIOD	RUBRO	1,01
DETALLE	Limpieza Interna de Esco				UNIDAD	m2
DETALLE	Limpieza mtema de Esco	TIIDIOS			UNIDAD	IIIZ
1. EQUIPOS	2					
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
_	PLICKII CIOIN	A	В	C= A*B	R	D= C*R
HEDDAMIENI	TA MENOR (5% DE M.O.)	A	В	C-AB	IX.	0,29
TILINIAIVIILIN	TA WILMON (3/8 DL WI.O.)					0,23
			1		SUB TOTAL (M)	0,29
2. MANO D	E ORDA				30B TOTAL (IVI)	0,23
	DESCRIPCION	CANTIDAD	ORNAL/HOPA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	CATEGORIA)	A	B	C= A*B	RENDIMIENTO	D= C*R
PEÓN EST. O	,	1,00	3,87	3,87	0,650	2,52
	OBRA EST. OC. C2	0,25	4,29	1,07	0,650	0,70
CARPINTERO		1,00	3,83	3,83	0,650	2,49
CARFINIERU	. UC. EZ	1,00	3,63	3,63	0,050	2,49
			1		SUB TOTAL (N)	5,71
3. MATERIA	IEC				30B TOTAL (N)	3,71
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
_	PESCIAL CION		ONIDAD	A	В	C=A*B
Cemento Fue	erte Tipo GU Saco 50 Kg - I	Holcim DISENS	saco	0,25	8,00	2,00
Arena Corrie	· · · · · · · · · · · · · · · · · · ·	HOICHH DISEN.	m3	0,23	13,50	0,27
Agua	iite		m3	0,02	2,00	0,04
	HIERRO 6 mm.		KG.	0,02	1,10	0,28
	CONCRETO 9 X 19 X 39cm		U.	12,50	0,40	5,00
BLOQUE DE C	CONCRETO 9 X 19 X 39CIII		0.	12,30	0,40	3,00
			1		SUB TOTAL (O)	7,59
4. TRANSPO	ORTE					
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
						-
			1		SUB TOTAL (P)	-
ESTOS PRECIO	S NO INCLUYEN EL IVA				(. /	
	. ,		TOTAL COST	DIRECTO (M+I	N+O+P)	13,59
				Y UTILIDADES	16%	2,17
			OTROS INDIR		2%	0,27
				AL PROPUEST		16,03
			20310 1011	1 1.01 0131	٠ - ١٠٥٠ ٦	10,03
CONSULTOR						
-5.155L15K						

		NÁLICIC DE	DDECIO	NITARIO (API	1)	
CÓDIGO	FECHA DE CREACIÓN	VALISIS DE		•	ÓN DE LA RESIDENC	214.
1						JA:
CAPITULO	8/1/2024 MOVIMIENTO DE TIERRA	^	r	ROYECTO CIUD.	RUBRO	1,02
DETALLE	Trazado y replanteo	4			UNIDAD	m2
DETALLE	Trazado y replanteo				UNIDAD	IIIZ
1. EQUIPOS	5			•		
С	ESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)		0,05	0,20	0,01	1,000	0,010
					SUB TOTAL (M)	0,010
2. MANO D		CANTIDAD	ODNIAL /UGS	COCTO HODA	DENIDIAMENTO	COSTO LINEARIO
	DESCRIPCION CATEGORIA)	CANTIDAD A	IORNAL/HORA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO UNTARIO D= C*R
PEÓN I	CATEGORIAJ	2,00	3,41	C= A*B 6,82	0,071	0,48
MAESTRO MA	AYOR	1,00	3,41	3,72	0,071	0,48
3. MATERIA	LES				SUB TOTAL (N)	0,740
	PESCRIPCION		UNIDAD	CANTIDAD A	COSTO UNITARIO B	COSTO C=A*B
TIRAS DE 2,50	0X2,50X2,50		U	0,20	0,75	0,15
ESTACAS			U	0,20	0,25	0,05
CLAVOS C/C	LISO 20X1,50 3/4X17		kg	0,01	4,49	0,04
						-
					SUB TOTAL (O)	0,24
4. TRANSPO			LINUDAD	CANTIDAD	TABLEA	COSTO
L	DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
					SUB TOTAL (P)	-
ESTOS PRECIO	S NO INCLUYEN EL IVA					
			TOTAL COSTO	DIRECTO (M+N	N+O+P)	0,99
			INDIRECTOS Y	UTILIDADES	20%	0,20
			OTROS INDIR	ECTOS AL PROPUESTO	2% D USD. \$	0,02 1,21
CONSULTOR					- J 	
CONSULTUR						

	А	NÁLISIS DE	PRECIO UN	NITARIO (API	U)	
CÓDIGO	FECHA DE CREACIÓN				IÓN DE LA RESIDENC	CIA:
1	8/1/2024			ROYECTO CIUD		-
CAPITULO	MOVIMIENTO DE TIERR	Δ			RUBRO	1,03
DETALLE	Excavación con maquina		ntación		UNIDAD	m3
DETALL	Executation con maquine	The para entre			ONIDAD	1115
1. EQUIPOS	2		<u> </u>			
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COCTO LINITADIO
L	DESCRIPCION					COSTO UNTARIO
		А	В	C= A*B	R	D= C*R
	TA MENOR (5% DE M.O.)					0,06
RETROEXCAV	/ADORA	1,00	25,75	25,75	0,250	6,44
					SUB TOTAL (M)	6,50
2. MANO D						
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	CATEGORIA)	Α	В	C= A*B	R	D= C*R
MAESTRO DE	OBRA EST. OC. C2	0,10	5,00	0,50	0,250	0,13
OPERADOR		1,00	4,25	4,25	0,250	1,06
					SUB TOTAL (N)	1,19
3. MATERIA	LES				` ,	·
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
				Α	В	C=A*B
					_	
		<u> </u>			CURTOTAL (C)	
4 TDANCE C	NOTE:				SUB TOTAL (O)	-
4. TRANSPO			1			
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
				А	В	C=A*B
			1		SUB TOTAL (P)	-
ESTOS PRECIO	S NO INCLUYEN EL IVA					
			TOTAL COSTO	DIRECTO (M+I	N+O+P)	7,69
			INDIRECTOS Y	Y UTILIDADES	15%	1,15
			OTROS INDIR	ECTOS	5%	0,38
				ECTOS AL PROPUEST		0,38 9,22

	Λ	NÁLISIS DE	PRECIO LIN	IITARIO (API	ı ı)	
CÓDIGO	FECHA DE CREACIÓN	INALISIS DE			ÓN DE LA RESIDENC	۱۸۰
1	8/1/2024			ROYECTO CIUD		JA.
CAPITULO	MOVIMIENTO DE TIERRA	Δ	<u>r</u>	KOTECTO CIOD	RUBRO	1,03
DETALLE	Excavación con maquina		ntación		UNIDAD	m3
DETALL	Executación con maquina	ina para cime	Itacion		ONIDAD	1113
1. EQUIPOS	5					
D	ESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIENT	A MENOR (5% DE M.O.)					0,06
RETROEXCAV	ADORA	1,00	25,75	25,75	0,250	6,44
2 MANO DI	E ORDA				SUB TOTAL (M)	6,50
2. MANO DI	ESCRIPCION	CANTIDAD	ORNAL/HODA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	CATEGORIA)	A	B	C= A*B	RENDIMIENTO R	D= C*R
	OBRA EST. OC. C2	0,10	5,00	0,50	0,250	0,13
OPERADOR	OBINALST. OC. CZ	1,00	4,25	4,25	0,250	1,06
OT ENVISOR		1,00	7,23	7,23	0,230	1,00
					SUB TOTAL (N)	1,19
3. MATERIA	LES					
D	ESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
				Α	В	C=A*B
					SUB TOTAL (O)	
4. TRANSPO	RTE				JUD TOTAL (U)	-
	ESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
ECTOC PRECIO	C NO INCLUIVEN EL TA				SUB TOTAL (P)	-
ESTOS PRECIO	S NO INCLUYEN EL IVA		TOTAL COSTO	DIRECTO (M+I	N+O+P)	7,69
			INDIRECTOS Y		15%	1,15
			OTROS INDIR		5%	0,38
				AL PROPUEST		9,22
			30310 1017	01.01.01	335.9	3,22
CONSULTOR						

	Δ	NÁI ISIS DE	PRECIO LIN	IITARIO (API	J)	
CÓDIGO	FECHA DE CREACIÓN	,			ÓN DE LA RESIDENC	1Δ:
1	8/1/2024			ROYECTO CIUD		JIA.
CAPITULO	MOVIMIENTO DE TIERRA	Δ	<u>r</u>	KOTECTO CIODA	RUBRO	1,04
DETALLE	Relleno compactado cor		meioramiento	H=1 m	UNIDAD	m3
DETALL	incherio compactado con	Tillaterial de l	nejorannento	11-1111	ONIDAD	1113
1. EQUIPOS	5					
D	ESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIENT	A MENOR 5% M/O	1,00	0,40	0,40	0,400	0,160
COMPACTAD	OR TREMIX	1,00	2,57	2,57	0,268	0,690
					SUB TOTAL (M)	0,85
2. MANO DI		CANTIDAD	IODNIAL /LIODA	COSTO HODA	DENIDIAMENTO	COCTO LINEADIO
(0	ESCRIPCION CATEGORIA)	CANTIDAD A	IORNAL/HORA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO UNTARIO D= C*R
PEÓN EST. O		2,00	3,41	6,82	0,300	2,05
ALBAÑIL EST.	OC. C2	1,00	3,82	3,82	0,300	1,15
MAESTRO MA	AYOR C1	0,10	3,38	0,34	0,400	0,14
3. MATERIA	LES				SUB TOTAL (N)	3,34
	ESCRIPCION		UNIDAD	CANTIDAD A	COSTO UNITARIO B	COSTO C=A*B
MATERIAL DE	MEJORAMIENTO		m3	1,25	7,50	9,38
AGUA			m3	·	1,25	-
					SUB TOTAL (O)	9,38
4. TRANSPO						
D	ESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
ARENA GRUE	SA		M3.	-	6,00	-
PIEDRA 3/4"			M3.	-	6,00	-
ESTOS PRECIO	S NO INCLUYEN EL IVA				SUB TOTAL (P)	-
3.222310			TOTAL COSTO	D DIRECTO (M+N	N+O+P)	13,57
			INDIRECTOS		16%	2,17
			OTROS INDIR		2%	0,27
				AL PROPUESTO		16,01
CONSULTOR						

	Α	NÁLISIS DE	PRECIO UN	NITARIO (API	J)	
CÓDIGO	FECHA DE CREACIÓN			•	ÓN DE LA RESIDENC	CIA:
1	8/1/2024			ROYECTO CIUD		
CAPITULO	MOVIMIENTO DE TIERR	A			RUBRO	1,05
DETALLE	Relleno compactado co		itio		UNIDAD	m3
2211122					0.0.0.10	
1. EQUIPOS	\$	l.	l .			
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	DESCRIPCION					
		A	В	C= A*B	R	D= C*R
	TA MENOR 5% M/O	1,00	0,40	0,40	0,300	0,120
VIBROCOMP	ACTADOR	1,00	3,20	3,20	0,300	0,960
					SUB TOTAL (M)	1,08
2. MANO D	E OBRA					
С	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	CATEGORIA)	Α	В	C= A*B	R	D= C*R
PEÓN EST. O		1,00	3,41	3,41	0,300	1,02
ALBAÑIL EST.		1,00	3,82	3,82	0,300	1,15
MAESTRO MA		0,10	4,00	0,34	0,400	0,14
IVII LESTINO IVII	ATOR CI	0,10	4,00	0,54	0,400	0,14
					SUB TOTAL (N)	2,31
3. MATERIA						
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
				Α	В	C=A*B
AGUA			m3	0,20	1,25	0,25
		l.	<u> </u>	1	SUB TOTAL (O)	0,25
4. TRANSPO	ORTF					5,25
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
L	JESCHIF CION		UNIDAD	A	B	C=A*B
				A	В	C-A'B
			1		SUB TOTAL (P)	-
ESTOS PRECIO	OS NO INCLUYEN EL IVA					
LOTOS I ILLCIO			TOTAL COSTO	D DIRECTO (M+I	N+O+P)	3,64
LOTOOTRECIO			INDIDECTOR	Y UTILIDADES	16%	0,58
LOTOS I RECIO			INDIRECTOS	TOTILIDADES		,
ESTOS TRECIO			OTROS INDIR		2%	0,07
ESTOST NEGIO			OTROS INDIR		2%	
ESTOS TILEGO			OTROS INDIR	ECTOS	2%	0,07

CÓDIGO		Α	NÁLISIS DF	PRECIO UN	NITARIO (API	J)	
1	CÓDIGO					•	CIA:
CAPITULO MOVIMIENTO DE TIERRA Limpieza y desalojo del material excavado UNIDAD m3							
DETAILE Limpieza y desalojo del material excavado			L А				1.06
1. EQUIPOS				ado			
DESCRIPCION	22171222					0,11,5,1,5	
DESCRIPCION	1. EQUIPOS	<u>.</u> S		<u> </u>			
A B C=A*B R D=C*R			CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
HERRAMIENTA MENOR 5% M/O	_	255 5.5					
RETROEXCAVADORA 1,00 25,75 25,75 0,200 5,15	HERRAMIEN	TA MENOR 5% M/O	,,		C 71 D	· · ·	
SUB TOTAL (M) 5,20			1.00	25.75	25.75	0.200	
CANTIDAD CANTIDAD	THE THOUSEN	7150101	1,00	23,73	23,73	0,200	3,13
CANTIDAD CANTIDAD							
CANTIDAD CANTIDAD							
CANTIDAD CANTIDAD							
CANTIDAD CANTIDAD						SUB TOTAL (M)	5 20
DESCRIPCION (CATEGORIA)	2 MANO D	F ORRA				SOD TOTAL (III)	3,20
CATEGORIA) A B C = A*B R D = C*R			CANTIDAD	ORNAI /HOPA	COSTO HORA	RENDIMIENTO	COSTO LINTARIO
MAESTRO MAYOR C1						_	
SUB TOTAL (N) 0,95							
SUB TOTAL (N) 0,95							
Note	OI EIUIDON E	LILLING	1,00	7,23	7,23	0,200	0,03
Note							
Note							
Note							
Note							
Note							
Note							
Note						CLID TOTAL (NI)	0.05
DESCRIPCION	2 NAATERIA	IFC				SUB TUTAL (N)	0,95
A B C=A*B				LINIDAD	CANTIDAD	COCTO LINITADIO	0.5200
VOLQUETA DE 8 m3 Viaje 1/8 60,00 7,50	L	DESCRIPCION		UNIDAD			
SUB TOTAL (O) 7,50 4. TRANSPORTE DESCRIPCION UNIDAD A B CANTIDAD A B CEA*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38	VOLOUETAB	F 0 2					
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B CC=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS COSTO TOTAL PROPUESTO USD. \$ 16,38	VOLQUETA D	1E 8 M3		viaje	1/8	60,00	7,50
A. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
A. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38							
4. TRANSPORTE DESCRIPCION UNIDAD CANTIDAD A B C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWB TOTAL (P) - COSTO TOTAL PROPUESTO USD. \$ 16,38						0118 -0 (-)	
DESCRIPCION UNIDAD CANTIDAD A B COSTO C=A*B SUB TOTAL (P) - ESTOS PRECIOS NO INCLUYEN EL IVA TOTAL COSTO DIRECTO (M+N+O+P) INDIRECTOS Y UTILIDADES INDIRECTOS Y UTILIDADES OTROS INDIRECTOS OTROS INDIRECTOS SWD. \$ 0,68 COSTO TOTAL PROPUESTO USD. \$	4	\n				SUB TOTAL (O)	7,50
A B C=A*B							005-5
SUB TOTAL (P) -	L	DESCRIPCION		UNIDAD			
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38					A	В	C=A*B
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38							
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38							
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38							
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38							
TOTAL COSTO DIRECTO (M+N+O+P) 13,65 INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38			i			SUB TOTAL (P)	-
INDIRECTOS Y UTILIDADES 15% 2,05 OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38	ESTOS PRECIO	S NO INCLUYEN EL IVA		_			
OTROS INDIRECTOS 5% 0,68 COSTO TOTAL PROPUESTO USD. \$ 16,38					•	•	•
COSTO TOTAL PROPUESTO USD. \$ 16,38							
				OTROS INDIR	ECTOS	5%	0,68
CONSULTOR				соѕто тот	AL PROPUEST	O USD.\$	16,38
CONSULTOR							
	CONSULTOR						

