

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"PROSPECCION GEOQUIMICA DE ANTIMONIO EN LA CONCESION MINERA LOMA LARGA, CANTON PIÑAS PROVINCIA DE EL ORO"

COORD: LONG. OESTE 79' 41' 39" - LAT. SUR 03 42' 30" LONG. OESTE 79' 40' 2" - LAT. SUR 03 42' 30" LONG. OESTE 79° 41' 39" - LAT. SUR 03 44' 8" LONG. OESTE 79' 40' 2" - LAT. SUR 03 44' 8"

TESIS DE GRADO

Previa a la obtención del Titulo de:

INGENIERO EN GEOLOGIA

Presentado por: Bolívar Guillermo Villacrés Jouvín

> Guayaquií-Ecuador 1990

AGRADECIMIENTO

Mi eterno agradecimiento a la compañia minera MILARSA al Instituto de Química de la Escuela Superior Folitécnica del Litoral y a los ingenieros: Richard Vera, Patricio Molina, José Barquet, Francisco Torres y Doctores David Choez y Richard Lehner por las facilidades brindadas para la realización de esta tesis, así como al Dr Bruno Koller por su valiosa asesoria. En el plano personal a la familia Aguilar y a todas aquellas personas que con su aporte hicieron posible la culminación de este trabajo.

A mi Madre.

A mi Hermana.

A Katiutechka.

Ing. Jorge Calle G. Presidente del Tribunal

Dr. Bruno Koller Director de Tesis

Ing. Hugo Eguez Miembro del Tribunal

BIBLIGTECA CENTRAL

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestas en esta tesis, le corresponden exclusivamente a su autor, y el patrimonio intelectual de la misma a la Escuela Superior Folitècnica del Litoral".

(Reglamento de exámenes y títulos profesionales de la ESPOL).

Bolivar Villacrés Jouvin

RESUMEN

En la concesión minera "Loma Larga" geologicamente se pueden encontrar dos formaciones, el Gneis San Roque y el Esquisto Capiro, al cual se encuentran asociadas las vetas de estibina. las cuales tienen un rumbo aproximado de N 20°E.

En dicha concesión se organizo una campaña geoquimica, para lo cual se tomaron muestras de suelo y en ellas se analizaron los siguientes elementos: antimonio, zinc y plomo.

Las técnicas analíticas utilizadas fueron titulación para antimonio y absorción atómica para plomo y zinc.

Adiciona Imente Ee ana lizaron unaE pocaE muestraE con fotometria espectral para zinc, con el fin de comparar los resultados con los obtenidos por absorción atómica.

A los datos obtenidos se le aplicó un tratamiento estadistico para descubrir si existian valores anomálicos, los cuales al ubicarlos en mapas de isoconcentración revelarian zonas de posible mineralización.

INDICE GENEPAL

	Påg.
Resumen .,.,	VI
Indice General .,.,.,	VII
Iiidice de abreviaturas	Х
Indice de figuras	XI
Indice de fotograf ^{ias}	XIII
Indice de tablas	XIV
lnt ^{ro} ducción	16
Antecedentes Historicos del Area	16
Objetivos	17
Metodologia	17
Localización	18
Vías de acceso al área de estudio	20
Clima y vegetación ·····	21
Fisiografia	22
Geologia regional	22
CAPITULO UNO	
GEOLOGIA DEL AREA	26
1.1 Mapeo geológico	26
1.2 Petrografia	30
CAPITULO DOS	
PROSPECCION GEOQUIMICA DE LA ZONA	33
2.1 Localización de la red de muestreo	33

		$\mathrm{P}\mathrm{\hat{e}}\mathrm{e}$.
2.2	Muestreo de suelo	33
2.3	Tratamiento de las muestras en el la- boratorio	37
2.4	Métodos analiticos	40
	2.4.1 Frincipios de titulación	4 1
	2.4.2 Frincipios analíticos de foto- metria <i>e</i> Epectra1	41
	2.4.3 Frincipios analíticos de absor- ción atómica	45
2.5	Análisis de antimonio por titulación.	47
	2.5.1 Materiales utilizados	47
	2.5.2 Disgregación de la muestra	47
	2.5.3 Titulación de la muestra	49
2.6	Análisis de zinc por fotometria es- pectral	51
	2.6.1 Materiales utilizados	51
	2.6.2 Disgregación de la muestra	51
	2.6.3 Procedimiento para zinc	52
	2.6.4 Curva de calibración	54
2.7	Análisis de plomo y zinc por absor- ción atómica	60
	2.7.1 Materiales utilizados	60
	2,7,2 Disgregación de la muestra	61
	2.7.3 Procedimiento para plomo Y zinc	61

CAPITULO TRES

INTERFRETAC 10N	DE	RESULTADOS	62
3.1 Generalidad	les		62

	Pág.
3.2 Determinación del valor umbral para Sb. Zn y Pb	63
3.3 Correlación entre antimonio. plomo y zinc	96
3.4 Mapas de isoconcentraciones	111
CONCLUS IONES Y RECOMENDACIONES	112
ANEXOS	115
BIBLIOGRAFIA	131

•

INDICE DE ABREVIATURAS

AAS	Absorción At6mica
cm	Centimetros
ESPOL	Escuela Superior Politécnica del Litoral
EFN	E cuel a Folitécnica Nacion a l
ε	Extinción
fig	Figura
а	Gramos
INAMHI	Instituto Nacional de Meteorologia e Hidrologia
m	Netros
mg	Miligramos
min	Minutos
ml	Mililitros
mn	Milimetros
N	Normalidad
n	Número de muestras
nm	Nanometros
Pág	Página
Pb	Plomo
ppm	Partes por millón
r	Indice de correlación de Fearson
P	Coeficiente de correlación de Lepeltier
ទ	Desviación estandar
Sb	Antimonio
х	Media aritmética
Zn	Zinc

INDICE DE FIGURAS

t.

1.	Mapa de ubicación.,	Päg. 19
2.	Mapa de vias de acceso escala 1:25000	20
3.	Mapa geológico	27
4.	Perfil de suelo característico del área de estudio.	35
5.	Curva de calibración de zinc	59
6.	Distribución de frecuencia de antimonio	73
7.	Histograma de frecuencias de antimonio	774
8.	Distribución de frecuencia de zinc	76
9.	Histograma de frecuencias de zinc	77
10.	Distribución de frecuencia de plomo	79
11.	Histograma de frecuencias de polmo	80
12.	Curva de frecuencia acumulat iva porcentual para antimonio	86

		Pág.
13.	Curva de frecuencia acumulativa porcentual para zinc	87
14.	Curva de frecuencia acumulativa porcentual para plomo	88
15.	Distribución de frecuencia acumulativa para Sb Lepeltier (1969)	91
16.	Distribución de frecuencia acumulativa para Zn Lepeltier (1969)	92
17.	Distribución de frecuencia acumulativa para Pb Lepeltier (1969)	93
18.	Gráfico de correlación Sb(titulación) ve Zn(AAS)	107
19.	Gráfico de correlacibn Sb(titulación) ve Pb(AAS)	108
20.	Gráfico de correlacibn Zn(AAS) ve Fb(AAS)	109

•

INDICE DE FOTOGRAFIAS

.

- 12	£	~	
Г	ð.	¥.	

1.	Vista al microscopio de feldespato potásico altera- do a damourita con color de interferencia marrón en matriz cuarcítica. (Nicoles cruzados 10 X 10)	31
2.	Vista al microscopio de sericita (Nicoles cruzados 40 X 10)	3%
3.	Vista interior del molino de bola de porcelana	38
4.	Molino de bola en funcionamiento	39
5.	Tamizador automático Ro-Tap	.40
6.	Fotómetro spectroquant SQ 115 de Merck	43
7.	Equipo de absorción atómica Perkin - Elmer 603	46
8.	Calentamiento en baño de arena	48
9.	Froceso de filtrado y aforado	49
10.	Titulación de antimonio con KBr03	50

INDICE DE TABLAS

		Fág.
1.	Resultados analiticos de antimonio en muestras tomadas en perfiles de prueba	36
2.	Elementos que interfieren en la formación del complejo colorimétrico de zinc	52
3.	Lecturas de extinción de zinc medidas con SQ 315	55
4.	Valores para Q(P,n) para 95 % y 99 %	57
5.	Concentración de estandars en ppm y media aritmé- tica de la extinción para cada uno	58
6.	Resultados analíticos para Sb, Fb y Zn	63
7.	Resultados analíticos para Sb, Pb y Zn ordenados ascendentemente	67
8.	Distribución de grupo de valores para antimonio	72
9.	Distribución de grupo de valores para zinc	75
10.	Distribución de grupo de valores para plomo	78
11.	Determinación de media, varianza y desviación es- tandar para antimonio	82

		Ρág.
12.	Determinación de media, varianza y desviación es- tandar para zinc	83
13.	Determinación de media, varianza y desviación es- tandar para plomo	34
14.	Interpretación estadística de los análisis geoqui- micos	89
15.	Correlación entre antimonio y zinc	97
16.	Correlación entre antimonio y plomo	100
L7.	Correlación entre zinc y plomo	1fJ3

•

INTRODUCCION

ANTECEDENTES HISTORICOS DEL AREA

Los trabajos realizados en la concesión minera "Loma Larga" ubicada en la provincia de El Oro 5 km al sur del cantón Piñas, con un área de 9 km², comenzaron en el año 1977 cuando se encontró una veta de estibina de aproximadamente un metro de espesor, con rumbo N 20°O e inclinación de 25" a 30" hacia el NE.

