

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO:	2018	PERÍODO:	SEGUNDO TÉRMINO
MATERIA:	Cálculo de una variable	PROFESORES:	Argüello G., Baquerizo G., Chóez M., Crow P., Laveglia F., Mejía M., Ramos M., Ronquillo C.
EVALUACIÓN:	SEGUNDA	FECHA:	28/enero/2019

SOLUCIÓN y RÚBRICA

1) (6 Puntos) Justificando su respuesta, establezca si cada proposición es Verdadera o Falsa.

a) "Si
$$\int_0^3 f(x) dx = 6$$
, $\int_2^5 f(x) dx = 4$ y $\int_2^3 f(x) dx = -2$; entonces $\int_{-3}^2 f(x+3) dx = 12$ ".

Solución:

Se puede hacer un cambio de variable a la función integrando del consecuente. Si u=x+3, entonces du=dx. Se cambian los límites de integración; si $x\to -3$, entonces $u\to 0$; y, si $x\to 2$, entonces $u\to 5$:

$$\int_{-3}^{2} f(x+3) \, dx = \int_{0}^{5} f(u) \, du$$

Se aplica la propiedad Aditiva de la integral definida:

$$\int_{0}^{5} f(x)dx = \int_{0}^{3} f(x)dx + \int_{3}^{2} f(x)dx + \int_{2}^{5} f(x)dx = \int_{0}^{3} f(x)dx - \int_{2}^{3} f(x)dx + \int_{2}^{5} f(x)dx$$

$$\int_{0}^{5} f(x) dx = 6 - (-2) + 4 = 12$$

∴ La proposición es Verdadera.

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	Ni hace el	Replantea	Replantea bien	Replantea bien	
la propiedad	cambio de	bien la	la integral	la integral	
aditiva de las	variable, ni	integral	definida, aplica	definida, suma	
integrales	aplica bien la	definida pero	bien la	correctamente	
definidas.	propiedad	aplica mal la	propiedad	y concluye	
	aditiva.	propiedad	aditiva; pero, o	sobre el valor	
		aditiva.	se equivoca en	de verdad de la	
			la suma o no	proposición.	
			concluye.		
	0	1	2	3	

b) "Dado el número $a \in \mathbb{R}$ y una función $f: X \subseteq \mathbb{R} \mapsto Y \subseteq \mathbb{R}$; si $\int_{-a}^{a} f(x) \ dx = 0$, entonces f es impar".

Solución:

Se proporcionará un Contraejemplo para la proposición, el cual permita evidenciar que al tratarse de la Recíproca del Teorema de Simetría es una proposición falsa.

Sea la función $f \colon [-1,1] \mapsto \mathbb{R}$, la cual no es impar, tal que:

$$f(x) = \begin{cases} x^2, & -1 \le x \le 0 \\ -\frac{1}{3}, & 0 \le x < 1 \end{cases}$$

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} x^{2} dx + \int_{0}^{1} \left(-\frac{1}{3} \right) dx = \left(\frac{x^{3}}{3} \right) \Big|_{-1}^{0} - \left(\frac{x}{3} \right) \Big|_{0}^{1}$$
$$\int_{-1}^{1} f(x) dx = \left(0 - \left(-\frac{1}{3} \right) \right) - \left(\frac{1}{3} - 0 \right) = \frac{1}{3} - \frac{1}{3} = 0$$

Nótese que:

$$\int_{-1}^{1} f(x) dx = 0 \quad \to \quad \underbrace{f \ es \ impar}_{0} \equiv 0$$

∴ La proposición es Falsa.

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre el	Indica que	Intenta	Construye bien	Proporciona un	
teorema de	la	construir un	el	contraejemplo	
simetría de la	proposición	contraejemplo	contraejemplo	adecuado y	
integral	es	pero tiene	pero no	concluye que	
definida.	verdadera.	dificultades.	concluye que la	la proposición	
			proposición es	es falsa.	
			falsa.		
	0	1	2	3	

Observación.- El estudiante puede proporcionar otro contraejemplo válido.