		NÁLISIS DI	PRECIO UI	NITARIO (AP	U)	
CÓDIGO	FECHA DE CREACIÓN			•	ÓN DE LA RESIDENO	CIA:
2	8/1/2024			ROYECTO CIUD		
CAPITULO	HORMIGONES / ESTRUC	ΓURA			RUBRO	2,01
	Hormigón en Replantillo		kg/cm², h=10 c	cm	UNIDAD	m³
1. EQUIPO	OS					
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIEN	NTA MENOR (5% DE M.O.					4,00
CONCRETE	RA	1,00	3,13	3,13	2,152	6,74
VIBRADOR		1,00	2,00	2,00	1,600	3,20
					CUR TOTAL (A4)	42.04
2 844810 1	DE ORDA				SUB TOTAL (M)	13,94
2. MANO I	DE OBRA DESCRIPCION	CANTIDAD	OBNAL/HOBA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	(CATEGORIA)	A	B	C= A*B	RENDIMIENTO	D= C*R
PEON CAT.		5,00	3,01	15,05	1,000	15,05
ALBAÑIL CA		1,00	3,05	3,05	1,000	3,05
	MAYOR CAT. C1	0,10	3,38	0,34	1,000	0,34
		0,20	5,55	3,5 :	2,000	0,0 :
					SUB TOTAL (N)	18,44
3. MATERI	ALES					
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
				А	В	C=A*B
CEMENTO			saco	6,00	8,20	49,20
ARENA			m3	0,65	10,00	6,50
RIPIO			m3	0,95	10,00	9,50
AGUA			m3	0,15	1,25	0,19
					SUB TOTAL (O)	65,39
4. TRANSP	ORTE				· · ·	,
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
ARENA			M3.	0,65	5,00	3,25
					SUB TOTAL (P)	3,25
ESTOS PRECI	OS NO INCLUYEN EL IVA					
				DIRECTO (M+N	•	101,02
			INDIRECTOS Y		26% 2%	
			OTROS INDIR			
			COSTO TOTA	AL PROPUESTO	O USD. \$	129,30
CONSULTO	R					

	Δ	NÁLICIC DI		NITADIO /AD	\	
CÓDICO		INALISIS DI		NITARIO (AP		014
CÓDIGO 2	FECHA DE CREACIÓN 8/1/2024			ROYECTO CIUD	ÓN DE LA RESIDENC	CIA:
	HORMIGONES / ESTRUCT	TIID A	P	ROTECTO CIUD	RUBRO	2.02
			ados f'c=210 kg	a/cm² incl enco		2,02 m³
DETALLE	Tiornigon premezciado e	ii Zapatas y De	3005 I C-210 Kg	g/ciii , iiici. eiicc	UNIDAD	111
1. EQUIPO	os Os			·		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIEN	NTA MENOR (5% DE M.O.)					1,91
VIBRADOR		1,00	2,00	2,00	2,000	4,00
2 244210	25 0224	1		-	SUB TOTAL (M)	5,91
2. MANO	DE OBRA DESCRIPCION	CANTIDAD	IORNAI /HOBA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	(CATEGORIA)	A	B	C= A*B	RENDIMIENTO R	D= C*R
ALBAÑIL ES		1,00	3,05	3,05	2,000	6,10
	DE OBRA EST. OC. C2	1,00	4,00	4,00	2,000	8,00
PEON CAT.		4,00	3,01	12,04	2,000	24,08
3. MATERI	IALES				SUB TOTAL (N)	38,18
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
				Α	В	C=A*B
	N PREMEZCLADO f'c=210 k	kg/cm2	m3	1,00	100,00	100,00
ENCOFRAD	0		glb	0,20	35,00	7,00
					SUB TOTAL (O)	107,00
4. TRANSP	PORTE					
	DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B
					SUB TOTAL (P)	_
ESTOS PREC	IOS NO INCLUYEN EL IVA					
			TOTAL COSTO	DIRECTO (M+N	N+O+P)	151,09
			INDIRECTOS	•	15%	22,66
			OTROS INDIR	ECTOS	5%	7,55
				AL PROPUESTO	O USD. \$	181,30
			CO310 1017	ALT NOT OLST	J 035.	181,30

	Δ	NÁLICIC DI		NITA DIO /AD	11\	
CÓDICO		INALISIS DI		NITARIO (AP	•	014
CÓDIGO 2	FECHA DE CREACIÓN			ROYECTO CIUD	ÓN DE LA RESIDENC	CIA:
	8/1/2024	TIID A	Р	ROYECTO CIUD		2.02
	HORMIGONES / ESTRUCT Acero de refuerzo fy=420		anatas y Dado		RUBRO	2,03
DETALLE	Acero de refuerzo fy=420	o kg/cm² en z	apatas y Dados	5	UNIDAD	kg
1. EQUIPO	OS .	ļ.				I
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIEN	NTA MENOR (5% DE M.O.)					0,02
					SUB TOTAL (M)	0,02
2. MANO	DE OBRA					
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PEÓN CAT.		2,00	3,01	6,02	0,050	0,30
FIERRERO C		1,00	3,05	3,05	0,050	0,15
MAESTRON	MAYOR CAT. C1	0,10	3,38	0,34	0,050	0,02
					SUB TOTAL (N)	0,47
3. MATERI						
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
10500 05 5	25115220			Α	B	C=A*B
ACERO DE F	REFUERZO GALVANIZADO #18		kg	1,00 0,12	1,10 2,20	1,10 0,26
ALAIVIBRE C	JALVAINIZADO #16		kg	0,12	2,20	0,20
					SUB TOTAL (O)	1,36
4. TRANSP	ORTE				COS ICIAL (O)	1,30
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
		<u>l</u>			SUB TOTAL (P)	-
ESTOS PREC	IOS NO INCLUYEN EL IVA					
			TOTAL COSTO	DIRECTO (M+I	N+O+P)	1,85
			INDIRECTOS Y		16%	,
			OTROS INDIR	ECTOS	2%	
			COSTO TOTA	AL PROPUEST	O USD. \$	2,19
CON:::: ==	n					
CONSULTO	ĸ					

		MÁLICIC DI	E DDECIO III	NITARIO (AP	11/	
CÓDIGO	FECHA DE CREACIÓN	INALISIS DI			ÓN DE LA RESIDEN	~1A.
2	8/1/2024			ROYECTO CIUD		LIA:
	HORMIGONES / ESTRUC	TIID A	r	ROTECTO CIOD	RUBRO	2,04
	Acero estructural (Placa I		v nernos de 3/	′4'') ΔSTM Δ36	UNIDAD	kg
DETALLE	Acero estructurar (Flaca I	Jase e-1,2 cm	y perrios de 5/	4), ASTIVI ASU	UNIDAD	Ng Ng
1. EQUIPO	OS					2
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
		Α	В	C= A*B	R	D= C*R
HERRAMIEN	NTA MENOR (5% DE M.O.)					0,04
GRUA DE 10	TON	1,00	35,00	35,00	0,02	0,70
					SUB TOTAL (M)	0,74
2. MANO I	DE OBRA				` ,	•
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN		3,00	3,30	9,90	0,032	0,32
SOLDADOR		2,00	4,40	8,80	0,032	0,28
OPERADOR		1,00	5,00	5,00	0,032	0,16
MAESTRO D	DE OBRA	0,10	5,00	0,50	0,032	0,02
					SUB TOTAL (N)	0,78
3. MATERI			LINIDAD	CANTIDAD	COCTO LINITARIO	COSTO
	DESCRIPCION		UNIDAD	CANTIDAD A	COSTO UNITARIO B	COSTO C=A*B
ACERO A36			kg	1,05	1,30	1,37
DISCO DE C			UNIDAD	0,01	1,65	0,02
	OS #7010 3/16		kg	0,02	2,34	0,05
	NTICORROSIVA CROMATO	D DE ZINC	gln	0,02	15,75	0,32
THINNER		, , , , , , , , , , , , , , , , , , , ,	gln	0,02	5,20	0,10
				,	,	,
					SUB TOTAL (O)	1,86
4. TRANSP	ORTE					
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
		I		Α	В	C=A*B
					SUB TOTAL (P)	-
ESTOS PRECI	IOS NO INCLUYEN EL IVA		TOTAL COST	DIDECTO /sc	V . O . D)	2.00
			-	DIRECTO (M+N	•	3,38
				YUTILIDADES	15%	0,51
			OTROS INDIR	AL PROPUESTO	5% O USD. \$	0,17 4,06
			20310 101	AL I NOT OLST	J JJD. 3	4,00
CONSULTO	R					

	^	NÁLICIC DI	E DDECIO I II	NITADIO (AD	11\			
CÓDICO	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO 2	FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA: 8/1/2024 PROYECTO CIUDAD CELESTE							
	8/1/2024 HORMIGONES / ESTRUCT	TIID A	Ρ	ROTECTO CIUD	RUBRO	2.05		
	Hormigón premezclado e		2-210 kg/cm² i	acl ancofrado	UNIDAD	2,05 m³		
DETALLE	normigori premezciado e	II ESCAIETAS I C	210 kg/CIII II	ici. ericorrado	UNIDAD	m ⁻		
1. EQUIPO)S		<u> </u>			<u> </u>		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
		Α	В	C= A*B	R	D= C*R		
HERRAMIEN	ITA MENOR (5% DE M.O.)					0,08		
AMOLADOR		1,00	1,25	1,25	0,040	0,05		
COMPRESO	R+SOPLETE	1,00	1,00	1,00	0,040	0,04		
SOLDADORA	4	1,00	2,00	2,00	0,040	0,08		
GRUA DE 10	TON	1,00	35,00	35,00	0,04	1,54		
					()			
2. MANO D	NE ODDA				SUB TOTAL (M)	1,79		
	DE OBKA DESCRIPCION	CANTIDAD	IORNAL/HODA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	(CATEGORIA)	A	B	C= A*B	RENDIMIENTO R	D= C*R		
ENGRASADO		2,00	3,74	7,48	0,050	0,37		
PEÓN		3,00	3,30	9,90	0,050	0,50		
SOLDADOR		2,00	3,89	7,78	0,050	0,39		
OPERADOR	DE GRÍÍA	1,00	4,07	4,07	0,050	0,20		
MAESTRO D		1,00	3,38	3,38	0,050	0,17		
3. MATERIA	ALEC				SUB TOTAL (N)	1,63		
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
	DESCRIT CIOIV		ONIDAD	A	В	C=A*B		
ACERO A36			kg	1,05	1,30	1,37		
DISCO DE CO	ORTE		UNIDAD	0,01	1,65	0,02		
ELECTRODO	S #7010 3/16		kg	0,02	2,34	0,05		
PINTURA AN	ITICORROSIVA CROMATO	DE ZINC	gln	0,02	15,75	0,32		
THINNER			gln	0,02	5,20	0,10		
					SUB TOTAL (O)	1,86		
4. TRANSP	ORTE				(9)			
[DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B		
ESTOS PRECI	OS NO INCLUYEN EL IVA				SUB TOTAL (P)	-		
2.30. NEON			TOTAL COST	D DIRECTO (M+I	N+O+P)	5,28		
			INDIRECTOS	•	16%	0,84		
			OTROS INDIR		2%	0,11		
			соѕто тот	AL PROPUESTO	O USD. \$	6,23		
CONSULTOR	R							

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:							
2	8/1/2024		P	ROYECTO CIUD				
	HORMIGONES / ESTRUC		21 / 2 · 1		RUBRO	2,06		
DETALLE	Hormigón premezclado e	n Losa f'c=210) kg/cm², incl. (encofrado	UNIDAD	m³		
1 FOLUDO)C							
1. EQUIPO	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	DESCRIPCION	A	B	C= A*B	R	D= C*R		
HERRAMIEN	NTA MENOR (5% DE M.O.)	A	Ь	C-AB	N .	1,32		
VIBRADOR	VIA MENON (5% DE MI.O.,	1,00	2,50	2,50	0,900	2,25		
CONCRETE	RA 1 SACO	1,00	4,00	4,00	0,900	3,60		
CONTONETE	W 1 2 37 10 0	2,00	1,00	1,00	0,500	3,00		
		l		•	SUB TOTAL (M)	7,17		
2. MANO I	DE OBRA							
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	(CATEGORIA)	Α	В	C= A*B	R	D= C*R		
PEÓN		4,00	3,50	14,00	0,900	12,60		
ALBAÑIL		2,00	3,70	7,40	0,900	6,66		
MAESTRO D	DE OBRA	1,00	4,00	4,00	0,900	3,60		
OPERADOR	DE EQUIPO LIVIANO	1,00	4,00	4,00	0,900	3,60		
						25.45		
3. MATERI	ALEC				SUB TOTAL (N)	26,46		
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
	DESCRIT CION		ONIDAD	A	В	C=A*B		
CEMENTO			SACO	7,00	8,20	57,40		
ARENA			m3	0,65	8,00	5,20		
RIPIO			m3	0,95	8,00	7,60		
AGUA			m3	0,15	0,85	0,13		
ENCOFRADO	0		glb	0,50	35,00	17,50		
					CUD TOTAL (O)	07.03		
4. TRANSP	ORTE				SUB TOTAL (O)	87,83		
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO		
	DESCRIPCION		ONIDAD	A	B	C=A*B		
				, ,	5	CND		
					SUB TOTAL (P)	-		
ESTOS PRECI	OS NO INCLUYEN EL IVA							
				DIRECTO (M+		121,46		
			INDIRECTOS		16%	19,43		
			OTROS INDIR		2%	2,43		
			соѕто тот	AL PROPUESTO	D USD. \$	143,32		
	_		1					
CONSULTO	K							

		NALISIS DI		NITARIO (AP	•			
CÓDIGO	FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:							
2	8/1/2024							
	HORMIGONES / ESTRUC				RUBRO	2,07		
DETALLE	Acero de refuerzo fy=420	00 kg/cm² en E	scalera		UNIDAD	kg		
4								
1. EQUIPO		CANTIDAD	TABLEA		DENIBULATENTO.	COSTO LINITARIO		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	174 MENOR (50) REMARK	A	В	C= A*B	R	D= C*R		
	NTA MENOR (5% DE M.O.)	1.00	2.50	2.50	0.000	1,32		
VIBRADOR	24.4.6460	1,00	2,50	2,50	0,900	2,25		
CONCRETE	RA I SACO	1,00	4,00	4,00	0,900	3,60		
					SUB TOTAL (M)	7 17		
2. MANO I	DE ODDA				30B TOTAL (IVI)	7,17		
	DESCRIPCION	CANTIDAD	ODNAL /LIODA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
			B	C= A*B	RENDIMIENTO	D= C*R		
PEÓN	(CATEGORIA)	4,00	3,50	14,00	0,900	12,60		
ALBAÑIL		2,00	3,70	7,40	0,900	6,66		
MAESTRO D	NE ORRA	1,00	4,00	4,00	0,900	3,60		
	DE EQUIPO LIVIANO	1,00	4,00	4,00	0,900	3,60		
OFLINADOR	DL LQOIFO LIVIANO	1,00	4,00	4,00	0,300	3,00		
			l		SUB TOTAL (N)	26,46		
3. MATERI	ALES							
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
				Α	В	C=A*B		
CEMENTO			SACO	7,00	8,20	57,40		
ARENA			m3	0,65	8,00	5,20		
RIPIO			m3	0,95	8,00	7,60		
AGUA			m3	0,15	0,85	0,13		
ENCOFRADO	0		glb	0,50	35,00	17,50		
					SUB TOTAL (O)	87,83		
4. TRANSP	ORTE							
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO		
				Α	В	C=A*B		
		ĺ	1		SUB TOTAL (P)	-		
ESTOS PRECI	OS NO INCLUYEN EL IVA							
				D DIRECTO (M+I		121,46		
			INDIRECTOS Y		16%	19,43		
			OTROS INDIR		2%	2,43		
			COSTO TOTA	AL PROPUESTO	O USD. \$	143,32		
CON:::: = =	n							
CONSULTO	K							