Esta veta fue explotada durante unos pocos meses en el año 1977, pero sin mayor investigación de la situación geológica del área y posición de la veta, lo cual produjo que el proyecto fracasara por que se perdió la veta.

En el año 1988 con intervención de capital extranjero y asesoría técnica de Ingenieros Geólogos de la ESPOL y de la EFN, se reanudaron los trabajos anteriores, con los cuales se encontró una nueva veta de estibina cerca a la primera y se realizó una galería para explotar la primera veta *e* iniciar la prospección geofísica y geoquímica en el resto del área, en busca de nuevas vetas.

OBJETIVO

En el área de estudio se explota actualmente una veta de estibina, existiendo además la posibilidad de detectar otras vetas. El objetivo principal del presente trabajo es justamente encontrar nuevas vetas de estibina, mediante una prospección geoquímica detallada, en la zona de mayor interes.

El proposito adicional que propone este trabajo, es demostrar si existe una relación entre los elementos a analizar, los cuales son antimonio, plomo y zinc.

METODOLOGIA

E 1 trabajo se dividió en tres fases principales. Por 106 estudios anteriores de la compañía MILARSA, se conocia que las de antimonio se encontraban asociadas únicamente a vetas las rocas metamórficas de tipo cuarcitas, por lo tanto, el primer fue mapear detalladamente el área para elegir el paso sitio más adecuado para la toma de muestras, las cuales se recolectaron en suelos, ya que en el área las quebradas no depositan cantidad de sedimentos activos y el suelo es mayor mas homogéneo en su composición que la roca. Para la selección delsitio de muestreo, tambien ayudaron las observaciones de los resultados de los análisis de muestras de suelos que se tomaron cercanas a la veta ya conocida.

El segundo paso fue elaborar técnicas analíticas adecuadas para antimonio, zinc y plomo, para luego realizar los análisis de cada una de las muestras de suelo tomadas.

El tercer paso fue el tratamiento estadístico de los resultados analíticos, para detectar posibles anomalías de los elementos analizados y ubicar estas zonas anomálicas en mapas de isoconcentraciones.

LOCALIZACION

La concesión minera "Loma Larga" se encuentra ubicada en la provincia de El Oro, 5 Km al sur del Cantón Piñas, el área tiene la forma de un cuadrado de 3 Km de lado. Las coordenadas de sus vértices son:

VERTICES	LONGITUD	LATITUD
A	79° 41′ 39,83′′ OESTE	3° 42′ 30,04′′ SUR
В	79 [°] 40′ 2,54′ OESTE	3° 42′ 30,04′′ SUR
C	79 ° 41' 39,83´´ OESTE	3° 44′ 8,23′′ SUR
D	79°40′2.54 '' OESTE	3° 44- 8,2311 SUR

VIAS DE ACCESO AL AREA DE ESTUDIO

Desde Guayaquil, la principal vía de acceso es la Fanamericana Sur hasta el sitio llamado "La Avanzada", luego para llegar a Piñas se toma la via La Avanzada - Piñas. Desde este sitio hasta el área se puede llegar mediante dos vías.

La primera via esta constituida por un tramo de la carretera Piñas - Capiro, el cual pasa por la esquina Noroeste de la concesión minera "Loma Larga" y que luego se continua a traves de un desvio construido por la compañia MILAESA que llega hasta la mina de estibina.

La segunda via de acceso es por la carretera Piñas - Fortovelo - Zaruma la cual atravieza el lado Oeste de la concesión y pasa por la población de San Roque, desde donde se continua finalmente por camino de herradura hasta la mineralización de estibina (fig 2).

CLIMA Y YEGETACION

El clima de esta región, es de tipo "Tropical Monzón" según el boletin emitido en Octubre de 1978 por el Ministerio de Recursos Naturales y Energéticos y el Instituto Nacional de Meteorología e Hidrología (INAMHI). Este clima se caracteriza por tener temperaturas entre 24 y 25 grados centigrados, la humedad relativa oscila entre los 75 y 85 %.

Existen dos estaciones climáticas, verano (estación seca) entre`los meses de Junio a Febrero, e invierno (estación lluviosa) entre los meses de Marzo a Mayo con precipitaciones promedios inferiores a 2000 mm.

La vegetación es de tipo "Selva tropical humeda de montaña",

existiendo cierta variedad de árboles frutales como naranios Una espesa hierba cubre la zona.

La población promedio en el área es de 30 a 40 habitantes por kilómetro cuadrado, la principal ocupación es la agricultura.

FISIOGRAFIA

La cota más alta del área es de 1300 metros y la más baja 800 metros sobre el nivel del mar, produciendose un decrecimiento de noroeste a sureste. La topografia es muy irregular con pendientes abruptas.

El sistema de drenaje principal del área lo constituye la quebrada San Lorenzo (anexo c) que corre de noreste a sureste, recibiendo el aporte de pequeñas quebradas perpendiculares a su cauce. Esta quebrada cambia su nombre cuando se une con la Quebrada Luzumbe adoptando este nombre, pero con la misma dirección noroeste-sureste.

Otro sistema es el del Rio Piñas que corre fuera del área, pero una pequeña porción pasa por la esquina noreste del área.

GEOLOGIA REGIONAL

La carta geológica escala 1:100000, Hoja 38 NVJ-E Zaruma. editada por el Instituto Geográfico Militar (IGM), indica que

en el área afloran rocas metamórficas, igneas y sedimentarias edad Precámbrico - Paleozoico Inferior a Cuaternarios de Estructuralmente la falla de Portovelo es el rasgo tectónico más importante. Esta separa las rocas volcánicas de la Forma-Celica de las rocas metamórficas constituidas por el ción gneis San Roque y Esquisto Capiro que antiguamente se conocian Tahuin, y actualmente se la conoce como Grupo como Serie falla también constituye el limite sur de 1aTabuín. Dicha mineralización del distrito minero de Portovelo.

"TAHUIN (Grupo)......Paleozoico + Triásico

Autor: Feininger (1977) Mapa geòlògico de la parte occidental de la Frovincia de El Oro (1:50000). Esc. Politéc. Nac., Quito.

Litologia: Predominantemente las rocas del grupo Tahuin son de composición pelítica y cuarzo feldespático. En el extremo S. hacia el valle del Rio Fuyango, aunque duramente litificadas, no han sido metamorfizadas.

Consisten en areniscas grises, comúnmente con estratificación gradada, intercaladas con limolitas y lutitas de color gric obscuro. Hacia el N el grado de metamorfismo aumenta progresivamente lo cual cambia el aspecto de las rocas. Las no meta mórficas pasan paulatinamente a cuarcitas con filitas y esquistos intercalados, los cuales pasan a gneices finos granulares, y finalmente a gneises de grano medio a grueso con desarrollo local de migmatitas espectaculares. El grado maximo de metamorfismo se alcanza a lo largo del contacto con las rocas del Grupo Fiedras.

Las rocas del Grupo Tahuín al N del Grupo Piedras son mayormente idénticas a las del S pero incluyen estrato de anfibolita piroxénica de hasta 2 Km de ancho, el cual aflora muy bien en las vecindades de la población de Arenillas. El grado de metamorfismo de este grupo de rocas del Grupo Tahuín disminuye hacia el N y los afloramientoa más norteños , entre las poblaciones de San Agustín y La Avanzada, son de un grado de metamorfismo muy bajo. Más al N las rocas del Grupo se pierden por debajo de los sedimentos no consolidados de la llanura costera.

El espesor total de las rocas del Grupo Tahuín excede 10000 m.

Edad: Rocas de muy bajo grado metamórfico y presumiblemento correlacionables en la Cordillera Amotape del Ferú han proporcionado fósiles de edad Devónico (Martínez, 1971) Ahora, por la edad de 210 + 8 m.a. de un gneis pelítico se sabe que parte del grupo Tahuin corresponde al Triásico.

SAN ROQUE (Gneis)....., .,., . Frecámbrico.

Nombre tomado de San Roque, 7 Km SW de Zaruma.