2) (5 Puntos) Obtenga:

$$\int \left(\frac{1}{x+x\ln(x)} + sen^2\left(\frac{x}{3}\right)\right) dx$$

Solución:

Se aplica la propiedad de LINEALIDAD de la integral indefinida:

$$\int \left(\frac{1}{x+x\ln(x)} + sen^2\left(\frac{x}{3}\right)\right) dx = \int \frac{dx}{x+x\ln(x)} + \int sen^2\left(\frac{x}{3}\right) dx$$

Se obtiene la antiderivada de cada función:

$$\int \frac{dx}{x + x \ln(x)} = \int \frac{dx}{x(1 + \ln(x))}$$

$$\int sen^{2}\left(\frac{x}{3}\right) dx = \int \left(\frac{1 - \cos\left(\frac{2x}{3}\right)}{2}\right) dx$$

$$Sea u = 1 + \ln(x), \text{ entonces } du = \frac{1}{x} dx.$$

$$\int \frac{dx}{x(1 + \ln(x))} = \int \frac{du}{u} = \ln|u| + C$$

$$\int \frac{dx}{x(1 + \ln(x))} = \ln|1 + \ln(x)| + C$$

$$\int sen^{2}\left(\frac{x}{3}\right) dx = \int \frac{dx}{2} - \int \frac{\cos\left(\frac{2x}{3}\right)}{2} dx$$

$$\int sen^{2}\left(\frac{x}{3}\right) dx = \frac{1}{2}x - \frac{3}{4}sen\left(\frac{2x}{3}\right) + C$$

$$\int \left(\frac{1}{x+x\ln(x)} + sen^2\left(\frac{x}{3}\right)\right) dx = \ln|1 + \ln(x)| + \frac{1}{2}x - \frac{3}{4}sen\left(\frac{2x}{3}\right) + C; \quad C \in \mathbb{R}$$

Rúbrica:

Capacidades deseadas	Desempeño			
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente
aplica la	No logra	Aplica la	Aplica	Aplica
propiedad de	identificar	propiedad de	linealidad e	linealidad e
linealidad, la	la técnica	linealidad	integra bien	integra
técnica de	de	pero no	utilizando un	correctamente
integración por	integración	integra	cambio de	los dos
sustitución y la	que debe	correctamente	variable y la	términos del
antiderivada de	aplicar.	los dos	identidad	integrando y
funciones		términos del	trigonométrica,	considera la
trigonométricas		integrando.	pero no incluye	constante C
y racionales.			la constante C.	en la
				antiderivada.
	0	1	2 – 4	5

3) (5 Puntos) De ser posible, calcule el valor de:

$$\int_{3}^{+\infty} \frac{dx}{x^3 + x}$$

y concluya si la integral impropia es Convergente o Divergente.

Solución:

Como el integrando es una función racional y el polinomio del denominador se puede descomponer en factores, dicha función se puede expresar así:

$$\frac{1}{x^3 + x} = \frac{1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

Entonces:

$$1 = A(x^2 + 1) + (Bx + C)x = (A + B)x^2 + Cx + A$$

De donde:

$$A = 1$$

$$C = 0$$

$$A + B = 0 \rightarrow B = -1$$

$$\frac{1}{x^3 + x} = \frac{1}{x} - \frac{x}{x^2 + 1}$$

Se aplica la técnica de Integración por Fracciones Parciales, por lo que la nueva integral impropia se redefine así:

$$\int_{3}^{+\infty} \frac{dx}{x^{3} + x} = \lim_{b \to +\infty} \int_{3}^{b} \left(\frac{1}{x} - \frac{x}{x^{2} + 1} \right) dx = \lim_{b \to +\infty} \left(\ln|x| - \frac{1}{2} \ln|x^{2} + 1| \right) \Big|_{3}^{b}$$

$$= \lim_{b \to +\infty} \left(\ln\left| \frac{x}{(x^{2} + 1)^{1/2}} \right| \right) \Big|_{3}^{b} = \lim_{b \to +\infty} \left(\ln\left| \frac{b}{(b^{2} + 1)^{1/2}} \right| - \ln\left| \frac{3}{\sqrt{10}} \right| \right)$$

$$= \lim_{b \to +\infty} \left(\ln\left| \frac{1}{\left(1 + \frac{1}{b^{2}}\right)^{1/2}} \right| + \ln\left(\frac{\sqrt{10}}{3}\right) \right) = \ln(1) + \ln\left(\frac{\sqrt{10}}{3}\right)$$

$$\int_{3}^{+\infty} \frac{dx}{x^{3} + x} = \ln\left(\frac{\sqrt{10}}{3}\right)$$

∴ La integral impropia es Convergente.