,		NALISIS DI		NITARIO (AP	•			
CÓDIGO								
2	8/1/2024		P	ROYECTO CIUD				
	HORMIGONES / ESTRUC				RUBRO	2,08		
DETALLE	Placa colaborante Steel [Deck e=0,75 m	m T		UNIDAD	m²		
4 5011104								
1. EQUIPO		CANTIDAD		60070 11054	DENIBIRATENTO	COSTO LINITARIO		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
LIEDDANAIEN	ITA MENIOD (FO) DE MA O '	Α	В	C= A*B	R	D= C*R		
AMOLADOR	NTA MENOR (5% DE M.O.)	2.00	1 25	2.50	0,050	0,07		
SOLDADOR		2,00 1,00	1,25 1,50	2,50 1,50	0,050	0,13 0,08		
SOLDADON	-	1,00	1,30	1,30	0,030	0,08		
			ı		SUB TOTAL (M)	0,27		
2. MANO I	DF OBRA				303 101712 (111)	3,27		
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	(CATEGORIA)	A	В	C= A*B	R	D= C*R		
PEÓN	,	2,00	3,64	7,28	0,050	0,36		
SOLDADOR		2,00	3,70	7,40	0,050	0,37		
MAESTRO D	DE OBRA	1,00	4,00	4,00	0,050	0,20		
PERFILERO		2,00	3,90	7,80	0,050	0,39		
		,	,	,	,	,		
					SUB TOTAL (N)	1,32		
3. MATERI	ALES							
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
				Α	В	C=A*B		
	ABORANTE E=0,75 mm		kg	1,05	19,00	19,95		
PERNOS DE			UNIDAD	0,50	0,40	0,20		
ELECTRODO	0 #7010		kg	0,10	2,34	0,23		
					SUB TOTAL (O)	20,38		
4. TRANSP	ORTF				302 101712 (0)	20,00		
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO		
				A	В	C=A*B		
					SUB TOTAL (P)	-		
ESTOS PRECI	OS NO INCLUYEN EL IVA							
			TOTAL COST	DIRECTO (M+	N+O+P)	21,97		
			INDIRECTOS		16%	3,52		
			OTROS INDIR	ECTOS	2%	0,44		
			COSTO TOT	AL PROPUESTO	D USD. \$	25,93		
CONSULTO	R							

		NÁLICIC DI	- PDFGIO III	NITADIO /AD				
		MALISIS DI		NITARIO (AP				
CÓDIGO								
2	8/1/2024		F	ROYECTO CIUD				
	HORMIGONES / ESTRUCT		ACTN 4 AGC 5	25201 / 2	RUBRO	2,09		
DETALLE	Acero Estructural (Perfile	s IPE, HSS, G),	ASTM A36, Fy=	2530 kg/cm2	UNIDAD	kg		
1. EQUIPO) OS					J		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	2200 0.0	A	В	C= A*B	R	D= C*R		
HERRAMIEN	NTA MENOR (5% DE M.O.)					0,07		
AMOLADOR		2,00	1,25	2,50	0,050	0,13		
SOLDADOR	A	1,00	1,50	1,50	0,050	0,08		
2 244210	25 2224				SUB TOTAL (M)	0,27		
2. MANO I	DE OBRA DESCRIPCION	CANTIDAD	IODNIAL /LIODA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	(CATEGORIA)	A	B	C= A*B	RENDIMIENTO R	D= C*R		
PEÓN	(GATEGORIA)	2,00	3,64	7,28	0,050	0,36		
SOLDADOR		2,00	3,70	7,40	0,050	0,37		
MAESTRO D		1,00	4,00	4,00	0,050	0,20		
PERFILERO		2,00	3,90	7,80	0,050	0,39		
					SUB TOTAL (N)	1,32		
3. MATERI				CANITIDAD	00070	I 605T0		
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO B	COSTO C=A*B		
DI ACA COLA	ABORANTE E=0,75 mm		kg	A 1,05	19,00	19,95		
PERNOS DE			UNIDAD	0,50	0,40	0,20		
ELECTRODO			kg	0,10	2,34	0,23		
					SUB TOTAL (O)	20,38		
4. TRANSP								
	DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=A*B		
					SUB TOTAL (P)	-		
ESTOS PRECI	IOS NO INCLUYEN EL IVA							
			TOTAL COST	D DIRECTO (M+I	N+O+P)	21,97		
				YUTILIDADES	16%			
			OTROS INDIR	ECTOS AL PROPUESTO	2% D USD. \$	0,44 25,93		
			222.01.01		- J J Y			
CONSULTO	ĸ							

	Δ	NÁLICIC DI		NITARIO (AP	11\			
CÓDICO	FECHA DE CREACIÓN	INALISIS DI			•	~! A -		
CÓDIGO 2	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA: 8/1/2024 PROYECTO CIUDAD CELESTE							
	HORMIGONES / ESTRUCT	LIDΛ	P	ROTECTO CIOD	RUBRO	2,1		
	Malla electrosoldada 5,5		m Ev=5000 kg/	cm2	UNIDAD	m ²		
DETALLE	Ivialia electrosoluada 5,5	C/ 200X200 IIII	11, FY-3000 Kg/	CITIZ	UNIDAD	m-		
1. EQUIPO) OS					<u>!</u>		
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
		Α	В	C= A*B	R	D= C*R		
HERRAMIEN	NTA MENOR (5% DE M.O.)					0,02		
					SUB TOTAL (M)	0,02		
2. MANO I	DE OBRA				` '	·		
	DESCRIPCION	CANTIDAD	ORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	(CATEGORIA)	Α	В	C= A*B	R	D= C*R		
PEÓN		1,00	3,64	3,64	0,040	0,15		
ALBAÑIL		1,00	3,70	3,70	0,040	0,15		
					SUB TOTAL (N)	0,30		
3. MATERI	ALES		_					
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
	OTROCOL RADA EVE	/200 200	2	Α	В	C=A*B		
	CTROSOLDADA 5X5 mm c <i>j</i> GALVANIZADO #18	/200x200	m2	1,05 0,01	3,50 2,20	3,68 0,02		
ALAIVIBRE G	IALVAINIZADO #16		kg	0,01	2,20	0,02		
					CUR TOTAL (O)	2.70		
4. TRANSP	ORTE				SUB TOTAL (O)	3,70		
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO		
				Α	В	C=A*B		
					SUB TOTAL (P)	_		
ESTOS PRECI	IOS NO INCLUYEN EL IVA				332 .OTAL (I)			
			TOTAL COSTO	DIRECTO (M+I	N+O+P)	4,02		
			INDIRECTOS Y	UTILIDADES	16%	0,64		
			OTROS INDIR	ECTOS	2%	0,08		
			соsто тот	AL PROPUEST	O USD. \$	4,74		
CONSULTO	R							

		NÁLISIS DI	E PRECIO III	NITARIO (AP	U)		
CÓDIGO	FECHA DE CREACIÓN			•	ÓN DE LA RESIDEN	CIA:	
2	8/1/2024 PROYECTO CIUDAD CELESTE						
	HORMIGONES / ESTRUC	I Tura	•		RUBRO	2,11	
	Cubierta Steel Panel e=0,				UNIDAD	m ²	
DETALLE	Cubierta Steer Farier e-o,	43 111111			UNIDAD	111	
1. EQUIPO). DS	J.	l.			<u> </u>	
	DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO	
	DESCRIFCION	A	B	C= A*B	R	D= C*R	
LIEDDANAIEN	NTA MENOR (5% DE M.O.	A	Ь	C-AB	n		
HEKKAIVIIEI	VIA IVIENOR (3% DE IVI.O.					0,10	
					CUD TOTAL (14)	0.10	
					SUB TOTAL (M)	0,10	
2. MANO		l	1	I			
	DESCRIPCION	CANTIDAD		COSTO HORA	RENDIMIENTO	COSTO UNTARIO	
	(CATEGORIA)	Α	В	C= A*B	R	D= C*R	
PEÓN		0,50	3,64	1,82	0,700	1,27	
ALBAÑIL		0,25	3,70	0,93	0,700	0,65	
MAESTRO D	DE OBRA	0,05	4,00	0,20	0,700	0,14	
					SUB TOTAL (N)	2,06	
3. MATERI	ALES						
	DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO	
				А	В	C=A*B	
STEEL PANE	EL E=0,45 mm		m2	1,00	10,34	10,34	
					SUB TOTAL (O)	10,34	
4. TRANSP	ORTE						
	DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO	
				А	В	C=A*B	
			1	I	SUB TOTAL (P)	_	
		J.					
FSTOS PRECI	IOS NO INCLLIVEN EL IVA				002 10 11 12 (17)		
ESTOS PREC	IOS NO INCLUYEN EL IVA		TOTAL COST	DIRECTO (M++	, ,	12 50	
ESTOS PRECI	IOS NO INCLUYEN EL IVA			D DIRECTO (M+I	N+O+P)	12,50	
ESTOS PRECI	IOS NO INCLUYEN EL IVA		INDIRECTOS	Y UTILIDADES	N+O+P) 16%	2,00	
ESTOS PRECI	IOS NO INCLUYEN EL IVA		OTROS INDIR	Y UTILIDADES ECTOS	N+O+P) 16% 2%	2,00 0,25	
ESTOS PRECI	IOS NO INCLUYEN EL IVA		OTROS INDIR	Y UTILIDADES	N+O+P) 16% 2%	2,00	

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	FECHA DE CREACIÓ N	PROYECTO DE CONSTRUCCIÓN DE LA RESID	DENCIA:					
9.1	1/8/2024	PROYECTO CIUDAD CELESTE						
CAPITULO	AGUA POTA	BLE	RUBRO	9.11				
DETALLE	PUNTOS DE	AGUA FRIA	UNIDAD	ptos				

1. EQUIPOS					
DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIE NTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MANUAL					0.86
(5% M.O)			-	2.500	-
			SU	B TOTAL (M)	0.86
2. MANO DE OBRA	,			_	
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIE NTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	2.500	6.25
PEON MAESTRO MAYOR EN	1.00	3.75	3.75	2.500	9.38
EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	2.500	1.58
			SU	B TOTAL (N)	17.21
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
TUBO P. ROSCABLE 1/2 PU	LG X 6M		A	В	C=A*B
(420 PSI)		u	0.17	8.27	1.38
CODO PVC 1/2" RIG (ROSC	ABLE)	u	24.00	0.40	9.60
TEE PVC 1/2" ROSCABLE		u	2.00	0.58	1.16
TEFLON		u	0.25	1.00	0.25
PERMATEX TUBO 110 ONZ		u	0.08	6.50	0.49
			SU	B TOTAL (O)	12.88
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C=A*B
_					
FOTOS PRECIOS NO			SU	B TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+P)		30.95
INDIRECTOS Y UTILIDADES	15%	4.64
OTROS INDIRECTOS	5%	1.55
COSTO TOTAL PROPUESTO USD. \$		37.14

267

ANÁLISIS DE PRECIO UNITARIO (APU)								
FECHA DE CÓDIGO CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:								
9.1	1/8/2024	PROYE	ECTO CIUDAD CE	LESTE				
CAPITULO	AGUA POTABL	E	RUBRO	9.12				
DETALLE	PUNTOS DE AC	GUA CALIENTE	UNIDAD	ptos				

1. EQUIPOS					
DESCRIPCION	CANTI DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
					1.15
HERRAMIENTA MENOR (5% DE M.O.)				3.330	-
				SUB TOTAL (M)	1.15
2. MANO DE OBRA					
DESCRIPCION	CANTI DAD	JORNAL/ HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	3.330	8.33
PEON MAESTRO MAYOR EN	1.00	3.75	3.75	3.330	12.49
EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	3.330	2.10
				SUB TOTAL (N)	22.92
3. MATERIALES				\ /	
			CANTID	COSTO	2222
DESCRIPCION		UNIDAD	AD .	UNITARIO	COSTO
CODO 90 POLIPROPILENO PP			A	В	C=A*B
ROSCABLE 1/2"	20454	u	10.00	0.36	3.60
TEE POLIPROPOLIENO PP ROS	CADA	u	2.00	0.37	0.74
TUBERIA PP CUATRITUBO ROSCABLE 1/2" PLASTIGAMA		ml	1.10	11.78	12.96
		•	•	SUB TOTAL (O)	17.30
4. TRANSPORTE				, , ,	
			CANTID		000-5
DESCRIPCION		UNIDAD	AD .	TARIFA	COSTO
			A	В	C=A*B
					-
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO		44.07
(M+N+O+P)		41.37
INDIRECTOS Y		
UTILIDADES	15%	6.21
OTROS INDIRECTOS	5%	2.07
COSTO TOTAL PROPUESTO	USD.	
\$		49.65

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCC	CIÓN DE LA RESIDENC	CIA:
9.1	1/8/2024 PROYECTO CIUD		DAD CELESTE	
CAPITULO	AGUA POTABLE		RUBRO	9.13
DETALLE	TUBERIA DE 1/2" PVC ROSCABLE (AGUA FRIA)		UNIDAD	ml

1. EQUIPOS	CANTI				COSTO
DESCRIPCION	DAD	TARIFA	COSTO HORA	RENDIMIENTO	UNTARIO
	Α	В	C= A*B	R	D= C*R
					0.03
HERRAMIENTA MANUAL (5% M.O)			-	0.080	-
				SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTI DAD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.080	0.20
PEON	1.00	3.75	3.75	0.080	0.30
MAESTRO MAYOR EN EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05
				SUB TOTAL (N)	0.55
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
TUBO P. ROSC. 1/2 PLG x 6M, (420 PSI)		u	0.17	8.27	1.38
CODO PVC 1/2" RIG (ROSCABLE)		u	24.00	0.40	9.60
TEE PVC 1/2" ROSCABLE		u	2.00	0.58	1.16
PERMATEX TUBO 110 ONZ		u	0.08	6.50	0.49
				SUB TOTAL (O)	12.63
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
					-
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+P)		13.21
INDIRECTOS Y UTILIDADES	15%	1.98
OTROS INDIRECTOS	5%	0.66
COSTO TOTAL PROPUESTO	USD. \$	15.85

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓ	N DE LA RESIDE	NCIA:
9.1	1/8/2024	PROYECTO CIUDA	D CELESTE	
CAPITULO	AGUA POTABLE		RUBRO	9.14
DETALLE	TUBERIA DE 3/4" PVC ROSCABLE (AGUA FRIA)		UNIDAD	ml

	CANTID		COSTO	RENDIMIENT	COSTO
DESCRIPCION	AD	TARIFA	HORA	O	UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.080	0.03
	•			SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/HO RA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.080	0.20
PEON	1.00	3.75	3.75	0.080	0.30
MAESTRO MAYOR EN EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05
				SUB TOTAL (N)	0.55
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	соѕто
			Α	В	C=A*B
TUBERIA DE PVC 3/4" (ROSCABLE)		u	1.00	1.92	1.92
CODO PVC 3/4" RIG (ROSCABLE)		u	6.00	0.85	5.10
TEE PVC 3/4" RIG (ROSCABLE)		u	8.00	0.70	5.60
TEFLON		u	0.25	1.00	0.25
PERMATEX TUBO 110 ONZ		u	0.08	6.50	0.49
				SUB TOTAL (O)	13.36
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION					

TOTAL COSTO DIRECTO (M+N+O+P)		13.94
·		
INDIRECTOS Y UTILIDADES	15%	2.09
OTROS INDIRECTOS	5%	0.70
COSTO TOTAL PROPUESTO USD. S	3	16.73

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:					
9.1	1/8/2024	PROYECTO CIUDAD CELESTE			