24

Según Kennerley (1973), la unidad consiste de gneis que sou de grano grueso y están compuestos por esquistos y gneises de cuarzo - feldespato - biotita - muscovita. En el sendero a Capiro cerca a Piñas se notaron esquistos de granate - cuarzo - feldespato - muscovita. A lo largo de la carretera a Machala esquistos grafiticos ocurren. Se observan afloramientos extensos de anfibolitas de grano medio al S de Portovelo y al O de Piñas en el Rio Moromoro. La de Portovelo está compuesta por 75 % de hornblenda y feldespato alterado.

Antes Kennerley (1973), sugirió que la Serie Metamórfica Tahuín de la cual éste es una unidad, era de edad cretácica, metamorfizada durante la orogenia Laramídica. Ahora, considerando la edad radiométrica de 732 millones de años (Snelling, 1973) ha modificado su hipótesis ; seguramente la Serie Tahuin incluye en partes rocas precámbricas.

CAPIRO (Esquistos de...) Pleistoceno Sup

El nombre está tomado del pueblo de Capiro unos 11,5 Km SO de Zaruma.

Es característicos de los Esquistos Capiro su grano fino y la prominencia de muscovita y sericita. En sectores más siliceos, ocurren metalimolitas cuarcitas sericíticas y cuarcitas. No son comunes las filitas, pero cuando están presentes tienen clivajes fuerte. Se nota metavolcánicos intercalados".(4)

CAPITULO UNO

GEOLOGIA DEL AREA

1.1.- MAPEO GEOLOGICO:

En los estudios geológicos previos realizados por la Compañia Minera MILARSA, se determinó que en el área existen básicamente rocas metamórficas de tipo gneis y cuarcita. Las vetas de estibina se encuentran asociadas, por lo general, a cuarcitas altamente silicificadas. Estas cuarcitas presentan diaciasamiento, generalmente con rumbo E = 0 y buzamiento 40° al N (fig 3).

El mapeo geológico se realizó mediante dos recorridos. El primero, a lo largo de la carretera a la mina, construida por MILARSA y por un tramo de la carretera Piñas - Capiro que pasa por la esquina Noroeste de la concesión. El segundo recorrido por la quebrada San Lorenzo (fig 3).

Recorrido 1: Partiendo de la Mina por la carretera construida por la compañia MILARSA (fig 3).

Estación 2: Coordenadas 91588.600 N / 645.650 E. Cota 950 mts. Este punto se encuentra ubicado a 50 m de la entrada a la mina, corresponde a una cuarcita color rosado claro con gran

cantidad de cuarzo (aproximadamente 75 %) y clorita, que le da roca pequeñas manchas de color verde claro. la а EL color rosado debe a la alteración de los feldespatos. se La roca también presenta manchas de color café debido a la presencia de óxidos de hierro y manganeso. El tamaño de grano de lesta roca es muy fino y E-! presenta muy diaclasada

Estación 2: Coordenadas 9'588.650 N / 645.700 E. Se encuentra ubicada 50 metros arriba del punto anterior en la cota 1000 m.

Se observa el cambio litológico de cuarcita a gneis, la dirección del contacto es aproximadamente E = 0.

El gneis es de color café claro con gran cantidad de moscovita Y biotita (alrededor del 50 %). El cuarzo existe, pero en menor cantidad, alrededor del 20 o **30** %. La roca *es* muy débil Y se quiebra con facilidad.

El suelo cambia el tamaño del grano, ya que se vuelve mucho más grueso y muy micáceo, además en el color que anteriormente era café claro, se torna café obscuro.

Estación 3: Coordenadas 9'590.100 N / 645.500 E. Está ubicada 200 metroa despues de la intercepción entre la carretera Fiñas - Capiro Y la carretera de MILARSA. La roca es de igual composición mineralógica que en la estación anterior pero de grano más fino. Estación 4: Coordenadas 9'588.800 N / 644.000 E. Se encuentra un contacto gneis - cuarcita con rumbo E - W que corresponde al mismo determinado en la estación 2. En la cuarcita, antes del contacto, se observa una veta de salvanda (óxido de antimonio) con rumbo E - O y buzamiento 30°S.

Estación 5: Coordenadas 91587.700 N / 644.200 E. Contacto esquisto - gneis. Con igual mineralogía y textura que las rocas anteriores.

Estación 6: Coordenadas 91587.400 N / 643.950 E. Contacto gneis - esquisto.

Estación 7: Coordenadas 9'587.700 N / 644.150 E. Se encontró un afloramiento de roca color verdoso de grano muy fino (bien exfoliada). Probablemente corresponde a una filita, la que podria ser una transición entre el gneis y el esquisto. Este sitio está ubicado fuera del área de estudio por lo cual su composición mineralógica exacta no se presenta en este trabajo.

Estación 8: Coordenadas 9'586.400 N / 646.200 E. La roca corresponde a un esquisto de grano muy fino.

Estación 9: Coordenadas 9'586.450 N / 646.800 E. Es un esquisto del mismo tipo que el punto anterior, con diaclasas, en dirección N 75°W y buzamiento 77°N. Estación 10: Coordenadas 91586.800 N / 647.700 E. Esquisto con diaclasas en dirección N 50°E y buzamiento 90°.

Estación 11: Coordenadas 9'587.250 N / 6/17.750 E. El punto está ubicado 1 km al SO, antes de la población de San Roque. Se observa el contacto cuarcita - gneis. Antes del contacto, la cuarcita presenta vetas de salvanda con rumbo N 80° E y buzamiento 55°N.

Corte 2: Este corte es en la quebrada San Lorenzo en dirección Suroeste (fig 3).

Estación 12: Coordenadas 9'587,850 N / 646,450 E. La roca es una cuarcita con diaclasas de direción N 65°E y buzamiento 35° N. Otros datos de rumbos y buzamientos de diaclasas en esta cuarcita, a lo largo de la quebrada San Lorenzo, se muestran en el mapa del anexo c.

Estación 13: Coordenadas 9'587.700 N / 646.850 E. Ubicado 100 metros antes de la intercepción de la quebrada San Lorenzo y la quebrada Luzumbe. Se puede observar el contacto cuarcita gneis.

1.2.- PETROGRAFIA:

De las muestras de roca recogidas, se prepararon secciones delgadas con el objetivo de verificar el tipo de roca y la composición mineralógica.

Del estudio petrográfico de estas secciones delgadas, se concluyó que existen dos tipos de rocas, descritas mineralógicamente a continuación:

Cuarcita: Contiene alrededor del 80 % de cuarzo con extinción ondulosa. Un 5 % de la roca corresponde a feldespato potásico que se ha alterado a hidromoscovita (Damourita). La sericita está presente en un 8 % y zircón en un 4 %. Otros minerales como turmalina y biotita y minerales opacos como la hematita, se los encuentra en cantidades pequeñas.

Foto 1. Vista al microscopio de feldespato potásico alterado a damourita con color de interferencia marrón en una matriz cuarcítica (Nicoles cruzados 10 X 10). Gneis: El cuarzo con extinción ondulosa, compone alrededor del 40 % de la roca. La sericita alrededor de 40 %. La biotita compone un 10 %, clorita un 7 % y epidota un 3 %. Existen minerales opacos, pero muy poca cantidad.

Foto 2. Vista al microscopio de sericita (Nicoles cruzados 40 X 10).

CAPITULO DOS

PROSPECCION GEOQUIMICA DE LA ZONA

2.1. - LOCALIZACION DE LA RED DE MUESTREO:

Se trata de una malla de muestreo rectangular con cinco lineas paralelas en dirección N 45º W.

En cada linea, se tomó muestras de suelos con un intervalo de 50 m. (anexo D).

las coordenadas de los vértices de la malla son:

91588.750 N / 645.325 E 91588.500 N / 645.100 E 91587.600 N / 646.425 E 91587.425 N / 646.150 E

2.- MUESTREO DE SUELO:

An la zona de estudio, se puede distinguir claramente los tres norizontes de suelo A, B, y C, notándose en ciertos puntos de nuestreo que el horizonte B puede ser subdividido en B1 y B2 Estas observaciones se hicieron en dos perfiles perpendiculares a la veta principal y separados 100 metros entre ri, con intervalos de muestreo de 10 m.

En estos dos perfiles se muestreó los horizontes A. B y C con el fin de reconocer el horizonte más apropiado para la toma de muestras en la red principal.

A continuación, se presenta una descripción general de los perfiles de suelo:

La profundidad de los perfiles varia entre 40 y 50 cm.

Horizonte A : El espesor de este horizonte varia entre 5 y 10 cm generalmente, aunque en algunos puntos de muestreo en que la pendiente aumenta el horizonte A disminuye a 1 o 2 om y casi desaparece. Presenta un color gris obscuro, con gran cantidad de materia orgánica y humus.