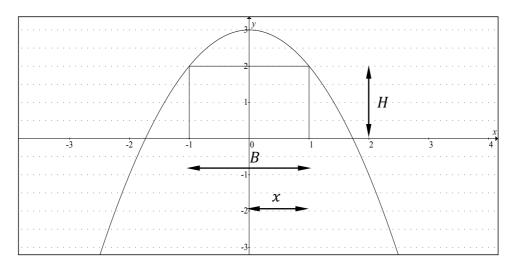
Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No reconoce	Tiene	O se equivoca	Integra y evalúa	
integrales	que es	problemas	en la	bien, así como	
impropias y	integral	para	integración o en	concluye	
su	impropia, ni	seleccionar la	la evaluación o	correctamente.	
tratamiento	que debe	técnica de	no concluye.		
con límites.	aplicar	integración			
	límites.	apropiada.			
	0	1	2 – 4	5	

4) (6 Puntos) Determine las dimensiones del rectángulo de área máxima que puede ser inscrito en la región acotada por la función $f(x) = 3 - x^2$ y el eje X. Represente la situación descrita en el plano cartesiano adjunto.

Solución:

Se realiza la representación geométrica de la situación descrita:



Se puede notar que:

$$A(x, y) = BH = (2x)(y)$$

La expresión para el cálculo del área quedará en términos de una sola variable:

$$A(x) = (2x)(3 - x^2) = 6x - 2x^3; x \in [-\sqrt{3}, \sqrt{3}]$$

Se deriva esta expresión para obtener los puntos críticos:

$$A'(x) = 6 - 6x^2$$

Los puntos críticos de frontera no serán tomados en consideración porque el rectángulo no existiría. La función de área no tiene puntos críticos singulares porque su derivada es una función cuadrática.

Se analiza la existencia de posibles puntos críticos estacionarios:

$$6 - 6x^2 = 0$$
 \rightarrow $6(1 - x^2) = 0$ \rightarrow $x^2 = 1$ \rightarrow $|x| = 1$

Se deriva por segunda vez:

$$A''(x) = -12x$$

 $A''(1) < 0 \rightarrow Es \ un \ m\'{a}ximo \ para \ A.$

Las dimensiones del rectángulo cuya superficie es de área máxima, son:

- B = 2x = 2(1) = 2[u]
- $H = y = 3 (1)^2 = 3 1 = 2[u]$

Es decir, se trata de un cuadrado inscrito.

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
reconoce un	No logra asociar	Deriva bien,	Resuelve bien la	Concluye bien	
problema de	los datos	pero tiene	ecuación con la	sobre las	
aplicación de	proporcionados	algún	primera	dimensiones	
máximos y	o no sabe que	problema	derivada, pero	del rectángulo	
mínimos en	debe derivar.	para resolver	presenta algún	inscrito, cuya	
donde puede		la ecuación	inconveniente	superficie	
aplicar los		planteada	en la evaluación	tenga área	
criterios de		con la	del punto	máxima.	
la primera y		primera	crítico		
la segunda		derivada.	estacionario		
derivada.			para poder		
			decidir.		
	0	1-3	4 – 5	6	

5) (6 Puntos) Dada la función $f: X \subseteq \mathbb{R} \mapsto Y \subseteq \mathbb{R}$ definida por:

$$f(x) = \int_{2}^{\ln(e^2 + 3x)} \sqrt{1 + 2t + 5t^2} \, dt$$

Identifique el tipo de indeterminación y luego calcule:

$$\lim_{x\to 0}\frac{f(x)}{x}$$

Solución:

Se verifica la indeterminación:

$$\lim_{x \to 0} \frac{f(x)}{x} = \frac{\lim_{x \to 0} f(x)}{\lim_{x \to 0} x} = \frac{\lim_{x \to 0} \int_{2}^{2} \sqrt{1 + 2t + 5t^{2}} dt}{\lim_{x \to 0} x} = \frac{0}{0}$$