CAPITULO	AGUA POTABLE	RUBRO	9.15	l
DETALLE	TUBERIA DE 1" PVC ROSCABLE (AGUA FRIA)	UNIDAD	ml	l

1. EQUIPOS	CANTID	1	COSTO		COSTO	
DESCRIPCION	AD	TARIFA	HORA	RENDIMIENTO	UNTARIO	
	А	В	C= A*B	R	D= C*R	
HERRAMIENTA MENOR (5% DE M.O.)				0.080	0.03	
			-	SUB TOTAL (M)	0.03	
2. MANO DE OBRA				· ·		
DESCRIPCION	CANTID AD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO	
(CATEGORIA)	Α	В	C= A*B	R	D= C*R	
PLOMERO	1.00	2.50	2.50	0.080	0.20	
PEON	1.00	3.75	3.75	0.080	0.30	
MAESTRO MAYOR EN EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05	
				SUB TOTAL (N)	0.55	
3. MATERIALES						
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO	
			А	В	C=A*B	
TUBERIA DE PVC 1" (ROSCABLE)		u	1.00	27.78	27.78	
CODO PVC 1" RIG (ROSCABLE)		u	9.00	0.85	7.65	
TEE PVC 1" RIG (ROSCABLE)		u	10	0.70	7.00	
TEFLON		u	0.25	1.00	0.25	
PERMATEX TUBO 110 ONZ		u	0.08	6.50	0.52	
				SUB TOTAL (O)	43.20	
4. TRANSPORTE						
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	соѕто	
			Α	В	C=A*B	
SUB TOTAL (P) -				SUB TOTAL (P)	-	

TOTAL COSTO DIRECTO (M+N+O+P)		43.78
INDIRECTOS Y		
UTILIDADES	15%	6.57
OTROS INDIRECTOS	5%	2.19
COSTO TOTAL PROPUESTO USD. \$		52.54

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:			
9.1	1/8/2024	PROYECTO CIUDAD CELESTE			

CAPITULO	AGUA POTABLE	RUBRO	9.16
DETALLE	TUBERIA DE 2" PVC ROSCABLE (AGUA FRIA)	UNIDAD	ml

4 FOLUDOS					
1. EQUIPOS DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)			_	0.080	0.03
				SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.080	0.20
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.080	0.30
OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05
				SUB TOTAL (N)	0.55
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO
			А	В	C=A*B
TUBERIA DE PVC 2" (ROSCABLE)		u	1.00	54.48	54.48
CODO PVC 2" RIG (ROSCABLE)		u	4	0.85	3.40
TEE PVC 2" RIG (ROSCABLE)		u	1	0.70	2.80
TEFLON		u	0.25	1.00	0.25
PERMATEX TUBO 110 ONZ		u	0.08	6.50	0.52
				SUB TOTAL (O)	61.45
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	соѕто
			A	В	C=A*B
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+	+O+P)	62.03
INDIRECTOS Y	-	
UTILIDADES	15%	9.30
OTROS INDIRECTOS	5%	3.10
COSTO TOTAL PROPUESTO	USD. \$	74.43

	AN	NÁLISIS DE PRECIO UNITARIO (APU)
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:
9.1	1/8/2024	PROYECTO CIUDAD CELESTE

CAPITULO	AGUA POTABLE	RUBRO	9.17
DETALLE	TUBERIA DE 1/2" PVC LINEA DORADA (AGUA CALIENTE)	UNIDAD	ml

1. EQUIPOS	CANTID	T	COSTO		COSTO
DESCRIPCION	AD	TARIFA	HORA	RENDIMIENTO	UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)			-	0.080	0.03
				SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.080	0.20
PEON	1.00	3.75	3.75	0.080	0.30
MAESTRO MAYOR EN EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05
				SUB TOTAL (N)	0.55
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
CODO 90 POLIPROPILENO ROSCABLE (PP) 1/2"	u	6.00	0.36	2.16
TUBERIA PP CUADRITUBO LD 1/2" PLASTIC SOLDADURA P/TUB PVC POLIPEGA 3.7850		6m	0.25	11.78	2.95
PLASTIGAMA		3.785cc	0.01	54.82	13.71
					-
					-
				SUB TOTAL (O)	18.82
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+P)		19.40
INDIRECTOS Y		
UTILIDADES	15%	2.91
OTROS INDIRECTOS	5%	0.97
COSTO TOTAL PROPUESTO USD. \$		23.28

	A	NÁLISIS DE PRECIO UNITARIO (APU)		
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN D	E LA RESIDENC	IA:
9.1	1/8/2024	PROYECTO CIUDAD CI	ELESTE	
CAPITULO	AGUA POTABLE		RUBRO	9.18

DETALLE	TUBERIA DE 3/4" PVC LINEA DORADA (AGUA CALIENTE)	UNIDAD	ml

1. EQUIPOS					
1. EQUIFOS	CANTIDA		COSTO	RENDIMIENT	COSTO
DESCRIPCION	D	TARIFA	HORA	0	UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.080	0.03
			-	-	-
				SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
DESCRIPCION	_		-		
(CATEGORIA)	A	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.080	0.20
PEON	1.00	3.75	3.75	0.080	0.30
MAESTRO MAYOR EN EJECUCION DE	0.40	0.05	0.00	0.000	0.05
OBRAS CIVILES	0.10	6.25	0.63	0.080	0.05
				SUB TOTAL (N)	0.55
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO
DESCRIPCION		UNIDAD	A	B	C=A*B
			Λ	В	C=A B
CODO 90 POLIPROPILENO ROSCABLE (P	P) 3/4"	u	5.00	0.64	3.20
TUBERIA PP CUADRITUBO LD 3/4" PLAST	IGAMA	6m	0.25	17.57	4.39
SOLDADURA P/TUB PVC POLIPEGA 3.785 PLASTIGAMA	SCC .	3.785cc	0.01	54.82	13.71
PLASTIGAIVIA		3.76500	0.01	34.62	13.71
					-
					-
				SUB TOTAL (O)	24 20
4 TRANSPORT				SUB TOTAL (O)	21.30
4. TRANSPORTE		Τ	CANTIDA	Ι	
DESCRIPCION		UNIDAD	D	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (D)	
FOTOS DEFOIOS NO INICIAIVEN EL IVA			•	SUB TOTAL (P)	<u> </u>
ESTOS PRECIOS NO INCLUYEN EL IVA		TOTAL COSTO DIRE	ЕСТО		
		(M+N+O+P)			21.88
		INDIRECTOS Y UTIL	IDADES	15%	3.28
		OTROS			
		INDIRECTOS		5%	1.09
		COSTO TOTAL PRO	PUESTO	USD. \$	26.25

		ANÁLISIS DE PRECIO UNITARIO (APU)		
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDE	ENCIA:	
9.2	1/8/2024	PROYECTO CIUDAD CELESTE		
CAPITULO	PIEZAS SANI	TARIAS	RUBRO	9.21

DETALLE SUMINISTRO E INSTALACION DE LAVAMANOS UNIDAD
--

1. EQUIPOS							
DESCRIPCION	CANTIDA D	TARIFA		COSTO HORA		RENDIMI ENTO	COSTO UNTARIO
DECORAL CICIA	A	В		C= A*B		R	D= C*R
				<u> </u>			
HERRAMIENTA MANUAL							0.86
(5% M.O)			-			2.500	-
					SUB 1	TOTAL (M)	0.86
2. MANO DE OBRA							
DESCRIPCION	CANTIDA D	JORNAL/HORA		COSTO HORA		RENDIMI ENTO	COSTO UNTARIO
(CATEGORIA)	Α	В		C= A*B		R	D= C*R
PLOMERO	1.00	2.50	2.50			2.500	6.25
PEON MAESTRO MAYOR EN EJECUCION DE OBRAS	1.00	3.75	3.75			2.500	9.38
CIVILES	0.10	6.25	0.63			2.500	1.58
					SUB	TOTAL (N)	17.21
3. MATERIALES						. ,	
DESCRIPCION		UNIDAD		CANTIDAD		COSTO UNITARIO	COSTO
				Α		В	C=A*B
LAVAMANO FV		u	1.00			51.24	51.24
SILICON		u	0.50			5.90	2.95
SIFON 1 1/4" C/ACOPLE ED	ESA	u	1.00			3.86	3.86
					SUB 1	TOTAL (O)	58.05
4. TRANSPORTE							
DESCRIPCION		UNIDAD		CANTIDAD		TARIFA	COSTO
				А		В	C=A*B
					SIIB.	TOTAL (P)	_

INCLUYEN EL IVA

TOTAL COSTO DIRECTO (M+N+O+P)	TOTAL COSTO DIRECTO (M+N+O+P)		76.12
INDIRECTOS Y UTILIDADES	INDIRECTOS Y UTILIDADES	450/	11 10
OTROS	INDIRECTOS F UTILIDADES	15%	11.42
INDIRECTOS	OTROS INDIRECTOS	5%	3.81
COSTO TOTAL	00070 70741 0000117070		
PROPUESTO USD. \$	COSTO TOTAL PROPUESTO USD. \$		91.35

ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE L	A RESIDENCIA	۸:		
9.2	1/8/2024	PROYECTO CIUDAD CELE	STE			
CAPITUL O	PIEZAS SANITARIAS		RUBRO	9.22		

- [DETALLE	SUMINISTRO E INSTALACION DE INODORO WC KINGSLEY ELONGADO	UNIDAD	
	DETALLE	A/PRATO SD BLANCO BRIGSS	UNIDAD	u

1. EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIEN TO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
					0.86
HERRAMIENTA MANUAL (5% M.O)			-	2.500	-
			SI	JB TOTAL (M)	0.86
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HO RA	COSTO HORA	RENDIMIEN TO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	2.500	6.25
PEON MAESTRO MAYOR EN EJECUCION	1.00	3.75	3.75	2.500	9.38
DE OBRAS CIVILES	0.10	6.25	0.63	2.500	1.58
			s	UB TOTAL (N)	17.21
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
INODORO		u	1.00	195.37	195.37
SILICON		u	0.50	5.90	2.95
			S	UB TOTAL (O)	198.32
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
			-	UB TOTAL (P)	
ESTOS PRECIOS NO INCLLIYEN EL				OD TOTAL (F)	_

TOTAL COSTO DIRECTO (M+N+O+P)		216.39
INDIRECTOS Y UTILIDADES	15%	32.46
OTROS INDIRECTOS	5%	10.82
COSTO TOTAL PROPUESTO USD. \$		259.67

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				
9.2	1/8/2024	PROYECTO CIUDA	AD CELESTE		
CAPITULO	PIEZAS SANITARIAS		RUBRO	9.23	

DETALLE	SUMINISTRO E INSTALACION DE FREGADERO INOX. DE COCINA 1	UNIDAD	
DETALLE	pozo con escurridor)	UNIDAD	u

1. EQUIPOS					
DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
					0.86
HERRAMIENTA MANUAL (5% M.O)			-	2.500	-
				SUB TOTAL (M)	0.86
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	2.500	6.25
PEON MAESTRO MAYOR EN EJECUCION	1.00	3.75	3.75	2.500	9.38
DE OBRAS CIVILES	0.10	6.25	0.63	2.500	1.58
				SUB TOTAL (N)	17.21
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
FREGADERO		u	1.00	16.69	16.69
SILICON		u	0.50	5.90	2.95
SIFON 1 1/4" C/ACOPLE EDESA		u	1.00	3.86	3.86
				SUB TOTAL (O)	23.50
4. TRANSPORTE				ζ-,	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
_				SUB TOTAL (P)	
ESTOS PRECIOS NO INCLUYEN EL		•			

TOTAL COSTO DIRECTO		
(M+N+O+P)		41.57
INDIRECTOS Y UTILIDADES	15%	6.24
OTROS INDIRECTOS	5%	2.08
COSTO TOTAL PROPUESTO	USD. \$	49.89

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				
9.2	1/8/2024	D CELESTE			
CAPITULO	PIEZAS SANITARIAS		RUBRO	9.24	
DETALLE	SUMINISTRO E INSTALACIO	UNIDAD	u		

1. EQUIPOS					
DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
					0.86
HERRAMIENTA MANUAL (5% M.O)			-	2.500	-
				SUB TOTAL (M)	0.86
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/HO RA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	2.500	6.25
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	2.500	9.38
OBRAS CIVILES	0.10	6.25	0.63	2.500	1.58
				SUB TOTAL (N)	17.21
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			A	В	C=A*B
DUCHA ARTICULADA		u	1.00	29.49	29.49
TEFLON		u	1.00	1.00	1.00
PERMATEX TUBO 110 ONZ		u	0.10	6.50	0.65
			I	SUB TOTAL (O)	31.14
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C=A*B
				SUB TOTAL (P)	-
ESTOS PRECIOS NO INCLUYEN EL IVA					

TOTAL COSTO DIRECTO (M+N+	-O+P)	49.21
INDIRECTOS Y UTILIDADES	15%	7.38
OTROS INDIRECTOS	5%	2.46
COSTO TOTAL PROPUESTO	USD. \$	59.05

CONSULTOR

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				CIA:	
9.2	1/8/2024 PROYECTO CIUDAD CELESTI				
CAPITULO	PIEZAS SANITARIAS	·	RUBRO	9.25	
DETALLE	LLAVE DE JARDIN		UNIDAD	u.	

1. EQUIPOS

DESCRIPCION	CANTID AD A	TARIFA B	COSTO HORA C= A*B	RENDIMIENTO R	COSTO UNTARIO D= C*R
					0.41
HERRAMIENTA MANUAL (5% M.O)			-	2.500	-
				SUB TOTAL (M)	0.41
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	1.180	2.95
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	1.180	4.43
OBRAS CIVILES	0.10	6.25	0.63	1.180	0.74
				SUB TOTAL (N)	8.12
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO
			А	В	C=A*B
UNION PVC ROSCABLE 1/2"		u	1.00	0.32	0.32
LLAVE DE PICO. MANJIA "T". 1/2" CINTA 1 TEFLON 12 MM X 10M C/CARRETI	=	u	1.00	8.68	8.68
PLASTIGAMA	_	u	0.50	0.42	0.21
			l	SUB TOTAL (O)	9.21
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	_
ESTOS PRECIOS NO INCLUYEN EL IVA					

TOTAL COSTO DIRECTO (M+N+O+P)	17.74
INDIRECTOS Y	
UTILIDADES 15%	2.66
OTROS INDIRECTOS 5%	0.89
COSTO TOTAL PROPUESTO USD. \$	21.29

ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENC	CIA:			
9.3	9.3 1/8/2024 PROYECTO CIUDAD CELESTE					
CAPITULO	AGUAS SERVII	DAS	RUBRO	9.31		
DETALLE	PUNTOS DE DE	ESAGUE	UNIDAD	ptos		

1. EQUIPOS						
DESCRIPCION	CANTIDA D	TARIFA		COSTO HORA	RENDIMIE NTO	COSTO UNTARIO
	Α	В		C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					4.000	1.38
					SUB TOTAL (M)	1.38
2. MANO DE OBRA						
DESCRIPCION	CANTIDA D	JORNAL/HORA		COSTO HORA	RENDIMIE NTO	COSTO UNTARIO
(CATEGORIA)	А	В		C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50		4.000	10.00
PEON MAESTRO MAYOR EN	1.00	3.75	3.75		4.000	15.00
EJECUCION DE OBRAS CIVILES 0.10		6.25	0.63		4.000	2.52
					SUB TOTAL (N)	27.52
3. MATERIALES						
DESCRIPCION		UNIDAD		CANTIDAD	COSTO UNITARIO	COSTO
				Α	В	C=A*B
TEE PVC 50MM DESAGUE PLA		u	2.45		1.07	2.62
TUBO PVC 50MM X 3M DESAGI PLASTIGAMA SOLDADURA P/TUB PVC POLIL		u	0.69		6.06	4.18
PLASTIGAMA		3.785cc	0.02		33.14	0.66
SOLDADURA P/TUB PVC POLIF 3.785CC PLASTIGAMA		3.785cc	0.02		54.82	1.10
TUBO PVC 110MM X 3M DESA PLASTIDOR	GUE	u	0.01		9.47	0.09
		l	1		SUB TOTAL (O)	8.65
4. TRANSPORTE						
DESCRIPCION		UNIDAD		CANTIDAD	TARIFA	COSTO
				Α	В	C=A*B
· · · · · · · · · · · · · · · · · · ·					SUB TOTAL (P)	_