Horizonte B : El espesor varia de 10 a 25 cm. En algunos puntos, se puede diferenciar dos subhorizontes B1 y B2.

Subhorizonte B1 : Varia entre 10 y 15 cm de espesor. Contiene raices gruesas . Es de color café obscuro.

Subhorizonte B2 : El espesor es de 5 a 10 cm. Es de color café obscuro, pero se diferencia del horizonte B1 debido a que hay acumulaciones arcillosas de diámetro entre 1 y 2 cm color café amarillento, en las cuales gran cantidad de minerales arcillosos como moscovitas y biotitas están presentes.

El material que compone este subhorizonte es de tipo arenoso

Horizonte C : El espesor varia entre 10 y 20 cm. Está compuesto de grava mezclada con fragmentos de roca que varian entre 10 y 20 cm de diámetro.

La roca madre del subsuelo es una cuarcita cuya mineralogia y composición se encuentra detallada en el capitulo I.

Las muestras de cada punto de estos dos perfiles, fueron analizadas quimicamente para determinar su contenido en antimonio. Los resultados se muestran en la siguiente tabla.

TABLA 1.-RESULTADOS DE ANALISIS DE ANTIMONIO DE MUESTRASTOMADAS EN PERFILES DE PRUEBA.

PERFIL 1			PERFIL 2		
Muestra¦	HORIZ A Sb (ppm)	HORIZ B Sb (ppm)	Muestra	HORIZ A Sb (ppm)	HORIZ B Sb (ppm)
LLA1 ¦	25	13	LLB1	27	8
LLA2	29	4	LLB2	24	8
LLA3	26	13	LLB3	26	6
LLA4	22		LLB4	}	10
LLA5	26	15	LLB5	31	11
LLA6 ¦	25	12	LLB6		19
LLA7	20	10	LLB7		25
LLA8		11	LLB8		29
LLA9		12	LLB9	31	39
LLA10 ¦		8	LLB10		33
LLA11 ¦	23	8	LLB11	1	24
LLA12 ¦		22	LLB12		50
LLA13 ¦		20	LLB13		16
LLA14 {	;	12	LLB14	16	16
LLA15		14	LLB15	{	14
LLA16		21	LLB16		15
LLA17	——	14	LLB17	[14
LLA18	;	11	LLB18		10
LLA19		16	LLB19	: !	
LLA20	}	14	LLB20		

36
fragmentos de roca y restos orgánicos como raices, hojas y astillas.

La muestra seca, se trituró durante 15 minutos en un molino de bola de porcelana, el cual no contamina la muestra con hierro u otros elementos metálicos.

El molino consta de un cilindro de 30 cm de diámetro, en su interior, esta recubierto por una camisa de porcelana.

Se utilizaron bolas de porcelana de 2 y 1 cm de diámetro (Foto 3).

Foto 3. Vista interior del molino de bola de porcelana.

El movimiento giratorio es proporcionado por un motor a dos rodillos horizontales paralelos, sobre los cuales se coloca el molino. (Foto 4).

Foto 4. Molino de bolas en funcionamiento

El producto de esta trituración, se tamisó a 150 y 200 mal)as (ASTM) utilizando un tamizador automático (Foto 5).

La fracción mayor a 150 mallas se desechó. La fracción pasante 150 mallas y retenido 200 mallas, se guardó en fundas plásticas. La fracción menor a 200 mallas, se sometió a cuarteo utilizando un cuarteador tipo Jones. El mótodo de cuarteo consiste en mezclar bien la muestra, colocarla en la parte superior del cuarteador, el cual se encarga de separar la muestra en dos partes iguales, una de elias es desechada y la otra es nuevamente mezclada y cuarteada, hasta que la muestra se reduce a aproximadamente 5 gramos, con este procedimiento se consiguió una total homogenización de la muestra, con el objetivo de tener resultados mas representativos.

La fracción mayor a 200 mallas, se guardó en caso de requerir análisis de verificación.

Foto 5. Tamizador automatico (Ro-Tap).

2.4.- METODOS ANALITICOS:

En este trabajo, se emplearon tres métodos analiticos diferen

tes, y sus principios se describen a continuación:

2.4.1.- Principio de Titulación:

La titulación es la acción de valorar una solución, utilizando para esto un titulante, el cual satura la solución a medir y en ese instante, se produce un cambio de color en esta.

2.4.2.- Principios analiticos de fotometria espectral:

Colorimetria es la determinación de la intensidad o tonalidad de un color específico en una solución coloreada. Esto se realiza mediante la comparación visual de una solución problema con una serie de estandars preparados con concentraciones definidas del elemento en busca.

Fotometria espectral es la medición instrumental de la luz transmitida por una solución diluida coloreada.

Estas dos técnicas, pueden ser utilizadas para el análisis químico en materiales geológicos.

"Cuando se ha formado el complejo de color en la solución suficientementa diluida, la relación entre la concentración del elemento y la absorcion de la lus está dada por la regla de Béer - Lambert:

$$A = 1or (Io / I_{\pm}) + abc$$

En donde lo es la intensidad de la luz incidente. I_{\pm} la intensidad de la luz trasmitida, a es una constante de absorción, b es la longitud de onda de poso de la luz y c es la concentración de la sustancia en questión.

La relación reciproca J_{t}/J_{0} es la transmisividad de la solución.

La regla de Beer - Lambert, se refiere a la transmisión de luz en soluciones diluidas. En muchos carca, las soluciones que se analizan son lo bastante libidas tales que las desviaciones de esta regla con phoimas. Esto no es asi para soluciones concentradas, on donde las desviaciones de la sola de Beer - Lambert con considerables". (7)

En fotometria espectral, las concentraciones de elemetos con determinadas mediante la intensidad de acuellas longitudes de onda más fuertemente absorbidas por las sustancias coloreadas.

La selección de la longitud de onde apropiada de hace mediante filtros, monocromadores o rejillas. El instrumento se calibra a cero mediante una solución blanca, la cual es preparada con agua desmineralizada (destilada libre del elemento a analizar y es tratada con los mismos reactivos colorimétricos que los estandars las soluciones desconocidas.

Los instrumentos necesarios existen en diferentes tipo en el mercado. El utilizado en este trabajo, fue e Spectroquant SQ 115 de Merck (Foto 6) que tiene u microprocesador incorporado que calibra el instrument automáticamente mediante un blanco y una cubeta de cali bración, y evita asi la tediosa necesidad de constru: curvas de calibración con una serie de estandars.

Foto 6. Fotometro Spectroquant SQ 115 de Merch.

La longitud de onda es seleccionada por medio de filtros que proporcionan una longitud de onda fija. Uara facilitar el análisis, esta empresa ofrece además una gama de juegos de reactivos en donde, cada juego contiene todos los reactivos necesarios para el análisis de un elemento específico.

Según el elementó, pueden analizarse de 80 a 500 muestras con un solo juego.

Estos juegos de reactivos, ahorran la tediosa búsqueda de los diferentes reactivos en el mercado local, a veces imposible de conseguir.

Con todos los implementos mencionados de este sistema, algunos de los análisis pueden efectuarse en menos de 2 minutos.

Como el equipo es pequeño y puede ser utilizado tanto con corriente eléctrica como con bateria de 12 V, como la de un carro, se pueden también hacer los análisis en el campo sin mayor problema o si se quiere en el mismo lugar de muestreo,

La mayoria de los procedimientos colorimétricos se componen de los siguientes pasos: primero, descomposición de la muestra; luego, transferencia de una alicuota de solución de la muestra, adición de un buffer y si es necesario un agente enmascarador, la adición de un agente colorimétrico y finalmente la extracción del complejo coloreado a una solución orgánica solvente. Unas pocas determinaciones se desvian de esta secuencia.

2.4.3.-Principios Analíticos de Absorción Atómica:

"En absorción atómica, el elemento de interés en la muestra no se excita, sino que se disocia de sus enlaces químicos, llevándolo a un estado no excitado, no ionizado y en su estado minimo de energia. Bajo estas condiciones es capaz de absorber radiación emitida por una lámpara de cátodo hueco, la cual tiene como fuente energética el mismo elemento que se desea analizar. La longitud de onda que es absorbida permite la identificación del elemento a analizar.

La disociación se efectúa " quemando " la muestra en una llama. La llama, requiere la presencia de un combustible (acetileno) y un oxidante (oxigeno), las condiciones de esta llama entre otras cosas determinan el rango efectivo de la absorción.

