

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

		,					
AÑO:	2017-2018	PERIODO:	Segundo Término				
MATERIA:	ESTADÍSTICA	PROFESORES:	Cardenas N/Cevallos L./Cevallos H./Crow P./García S./Gonzalez S./Pambabay J./Sanchez J./Salazar V/Ugarte				
EVALUACIÓN:	Segunda	FECHA:	Viernes 9 de Febrero 2018				
		COMPROMI	SO DE HONOR				
reconozco que el present aritméticos, un lápiz o e comunicación que hubie: No debo además, consu ordenada. Firmo al pie del present	Yo,						
Firma	N	ÍMERO DE MATRÍCUL	DADALELO:				

TEMA 1: (8 PUNTOS)

El voltaje de salida de cierto circuito eléctrico debe ser igual a 130 voltios, según se especifica en el etiquetado. Una muestra de 40 lecturas para este circuito dio una media muestral de 128,2 y una desviación estándar de 2,1.

- a) Probar la hipótesis de que el voltaje de salida promedio es menor que 130, concluir en base al valor p
- b) Elaborar un intervalo para la media con un 95% de confianza

TEMA 2: (6 PUNTOS)

Un estudio concluyó que las personas de la minoría racial abandonan la universidad en proporción más alta de las de raza blanca. Para comprobar esta afirmación se entrevistó a 175 personas de las minorías raciales y a 125 personas de raza blanca. Se encontró que 23 personas de las minorías y 13 de raza blanca abandonaron la universidad. ¿Proporcionan estos datos prueba suficiente para indicar que la afirmación era correcta? Concluya con valor p.

TEMA 3: (10 PUNTOS)

Se realiza un estudio para determinar la calificación obtenida por un estudiante en función del número de horas semanales que se le dedica a cierta materia. Los datos que se obtuvieron son los siguientes:

Calificación Hrs. Estudio

9	12
8	13
5	4
7	9
9	14
6	8
8	10
4	3
3	2
10	11

- a) ¿Existe evidencia estadística para justificar que a mayor número de horas de estudio la calificación será mayor en otras palabras existe algún tipo de relación lineal?
- b) Plantee un modelo de regresión lineal para explicar la calificación del estudiante en función de las horas de estudio. Si el curso se aprueba con una calificación mínima de 7/10, determine el número de horas de estudio que se espera realice el estudiante para aprobar la materia.

TEMA 4: (7 PUNTOS)

Se ha encontrado que las mediciones de resistencia al cortante de las soldaduras de punto tienen una desviación estándar aproximada de $10\ ^{lb}/_{pulg^2}$. Si se miden 100 soldaduras de prueba, calcular la probabilidad aproximada de que el promedio muestral, quede a \pm 1 $^{lb}/_{pulg^2}$ del promedio verdadero de la población.

TEMA 5: (9 PUNTOS)

Sean *X*, *Y* variables aleatorias continuas con función de densidad conjunta:

$$f(x,y) = \begin{cases} 6e^{-(2x+3y)}; & x,y \ge 0 \\ 0; en \ cual quier \ otro \ caso \end{cases}$$
 a) Dem

- a) Demuestre si X y Y son variables aleatorias independientes
- b) Encuentre E[Y|X>2]
- c) Encuentre P(X > Y)

TEMA 6: (10 PUNTOS)

Utilice la prueba de Chi-cuadrado para probar que los siguientes datos provienen de N(4.4, 2.15). Los datos representan el tiempo de atención a clientes. Con un nivel de confianza de 95%

$$\hat{\beta_1} = \frac{\sum (x-\bar{x})(y-\bar{y})}{\sum (x-\bar{x})^2} \quad \hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

Fórmulas

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - D_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

Tabla de la Chi Cuadrado

	0,001	0,005	0,01	0,02	0,025	0,03	0,04	0,05
g.d.l								
1	10,828	7,879	6,635	5,412	5,024	4,709	4,218	3,841
2	13,816	10,597	9,210	7,824	7,378	7,013	6,438	5,991
3	16,266	12,838	11,345	9,837	9,348	8,947	8,311	7,815
4	18,467	14,860	13,277	11,668	11,143	10,712	10,026	9,488
5	20,515	16,750	15,086	13,388	12,833	12,375	11,644	11,070
6	22,458	18,548	16,812	15,033	14,449	13,968	13,198	12,592
7	24,322	20,278	18,475	16,622	16,013	15,509	14,703	14,067
8	26,124	21,955	20,090	18,168	17,535	17,010	16,171	15,507
9	27,877	23,589	21,666	19,679	19,023	18,480	17,608	16,919
10	29,588	25,188	23,209	21,161	20,483	19,922	19,021	18,307

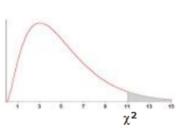


Tabla de la Normal

TAE	BLA Prob	abilidade	s de una l	Normal E	stándar					
Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0, 2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0, 5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1, 2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2, 2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2, 4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS RÚBRICA

~.	2015 2010		G 1 T/ 1
AÑO:	2017-2018	PERIODO:	Segundo Término
MATERIA:	ESTADÍSTICA	PROFESORES:	Cardenas N/Cevallos L./Cevallos H./Crow P./García S./Gonzalez S./Pambapaby J./Sanchez J./Salazar V/Ugarte
EVALUACIÓN:	Segunda	FECHA:	Viernes 9 de Febrero 2018

TEMA 1: (8 PUNTOS)

El voltaje de salida de cierto circuito eléctrico debe ser igual a 130 volteos, según se especifica en el etiquetado. Una muestra de 40 lecturas para este circuito dio una media muestral de 128,2 y una desviación estándar de 2,1.