TOTAL COSTO	DIRECTO	(M+N+O+P)	37.55
INDIRECTOS Y	UTILIDADES	INDIRECTOS Y UTILIDADES	15% 5.63
OTROS	INDIRECTOS	OTROS INDIRECTOS	5% 1.88
COSTO TOTAL	PROPUESTO	USD. \$	45.06

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				CIA:	
9.3	1/8/2024 PROYECTO CIUDAD CELESTE				
CAPITULO	AGUAS SERVIDAS	RUBRO	9.32		
DETALLE	ETALLE BAJANTES DE AGUA SERVIDA TUBERIA DE 4" PVC			ml	

1. EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.500	0.17
				SUB TOTAL (M)	0.17
2. MANO DE OBRA			·	502 1017L (III)	0.11
DESCRIPCION	CANTIDAD	JORNAL/H ORA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.500	1.25
PEON MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.500	1.88
MAESTRO MAYOR EN EJECUCION DE OBRAS CIVILES	0.10	6.25	0.63	0.500	0.32
				SUB TOTAL (N)	3.45
3. MATERIALES				. ,	
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
TUBO DESAG. E/C 110MM X3M		u	0.33	11.74	3.87
CODO DESAG. E/C 110MM X 45 GRAD.		u	1.00	2.36	2.36
YEE PVC 110MM A 50MM		u	1.00	4.59	4.59
KALIPEGA		lt	0.08	15.00	1.13
		1	<u>'</u>	SUB TOTAL (O)	11.95
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+P)		15.57
INDIRECTOS Y UTILIDADES	15%	2.34
OTROS INDIRECTOS	5%	0.78
COSTO TOTAL PROPUESTO	USD. \$	18.69

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:					
9.3	9.3 1/8/2024 PROYECTO CIUDAD CELESTE				
CAPITULO	AGUAS SERVIDAS		RUBRO	9.33	
DETALLE	DETALLE BAJANTES DE AGUA LLUVIA TUBERIA DE 3" PVC			ml	

1. EQUIPOS					
DESCRIPCION	CANTI DAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.100	0.03
				SUB TOTAL (M)	0.03
2. MANO DE OBRA					
DESCRIPCION	CANTI DAD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.100	0.25
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.100	0.38
OBRAS CIVILES	0.10	6.25	0.63	0.100	0.06
				SUB TOTAL (N)	0.69
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
TUBO DESAG. E/C 110MM X3M		u	0.33	11.75	3.88
YEE PVC 110MM A 50MM		u	1.00	2.36	2.36
KALIPEGA		lt	0.08	4.59	4.59
				15.00	1.13
				SUB TOTAL (O)	11.96
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C=A*B
				SUB TOTAL (P)	•

TOTAL COSTO DIRECTO (M+N+O+P)		12.68
INDIRECTOS Y UTILIDADES	15%	1.90
OTROS INDIRECTOS	5%	0.63
COSTO TOTAL PROPUESTO	USD. \$	15.21

ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:					
9.3	1/8/2024 PROYECTO CIUDAD CELESTE					
CAPITULO	AGUAS SERVIDAS		RUBRO	9.34		
DETALLE	TUBERIA DE 4" PVC		UNIDAD	ml		

1. EQUIPOS					
DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.400	0.14
				SUB TOTAL (M)	0.14
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/HO RA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.400	1.00
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.400	1.50
OBRAS CIVILES	0.10	6.25	0.63	0.400	0.25
				SUB TOTAL (N)	2.75
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
TUBO DESAG. E/C 110MM X3M		u	0.33	11.74	3.87
CODO DESAG. E/C 110MM X 45 GRAD.		u	1.00	2.36	2.36
YEE PVC 110MM A 50MM		u	1.00	4.59	4.59
KALIPEGA		It	0.08	15.00	1.13
				SUB TOTAL (O)	11.95
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+I	P)	14.84
INDIRECTOS Y UTILIDADES	15%	2.23
OTROS INDIRECTOS	5%	0.74
COSTO TOTAL PROPUESTO US	D. \$	17.81

ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:					
9.3	1/8/2024 PROYECTO CIUDAD CELESTE					
CAPITULO	AGUAS SERVIDAS		RUBRO	9.35		
DETALLE	TUBERIA DE 3" PVC		UNIDAD	ml		

1. EQUIPOS					
DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.500	0.17
				SUB TOTAL (M)	0.17
2. MANO DE OBRA					
DESCRIPCION	CANTID AD	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.500	1.25
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.500	1.88
OBRAS CIVILES	0.10	6.25	0.63	0.500	0.32
				SUB TOTAL (N)	3.45
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO
			А	В	C=A*B
TUBO DESAG. E/C 75MM PARA DESAGUE		u	1.00	13.29	13.29
CODO DESAG. E/C 75MM X 90/ 45 GRAD.		u	1.00	1.84	1.84
YEE PVC 75MM		u	1.00	1.97	1.97
KALIPEGA		lt	0.08	15.00	1.13
				SUB TOTAL (O)	18.23
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	COSTO
			А	В	C=A*B
SUB TOTAL (P)					
FOTOG PREGIONALIO INICIALINALIO INICIALI					

TOTAL COSTO DIRECTO (M+N+O+P)		21.85
INDIRECTOS Y		
UTILIDADES	15%	3.28
OTROS INDIRECTOS	5%	1.09
COSTO TOTAL PROPUESTO USD. \$		26.22

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				
9.3	1/8/2024	PROYECTO CIUE	DAD CELESTE			
CAPITULO	AGUAS SERVIDAS		RUBRO	9.36		
DETALLE	TUBERIA DE 2" PVC		UNIDAD	ml		

1. EQUIPOS					
DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				0.500	0.17
				SUB TOTAL (M)	0.17
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/H ORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	0.500	1.25
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.500	1.88
OBRAS CIVILES	0.10	6.25	0.63	0.500	0.32
				SUB TOTAL (N)	3.45
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	COSTO
			Α	В	C=A*B
TUBO DESAG. E/C 50MM PARA DESAGUE		u	1.00	6.06	6.06
CODO DESAG. E/C 50MM X 90/ 45 GRAD.		u	1.00	0.77	0.77
YEE PVC 50MM		u	1.00	1.07	1.07
KALIPEGA		lt	0.08	15.00	1.13
			ı	SUB TOTAL (O)	9.03
4. TRANSPORTE				· · ·	
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	COSTO
223 5.5		0	A	В	C=A*B
			, ,		<u> </u>
		I	I	OUD TOTAL (D)	
				SUB TOTAL (P)	-

12.65
1.90
0.63
15.18
0

ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				
9.3	1/8/2024 PROYECTO CIUDAD CELESTE				
CAPITULO	AGUAS SERVIDAS	RUBRO	9.37		
DETALLE	SUMINISTRO E INSTALACIO	UNIDAD			

4 5011100					
1. EQUIPOS DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)				4.000	1.38
				SUB TOTAL (M)	1.38
2. MANO DE OBRA				· · · · · · · · · · · · · · · · · · ·	
DESCRIPCION	CANTID AD	JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PLOMERO	1.00	2.50	2.50	4.000	10.00
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	4.000	15.00
OBRAS CIVILES	0.10	6.25	0.63	4.000	2.52
				SUB TOTAL (N)	27.52
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
CODO HG 1./2"X90		u	2.00	0.46	0.92
UNIVERSAL HG 1/2"		u	1.00	2.29	2.29
VALVULA CHECK 1/2"		u	1.00	14.40	14.40
NEPLO HG 1/2" 5CM		It	1.00	0.28	0.28
TEE HG 1/2" CINTA 1 TEFLON 12MMX10M C/CARRETE			1.00	0.25	0.25
PLASTIGAMA			4.00	0.42	1.68
TANQUE CALENTADOR SIDEC 30 GAL			1.00	338.61	338.61
				SUB TOTAL (O)	358.43
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C=A*B
		<u> </u>			
				SUB TOTAL (P)	-

TOTAL COSTO DIRECTO (M+N+O+P)		387.33
INDIRECTOS Y		
UTILIDADES	15%	58.10
OTROS INDIRECTOS	5%	19.37
COSTO TOTAL PROPUESTO USD. \$		464.80

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:					
9.3	1/8/2024	ELESTE					
CAPITULO	AGUAS SERVIDAS		RUBRO	9.38			
DETALLE	PUNTOS DE VENTILACION	I	UNIDAD	ptos			

1. EQUIPOS						
DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO	
	Α	В	C= A*B	R	D= C*R	
HERRAMIENTA MENOR (5% DE M.O.)				0.500	0.17	
		(SUB TOTAL (M)	0.17		
2. MANO DE OBRA						
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIENT O	COSTO UNTARIO	
(CATEGORIA)	А	В	C= A*B	R	D= C*R	
PLOMERO	1.00	2.50	2.50	0.500	1.25	
PEON MAESTRO MAYOR EN EJECUCION DE	1.00	3.75	3.75	0.500	1.88	
OBRAS CIVILES	0.10	6.25	0.63	0.500	0.32	
SUB TOTAL (N) 3.						
3. MATERIALES						
DESCRIPCION		UNIDAD	CANTIDA D	COSTO UNITARIO	совто	
			Α	В	C=A*B	
SOLDADURA P/TUB PVC POLIPEGA 3.785 PLASTIGAMA	icc	3.785cc	0.01	54.82	0.55	
TUBO PVC 75MX 3M DESAGUE PLASTIDO)R	u	1.00	13.29	13.29	
CODO PVC 75MMX90, DESAGUE		u	1.00	1.70	1.70	
					\	
		<u> </u>		SUB TOTAL (O)	15.54	
4. TRANSPORTE						
DESCRIPCION		UNIDAD	CANTIDA D	TARIFA	соѕто	
			А	В	C=A*B	
			;	SUB TOTAL (P)	-	

TOTAL COSTO DIRECTO (M+N+O+P)		19.16
INDIRECTOS Y UTILIDADES	15%	2.87
OTROS	FO	, , , , ,
INDIRECTOS	5%	6 0.96
COSTO TOTAL PROPUESTO	USD. \$	22.99

ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:						
9.3	1/8/2024 PROYECTO CIUDAD CELESTE					
CAPITULO	AGUAS SERVIDAS		RUBRO	9.39		
DETALLE	CAJAS DE REGISTRO		UNIDAD	u		

1. EQUIPOS							
DESCRIPCION	CANTID AD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
	А	В	C= A*B	R	D= C*R		
HERRAMIENTA MENOR (5% DE M.O.)				4.000	2.38		
				SUB TOTAL (M)	2.38		
2. MANO DE OBRA				,			
DESCRIPCION	CANTID AD	JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO		
(CATEGORIA)	А	В	C= A*B	R	D= C*R		
MAESTRO ALBAÑIL	1.00	3.75	3.75	4.000	15.00		
PEON MAESTRO MAYOR EN EJECUCION DE	3.00	2.50	7.50	4.000	30.00		
OBRAS CIVILES	0.10	6.25	0.63	4.000	2.50		
			SUB TOTAL (N)	47.50			
3. MATERIALES							
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO		
			А	В	C=A*B		
ARENA GRUESA		m3	0.25	13.50	3.38		
PIEDRA 3/4"		m3	0.36	16.00	5.76		
CEMENTO FUERTE		saco	2.51	7.68	19.28		
AGUA POTABLE		It	0.07	-	-		
CUARTON ENCOFRADO S-D 5V 2"X3"		u	3.00	4.20	12.60		
TABLA DE ENCOFRADO (20CM) DOS USOS	3	u	7.00	3.00	21.00		
CLAVOS DE 2" A 4"		kg	0.50	1.60	0.80		
MALLA ELECTROSOLDADA 10X10X5MM		m2	4.48	3.60	16.13		
SUB TOTAL					78.95		
4. TRANSPORTE							
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO		
			Α	В	C=A*B		
SUB TOTAL (P) -							

TOTAL COSTO DIRECTO (M+N+O+P)		128.83
INDIRECTOS Y		
UTILIDADES	15%	19.32
OTROS INDIRECTOS	5%	6.44
COSTO TOTAL PROPUESTO USD. \$		154.59

						4-10-(4-11)			
			ANÁLISIS	DE PI	RECIO UNITA	RIO (APU)			
CÓDI GO	FECHA DE CREACIÓN		PRO	YECT	TO DE CONST	TRUCCIÓN DE	LA RESIDENCI	A:	
	LO 1/8/2 ABI UAS	SERVIDAS			PROYECTO	O CIUDAD CELI	STE RUB	RO	9.4
	INSTALRENDE	AS DE PISOS SELECTRICAS	1				UNII	RUBRO	19.01
DETA LLE	PUNTOS DE ILU	IMINACION 110) V.					UNIDAD	ptos
1. EQUIP	Pos							<u>.</u>	
1. EQUIPO	os				T			DENIDIMIEN	COSTO
DESC	CRIPCION	CANTIDAD	TARIFA			COSTO HORA	4	RENDIMIEN TO	UNTARIO
UEDD AMI E	ENTA MENOR	A	В	•		C= A*B		R	D= C*R
(5% DE M.							SUB .	r ófal (m)	0.9.41
2 MANO	DE ORDA						SI	JB TOTAL (M)	0.41
2. MANO D	DE OBRA				I			RENDIMIEN	COSTO
DESC	CRIPCION	CANTIDAD	JORNAL/HORA	A		COSTO HORA	4	TO	UNTARIO
(CATE	EGORIA) O	Α	B 1.00	3.7	5	C= A*B 3.75	0.400	R	D= C*R 1.50
PEÓN EST	T. OC. D2	2.00	2.50	2.5	5.00	2.50	0.400	0.600	3.00 1.00
	OGHRYBA EN	EJE&96ION	D 2 75		7.50		000	0.600	4.50
KESTRUC!	-6\ch <u>₹.c₂₎</u>	0.20	6.25 0.10	6.2	5 _{1.25}	0.63	0.400	0.600	0.25 ₅
							SUBsi	<u>TPTAta(N)N)</u>	2.8.55
3. MATERI	IALES				<u> </u>			COSTO	
DESC	CRIPCION		UNIDAD			CANTIDAD		UNITARIO	COSTO
CEMENT	O FUERTE TIP	O GU SACO			4.00	A		В В	C=A*B
HOLCINM CAJA PVC	TO SERGONAL F RECTANGULAR	R	u u	sa	co ^{1.00}	0.11	7.68	0.79	0.849
RLASTIGAI ARENA	NDUIT EMT 1/2"	Y 3M	u	m:	1.50	0.01	13.50	3.62	0.94 ⁹ 5.43
AGUA	OTO A DSRANDA A			m(0.01	0.85	0.49	0.01
	COLGANTE SE		u u	u	1.00	1.00	15.42	2.00	15.42 2.00
UNION EM			u		2.00			0.40	0.80
CABLE TW	/ SOLIDO #12		m		9.10			0.35	3.19
							SI	UB TOTAL (O)	13.49
4. TRANSF	PORTE								
DESC	CRIPCION		UNIDAD			CANTIDAD		TARIFA	COSTO
	DECODIO	CION			INIDAD	A D	T.C.	В	C=A*B
	DESCRIP	JION			UNIDAD	A	TAR		COSTO - C=A*B
ESTOS DD	RECIOS NO							UB TOTAL (P)	- C=A B
INCLUYEN		ı	TOTAL COSTO	-	T		SHE	TOTAL (P)	
ESTOS P	RECIOS NO IN	NCLUYEN EL	DIRECTO		TOTAL CO	STO DIRECTO		· • · · · · · · · · · · · · · · · · · ·	22.15
			INDIRECTOS Y UTILIDADES	то				15%	19.30
			OTROS INDIRECT	INI	IRECTOS Y	/	ntivett)	15%	2.6d ¹
			COSTO TOTAL PROPUESTO				TO USD.		
			USD. \$	ОТ	RĢŠTŃĎÍŘI	TAL PROPUES ECTOS	. 5 002.	5%	0.97 _{.58}
CONSULT				CO	STO TOTAL	L PROPUEST	O USD. \$		23.17