El equipo utilizado para los análisis de plomo y sinc.

en este trabajo, fue el Ferkin - Elmer 603 que es presentado en la futo 7.

to 7. Equipo de absorción atómica Perkin - Elmer 603

Este contiene un microprosesador incorporado, el cual realiza una curva de calibración automaticamente con uno, dos o tres estandars. El tipo de quemador utilizado es de premezcla, en el cual la muestra, el combustible y el oxidante, se mezclan en la cámaro autos de entrar en la llama. El rango de longitudes de ondo son seleccionados por un monocromador, el cual deja pasar la línea de resonancia y bloquea las líneas no resonantes más próximas, para lograr una curva de trabajo líneal" (10)

2.5. - ANALISIS DE ANTIMONIO POR TITULACION

2.5.1. - Materiales Utilizado:

- Embudo de vidrio.
- Vaso de precipitación de 100 ml.
- Fipeta volumétrica de 5 ml.
- Bureta de 25 ml.
- Soportes metálicos.
- Agarraderas para soporte.
- Solución de Bromato de Potasio 0,01 N (KBrO3).
- Solución de Anaranjado de Metilo 0.1%.
- Solución de Acido Clorhidrico 2N (HCl).
- Agua destilada.
- Papel filtro (Wattman # 42).
- Reverbero.

2.5.2.- Disgregación de la muestra:

Para encontrar la disgregación más efectiva para la determinación de antimonio, se realizaron pruebas de disgregación con diferentes ácidos y diferentes concentraciones como : ácido perclórico concentrado (HC104), ácido nitrico concentrado (HN03), acido clorhídrico concentrado (HC1) y ácido clorhídrico 20.

Las mejores disgregaciones se obtuvieron con el ácido

clorhidrico concentrado y se utilizó este para disgregar todas las muestras y poner en solución el antimonio. Fara la disgregación, se pesa aproximadamente 2 g de muestra en un vaso de precipitación de 100 ml y se agrega 10 ml de ácido clorhidrico concentrado, se calienta el vaso de precipitación en un baño de arena a 150 C (Foto 8).

Foto 8. Calentamiento en baño de arena.

Se evapora la mezcla hasta que este casi seça. Cuando se ha evaporado casi todo el ácido, se agrega 20 ml de agua destilada y nuevamente se lleva en un baño de arena hasta casi sequedad. Una vez seco, se agrega ácido clorhidrico 2 N, se filtra la suspensión y se afora la solución clara hasta 100 ml con ácido elorhidrico 2 N.

Foto 9. Proceso de filtrado y aforado.

2.5.3. - Titulación de la muestra:

Una vez disgregada la muestra, la solución obtenida en titulada para determinar el contenido de antimonio. - Tomar 50 ml de solución problema.

- Agregar 2 gotas de solución anaranjado de metilo 0.1%.
- Calentar a 50 grados centigrados.

à r

- Titular con solución bromato de potasio 0,01 N.
- Leer en la bureta la cantidad de titulante consumido.

Foto 10. Titulación de antimonio con KBr03.

El contenido de antimonio se obtieve segun: 1 ml de KBrO3 = 6.022 mg de antimonio (9) El límite inferior de detección es de 3 ppm con un error de 0,3 ppm.

2.6. - ANALISIS DE ZINC POR FOTOMETRIA ESPECTRAL

2.6.1.- Materiales os

- Vaso de precipitación.
- Embudo de vidrio.
- Natraz de 100 ml.
- Matraz de 25 ml.
- Pipeta volumétrica de 20 ml.
- Fipeta volumétrica de 10 ml.
- Acido clorhídrico concentrado.
- Hidroxido de sodio (granulado)
- Agua destilada.
- Fapel filtro (Wattman # 42).
- Reverbero.
- Fotómetro spectroquant SQ 115.
- Filtro R 565.
- Cubeta rectangular de cuarzo de 10 mm.
- Juego de reactivos para zinc de la firma Merck.

2.6.2.- Disgregación de la muestra:

Wear y Sommer (1948) demostraron que se puede extraer el zinc disponible de los suelos por medio de HCl 0.1 H.

Los estudios de Wear y Sommer (1948) proporcionaron la bases para utilizar las extracciones con ácido clorbi drico concentrado, que se hicieron para analizar antimo nio anteriormente en este trabajo en el literal 2.5.2.

Se pesa 2 gramos de muestra, se coloca en un de vaso d precipitación 100 ml y se agrega 10 ml de ácido clorhi drico concentrado. Se calienta en baño de arena a un temperatura de 150 grados centigrados y se evapora hast casi sequedad, luego se agrega 20 ml de agua destilada se calienta nuevamente en baño de arena a 100 grado centigrados hasta casi sequedad. Se agrega ácido eler hídrico 2 N, se filtra y el filtrado se afora a 100 mJ.

2.6.3. - Procedimiento para zinc:

La solución a ser analizada debe encontrarse libre d elementos que interfieran con el complejo de color Estos son los mostrados en la tabla 2. Estas interferencias causan un error en las lecturas del instrumento

Tabla 2. Elementos que interfieren en la formación de complejo colorimétrico de zinc.

+10 mg/l	Cr ⁶⁺ , Fe ^{••} , Se ⁴⁺ , W ⁵⁺ ,	\$ ² -
+100 mg/l	Ag*, Ba ²⁺ , Co ²⁺ , Cr ³⁺ , Cu ²⁺ , Hg', La ³⁺ , Ni ²⁺ , Pb ²⁺ , Sn ²⁺ , Tl*, Ti ⁴⁺ , U ⁶⁺ , V ⁵⁺	Br-, 10 ₃ , S ₂ O ₃ ²⁻
+ 1000 mg/l	Al ³ *, As ³ *, Be ² *, Bi ³ *, Ca ² *, Cd ² *, Ce ³ *, Ce ⁴ *, Fe ³ +, Ga ³ *, Ge-, Hg ² *, K', Li*, Mg ² *, Mn ² *, Xb*, Rb', Sb ³ *, Sr ² *, Te ⁴ *, Th ⁴ *, Zr ⁴ *,	Acetate, ascorbate, BrO ₃ , BO ₃ , CO ₃ , citrate, Cl-, ClO ₃ , ClO ₄ , CN-, CNO-, F, J, NH ₄ , NO ₃ , NO ₃ , oxalate, PO ₄ , P ₂ O ₇ , polyphosphate, SCN, SO ₄ , SO ₄ , S ₂ O ₆ , SiO ₅ , tartrate

Tabla 2. Continuación.

1.0 mg/lZn + 1 mg/l		Mo6+, Se4+, Sb3+, W6+,	S ²
	+ 10mg/l	As ³⁺ , Bi ³⁺ , Fe ³⁺ , Sn ²⁺ , Sr ²⁺ , Te ⁴⁺ , Tl ⁺ ,	polyphosphate, S O ²⁻ , <i>SO-</i> :
	+ 100mg/l	Bα ²⁺ , Be ²⁺ , Ce ⁴⁺ , Cu ²⁺ , Ge ⁴⁺ , Fe ²⁺ , Ni ²⁺ , Pb ²⁺ , Th ⁴⁺ , Ti ⁴⁺ ,	BO3 ³⁻ , tartrate
	+ 1000 mg/i	Ag ⁺ , Al", Ca ²⁺ , Cd ²⁺ , Ce ³⁺ , Cr ³⁺ , Cr ⁶⁺ , Co ²⁺ , Ga ³⁺ , Hg ⁺ , Hg ²⁺ , K La", Li ⁺ , Mg ²⁺ , Mn ²⁺ , Na ⁺ , Rb ⁺ , U ⁶⁺ , V ⁵⁺ , Zr ⁴⁺ ,	Acetate, ascorbate, Br ⁻ , Br0j, citrate, Cl ⁻ , ClO ₃ , ClO ₄ , CO ₃ ⁻ , CN-, CNO-, F ⁻ , I, IO ₃ , NH ₄ , NO, NO, oxalaie, PO ₄ ⁻ , P ₂ O ₅ ⁴ , SCN ⁻ , SO ₃ ²⁻ , SO ₄ ²⁻ , S ₂ O ₆ ²⁻
	NaX	NaCl: < 1%, NaNO3: < 0.5% Na2SO4: < 1% Na2B3O7 • 10H2O: < 0,2% Titriplex' III: 0%	Seawater: unsuitable

En el caso de los suelos un elemento que crea principalmente problemas es el hierro, el cual debe ser eliminado llevando el pH de la solución hasta 8,5 o 9 con adición de hidróxido de sodio, asi se logra que el hierro precipite, luego la solución se filtra y queda lista para ser analizada. Se usó el sistema Spectroquant en el fotomotro SQ 115 de la firma Merck con el juego de reactivos para zinc.

- 1.- Tomar 5 ml de solución problema y colocarlo en tubo con tapa rosca.
- 2.- Agregar 5 ml de reactivo Zn 1, mezclar y controlar que el pH sea mayor a 12 (caso contrario ajustar con hidróxido de sodio).

3.- Agregar 2 gotas de reactivo Zn 2 y mezclar.

