

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2016	PERIODO:	PRIMER TÉRMINO		
MATERIA:	ESTADISTICA INFERENCIAL	PROFESOR:	ELKIN ANGULO RAMÍREZ		
EVALUACIÓN:	PRIMERA	FECHA:	JUNIO 27 DE 2016		

COMPROMISO DE HONOR							
compromiso, reconozco que el presente e ordinaria para cálculos aritméticos, un lápi examen; y, cualquier instrumento de comur algún otro material que se encuentre acomp en esta evaluación. Los temas debo desarrol	xamen está diseñado para ser resuelto de manera individual, que puedo usar una calcula de iz o esferográfico; que solo puedo comunicarme con la persona responsable de la recepción dicación que hubiere traído, debo apagarlo y depositarlo en la parte anterior del aula, junto coañándolo. No debo además, consultar libros, notas, ni apuntes adicionales a las que se entregu	del on					
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" .							
Firma	NÚMERO DE MATRÍCULA:PARALELO:						

Temas

1) (20 puntos) Dada la siguiente función de densidad de la variable aleatoria X:

$$f(x) = \begin{cases} \frac{x}{2} & 0 < x \le 1\\ k & 1 < x \le 2\\ \frac{3-x}{2} & 2 < x < 3\\ 0 & resto \ de \ x \end{cases}$$

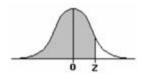
- a) Determine el valor de k. (5 puntos)
- b) Bosqueje las gráficas de las funciones de densidad y distribución acumulada. (5 puntos)
- c) Calcule E(X) y V(X) (10 puntos)
- 2) (15 puntos) Sea X una variable aleatoria con distribución Gamma, y parámetros α y β . Demuestre su valor esperado y varianza, partiendo de su función generadora de momentos.
- 3) (15 puntos) ¿Hay una densidad exponencial que cumpla la siguiente condición?

$$P\{X \le 2\} = \frac{2}{3}P\{X \le 3\}$$

De ser así, encuentre el valor del parámetro de dicha variable.

- 4) (20 puntos) En un proceso fotográfico, el tiempo de revelado de impresiones se puede considerar como una variable aleatoria que tiene la distribución normal con $\mu = 15.4$ segundos y $\sigma = 0.48$ segundos. Determine:
 - a) Probabilidad de que el tiempo de revelado de alguna de estas impresiones dure al menos 16 segundos. (5 puntos)
 - b) Probabilidad de que el tiempo de revelado de alguna de estas impresiones dure cuando mucho 14.2 segundos . (5 puntos)
 - c) Probabilidad de que, entre 8 impresiones realizadas, a lo mucho en dos de ellas se haya demorado en revelarse menos de 16 segundos. (5 puntos)
 - d) Probabilidad de que, la séptima impresión analizada, sea la cuarta en haber sido revelada en, a lo mucho 14.2 segundos. (5 puntos)

5) (15 puntos) La función de densidad conjunta de dos variables aleatorias continuas X, Y es:


$$f(x,y) = \begin{cases} kxy, & 0 < x < 4; & 1 < y < 5 \\ 0, & resto \ de \ (x,y) \end{cases}$$

- a) Determine el valor de la constante k. (3 puntos)
- b) Determine las correspondientes densidades marginales y verifique si existe independencia estocástica entre ambas variables. (3 puntos)
- c) Determine la matriz de varianzas y covarianzas, así como la matriz de correlación lineal. (3 puntos)
- d) Calcule: P(1 < X < 2, 2 < Y < 3). (3 puntos)
- e) Calcule: $P(X \ge 3, Y \le 2)$. (3 puntos)
- 6) (15 puntos) La función de probabilidad de una variable aleatoria X está dada por:

$$f(x) = \begin{cases} \frac{x^2}{81}, & -3 < x < 6\\ 0, & resto \ de \ x \end{cases}$$

Determine la densidad de probabilidad de la variable aleatoria $U = \frac{1}{3}(12 - X)$, mediante el Método de la Acumulada Luego, calcule el valor esperado y la varianza de U.