CONSULTOR CONSULTOR

ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:						
10	1/8/2024 PROYECTO CIUDAD CELESTE						
CAPITULO	ITULO INSTALACIONES ELECTRICAS			10.02			
DETALLE	PUNTO DE TOMACORRIENTES DE 110V			ptos			

1. EQUIPOS		Т		Π	COSTO			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	UNTARIO			
	Α	В	C= A*B	R	D= C*R			
HERRAMIENTA MENOR (5% DE M.O.)					0.52			
			SUB TOTAL (M)	0.52				
2. MANO DE OBRA				, ,				
DESCRIPCION CANTIDAD		JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO			
(CATEGORIA)	А	В	C= A*B	R	D= C*R			
PEÓN EST. OC. D2	2.00	2.50	5.00	0.750	3.75			
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.750	5.63			
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.750	0.94			
			SUB TOTAL (N)	10.32				
3. MATERIALES								
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO			
			A	В	C=A*B			
ALAMBRE GALVANIZADO #18		kg	0.13	2.54	0.33			
ALAMBRE SOLIDO THHN 12 AWG		m	14.00	0.58	8.12			
CAJA PVC RECTANGULAR PLASTIGAMA		u	1.00	0.79	0.79			
CONECTORES EMT 1/2"		u	2.00	0.32	0.64			
TUBO CONDUIT EMT 1/2" X 3M		u	2.00	3.62	7.24			
UNION CONDUIT 1/2"	DO CONTADA	u	2.00	0.30	0.60			
TOMACORRIENTE INDUSTRIAL POLARIZA 21-220W	ADO CON TAPA	u	1.00	5.00	5.00			
CINTA AISLANTE 19MM X 9 M X 0.13 MM F	PLASTIGAMA	u	1.00	0.59	0.59			
				SUB TOTAL (O)	23.31			
4. TRANSPORTE								
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
			А	В	C=A*B			
					-			
SUB TOTAL (P)								

TOTAL COSTO DIRECTO (M+N+O+P)		34.15
INDIRECTOS Y UTILIDADES	15%	5.12
OTROS INDIRECTOS	5%	1.71
COSTO TOTAL PROPUESTO	USD. \$	40.98

ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:						
10	1/8/2024 PROYECTO CIUDAD CELESTE						
CAPITULO	INSTALACIONES ELECTRIC	CAS	RUBRO	10.03			
DETALLE	PUNTO DE TOMACORRIEN	ITES DE 220V	UNIDAD	ptos			

1. EQUIPOS	CANTIDA	1			COSTO			
DESCRIPCION	D	TARIFA	COSTO HORA	RENDIMIENTO	UNTARIO			
	А	В	C= A*B	R	D= C*R			
HERRAMIENTA MENOR (5% DE M.O.)					0.52			
				SUB TOTAL (M)	0.52			
2. MANO DE OBRA								
DESCRIPCION	CANTIDA D	JORNAL/HO RA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO			
(CATEGORIA)	А	В	C= A*B	R	D= C*R			
PEÓN EST. OC. D2	2.00	2.50	5.00	0.750	3.75			
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.750	5.63			
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.750	0.94			
SUB TOTAL (N)								
3. MATERIALES								
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO			
			А	В	C=A*B			
ALAMBRE GALVANIZADO #18		kg	0.13	2.54	0.33			
ALAMBRE SOLIDO THHN 12 AWG		m	26.00	0.58	15.08			
CAJA PVC RECTANGULAR PLASTIGAMA		u	1.00	0.42	0.42			
CONECTORES EMT 1/2"		u	2.00	0.32	0.64			
TUBO CONDUIT EMT 1/2" X 3M		u	4.00	3.62	14.48			
UNION CONDUIT 1/2"	DO CON	u	3.00	0.30	0.90			
TOMACORRIENTE INDUSTRIAL POLARIZA TAPA 21-220W	DO CON	u	1.00	5.00	5.00			
CINTA AISLANTE 19MM X 9 M X 0.13 MM PI	LASTIGAMA	u	0.20	0.59	0.12			
				SUB TOTAL (O)	36.97			
4. TRANSPORTE								
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
			А	В	C=A*B			
SUB TOTAL (P)								

TOTAL COSTO DIRECTO (M+N+O+P)			47.81
INDIRECTOS Y UTILIDADES		15%	7.17
OTROS INDIRECTOS		5%	2.39
COSTO TOTAL PROPUESTO	USD. \$	<u> </u>	57.37

	ANÁLISIS DE PRECIO UNITARIO (APU)					
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓ	N DE LA RESIDENCIA	٨:		
10	1/8/2024	PROYECTO CIUDAI	O CELESTE			
CAPITULO	INSTALACIONES ELECTRICAS		RUBRO	10.04		
DETALLE	SUMINISTRO E INSTALAC	ON DE LUMINARIAS DE OJOS DE BUEY	UNIDAD	u		

1. EQUIPOS	CANTIDA	T	T	<u> </u>	
DESCRIPCION	D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.34
				SUB TOTAL (M)	0.34
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	A	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.500	2.50
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.500	3.75
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.500	0.63
(2)	0.20	0.23	1.23	•	
=			SUB TOTAL (N)	6.88	
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			A	В	C=A*B
CABLE TW SOLIDO #12		m	12.00	0.49	5.88
INTERRUPTOR SIMPLE CON LUZ PILOTO		u	1.00	2.35	2.35
MANGUERA FLEX PE 1/2" PLASTIDOR		m	6.00	0.40	2.40
LUMINARIA TIPO OJO DE BUEY		u	1.00	4.00	4.00
					-
					-
					-
					-
				SUB TOTAL (O)	14.63
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	соѕто
			А	В	C=A*B
				SUB TOTAL (P)	-
				: • /	

TOTAL COSTO DIRECTO (M+N+O+P)	21.85
INDIRECTOS Y UTILIDADES 15%	3.28
OTROS INDIRECTOS 5%	1.09
COSTO TOTAL PROPUESTO USD. \$	26.22

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN I	DE LA RESIDENCIA:	
10	1/8/2024	PROYECTO CIUDAD C	ELESTE	
CAPITU				
LO	INSTALACIONES ELECTRI	CAS	RUBRO	10.05
DETALL	SUMINISTRO E INSTALAC	ON DE LUMINARIAS DE LED DE PARED UP & DOWN	UNIDAD	
E	ANGULO AJUSTABLE		UNIDAD	u

1. EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.34
				SUB TOTAL (M)	0.34
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.500	2.50
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.500	3.75
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.500	0.63
				SUB TOTAL (N)	6.88
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
CABLE TW SOLIDO #12		m	12.00	0.49	5.88
INTERRUPTOR SIMPLE CON LUZ PILO	ОТО	u	1.00	2.35	2.35
MANGUERA FLEX PE 1/2" PLASTIDOR	l	m	6.00	0.40	2.40
LUMINARIA TIPO LED DE PARED UP 8	k DOWN	u	1.00	24.53	24.53
					-
					-
					-
					-
				SUB TOTAL (O)	35.16
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
ESTOS PRECIOS NO INCLUYEN EL				SUB TOTAL (P)	-

IVA

TOTAL COSTO DIRECTO (M+N+O+P)	42.38
INDIRECTOS Y UTILIDADES 15%	6.36
OTROS INDIRECTOS 5%	2.12
COSTO TOTAL PROPUESTO USD. \$	50.86

CONSULTOR

CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:				
10	1/8/2024	PROYECTO CIUDAD CELESTE				
CAPITULO	INSTALACIONES ELECTRI	CAS	RUBRO	10.06		
DETALLE	SUMINISTRO E INSTALACION DE PIEZAS DE TOMACORRIENTES		UNIDAD	п		

1. EQUIPOS			COSTO		
DESCRIPCION	CANTIDAD	TARIFA	HORA	RENDIMIENTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.34
				SUB TOTAL (M)	0.34
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	A	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.500	2.50
ELECTRICISTA (ESTRUC. OCUP. D2) MAESTRO DE OBRA (ESTRUC. OCUP.	2.00	3.75	7.50	0.500	3.75
C2)	0.20	6.25	1.25	0.500	0.63
				SUB TOTAL (N)	6.88
3. MATERIALES				,	
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
TOMACORRIENTES 110v		u	1.00	7.85	7.85
					-
					-
					_
					-
					-
					-
					-
					-
				SUB TOTAL (O)	7.85
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				_	
				SUB TOTAL (P)	-
				` ` `	

TOTAL COSTO DIRECTO (M+N+O+P)		15.07
INDIRECTOS Y UTILIDADES	15%	2.26
OTROS INDIRECTOS	5%	0.75
COSTO TOTAL PROPUESTO USD. \$		18.08

CONSULTOR

CÓDIG O	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE L	A RESIDENCIA:	
10	1/8/2024	PROYECTO CIUDAD CELE	STE	
CAPITU				
LO	INSTALACIONES ELECTRIC	CAS	RUBRO	10.07
DETALL	SUMINISTRO E INSTALACI	ON DE TABLEROS DE DISTRIBUCION ELECTRICA 2 POLO	UNIDAD	
E	10-32 AMPS SQUARE D		UNIDAD	u

I. EQUIPOS				I	COSTO
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					11.00
				SUB TOTAL (M)	11.00
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	16.000	80.00
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	16.000	120.00
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	16.000	20.00
				SUB TOTAL (N)	220.00
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			Α	В	C=A*B
CEMENTO FUERTE TIPO GU SACO 50 DISENSA	KG - HOLCIM	saco	0.30	7.68	2.30
BREAKER 1 POLO 10-32 AMPS SQUAR	E D	u	40.00	7.58	303.20
ARENA		m3	0.60	13.50	8.10
AGUA		m3	0.02	0.85	0.02
CITA AISLANTE		u	0.08	0.45	0.04
TABLERO BIFASICO 40 PTS		u	1.00	29.48	29.48
					-
					-
				SUB TOTAL (O)	343.14
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	_

TOTAL COSTO DIRECTO (M+N+O+P)		574.14
INDIRECTOS Y UTILIDADES	15%	86.12
OTROS INDIRECTOS	5%	28.71
COSTO TOTAL PROPUESTO USD. \$		688.97

ANÁLISIS DE PRECIO UNITARIO (APU)		
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:

10	1/8/2024	PROYECTO CIUDAD CEL	ESTE	
CAPITULO	INSTALACIONES ELECTR	RICAS	RUBRO	10.08
DETALLE	SUMINISTRO E INSTALA	CION DE CAMARA DE SEGURIDAD	UNIDAD	u

1. EQUIPOS			00070		00070
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	A	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.28
				SUB TOTAL (M)	0.28
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.400	2.00
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.400	3.00
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.400	0.50
				SUB TOTAL (N)	5.50
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
CAMARA IP DOMO DIA Y NOCHE		u	1.00	250.00	250.00
					-
					-
					-
					-
					-
					-
					-
				SUB TOTAL (O)	250.00
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	_

ESTOS PRECIOS NO INCLUYEN EL IVA

 TOTAL COSTO DIRECTO (M+N+O+P)
 255.78

 INDIRECTOS Y UTILIDADES
 15%
 38.37

 OTROS INDIRECTOS
 5%
 12.79

 COSTO TOTAL PROPUESTO
 USD. \$
 306.94

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:						
10	1/8/2024	PROYECTO CIUDAD CELESTE						

CAPITULO	INSTALACIONES ELECTRICAS	RUBRO	10.09
DETALLE	SUMINISTRO E INSTALACION DE PORTERO ELECTRICO	UNIDAD	п

1. EQUIPOS	CANTIDA		COSTO		
DESCRIPCION	D	TARIFA	HORA	RENDIMIENTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.34
				SUB TOTAL (M)	0.34
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.500	2.50
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.500	3.75
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.500	0.63
				SUB TOTAL (N)	6.88
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
PEGANTE PARA PVC		It	0.25	5.07	1.27
CAJA PLASTICA PVC 2X4		u	1.00	0.72	0.72
CAJA PLASTICA PVC 4X4		u	1.00	1.16	1.16
CINTA AISLANTE		u	1.00	0.87	0.87
PORTERO ELECTRICO DE VIVIENDA		u	1.00	55.61	55.61
TUBO BERMAN DE 3/4 PUL		ml	30.00	0.72	21.60
					-
					-
				SUB TOTAL (O)	81.23
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	_

ESTOS PRECIOS NO INCLUYEN EL IVA

TOTAL COSTO DIRECTO (M+N+O+P)	88.45
INDIRECTOS Y UTILIDADES 15%	13.27
OTROS INDIRECTOS 5%	4.42
COSTO TOTAL PROPUESTO USD. \$	106.14

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:						
10	1/8/2024	PROYECTO CIUDAD CELESTE						

CAPITULO	INSTALACIONES ELECTRICAS	RUBRO	10.1
DETALLE	SUMINISTRO E INSTALACION DE INTERRUPTORES	UNIDAD	u

	CANTIDA		COSTO		COSTO
DESCRIPCION	D	TARIFA	HORA	RENDIMIENTO	UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.28
				SUB TOTAL (M)	0.28
2. MANO DE OBRA					
DESCRIPCION	CANTIDA D	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.400	2.00
ELECTRICISTA (ESTRUC. OCUP. D2) MAESTRO DE OBRA (ESTRUC. OCUP.	2.00	3.75	7.50	0.400	3.00
C2)	0.20	6.25	1.25	0.400	0.50
				SUB TOTAL (N)	5.50
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
CAJA RECTANGULAR PROFUNDA		u	1.00	0.42	0.42
CAJA PVC RECTANGULAR PLASTIGAMA	Ą	u	1.00	0.79	0.79
CONECTORES EMT 1/2"		u	4.00	0.32	1.28
TUBO CONDUIT LIVIANO 1/2"		3m	1.67	1.21	2.02
CABLE TW SOLIDO #12		m	10.00	0.49	4.90
INTERRUPTOR DOBLE		u	1.00	3.39	3.39
					-
					-
				SUB TOTAL (O)	12.80
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
				SUB TOTAL (P)	

IVA

TOTAL COSTO DIRECTO (M+N+O+P)	18.58
INDIRECTOS Y UTILIDADES 15	3% 2.79
OTROS INDIRECTOS 5	5% 0.93
COSTO TOTAL PROPUESTO USD.\$	22.30

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	CÓDIGO FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:							
10	1/8/2024	PROYECTO CIUDAD	CELESTE					
CAPITULO	INSTALACIONES ELECT	RICAS	RUBRO	10.11				

					mı
1. EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	А	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					-
				SUB TOTAL (M)	_
2. MANO DE OBRA				. ,	
DESCRIPCION	CANTIDAD	JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	А	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	0.05	2.50	0.13	0.050	0.01
ELECTRICISTA (ESTRUC. OCUP. D2)	0.05	3.75	0.19	0.050	0.01
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.01	6.25	0.06	0.050	_
		,	,	SUB TOTAL (N)	0.02
3. MATERIALES				00B 101712 (N)	0.02
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
DESCINI CICIN		ONIBAD	A	В	C=A*B
CONECTORES ETM		u	1.00	0.57	0.57
TUBO CONDUIT PESADO		3m	0.33	4.80	1.58
CINTA AISLANTE		u	0.10	0.45	0.05
CABLE ELECTRICO AWG 3X2*1X4*1X5		m	1.00	0.50	0.50
ONDEE EEEO THOO THOO ONE THE THO		'''	1.00	0.00	-
					-
				SUB TOTAL (O)	2.70
4. TRANSPORTE				002 1017/2 (0)	1 2.110
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			Α	В	C=A*B
		•		SUB TOTAL (P)	_
ESTOS PRECIOS NO INCLUYEN EL IVA				(.)	1
11/1		TOTAL COSTO (M+N+O+P)	2.72		
			LITII IDADES	15%	0.41
		OTROS INDIREC			
		OTROS INDIRE		5%	0.14
		COSTO TOTAL	PROPUESTO USI	D. \$	3.2