4.- Agregar 5 gotas de reactivo Zn 3 y mezclar.

- 5.- Agregar 3 gotas de reactivo Zn 4. mezclar y dejar en reposo por 3 minutos.
- 6.- Agregar una microcucharada de reactivo Zn 5 y disolver.
- 7.- Agregar 5 ml de reactivo Zn 6, tapar el frasco y agitar fuertemente por 30 segundos, dejar reposar por 2 minutos.
- 8.- Extraer la capa superior y pasar a cubeta de medición de 10 mm.

2.6.4. - Curva de Calibración:

El manual de la firma Merck indica que el filtro más adecuado para seleccionar la longitud de onda es el R 565 nm. Se utilizó la cubeta de medición rectangular de cuarzo de 10 mm, para medir soluciones entre un rango de 0,05 y 2,5 ppm Zn.

Se preparon estandards que contenian 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1 y 0 g/ml de Zn, los cuales se trataron según el procedimiento para zinc que se describe en el literal 2.4.2.3.

La solución coloreada se pasó a la cubeta de medición y se determinó la extinción de la solución.

La extinción se midió para las diferentes concentra-

ciones de estandars inmediatamente después de formado e complejo de color y luego, en intervalos de 1 minut entre cada medición. Los resultados de las mediciones d extinción para los diferentes estandards son presentado en la tabla 3.

TABLA 3 . LECTURAS DE EXTINCION DE ZINC MEDIDAS CON EL SØ 115

STD	TIEMPO	LECTURA DE EXTINCION			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	3	4
1	1 2 3	0,721 0,662 0,572	$\begin{array}{c} 0,787 \\ 0.738 \\ 0.701 \end{array}$	$0,768 \\ 0,715 \\ 0,697$	$0,761 \\ 0,721 \\ 0,659$
0,9	1 2 3	$0,662 \\ 0,600 \\ 0,545$	0,662 0,572 0,505	$0,673 \\ 0,609 \\ 0,563$	$0.662 \\ 0.619 \\ 0.572$
0,8	1 2 3	$0,649 \\ 0,596 \\ 0,547$	0,613 0,608 0,545	$0,537 \\ 0.506 \\ 0.470$	$0,673 \\ 0,626 \\ 0,541$
0,7	1 2 3	$0.581 \\ 0.513 \\ 0.447$	$0,563 \\ 0,520 \\ 0,454$	$0.554 \\ 0.537 \\ 0.520$	$0,520 \\ 0,505 \\ 0,489$
0,6	1 2 3	$0,406 \\ 0,365 \\ 0,360$	$\begin{array}{c} 0,451 \\ 0,470 \\ 0,464 \end{array}$	$0,445 \\ 0,467 \\ 0,467$	$\begin{array}{c} 0,414 \\ 0,278 \\ 0,260 \end{array}$
0,5	1 2 3	$0,355 \\ 0,262 \\ 0,240$	$0.396 \\ 0.366 \\ 0.313$	$0,366 \\ 0,294 \\ 0,257$	$0,460 \\ 0,420 \\ 0,390$
0,4	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	$0,401 \\ 0,348 \\ 0,301$	$0,332 \\ 0,244 \\ 0,225$	$0,343 \\ 0,318 \\ 0,268$	$0,251 \\ 0,153 \\ 0,144$
0,3	$\begin{array}{c}1\\2\\3\end{array}$	0,208 0,196 0,180	$0,268 \\ 0,204 \\ 0,188$	$0,249 \\ 0,218 \\ 0,193$	$0,251 \\ 0,189 \\ 0,155$
0,1	1 2 3	$0,065 \\ 0.060 \\ 0.041$	$0,085 \\ 0,086 \\ 0,066$	$\begin{array}{c} 0,124\ 0,116\ 0,063 \end{array}$	0,074 0.043 0,040

Se aprecia que la extinción disminuye considerablemente con el tiempo, por lo tanto la medición debe hacerse inmediatamente despues de formado el complejo de color.

Las cinco mediciones del minuto cero de cada concentración, recibieron el siguiente tratamiento estadistico, el cual se aplica para eliminar valores erroneos o disparados:

1.- Se descartaron los valores disparados aplicando un Q
- test simplificado, para menos de 10 valores. (Koller, 1990). Fara reconocer valores disparados este chequeo parte del rango de los datos a analizar.

$$r = Xmax - Xmin$$

Se ordenan los datos de manera ascendente:

entonces
$$Q = \frac{7 \times 1 - \times 2}{5 \times 1 - 5}$$

X1 es el valor sospechoso y X2 es el valor vecino a X1.

Este valor Q se compara después con los valores

Q(P,n) de tablas de libros de estadística

- Donde: Q es la probabilidad estadística en función del número de calificaciones
 - P es la probabilidad estadistica para un determinado nivel.
 - n es el número de muestras.

Un valor es disparado y tiene que ser excluido del tratamiento, si el valor Q calculado es mayor que el valor Q(P,n) obtenido de la tabla siguiente.

Tabla 4. Valores para Q(P,n) para 95 % y 99 %.

n	P = 95 %	P = 99 %	n	F = 95 %	P = 99 %
3	0,97	0,99	7	0,59	0,68
4	0,84	0,93	8	0,54	0,63
5	0,73	0,82	9	0,51	0,60
6	0,64	0,74	10	0,49	0,57
			· · · · · · · · · · · · · ·		

Los valores de extinción excluidos fueron: 0.763 de 0.9 ppm; 0.401 de 0.4 ppm y 0.124 de 0.1 ppm.

2.- Se obtuvo la media aritmética de la extinción para

concentración, sin utilizar los valores disparados

De esta manera se obtuvo la siguiente tabla:

labla 5. Concentración de estandars en ppm y media aritmética de la extinción para cada uno.

STD de Zn (ppm)	Ē Extinción Promedio
1	0,74
0,9	
0,8	0,62
0,7	0,55
0,6	0,43
0,5	0,39
0,4	0,32
0,3	0,24
0,1	0,07
0	0.01
1	1

El gráfico de concentración versus extinción da la curva que es indicada en la figura 5.

Entre los puntos de la fig 6 se puede trazar la recta con pendiente 0,755.

(3) NOIDNIDA

59

El factor de conversión para las lecturas de extinción es matemáticamente el inverso de esta pendiente, es decir 1,324.

For lo tanto, los valores de extinción que se miden deben ser multiplicados por este factor para su conversión en valores de concentración.

Las concentraciones de zinc para las muestras de suelo medidas con este método, se pueden ver en la tabla del anexo A. En esta tabla se observa que existe las concentración de zinc medida con SQ 155 y con absorción atómica tienen una relación de 1 a 2 siendo siempre mayor el análisis por absorción atómica.

Con esto se puede concluir que los análisis con SQ 115 pueden ser utilizados en una campaña geoquímica ya que son más económicos y pueden realizarse man cerca del sitio de muestreo.

2.7. - ANALISIS DE PLOMO Y ZINC POR ABSORCION ATOMICA

2.7.1.- <u>Materiales</u> Utilizados

- Vaso de precipitación.

- Embudo de vidrio.

6()

- Matraz de 100 ml.
- Fipeta volumétrica de 25 ml.
- Acido clorhidrico concentrado
- Agua destilada.
- Papel filtro (Wattman # 42).
- Reverbero.

2.7.2. - Disgregación de las muestras

El manual del equipo de Absorción Atómica PERKIN -ELMER, recomienda una disgregación con ácido clorhidrico concentrado para plomo y zinc; por lo tanto. la misma solución que se usó para analizar antimonio por titulación y cuyo procedimiento de disgregación se describe en el literal 2.5.2, es usada para analizar plomo y zinc por Absorción Atómica.

2.7.3. - Procedimiento para plomo y zinc:

Las muestras disgregadas son medidas en el equipo de Absorción Atómica, él mismo que absorbe la solucion mediante un capilar.

CAPITULO TRES

INTERPRETACION DE RESULTADOS

3.1. GENERALIDADES

"Los métodos cuantitativos y cualitativos para analisis químicos de materiales geológicos, han mejorado con la tecnología para obtener una mayor cantidad de información.

Para procesar toda esta información es necesario utilizar procesos matemáticos especiales.

El uso de métodos estadísticos en geologia y geoquímica nos dá mayor confianza y exactitud en las conclusiones".(2)

Los resultados geoquímicos deben de seguir un tratamiento estadístico para encontrar su distribución.

Generalmente los valores geoquímicos siguen una distribución log-normal, lo que quiere decir que los logaritmos de los valores están distribuidos siguiendo una curva normal o la ley de Gauss. Graficamente la distribución normal se representa por la curva en forma de campana.

3.2. DETERMINACION DEL VALOR UMBRAL PARA Sb., Zn Y Pb

Los datos u observaciones obtenidas de los análisis químicos se muestran en la siguiente tabla.