TABLA ADJUNTA PARA TEMA 4

TABLA I (B) DISTRIBUCIÓN NORMAL TIPIFICADA N(0, 1)

La tabla proporciona, para cada valor de z, el área que queda a su izquierda.

Z	0'00	0'01	0'02	0'03	0'04	0'05	0'06	0'07	0'08	0'09
0'0	0'50000	0'50399	0'50798	0'51197	0'51595	0'51994	0'52392	0'52790	0'53188	0'5358
0'1	0'53983	0'54380	0'54766	0'55172	0'55567	0'55962	0'56356	0'56749	0'57142	0'5753
0'2	0'57926	0'58317	0'58706	0'59095	0'59483	0'59871	0'60257	0'60642	0'61026	0'6140
0'3	0'61791	0'62172	0'62552	0'62930	0'63307	0'63683	0'64058	0'64431	0'64803	0'6517
0'4	0'65554	0'65910	0'66276	0'66640	0'67003	0'67364	0'67724	0'68082	0'68439	0'6879
0'5	0'69146	0'69497	0'69847	0'70194	0'70450	0'70884	0'71226	0'71566	0'71904	0'7224
0'6	0'72575	0'72907	0'73237	0'73565	0'73891	0'74215	0'74537	0'74857	0'75175	0'7549
0'7	0'75804	0'76115	0'76424	0'76730	0'77035	0'77337	0'77637	0'77935	0'78230	0'7852
0'8	0'78814	0'79103	0'79389	0'79673	0'79955	0'80234	0'80511	0'80785	0'81075	0'8132
0'9	0'81594	0'81859	0'82121	0'82381	0'82639	0'82894	0'83147	0'83398	0'83646	0'8389
1'0	0'84134	0'84375	0'84614	0'84850	0'85083	0'85313	0'85543	0'85769	0'85993	0'8621
1'1	0'86433	0'86650	0'86864	0'87076	0'87286	0'87493	0'87698	0'87900	0'88100	0'8829
1'2	0'88493	0'88686	0'88877	0'89065	0'89251	0'89435	0'89617	0'89796	0'89973	0'9014
1'3	0'90320	0'90490	0'90658	0'90824	0'90988	0'91149	0'91308	0'91466	0'91621	0'9177
1'4	0'91924	0'92073	0'92220	0'92364	0'92507	0'92647	0'92786	0'92922	0'93056	0'9318
1'5	0'93319	0'93448	0'93574	0'93699	0'93822	0'93943	0'94062	0'94179	0'94295	0'9440
1'6	0'94520	0'94630	0'94738	0'94845	0'94950	0'95053	0'95154	0'95254	0'95352	0'9544
1'7	0'95543	0'95637	0'95728	0'95818	0'95907	0'95994	0'96080	0'96164	0'96246	0'9632
1'8	0'96407	0'96485	0'96562	0'96638	0'96712	0'96784	0'96856	0'96926	0'96995	0'9706
1'9	0'97128	0'97193	0'97257	0'97320	0'97381	0'97441	0'97500	0'97558	0'97615	0'9767
2'0	0'97725	0'97778	0'97831	0'97882	0'97932	0'97982	0'98030	0'98077	0'98124	0'9816
2'1	0'98214	0'98257	0'98300	0'98341	0'98382	0'98422	0'98461	0'98500	0'98537	0'9857
2'2	0'98610	0'98645	0'98679	0'98713	0'98745	0'98778	0'98809	0'98840	0'98870	0'9889
2'3	0'98928	0'98956	0'98983	0'99010	0'99036	0'99061	0'99086	0'99111	0'99134	0'9915
2'4	0'99180	0'99202	0'99224	0'99245	0'99266	0'99286	0'99305	0'99324	0'99343	0'9936
2'5	0'99379	0'99396	0'99413	0'99430	0'99446	0'99461	0'99477	0'99492	0'99506	0'9952
2'6	0'99534	0'99547	0'99560	0'99573	0'99585	0'99598	0'99609	0'99621	0'99632	0'9964
	0100453	DODGEA	000674	000682	0/00/02	0/00703	0/00711	0/00220	0/00738	0/0073