

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

Lección:	
Quiz:	

AÑO:	2018	PERÍODO:	SEGUNDO TÉRMINO
MATERIA:	Optimización Combinatoria	PROFESOR:	Guillermo Baquerizo
EVALUACIÓN:	SEGUNDA	FECHA:	01 de febrero de 2019

COMPROMISO DE HONOR							
Yo,							
"Como estudiante de la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".							
irma: NÚMERO DE MATRÍCULA: PARALELO: <u>1</u>							

TEMA No. 1 (7 Puntos)

Considere el siguiente problema de KNAPSACK:

max
$$z = 4x_1 + x_2 + 2x_3 + 5x_4$$

sujeto a: $6x_1 + 4x_2 + 3x_3 + 2x_4 \le 10$
 $x_1, x_2, x_3, x_4 \in \{0, 1\}$

- a) (1 PUNTO) Dado un vector en \mathbb{R}^4 sobre el campo binario, ¿cuál es la probabilidad de que se trate de una solución factible?
- b) (4 PUNTOS) Para el vector (1,0,1,0) aplique SWAP, verificando la factibilidad de las nuevas soluciones y concluyendo si obtuvo mejora en la función objetivo.
- c) (2 PUNTOS) ¿Se puede determinar la solución óptima?, explique. De ser posible, indique el vector que es la solución en \mathbb{R}^4 .

TEMA No. 2 (11 Puntos)

Suponga un tablero de ajedrez de dimensión 8x8, para el cual se tienen las siguientes permutaciones (2 padres):

$$\sigma(1) = 3$$
, $\sigma(2) = 2$, $\sigma(3) = 1$, $\sigma(4) = 6$, $\sigma(5) = 4$, $\sigma(6) = 8$, $\sigma(7) = 7$, $\sigma(8) = 5$
 $\sigma(1) = 4$, $\sigma(2) = 8$, $\sigma(3) = 3$, $\sigma(4) = 1$, $\sigma(5) = 5$, $\sigma(6) = 6$, $\sigma(7) = 7$, $\sigma(8) = 2$

- a) (2 PUNTOS) DIBUJE el tablero e identifique la cantidad de COLISIONES entre las 8 reinas para cada permutación (padre).
- b) (9 PUNTOS) Considere la aplicación del ALGORITMO GENÉTICO "PARTIALLY-MATCHED CROSSOVER (PMX)" para solucionar el PROBLEMA DE LAS N-REINAS (considere N=8) y proporcione soluciones con el uso de este algoritmo. La subcadena para cada par de nuevos hijos en la siguiente generación debe incluir tres reinas de uno de sus padres y la cantidad de iteraciones debe ser tres en total. Especifique la cantidad de colisiones en cada caso y si resolvió o no el problema.

TEMA No. 3 (12 Puntos)

En el siguiente plano se muestra un museo con 10 salas etiquetadas de la A a la J.

Las salas de dicho museo se encuentran conectadas por las puertas respectivas, lo cual implica la necesidad de contratación de un guardia por cada puerta.

- a) (2 PUNTOS) Dibuje un grafo en el cual se pueda representar la situación descrita. Indique lo que representarían los vértices y las aristas.
- b) (5 PUNTOS) Formule un modelo matemático que le permita decidir sobre la contratación de la menor cantidad de guardias para el museo.
- c) (5 PUNTOS) Resuelva el problema aplicando paso a paso una de las heurísticas analizadas en clase.

TEMA No. 4 (10 PUNTOS)

Considere el siguiente STSP:

	2	3	4	5
1	2	10	8	6
2		12	4	11
3			5	3
4				1

Aplique la Búsqueda Tabú con las siguientes condiciones:

- *Solución inicial*: 1 3 2 5 4.
- Movimiento: Aplicar SWAP entre dos ciudades aleatoriamente. Utilice para ello los siguientes datos aleatorios que representan el cambio entre las posiciones de las ciudades: {(2, 4), (1, 2), (3, 5), (2, 3), (4, 1), (2, 4), (3, 4), (5, 4), (2, 1), (1, 5)}
- *Lista tabú*: Bloquear soluciones anteriores.
- Número de iteraciones: 10.

Para cada iteración especifique CLARAMENTE lo que ocurre.

TEMA No. 5 (10 Puntos)

- a) (2 PUNTOS) Elabore un diagrama de flujo para resolver el PROBLEMA DE LOCALIZACIÓN.
- b) (2 PUNTOS) Formule matemáticamente el PROBLEMA DE ASIGNACIÓN.
- c) (2 PUNTOS) Explique las estrategias de Búsqueda en Vecindad Variable.
- d) (2 PUNTOS) Formule matemáticamente el Problema de Corte en Dos Dimensiones.
- e) (2 PUNTOS) Explique el funcionamiento de un algoritmo 2-OPT en un PROBLEMA DE MST.