- c) Probar la hipótesis de que el voltaje de salida promedio es menor que 130, concluir en base al valor p
- d) Elaborar un intervalo para la media con un 95% de confianza

Solución

Datos:
$$n=40$$
 , $\bar{x}=128,2$, $s=2,1$, Supuesto: $\sigma^2=s^2$

 H_o : $\mu = 130 \ voltios$ H_1 : μ < 130 voltios

$$EP.: z = \frac{128,2 - 130}{\frac{2,1}{\sqrt{40}}} = -5,42$$

$$valor \ p = P(z < -5,42) \approx 0$$

Por lo tanto, existe evidencia estadística suficiente para rechazar H0 a favor de H1, lo que significa que el voltaje promedio del circuito eléctrico es

inferior a 130 voltios.

Nivel	Insuficie	nte	Regular		Satisfactorio	Excelente
						Realiza los supuestos necesarios,
	No	realiza	Realiza	los	Realiza los supuestos necesarios y	postula correctamente la prueba
	cálculo		supuestos		postula correctamente la prueba	de hipótesis y concluye
Criterios	alguno.		necesarios.		de hipótesis	apropiadamente
Puntos	0	•	1	<u> </u>	3	4

$$\alpha = 0.05$$
 $\frac{\alpha}{2} = 0.025$ $Z_{0.025} = 1.96$

$$\bar{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$128,2 - 1,96 * \frac{2,1}{\sqrt{40}} \le \mu \le 128,2 +$$

$$127,55 \le \mu \le 128,85$$

Nivel	Insuficien	nte	Regular	Satisfactorio	Excelente
	No cálculo	realiza	Calcula correctamente el	2	Calcula correctamente el valor del $Z_{\frac{\alpha}{2}}$ y establece el intervalo de confianza para
Criterios	alguno.		valor del $Z_{\frac{\alpha}{2}}$	la media.	la media y sus cálculos son correctos
Puntos	0		2	3	4

TEMA 2: (6 PUNTOS)

Un estudio concluyó que las personas de la minoría racial abandonan la universidad en proporción más alta de las de raza blanca. Para comprobar esta afirmación se entrevistó a 175 personas de las minorías raciales y a 125 personas de raza blanca. Se encontró que 23 personas de las minorías y 13 de raza blanca abandonaron la universidad.

¿Proporcionan estos datos prueba suficiente para indicar que la afirmación era correcta?. Concluya con valor p.

SOLUCIÓN

Ho: p1 - p2 = 0

Ha: p1 - p2 > 0

R.R: $Z > Z_{\alpha}$ E. P: Z= 0.7336

Valor p= 0.23 (aproximadamente)

No se rechaza Ho

Conclusión: No existe suficiente evidencia estadística para afirmar que las personas de minorías raciales abandonan la universidad en proporción más alta que los de raza blanca.

Nivel Insuficiente Regular Satisfactorio Excelente	
--	--

	No realiza	Realiza correctamente el cálculo de las	Realiza correctamente del estadístico	Realiza correctamente del
	cálculo	proporciones. Presenta errores en el	de prueba aunque no define	estadístico de prueba, valor
Criterios	alguno.	cálculo del estadístico de prueba.	correctamente el valor p y no concluye.	p y concluye correctamente.
Puntos	0	3	4	6

EXPRESIONES REQUERIDAS PARA RESOLVER EL PROBLEMA

Ho:
$$p_1 - p_2 = D_0$$

 $H_a = p_1 - p_2 > D_0$
E. P: $Z = \frac{\hat{p}_1 - \hat{p}_2 - D_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$

R.R: $Z > Z_{\alpha}$

TEMA 3: (10 PUNTOS)

Se realiza un estudio para determinar la calificación obtenida por un estudiante en función del número de horas semanales que se le dedica a cierta materia. Los datos que se obtuvieron son los siguientes:

Calificación Hrs. Estudio

9	12
8	13
5	4
7	9
9	14
6	8
8	10
4	3
3	2
10	11

- a) ¿Existe evidencia estadística para justificar que a mayor número de horas de estudio la calificación será mayor en otras palabras existe algún tipo de relación lineal?
- b) Plantee un modelo de regresión lineal para explicar la calificación del estudiante en función de las horas de estudio. Si el curso se aprueba con una calificación mínima de 7/10, determine el número de horas de estudio que se espera realice el estudiante para aprobar la materia.