UNIDAD

DETALLE COLOCACION DE TUBERIA ELECTRICA AWG 3X2*1X4*1X5

	ANÁLISIS DE PRECIO UNITARIO (APU)							
CÓDIGO	FECHA DE CREACIÓN PROYECTO DE CONSTRUCCIÓN DE LA RESIDENCIA:							
10	1/8/2024 PROYECTO CIUDAD CELESTE							
CAPITULO	INSTALACIONES ELECTR	RUBRO	10.12					
DETALLE	VARILLA COOPERWELD	UNIDAD	u					

. EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
	Α	В	C= A*B	R	D= C*R
HERRAMIENTA MENOR (5% DE M.O.)					0.34
				SUB TOTAL (M)	0.34
2. MANO DE OBRA					
DESCRIPCION	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNTARIO
(CATEGORIA)	Α	В	C= A*B	R	D= C*R
PEÓN EST. OC. D2	2.00	2.50	5.00	0.500	2.50
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.500	3.75
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.500	0.63
				SUB TOTAL (N)	6.88
3. MATERIALES					
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO
			А	В	C=A*B
VARILLA COPPERWELD Y CONECTOR 1	6X1800MM	u	1.00	6.50	6.50
					-
					-
					=
					-
					=
					-
					-
				SUB TOTAL (O)	6.50
4. TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			А	В	C=A*B
					I
				SUB TOTAL (P)	-
ESTOS PRECIOS NO INCLUYEN EL				SUB TOTAL (P)	-
ESTOS PRECIOS NO INCLUYEN EL IVA		TOTAL COSTO D	IRECTO	SUB TOTAL (P)	13.72

CONSULTOR

	ANÁLISIS DE PRECIO UNITARIO (APU)						
CÓDIGO	FECHA DE CREACIÓN	PROYECTO DE CONSTRUC	CCIÓN DE LA RESIDENCIA:				
10	1/8/2024	PROYECTO CIUDAD CELESTE					
CAPITUL O	INSTALACIONES ELEC	FRICAS	RUBRO	10.13			
DETALLE	SALIDAS DE ANTENAS	TV	UNIDAD	ptos			

OTROS INDIRECTOS

COSTO TOTAL PROPUESTO USD. \$

5%

0.69

16.47

1. EQUIPOS			COSTO		COSTO	
DESCRIPCION	CANTIDAD	TARIFA	HORA	RENDIMIENTO	UNTARIO	
HERRAMIENTA MENOR (5% DE	Α	В	C= A*B	R	D= C*R	
M.O.)					0.52	
SUB TOTAL (M)						
2. MANO DE OBRA						
DESCRIPCION	CANTIDAD	JORNAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNTARIO	
(CATEGORIA)	А	В	C= A*B	R	D= C*R	
PEÓN EST. OC. D2	2.00	2.50	5.00	0.750	3.75	
ELECTRICISTA (ESTRUC. OCUP. D2)	2.00	3.75	7.50	0.750	5.63	
MAESTRO DE OBRA (ESTRUC. OCUP. C2)	0.20	6.25	1.25	0.750	0.94	
·				SUB TOTAL (N)	10.32	
3. MATERIALES						
DESCRIPCION		UNIDAD	CANTIDAD	COSTO UNITARIO	COSTO	
			А	В	C=A*B	
TUBO CONDUIT EMT 1/2" X 3M		u	2.00	3.62	7.24	
CAJA PVC RECTANGULAR 103X60X4 PLASTIDOR	I5MM	u	1.00	0.36	0.36	
UNION EMT 1/2"		u	1.00	0.35	0.35	
CABLE NEGRO COAXIAL		m	6.50	0.38	2.47	
					-	
					-	
					-	
					-	
				SUB TOTAL (O)	10.42	
4. TRANSPORTE				· ·		
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO	
			А	В	C=A*B	
				SUB TOTAL (P)	-	
ESTOS PRECIOS NO INCLUYEN EL IVA						
TOTAL COSTO DIRECTO (M+N+O+P)						
		INDIRECTOS Y	,	15%	21.26 3.19	
OTROS INDIRECTOS 5% COSTO TOTAL PROPUESTO USD. \$						

RESULTADOS: INSTALACIONES ELECTRICAS

Panel de	Circuitos	Descripcion	Voltaje	Fase	Potencia	Cantidad	Potenc	ia Total	Corriente	Corriente Aparente	Corriente Comercial	Cable	Conducto o Tubo
distribucion			v		w	u	Fase A	Fase B	Α	Α	Α	AWG	mm
TD1	C1 Outlet	Tomacorrientes Cocina	110	Α	200	2	400		3.64	4.55	10	1F#12+1N#12+1T#14 TW	16mm RH
	C2 Oulet	Tomacorrientes Cocina	110	В	200	2		400	3.64	4.55	10	1F#12+1N#12+1T#14 TW	16mm RH
	C3 Outlet	Tomacorrientes Cocina	110	Α	200	2	400		3.64	4.55	10	1F#12+1N#12+1T#14 TW	16mm RH
	C4 Outlet	Tomacorrientes Cocina	110	В	200	1		200	1.82	2.27	10	1F#12+1N#12+1T#14 TW	16mm RH
	C5 Outlet	Tomacorrientes Lavanderia	110	Α	200	4	800		7.27	9.09	10	1F#12+1N#12+1T#14 TW	16mm RH
	C6 Outlet	Tomacorrientes Cuarto de Bomba & Baño 1	110	В	200	2		400	3.64	4.55	10	1F#12+1N#12+1T#14 TW	16mm RH
	C7 Outlet	Tomacorrientes Comedor	110	Α	200	4	320		2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C8 Outlet	Tomacorrientes Sala	110	В	200	4		800	7.27	9.09	10	1F#12+1N#12+1T#14 TW	16mm RH
	C9 Oulet	Tomacorrientes Sala	110	Α	200	4	320		2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C10 Outlet	Tomacorrientes Sala & Escalera PB	110	В	200	2		400	3.64	4.55	10	1F#12+1N#12+1T#14 TW	16mm RH
	C19 Outlet	Tomacorrientes Exterior	110	Α	200	2	160		1.45	1.82	10	1F#12+1N#12+1T#14 TW	16mm RH
	C1 Lightling	Luminarias Cocina	110	В	100	3		300	2.73	3.41	10	1F#14+1N#14+1T#16 TW	16mm RH
	C2 Lightling	Luminarias Lavanderia	110	Α	100	2	100		0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C3 Lightling	Luminarias Cuarto de Bomba	110	В	100	1		100	0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C4 Lightling	Luminarias Baño 1	110	Α	100	1	50		0.45	0.57	10	1F#14+1N#14+1T#16 TW	16mm RH
	C5 Lightling	Luminarias Exterior Posterior	110	В	100	6		600	5.45	6.82	10	1F#14+1N#14+1T#16 TW	16mm RH
	C6 Lightling	Luminarias Exterior Lateral Izquierdo	110	Α	100	3	150		1.36	1.70	10	1F#14+1N#14+1T#16 TW	16mm RH
	C7 Lightling	Luminarias Exterior Lateral Derecho	110	В	100	4		400	3.64	4.55	10	1F#14+1N#14+1T#16 TW	16mm RH
	C8 Lightling	Luminarias Fachada	110	Α	100	2	200		1.82	2.27	10	1F#14+1N#14+1T#16 TW	16mm RH
	C9 Lightling	Luminarias Comedor	110	В	100	3		300	2.73	3.41	10	1F#14+1N#14+1T#16 TW	16mm RH
	C10 Lightling	Luminarias Sala de estar	110	Α	100	10	1000		9.09	11.36	15	1F#14+1N#14+1T#16 TW	16mm RH
	C1 Special Outlet	Tomacorriente especial Cocina	220	AB	3500	1	1750	1750	15.91	19.89	20	1F#10+1N#10+1T#12 TW	21mm RH
	C2 Special Outlet A/C	Tomacorriente especial A/C Cocina	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C3 Special Outlet A/C	Tomacorriente especial A/C Comedor	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C4 Special Outlet A/C	Tomacorriente especial A/C Sala	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C5 Special Outlet A/C	Tomacorriente especial A/C Sala	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
						Total	10650	10650					
						Total	213	300					

Panel de distribucion	Circuitos	Descripcion	Voltaje	Fase	Potencia	Cantidad	Potenci	ia Total	Corriente	Corriente Aparente	Corriente Comercial	Cable	Conducto o Tubo
			V		w	u	Fase A	Fase B	Α	Α	Α	AWG	mm
TD2	C11 Outlet	Tomacorrientes Dormitorio 1	110	Α	200	4	320		2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C12 Oulet	Tomacorrientes Dormitorio 2	110	В	200	4		320	2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C13 Outlet	Tomacorrientes Baños & Pasiilo	110	Α	200	4	320		2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C14 Outlet	Tomacorrientes Dormitorio 3	110	В	200	4		320	2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C15 Outlet	Tomacorrientes Dormitorio 4	110	Α	200	4	320		2.91	3.64	10	1F#12+1N#12+1T#14 TW	16mm RH
	C16 Outlet	Tomacorrientes Oficina	110	В	200	4		800	7.27	9.09	10	1F#12+1N#12+1T#14 TW	16mm RH
	C17 Outlet	Tomacorrientes Baño 4	110	Α	200	1	80		0.73	0.91	10	1F#12+1N#12+1T#14 TW	16mm RH
	C18 Outlet	Tomacorrientes Balcon	110	В	200	1		80	0.73	0.91	10	1F#12+1N#12+1T#14 TW	16mm RH
	C11 Lightling	Luminarias Dormitorio 1	110	В	100	6		600	5.45	6.82	10	1F#14+1N#14+1T#16 TW	16mm RH
	C12 Lightling	Luminarias Dormitorio 2	110	Α	100	6	300		2.73	3.41	10	1F#14+1N#14+1T#16 TW	16mm RH
	C13 Lightling	Luminarias Baño 2	110	В	100	2		200	1.82	2.27	10	1F#14+1N#14+1T#16 TW	16mm RH
	C14 Lightling	Luminarias Baño 3	110	Α	100	2	100		0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C15 Lightling	Luminarias Dormitorio 3	110	В	100	6		600	5.45	6.82	10	1F#14+1N#14+1T#16 TW	16mm RH
	C16 Lightling	Luminarias Baño 4	110	Α	100	2	100		0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C17 Lightling	Luminarias Armario 1	110	В	100	1		50	0.45	0.57	10	1F#14+1N#14+1T#16 TW	16mm RH
	C18 Lightling	Luminarias Dormitorio 3	110	Α	100	6	300		2.73	3.41	10	1F#14+1N#14+1T#16 TW	16mm RH
	C19 Lightling	Luminarias Balcon	110	В	100	2		100	0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C20 Lightling	Luminarias Armario 2	110	Α	100	1	50		0.45	0.57	10	1F#14+1N#14+1T#16 TW	16mm RH
	C21 Lightling	Luminarias Baño 5	110	В	100	2		100	0.91	1.14	10	1F#14+1N#14+1T#16 TW	16mm RH
	C22 Lightling	Luminarias Oficina	110	Α	100	13	1300		11.82	14.77	15	1F#14+1N#14+1T#16 TW	16mm RH
	C1 Special Outlet	Tomacorriente especial A/C Dormitorio 1	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C2 Special Outlet A/C	Tomacorriente especial A/C Dormitorio 2	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C3 Special Outlet A/C	Tomacorriente especial A/C Dormitorio 3	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C4 Special Outlet A/C	Tomacorriente especial A/C Dormitorio 4	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C5 Special Outlet A/C	Tomacorriente especial A/C Oficina	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
	C6 Special Outlet A/C	Tomacorriente especial A/C Oficina	220	AB	2500	1	1250	1250	11.36	14.20	15	1F#10+1N#10+1T#12 TW	21mm RH
						Total	10690	10670					
						Total	213	360					

BREAKER DEL TD1						
Power	10650	W				
Current	96.81818182	Α				
Comercial Current	100	Α				

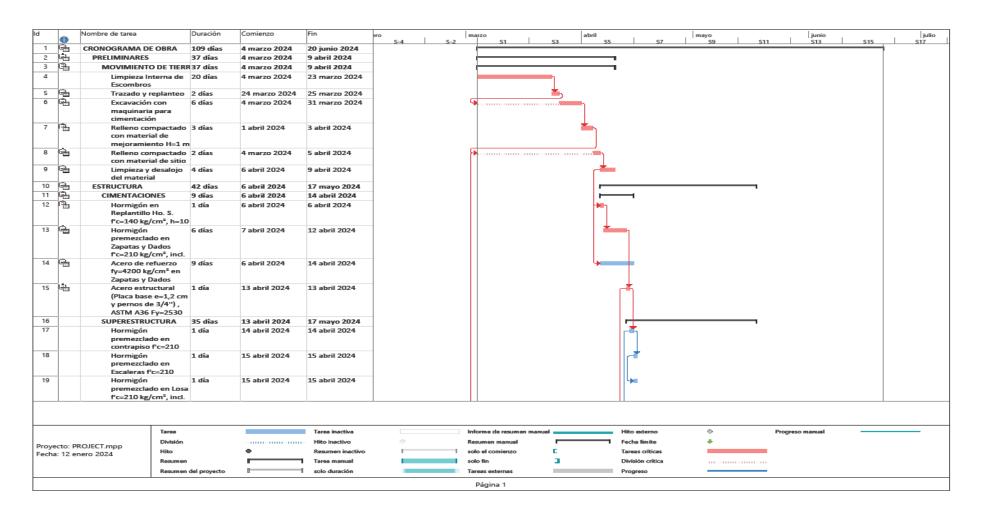
BREAKER DEL TD2						
Power	10690	W				
Current	97.18181818	Α				
Comercial Current 100						

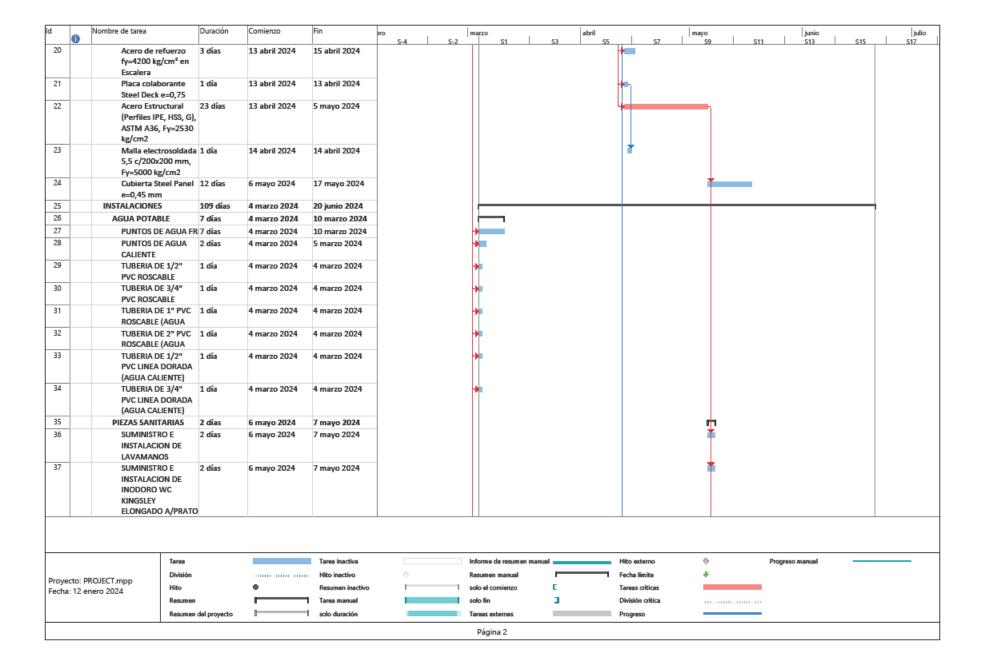
MEDIDOR

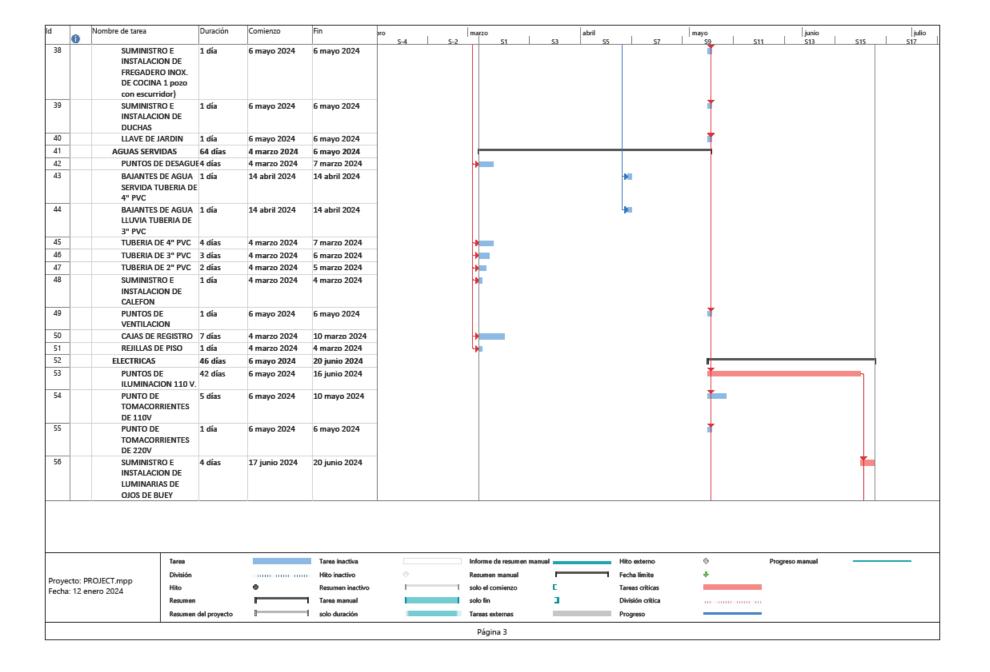
Panelboard	Phase	Power
		W
TD1	Α	10650
	В	10650
TD2	Α	10690
	В	10670

Phase	Power
	W
А	21340
В	21320

Power	21340	W
Current	194	Α
Comercial Current	200	Α


TRANSFORMADOR


PHASES	POWER [W]
A	21340
В	21320
TOTAL	42660
TOTAL [KW]	42.66
COMERCIAL [KW]	50


CORRIENTE [A]	227.2727273
CABLE	1F#3/0+1N#3/0+1T#4/0 TW
DIAMETRO	16mm

CRONOGRAMA DE OBRA

Cronograma realizado por medio de un programa de planificación de la construcción, para todas las ingenierías.