Se puede aplicar la regla de L'Hopital:

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f'(x)}{1} = \lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{d}{dx} \int_{2}^{\ln(e^{2} + 3x)} \sqrt{1 + 2t + 5t^{2}} dt$$

Se aplica el Primer Teorema Fundamental del Cálculo:

$$f'(x) = \sqrt{1 + 2\ln(e^2 + 3x) + 5\ln^2(e^2 + 3x)} \cdot \frac{1}{e^2 + 3x} \cdot 3$$

Entonces:

$$\lim_{x \to 0} \frac{f(x)}{x} = f'(0)$$

$$f'(0) = \sqrt{1 + 2\ln(e^2 + 3(0)) + 5\ln^2(e^2 + 3(0))} \cdot \frac{1}{e^2 + 3(0)} \cdot 3 = \sqrt{25} \cdot \frac{1}{e^2} \cdot 3$$

$$\lim_{x \to 0} \frac{f(x)}{x} = \frac{15}{e^2}$$

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
conoce sobre	No identifica	Identifica el tipo	Identifica el tipo	Identifica el tipo	
cálculo de	bien el tipo de	de	de	de	
límites, el	indeterminación	indeterminación	indeterminación	indeterminación	
primer	o no sabe cómo	y aplica bien el	y aplica bien el	y calcula	
teorema	calcular	primer teorema	primer teorema	correctamente	
fundamental	correctamente	fundamental	fundamental	el límite.	
del cálculo y	el límite.	del cálculo, pero	del cálculo y la		
la regla de		aplica mal la	regla de la		
L'Hopital.		regla de la	cadena, pero		
		cadena.	tiene algún		
			inconveniente		
			en la		
			evaluación.		
	0	1-3	4 – 5	6	

6) (10 Puntos) Dada la función $f: \mathbb{R} \mapsto \mathbb{R}$ cuya regla de correspondencia es:

$$f(x) = \frac{1}{(1+e^x)^2}$$

- a) Demuestre que f no tiene puntos críticos.
- b) Determine los intervalos de monotonía de f.
- c) Demuestre que su único punto de inflexión es $P\left(-ln(2), \frac{4}{9}\right)$.
- d) Determine el intervalo donde f es cóncava hacia arriba y el intervalo donde f es cóncava hacia abajo.

Solución:

Derivamos por primera vez para determinar la existencia o no de puntos críticos:

$$f(x) = (1 + e^x)^{-2}$$

$$f'(x) = -2(1 + e^x)^{-3}(e^x) = -\frac{2e^x}{(1 + e^x)^3}$$

Elaborado por @gbaqueri

Si se observa la definición dada de la función, se puede concluir que f No tiene Puntos Críticos de Frontera.

La expresión del numerador de la primera derivada $2e^x$ nunca es igual a cero porque esta expresión es positiva en todo su dominio. Esto es, f NO TIENE PUNTOS CRÍTICOS ESTACIONARIOS.

La expresión del denominador de la primera derivada $(1+e^x)^3$ nunca es igual a cero porque no existe valor real alguno para el cual $e^x=-1$. Esto es, f No tiene Puntos Críticos Singulares.

Por lo tanto, f No tiene Puntos Críticos.

La función derivada $f'(x) = -\frac{2e^x}{(1+e^x)^3}$ es siempre negativa por lo ya expuesto anteriormente. Esto permite concluir que la función es Estrictamente Decreciente en todo su dominio.

Se deriva la función por segunda vez, aplicando la regla del cociente:

$$f''(x) = -2\left[\frac{(1+e^x)^3(e^x) - (e^x)(3)(1+e^x)^2(e^x)}{(1+e^x)^6}\right]$$
$$f''(x) = -2(1+e^x)^2(e^x)\left[\frac{(1+e^x) - (3e^x)}{(1+e^x)^6}\right]$$
$$f''(x) = -2e^x\left[\frac{1-2e^x}{(1+e^x)^4}\right]$$

Los candidatos a puntos de inflexión se obtienen cuando f''(x) = 0, ya que no hay posibilidad de que f''(x) no exista en algún punto.