Resolución:

- Sí existe, al calcular el coeficiente de correlación lineal se obtiene que es 0.93, muy cercana a 1. La relación lineal es evidente, a medida que una variable crece la otra también. (3pts)
- b) Yi = 2,526 + 0,508 Xi (4pts)La persona debe estudiar al menos 8,807 horas para aprobar la el curso (3pts

TEMA 4: (7 PUNTOS)

Se supone que n=100 es lo "suficientemente grande" para que el promedio $ar{X}$ de las observaciones tenga una distribución aproximada normal. Entonces.

$$P(|X - \mu| \le 1) = P[-1 \le X - \mu \le 1]$$

$$= P\left[-\frac{1}{\sigma/\sqrt{n}} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{1}{\sigma/\sqrt{n}}\right]$$

$$= P\left[-\frac{1}{10/\sqrt{100}} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{1}{10/\sqrt{100}}\right]$$

Como $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ tiene una distribución aproximada normal estándar, la probabilidad anterior es casi:

$$= P[-1 \le Z \le 1] = F(1) - F(-1) = 2F(1) - 1$$

= 2(0,8413) - 1 = 0,6826

Por lo tanto, la probabilidad de que la media muestral difiera menos que 1 $^{lb}/_{pulg^2}$ con respecto al promedio de la población son mayores de 68%.

Nivel	Insuficiente	Regular	Satisfactorio	Excelente
	No desarrolla	Identifica correctamente que n es "suficientemente grande" para que el	Plantea correctamente la probabilidad $P(\bar{X} - \mu \le 1)$,	Identifica correctamente que $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$
Criterios	procesos coherentes	promedio \bar{X} de las observaciones tenga una distribución aproximada normal, pero comete errores al plantear la probabilidad $P(\bar{X} - \mu \le 1)$	$\left rac{ar{x} - \mu}{\sigma/\sqrt{n}} \right $ tiene una distribución	tiene una distribución aproximada normal estándar y calcula correctamente la probabilidad $P[-1 \le Z \le 1]$
Puntos	0	2	4	7

TEMA 5: (9PUNTOS)

Sean X, Y variables aleatorias continuas con función de densidad conjunta:

$$f(x,y) = \begin{cases} 6e^{-(2x+3y)}; & x,y \ge 0 \\ 0; en \ cualquier \ otro \ caso \end{cases}$$
 d) Demuestre si $X \lor Y$ son variables aleatorias independientes e) Encuentre $E[Y|X>2]$

- Encuentre P(X > Y)

SOLUCIÓN:

a) Dos variables aleatorias son independientes si y sólo si: f(x,y) = f(x)f(y)En nuestro problema obtenemos: $f(x) = 2e^{-2x}$ $f(y) = 3e^{-3y}$ Por tanto se concluye que X y Y son variables aleatorias independientes

RÚBRICA:

Desarrollo				
Nivel	Insuficiente	Regular	Satisfactorio	Excelente
Criterios	No escribe la condición para la independencia de dos variables aleatorias	para la	Obtiene las distribuciones marginales pero no concluye correctamente acerca de la independencia de X y Y	Concluye correctamente que <i>X</i> y <i>Y</i> son variables aleatorias independientes
Puntos	0	1	2	3

b) Dado que X y Y son variables aleatorias independientes, se tiene que E[Y|X>2]=E[Y]. Note además que $Y\sim Exponencial\left(\beta=\frac{1}{2}\right)$ por lo que $E[Y]=\beta=1/3$

RÚBRICA:

Nivel	Insuficiente	Regular	Excelente
Criterios		Escribe correctamente la definición del valor esperado de una variable aleatoria	Obtiene correctamente $E[Y X>2]$
Puntos	0	1	3

c)
$$P(X > Y) = \int_0^\infty \int_y^\infty 6e^{-(2x+3y)} dx dy = \int_0^\infty 3e^{-5y} dy = 3/5$$

RÚBRICA:

Nivel	Insuficiente	Regular	Excelente		
Criterios	No realiza cálculo	Define la probabilidad	Obtiene correctamente		
	alguno, o plantea el	requerida de manera correcta	P(X > Y)		
	ejercicio de manera				
	incorrecta				
Puntos	0	1	3		

TEMA 6: (10 PUNTOS)

Utilice la prueba de Chi-cuadrado para probar que los siguientes datos provienen de N(4.4, 2.15). Los datos representan el tiempo de atención a clientes. Con un nivel de confianza de 95%

6	2.3	4.8	5.6	4.5	3.4	3.3	1.9	4.8	4.2
6.5	6.1	3	4.7	6.5	5.4	4.3	5.1	1.9	

Solución

Con tres clases

El punto crítico 5.911

El estadístico 2.90

Provienen de una distribución Normal

Nivel	Insuficiente		Regular		Satisfactorio				Excelente	
						Realiza	correctam	ente	el	
	No	realiza	Define	correctamente	el	cálculo	de		las	
	cálculo		contraste de hipótesis y define la			probabi	lidades	У	el	Concluye
Criterios	alguno.		región de rechazo o punto crítico			estadístico				bien.
Puntos	0		4			8				10