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COMPROMISO DE HONOR

Al leer este compromiso, reconozco que el presente examen está diseñado para ser resuelto de
manera individual, que puedo usar un lápiz o una esferográfica, que los temas voy a

desarrollarlos en forma ordenada, que a lo sumo puedo comunicarme con la persona responsable
de la recepción del examen, y, NO USARÉ calculadora alguna o cualquier instrumento de

comunicación ajeno al desarrollo del examen. No debo consultar libros, ni notas, ni apuntes
adicionales a las que se proporcionen para esta evaluación.

Acepto el presente compromiso, como constancia de haber leído y al estar de acuerdo
con la declaración.

“Como estudiante de la ESPOL me comprometo a combatir la mediocridad y actuar con
honestidad, por eso no copio ni dejo copiar”.

1. (20 puntos) Califique las siguientes proposiciones como verdaderas o falsas. Debe justificar for-
malmente su respuesta.

(a) Todo grafo bipartito completo posee ciclo de Hamilton. (5 puntos).
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(b) Si k es una constante entera positiva y f : N 7→ R es una función tal que
f(n) = (n+ 1)k − nk, entonces f(n) = Θ(nk) (5 puntos).

(c) En un árbol de n vértices, es posible que todos los vértices tengan grado mayor o igual a 2.
(10 puntos).
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2. (20 puntos) Dado el siguiente grafo:

1

2

3

4
5

6

7
8

9

10

utilizando el orden de vértices 10, 8, 4, 7, 9, 5, 2, 1, 6, 3, encuentre un árbol de expansión con el
método de búsqueda en profundidad.
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3. (20 puntos) Sea f : X ⊆ Z 7→ Y ⊆ Z una función tal que:

f(n) =
n2 + 1

n+ 1
.

(a) Determine el conjunto X con mayor cardinalidad tal que f esté bien definida. Es decir,
debe encontrar X tal que f(n) ∈ Z para toda n ∈ X.
Ejemplo: 1 ∈ X pero 2 /∈ X. (15 puntos).

(b) Determine el conjunto Y que hace que f sea sobreyectiva (5 puntos).
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4. (20 puntos) Sea (an)n∈N una sucesión tal que a1 > 0 y para todo n ≥ 2 se tiene que

n∏
i=1

ai =
n−1∑
i=1

ai.

Usando inducción fuerte, demuestre que para todo n ≥ 2, an > 0.

II PAO 2025 Pag. 5 de 6



Matemáticas Discretas Examen de Tercera Evaluación

5. (20 puntos) Considere el conjunto de fichas de Scrabble distintas (pese a que se repitan las
letras, los subíndices hacen que las fichas sean diferentes) definido por:

A = {T1, A1, C1, T2, A2, C2}.

Sea S el conjunto de todas las permutaciones posibles (en forma de cadena) de los elementos de
A. Por ejemplo: T2A1C1T1A2C2 ∈ S, C2A1T2T1A2C1 ∈ S. Se define la relación R sobre S de la
siguiente forma:

xRy ⇐⇒ al borrarle los subíndices a x y a y, las cadenas resultantes son idénticas.

Ejemplo: T2A1C1T1A2C2 R T2A1C2T1A2C1 pero T2A1C1T1A2C2 ��R C2A1T2T1A2C1.
Suponga que R es una relación de equivalencia.

(a) Determine la clase de equivalencia [A2C1T2A1C2T1], indique su cardinalidad y argumente si
existe o no una clase de equivalencia con cardinalidad distinta. (10 puntos).

(b) Determine la cardinalidad del conjunto cociente S/R (10 puntos).
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