$$f''(x) = 0 \rightarrow 1 - 2e^x = 0 \rightarrow e^x = \frac{1}{2} \rightarrow x = ln(\frac{1}{2}) \rightarrow x = -ln(2)$$

La ordenada respectiva es:

$$f\left(\ln\left(\frac{1}{2}\right)\right) = \frac{1}{\left(1 + e^{\ln\left(\frac{1}{2}\right)}\right)^2} = \frac{1}{\left(\frac{3}{2}\right)^2} = \frac{1}{\frac{9}{4}} = \frac{4}{9}$$

En la recta real o haciendo las evaluaciones respectivas se puede identificar que:

$$f''(x) < 0 \text{ , si } x < \ln\left(\frac{1}{2}\right)$$

$$\therefore \forall x \in \left(-\infty, \ln\left(\frac{1}{2}\right)\right), f \text{ es cóncava hacia abajo }.$$

Elaborado por @gbaqueri

$$f''(x) > 0$$
, si $x > ln\left(\frac{1}{2}\right)$

$$\therefore \ \forall x \in \left(ln\left(\frac{1}{2}\right), +\infty\right), f \ es \ c\'oncava \ hacia \ arriba.$$

Al producirse un cambio en la concavidad de la gráfica de la función antes y después de x = -ln(2), se concluye que el punto P especificado sí es de inflexión.

Rúbrica de los literales a) y b):

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
sabe derivar	No sabe que	Solamente	Deriva bien y	Deriva bien y	
una potencia	debe derivar	indica que	plantea las	concluye	
y una función	o no deriva	no hay	ecuaciones para	sobre la	
exponencial	bien.	puntos de	los posibles puntos	inexistencia	
para		frontera.	estacionarios o	de puntos	
determinar			singulares; así	críticos y	
sus posibles			como la inecuación	sobre los	
puntos			para los intervalos	intervalos de	
críticos y sus			de monotonía,	monotonía.	
intervalos de			pero determina		
monotonía.			incorrectamente		
			su solución.		
	0	1	2 – 4	5	

Rúbrica de los literales c) y d):

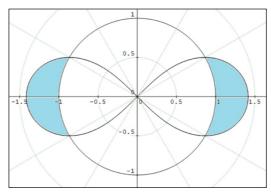
Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
sabe derivar	No sabe que	No deriva bien	Deriva y plantea	Deriva bien y	
un cociente	debe derivar	por segunda	la ecuación o las	concluye	
de funciones	por segunda	vez alguno de	inecuaciones,	sobre los	
y determinar	vez.	los términos	pero no obtiene	intervalos de	
sus intervalos		del cociente	el punto de	concavidad de	
de		de funciones.	inflexión o no	la función y	
concavidad y			determina bien	sobre su	
sus puntos de			los intervalos.	punto de	
inflexión.				inflexión.	
	0	1	2 – 4	5	

7) (6 Puntos) Calcule el área de la región interior a la lemniscata $r^2=2\ cos(2\theta)$ y exterior a la circunferencia r=1. Previamente, bosqueje la gráfica de ambas curvas en el plano polar.

Elaborado por @gbaqueri Página 9 de 12

Solución:

Se muestra la región descrita en el plano polar:



Se determinan los puntos de intersección de ambas curvas:

$$2\cos(2\theta) = 1 \rightarrow \cos(2\theta) = \frac{1}{2} \rightarrow \theta \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$$

Se puede aprovechar la simetría del problema y plantear el área de la siguiente manera:

$$A = A \left[\frac{1}{2} \int_0^{\frac{\pi}{6}} (2\cos(2\theta) - 1) d\theta \right] = 2 \left[\int_0^{\frac{\pi}{6}} 2\cos(2\theta) d\theta - \int_0^{\frac{\pi}{6}} d\theta \right]$$

$$A = 2 \left[\left(\sec(2\theta) \right) \Big|_0^{\frac{\pi}{6}} - (\theta) \Big|_0^{\frac{\pi}{6}} \right] = 2 \left[\left(\frac{\sqrt{3}}{2} - 0 \right) - \left(\frac{\pi}{6} - 0 \right) \right]$$

$$A = \left(\sqrt{3} - \frac{\pi}{3} \right) [u^2]$$

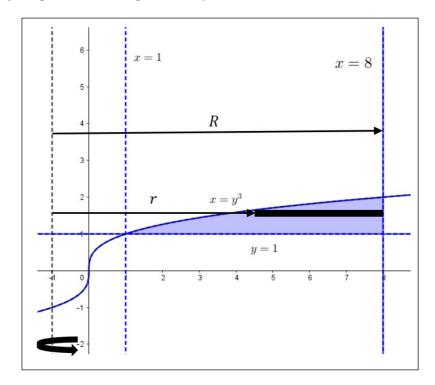
Rúbrica:

Capacidades deseadas	Desempeño					
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente		
identifica la	No logra	Grafica las	Grafica bien la	Grafica bien la		
región común	identificar	curvas e	región con	región con base en		
entre curvas	bien cómo	identifica sus	base en los	los puntos de		
polares en	se grafican	puntos de	puntos de	intersección,		
forma	las curvas o	intersección,	intersección,	integra		
analítica y en	no sabe	pero no la	no conoce	correctamente		
forma gráfica;	plantear el	región entre	cómo integrar	todas las		
y, con	área como	las curvas o no	todas las	expresiones que		
integrales	una	plantea	expresiones o	se presentan y		
definidas sabe	integral	correctamente	no evalúa bien	evalúa bien cada		
cómo se	definida.	la integral	todos los	término.		
calcula el área		definida.	términos.			
de dicha						
región.	0	1-2	3 – 5	6		

8) (6 Puntos) Sea R la región limitada por la curva $x=y^3$ y las rectas y=1 y x=8. Bosqueje la gráfica de R en el plano cartesiano y calcule el volumen del sólido de revolución que se genera al rotar R alrededor de la recta x=-1.

Solución:

Se bosqueja la gráfica de la región en el plano cartesiano:



Se utilizará el Método de las Arandelas, en donde R=9[u], r=(x+1)[u].

$$\begin{aligned} \textit{Volumen} &= \pi \int_{1}^{2} (9^{2} - (y^{3} + 1)^{2}) \, dy = \pi \left[\int_{1}^{2} \left(81 - (y^{6} + 2y^{3} + 1) \right) \, dy \right] \\ &\textit{Volumen} = \pi \left[\int_{1}^{2} \left(80 - y^{6} - 2y^{3} \right) \, dy \right] = \pi \left(80y - \frac{y^{7}}{7} - \frac{y^{4}}{2} \right) \Big|_{1}^{2} \\ &\textit{Volumen} = \pi \left[\left(160 - \frac{2^{7}}{7} - \frac{2^{4}}{2} \right) - \left(80 - \frac{1}{7} - \frac{1}{2} \right) \right] \\ &\textit{Volumen} = \pi \left[160 - \frac{128}{7} - 8 - 80 + \frac{1}{7} + \frac{1}{2} \right] = \pi \left(72 - \frac{127}{7} + \frac{1}{2} \right) \\ &\textit{Volumen} = \pi \left(\frac{1008 - 254 + 7}{14} \right) \end{aligned}$$

Por lo tanto, el volumen del sólido de revolución generado es:

$$Volumen = \frac{761 \,\pi}{14} \, \left[u^3 \right]$$

También se puede considerar una integración con el método de las capas cilíndricas, pero el resultado será el mismo.

Rúbrica:

Capacidades deseadas	Desempeño				
El estudiante	Insuficiente	En desarrollo	Desarrollado	Excelente	
identifica	No logra	Identifica la	Identifica la	Identifica la	
una región	identificar la	región a	región a	región a	
acotada por	región o no	integrar pero	integrar,	integrar,	
una función y	plantea	tiene	plantea la	plantea la	
una recta, el	correctamente	problemas	expresión del	expresión del	
sólido de	la integral	para plantear	volumen del	volumen,	
revolución	definida	la expresión	sólido de	integra bien	
que se forma	asociada al	de cálculo del	revolución,	cada término y	
y mediante	volumen.	volumen del	pero se	expresa el	
cálculo		sólido de	equivoca al	resultado	
integral		revolución.	integrar algún	correcto.	
obtiene su			término.		
volumen.	0	1-2	3 – 5	6	

Elaborado por @gbaqueri Página 12 de 12