Tabla 6. Resultados analíticos para antimonio, sine y plomo

HUESTRA	Sb(ppm) TITULACION	Zn (ppm) AAS	195 (1990) AAS
201	27	85	37
202	23	73	22
203	35	56	25
204	18	48	21
205	24	47	17
206	18	31	27 1
207	17	30	7
208	17	33	7
401	23	67	27
402	19	7.5	07 1
403	29	35	7
404	16	42	7
405	36	37	12
406	22	42	17
407	16	36	17
408	15	33	50
409	19	30	1.7
410	19	32	12
411	18	31	12
412	21	33	12
413	17	29	12
414	15	42	17
415	20	32	12
416	23	26	12
417	19	31	12
418	36	4.5	17
419	14	37	44
420	15	21	7
421	9	55	27
422	10	49	22
423	5	49	27
424	14	20	1435
425	18	22	14
426	33	4.5	17 1
427	24	23	12
428	17 ¦	4.3	22

Tabla 6. Tercera parte.

MUESTRA	Sb(ppm) TITULACION	Zn (ppm) ¦ AAS ¦	Pb (ppm) AAS
808	14	20	17
809	18	21	12
810	25	50	22
811	17	14	12
812	18	20	12
813	11	26	12
814	21	17	12
815	26	37	12
816	28	25	17
817	2.4	28	17
818	21	30	17
819	27	35	12
820	14	25	12
821	27	23	7
822	12	22	7
823	18	22	7
824	15	22 1	7
825	24	23	1()
826	12	30	12
827	36	83	2.2
828	28	47	12
829	27	73	2.2
830	13	61	17
831	17	29	12
832	22	36	7
833	40	31	7
834	28	49	17
835	33	122	11
836	35	1.34	31
837	35	113	27
838	37	66	22
1001	31	64	1.2
1002	25	47	17
1003	14	35	15
1004	1.5	35	12
1005	27	37	37
1006	19	34	
1007	12	39	17
1008	15	31	12
1009	16	34	1096
1010	24	38	1
1011	32	76	22
1012	24	34	12
: 1013	24	26	17
1014	13	23	12

ubla 6. Cuarta parte

·	MUESTRA	:	Sb(ppm) TITULACION		Zn (ppm) AAS		Fb (ppm) AAS	1
	1015	1	12		29	!	22	1
1	1016		18		26	1	10	i
	1017		12	+	31	1	2.2	1
	1018	1	12	1	27	‡ 1	10	ł
	1019		21	1	33	1	12	ł
	1020		40	1	67	1	22	1
I.	1021	ļ	46	;	52	1	2.2	;
1	1022	1	17	;	41	ł	17	ł
l.	1023	1	37	1	50	1	17	ł
l.	1024	Ì	24	1	63	1	17	1
l.	1025	Ì	33	Ì	83	Ì	17	1
	1026	į	18	į	47	1	17	1
1	1028	i	26	i	36	Ì	17	i
ļ	1029	1	21	1	39	i	12	i
; 	1030	-	28	ł	82		20	• • •

Estos resultados primero recibieron un tratamiento estadistico para descartar valores disparados. Con el propósito de homogenizar los datos.

Se utilizó el método de "La barra de 4S" según (Koller, 1990). El cual excluye un valor si este se encuentra fuera del rango de \bar{X} +/- 4S

Donde \overline{X} es el valor promedio y S es la desviación estandar, los cuales son determinados excluyendo los valores sospechosos

Los valores excluidos despues de aplicado el método ya descrito fueron: Para antimonio ninguno, para zine 113, 114, 122, 134 y 198 (ppm) y para plomo 1096 y 1435 (ppm).

En el siguiente paso para la determina ión del valor unibral se uso la distribución de frecuencia, para lo cual se ordenaron los datos ascendentemente (Tabla 7).

Sb (ppm) ppm	Zn (ppm) ppm	(mqq) d9 mqq
5	14	'7
7	14	7
9	17	'7
9	18	'7
10	20	7
i 11	20	17
12	20	'7
12	20	7
12	20	7
12	21	7
12	1 21	7
12	21	7
12	21	1 ()
33	21	10
13	21	10
13	21	10
1.3	22	10
14	22	12
14	22	12
14	22	12
14	22	
i 15	i 66	14
	i 66 I 99	i 14 i
15	1 20 1 2 2	i 10 I
1.		ر ان از ر ۱۰۰۱۹
10 15	1 20 1 23	1 10 1 1 10 1
1 10 ! 15	1 23	1 12 1
	1 23	1 10 1
	· 20	1 12 1
	. 23	1 12 I
10		1 1 2 1

TABLA 7. Datos de Sb, Zn y Pb ordenados ascendentemente.

Sb (ppm) ppm	Zn (ppm) ppm	Pb (ppm) ppm
16	' 34	12
! 16	24	12
16	24	12
16	25	12
16	25	12
1 6	25	12
17	26	12
' 17	26	1.2
' 17	26	12
1 7	26	12
17	26	12
17	26	12
17	27	12
17	27	12
17	28	
	29	14
	29	J 4 1 9
i 1/	29	12
i 18		12
		12
		12
i 18 I 18		12
10 I 18		12
! 18	31	12
18	31	12
18	. 31	12
18	31	12
19	31	12
19	3J	12
19	31	14
19	31	1 4
19	32	34
19	32	1.5
19	32	17
19	32	3 '7
19	33	1'7
20	33	17
20	33	17
20	33	17
21	33	J7
21	33	1/
21	34	
	34	1/
	34	17
	i 34 I 35	17
21	1	J (

TABLA 7. Segunda parte

TABLA 7. Terc?era parte.

Sb (ppm) ppm	Zn (ppm) ppm	Pb (mgq) d mgg
21	35	
21	35	17
22	35	
22	36	31
22	36	
22	36	
22	37	
22	ن () 1 17 ()	17
23	े। २७७	17
23	ା <u>୨</u> ୦	17
2.3	20 20	17
23	00 20	17
23	ວອ 3 0	17
24	រ រ	17
Z4	4.V A 1	17
24	4.7	17
24	42	17
24	42	17
24	46	17 1
34	4.5 A E	17
24	40	
24	45	17
24	40	
24	40	20
25	41	30
25	97 1 A7	1 90 1
26	1 47 1 47	1 00 1 00
26		
26		1 22 1 22
27	i 40 I 40	1 ひろう 1
i <u>41</u>	(47 1	
21	। ५७ । ४०	22
	। ५७ । ४०	1 22
21	1 4ガ I 50	2.3
	i 00 I 50	1 22
21	1 50 I 50	r 92 r
28)	
20	1 50 1 50	22
28	1 00 1 01	1 99
28	(DL (DL	1 00 I
29		24
30		(
30		1 97
31.		1
32		1 61 1 97
33		1
1 33		ا ک ^ر با معنی می اور این می اور این این می اور این

Sb (ppm) ppm	Zn (ppm) ppm	(mqq) d역 mqq
33	73	27
35	73	27
3.5	75	27
35	75	27
36	76	31
36	82	32
36	83	37
37	83	37
37	85	41 (
37	90	4.4
40	113	44
40	114	<u>5</u> ()
42	122	64
46	134	1096
47	198	1435

TABLA 7. Cuarth parte.

Luego para obtener el número de clases más adecuado se confeccionó para cada elemento nueve gráficos variando el número de clases de 7 a 15.

Asi se eligió:

Fara antimonio 11 clases con intervalos de 3,8). Para plomo 12 clases con intervalos de 4,75. Para zinc 11 clases con intervalos de 6,91.

Por ser las distribuciones más aproximadas a una distribución de tipo Gauss, simplificando así el tratamiento estadistico.

Los datos y gráficos se presentan en las tablas 8, 9 y 10 y en las figuras 6, 7, 8, 9, 10 y 11. Con los datos agrupados en intervalos se determina la media aritmética (X) y desviación estandar (S), cou tos ci guientes formulas para datos agrupados según (Calvo, 1978).

Media aritmética:
$$\overline{X} = \frac{fitXi}{n}$$

Donde: fi = Frecuencia de cada intervalo.

Xi = Punto medio de cada intervalon = Numero total de datos.

Ejemplo para antimonio:

$$\bar{X} = \frac{3024}{141}$$

$$\bar{X} = 21,45$$

Desviacion estandar: $b = \frac{fi(Xi - X)}{(n - 1)}$

Donde: fi = Frecuencia de cada intervalo. Xi = Punto medio de cada intervalo. \overline{X} = Media aritmética. n = Numero total de datos.