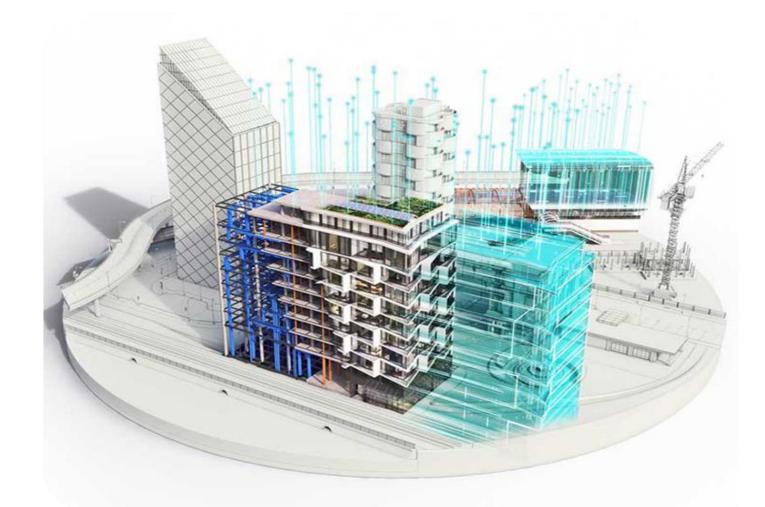
0	Nombre de tarea	Duración	Comienzo	Fin	ero.	S-4	l s	-2 ma	rzo S1	ı	S3	abril	S5	9	S7	may	ro 59	S1	1	junio S13	•	S15	ı	j S17	julio 7
57	SUMINISTRO E INSTALACION DE LUMINARIAS DE LEI DE PARED UP & DOWN ANGULO	1 día	17 junio 2024	17 junio 2024						·															
58	SUMINISTRO E INSTALACION DE PIEZAS DE	4 días	6 mayo 2024	9 mayo 2024																					
59	SUMINISTRO E INSTALACION DE TABLEROS DE DISTRIBUCION ELECTRICA 2 POLO 10-32 AMPS SQUAR	4 días	6 mayo 2024	9 mayo 2024																					
50	SUMINISTRO E INSTALACION DE CAMARA DE	1 día	17 junio 2024	17 junio 2024																			'		
51	SUMINISTRO E INSTALACION DE PORTERO ELECTRIC	1 día	17 junio 2024	17 junio 2024																					
12	SUMINISTRO E INSTALACION DE INTERRUPTORES	2 días	17 junio 2024	18 junio 2024																		*			
3	COLOCACION DE TUBERIA ELECTRICA AWG 3X2*1X4*1X5		6 mayo 2024	9 mayo 2024																					
	VARILLA	1 día	10 mayo 2024	10 mayo 2024													Ť								
14	COOPERWELD 5/8" 6'(PUESTA A TIERRA																								
	COOPERWELD 5/8" 6'(PUESTA A TIERRA SALIDAS DE ANTENA)	11 mayo 2024	11 mayo 2024														,							
55	6'(PUESTA A TIERRA)	11 mayo 2024	11 mayo 2024													•								
	6'(PUESTA A TIERRA)	11 mayo 2024	11 mayo 2024 Tarea inactiva				Info	orme de res	sumen mans	of		Hitt	o externo			•		Progre	\$o manual					
55	6'(PUESTA A TIERRA SALIDAS DE ANTENA	s 1 día		Tarea inactiva		♦			orme de res		ol			o externo			*		Progre	so manual		_			
oyecto: Pl	6'(PUESTA A TIERRA SALIDAS DE ANTENA	s 1 día		Tarea inactiva		*		Res Solo	o el comien	ual	[■ Fed	ha limite eas critica	hs				Progre	so manual		_			
royecto: Pl	6'(PUESTA A TIERRA SALIDAS DE ANTENA ROJECT.mpp nero 2024 Tarea División Hito Resume	s 1 día		Tarea inactiva		 * 		Res solo	rumen man	ual zo			Tan Divi	ha limite	hs		+		1	so manual					

PLANOS

La ESPOL promueve los Objetivos de Desarrollo Sostenible

DISEÑO DE INGENIERÍAS DE UNA VIVIENDA DE 2 PISOS EN CIUDAD CELESTE CON AUTOMATIZACIÓN DE INSTALACIONES EMPLEANDO LA METODOLOGÍA BIM

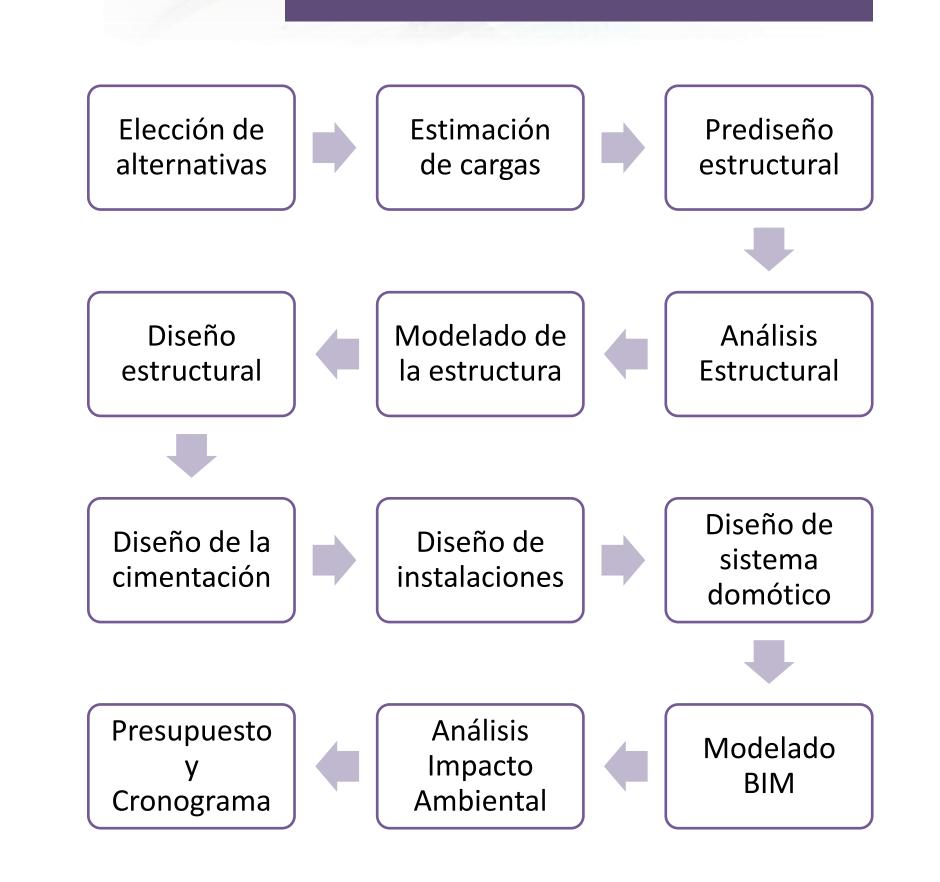
PROBLEMA


En la actualidad, se busca mejorar la construcción mediante sistemas modernos que automaticen dispositivos para ahorrar energía eléctrica y agua, además gestionar costos de manera eficiente, garantizando al mismo tiempo seguridad y comodidad en las viviendas. A pesar de ello, los métodos convencionales presentan obstáculos, como planificaciones lentas, ejecuciones demoradas y complicaciones en el mantenimiento y remodelación de edificios.

SOSTENIBLE

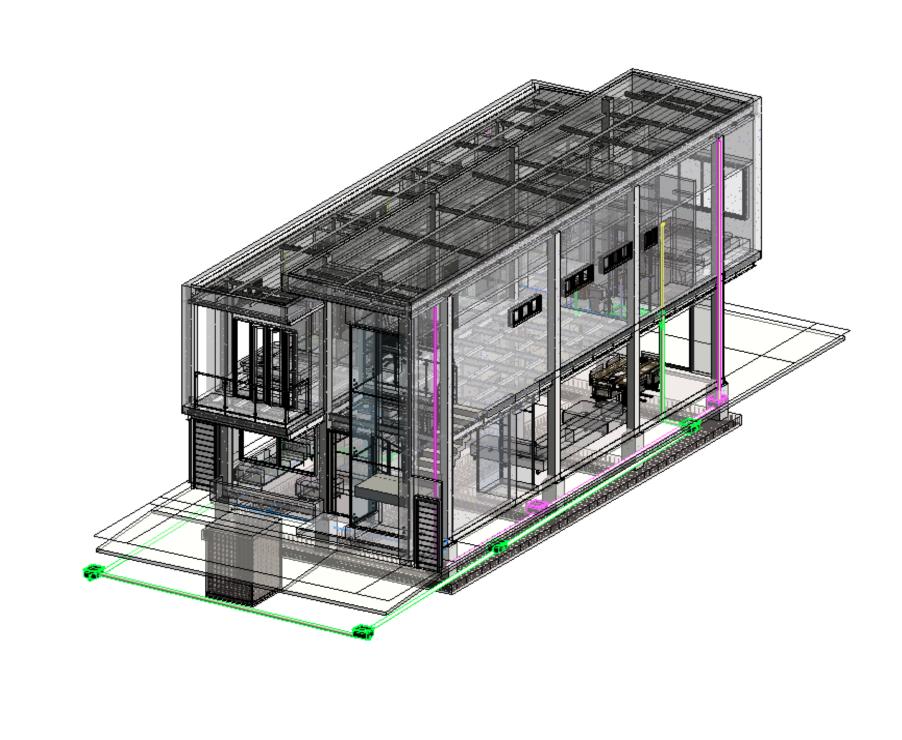
OBJETIVO GENERAL

Diseñar las ingenierías básicas de una vivienda de 2 pisos en Ciudad Celeste en un plazo de 3 meses, empleando la metodología BIM y la domótica para la optimización de recursos garantizando el confort y seguridad del usuario.



PROPUESTA

Se propone el diseño estructural, de instalaciones hidrosanitarias y eléctricas aplicando domótica mediante la metodología BIM.


DISEÑO	TIPO DE SISTEMA
Estructural	Pórticos de estructura metálica resistente a momentos.
Hidrosanitaria	Abastecimiento de medio de bombeo y cisterna.
Domótico	Wifi

METODOLOGÍA

RESULTADOS

ESTRUCTURAL					MBOLOGÍ	Α	DESCRIPCIÓN	CAN	TIDAD	UNIDAD	
ELEMENTO	TO SECCIÓN CANTIDAD UNIDA		-		DE	D DE AGUA FRÍA	21.0	20	ptos		
	CIMENT	ACION			$\overline{}$	KL	D DE AGUA FRIA	21.0	-	pios	
Zapata corrida 100x1500x25 3 cm					RE	D DE AGUA CALIENTE	6.00)	ptos		
COLUMNAS						= TU	BERÍA PVC DE 1/2 PULG.	18.2	20	ml	
Dados	45x45	12	cm			TU	BERÍA PVC DE 75 MM	18.5	53	ml	
Tubo cuadrado	250x250x5	5	mm					1			
- uso cadaraa	250x250x4	7	mm			10	BERÍA PVC DE 1 PULG.	36.0	05	ml	
	VIGAS	S PA		6		TU	BERÍA PVC DE 2 PULG.	2.98	3	ml	
	160	17	mm			RF	D DE AGUA SERVIDA	8.00	,	ptos	
	180	5	mm		$\overline{}$						
IPE	200	8	mm			RE	D DE VENTILACIÓN	4.00)	ptos	
	220	12	mm			TU	BERÍA PVC DE 50 MM	37.	54	ml	
	240	1	mm			TU	BERÍA PVC DE 75 MM	50.9	93	ml	
	270	1	mm								
Tubo cuadrado	ubo cuadrado 100x100x3 87 mm		mm			TU	BERÍA PVC DE 110MM	71.0	06	ml	
VIGAS CUBIERTA						CA	JA DE REVISIÓN	13.0	00	u	
Tubo cuadrado	100x100x3	42	mm			RF	D DE AGUA LLUVIA	4.00	,	ptos	
Correa G	60x30x10x2	24	mm							<u>.</u>	
Corred G	80x40x15x3	16	mm			TU	BERÍA PVC DE 75 MM	50.9	93	ml	
		ELECTRICO					DOMOTICA			1	
SIMBOLOGÍA	DE	SCRIPCIÓN		CANTIDAD	UNIDAD	APARATO	DETALLE		CANTIDAD	UNIDAD	
©	LUMINARIAS: OJO	IMINARIAS: OJO DE BUEY DE 100W		68	unidad		ALEXA ECHO DOT		8	u	
—	LUMINARIAS: ARBOTANTE BASADA EN CARA		N CARA	16	unidad		0011701 7511070 11170111	T100			
	INTERRUPTORES			37	unidad	4	CONTROL REMOTO AUTOMATIC INTELIGENTE		9	u	
—	TOMACORRIENTE I	DE 110V		55	pto						
●	TOMACORRIENTE I	DE 220V		11	pto		CAMARAS DE SEGURIDAI	D	6	u	
	TABLERO DE DISTE	RIBUCIÓN		2	unidad						
	CABLEADO DE ILUN	MINACIÓN Y TOMA	CORRIENTE	703.95	ml		CERRADURA INTELIGENT	Έ	1	u	

CONCLUSIONES

- El uso de BIM permite una mayor productividad y eficiencia durante la ejecución del proyecto.
- Los costos de la construcción se ven reducidos entre un 5% hasta 20%, se tiene un valor de 325 \$/m2.
- Entrelazar los aparatos electronicos por medio de domótica permite un ahorro de energía en un 15% en comparación al tradicional.
- La combinación de BIM y domótica promueve la sostenibilidad integral al facilitar la una planificación eficiente que permite el ahorro de recursos.