Ejemplo para antimonio:

$$S = \frac{8897}{140} = 8$$

Tabla 8. Distribucion de grupo de valores para antimonio

1		t		~ ~ ~ ~									.	~~~ ~ ~~	
, , , , , , , , , , , , , , , , , , ,	ERECUENCIA ACUMULADA %		1,4	0) (7)	27,0		13.0	8 1 ,6	67,2		ດ ດີ 	9. m	10.0	10.0	
- - - - - - - - - - - - - - - - - - -	FRECUENCIA ACUMULADA	P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	03	13	38	72	103	115	123	130	136	139	141	141	
3,31	FRECUENCIA RELATIVA		0,01	0,08	0.18	0,24	0.22	0,09	0.06	0.05	0.04	0.02	0.01	0.00	
INTERVALO	FRECUENCIA	0	¢1		50	34	31		œ	t~	Q	ς.υ	c-1	0	
1 3 1 1 2 3 1 1 1 1 1 1	PUNTO MEDIO	3,1	2 0	10,7	14,5	18,3		26.0	29.8	93 93	37.4	4 1 1 1	40.4 45.4	48,9	
11	LIMITE SUPERIOR		80 80 80	12,6	16,4	20,2	24,0	27,9	31.7	35,5	39.3	43.1	47		
CLASES	LIMITE INFERIOR		20.0	σ. 	12.7	16.5	20.3	24,1	53.0	31.3	35.6	30.4			

FRECH BACIA

74

INTERVALO DE CLASE 3.81

.
CLASES	11		INTERVALO	6,91		
LIMITE INFERIOR	LIMITE SUPERIOR	PUNTO MEDIO	FRECUENCIA	FRECUENCIA RELATIVA	FRECUENCIA ACUMULADA	FRECUENCIA ACUMULADA %
		10,5	0			
14,00	20,91	17,4	9	0,07	9	6,6
21,01	27,82	24,4	37	0,27	46	33,8
27,92	34,73	31,3	32	0,24	78	57,4
34,83	41,64	38,2	17	0,13	95	69.9
41,74	48,55	45,1	14	0,10	109	80,1
48,65	55,45	52,0	8	0,06	117	86,0
55,55	62,36	58,9	2	0,01	119	87.5
62,46	69,27	65,8	7	0,05	126	92,6
69.37	76.18	72,7	5	0.04	131	96,3
76,28	83,09	79,6	3.	0,02	134	28,5
83.19	90.00	86.5	2	0,01	136	100.0
		93,4	0			

Tabla 9. Distribucion **de** grupo **de valores** para zinc.

AION<mark>O U</mark>OB AR

ALKECH BACK

	CLASES	12		INTERVALO	4,75		
	LIMITE INFERIOR	LIMITE SUPERIOR	PUNTO MEDIO	FRECUENCIA	FRECUENCIA RELATIVA	FRECUENCIA ACUMULADA	FRECUENCIA ACUMULADA %
			4,6	0			
1 1 1	7,00	11,75	9,3	17	0,12	17	• 12,2
i	11,85	16,50	14,1	49	0,35	66	47,5
	16,60	21,25	18,8	40	0,29	106	76,3
	21,35	26,00	23,6	16	0, 12	122	87,8
5 1 1	26,10	30,75	28,3	8	0,06	130	93,5
	30,85	35,50	33,1	2	0,01	132	95,0
	35,60	40,25	37,8	2	0,01	134	96,4
	40,35	45,00	42,6	3	0,02	137	98,6
	45,10	49,75	47,3	0	0,00	137	98.6
	49,85	54,50	52,1	1	0,01	138	99,3
	54,60	59,25	56,8	0	0,00	138	99,3
	59,35	64,00	61,6	1	0,01	139	100.0
			66,3	0	0,00		
i	i	i i	i				

Tabla 10. Distribución de grupo de valores para plomo.

78

VIONE NOBYL

79

AIDHO UDBFF

De acuerdo a Levinson (1974) se puede tomar el valor de la media aritmética en la distribucion de datos como el valor de fondo y la media más dos veces la desviacion estandar como el valor umbral.

Dando los siguientes resultados en ppm:

	Valor de Fondo	Valor Umbral		
Antimonio	21	37		
Plomo	19	35		
Zinc	38	70		

Estos valores también se determinaron a partir de la distribuciónes de frecuencia acumulativa que se puede ver en las figuras 12, 13 Y 14, obtenidos de las tablas 11, 12 y 13 donde el valor de fondo y el umbral se obtienen levantando una perpendicular a la ordenada 50 y 95 que corta la curva de frecuencia acumulativa. Tabla 11. Determinacion de media, varianza y desviacion estandar para antimonio

		=====================================	·
	(Xi-X) ²	423,4 1271,1 1207,4 13,1 243,0 557,8 11170,2 11170,2 11114,0	8897
	/ 4		
		211 111 111 111 111 111 111 111 111 111	1825
3,8	Xi-X	11 11 10 10 10 10 10 10 10 10	
	Xi fi	120230000000000000000000000000000000000	3024
TERVALO	 	10889- 104908-080 1078-	141
IN	. 	 	
	Xi	14122006644 04400066644 07400666666 076666666666	286
01	LIMITE SUPERIOR	8,112 8,00 1,00	
CLASES	LIMITE NFERIOR	433322222244 4333222264 23573220 245632730 24633730 246337300 246337300 24633700000000000000000000000000000000000	ТОТА!

 $\overline{X} = \frac{f_{1}X_{1}}{n} = \frac{3024}{141} = \frac{21,45}{21,45}$ $\overline{S} = \frac{f_{1}(X_{1}-X)}{(n-1)} = \frac{8397}{140} = 63,55$

7 97

Ħ

ഗ

Tabla 12. Determinacion de media, varianza y desviacion estandar para zinc.

	- - - - - - - - - - - - - - - - - - -	fi (Xi-X) ²	3660.7	6450,9	1268.1	6,4	792,4	1666.3	910,9	5536,6	6180,9	5300,1	4797,6	36621
)))))))))))))))))))	(Xi-X) ^t	406.7	174,3	30, 6	0,4	56.6	208.3]	455.5]	798.1	1236,2 ;	1766,7	2398,8	7541
		Xi-X		-13,2	-6,3 -	0,6 1	7,5 1	14,4	21,3	28,3	35,2 1	42,0 1	49,0 ;	B S I I I I I I I I I I I I I I I I I I
	6,91	Xifi	156.6	901,5	1000,7	649,1	631,3	416,0 1	117,8	460,7	363,6	238,8	173,1	5109
	NTERVALO	 	ο σ	37	32	17	14	~-	 (N	- 2		с С	5	136
	II	Xi	17,4	24,4	31,3 5	38,2	45,1	52,0	58,9	65,8	72,7	79,61	86,5 ¦	572
	11	LIMITE SUPERIOR	20,91	27,82	34,73 {	41,64	48,55	55.45	62,36	69,27	76,18	83,09	90,00	
	CLASES	LIMITE INFERIOR	14,00	21,01	27,92	34,83	41,74	48,65	55,55 1	62,46	69,37	76,28	83,19	TOTA
I	1													

$$= \frac{5109}{136} = 37,57$$

FIXI

ŝ

 $S = \frac{fi(Xi-X)}{(n-1)} = \frac{36621}{135} =$

271 27

16,47

ი

Tabla 13. Determinacion de media, varianza y desviacion estandar para plomo.

	(X1-X) ² f1 (X1-X) ²	86.9 1477.3	20,4 1002,0	0,0 1 1,3	24,8 ; 396,5	93.7 749.3	210,3 420,7	367,8 1 735,6	576,1 1728,4	822,4 1 0,0	1122,5 1122,5	1457.6 1 0.0	1847,1 1847,1	6630 9431
10 L	Xi-X	ດ ເ	-4,5	0,2	5,0 1	9,7 1	14,5	19,2	24,0 1	28,7	33,51	38,2	43,0	
	Xifi	158.1	690,9	752,0	377,6	226,4	66,3	75,6	127,9	0,0	52,1	0,0	61,6 :	2588 1
TERVALO	 4-1	17	49	40	16	00	0	 01	 ო	0	 1	0		139
I	Xi	 6	14,1	18,8	23,6	28,3	33,1	37,8 [42,6	47,3	52,1	56,8	61,6	425,475
12	LIMITE	11.75	16,50	21,25	26,00	30,75	35,50	40,25	45,00	49,75	54.50	59,25	64,00	TAL
CLASES	LIMITE	1 00	11,85	16,60	21,35	26,10	30,85 ;	35,60 1	40,35	45,10 ;	49,85	54,60	59,35	TOT
-								~ -						i

 $\frac{2538}{139}$ = 18 62

11

fiXi

11 100

c

 $S = \frac{f_1(X_1 - X)}{(n-1)} = \frac{9481}{138} = -\frac{68}{70}$

8,29

.ഗ

Obteniendo los siguientes resultados en ppm:

	Valor de Fondo	Valor Umbra1
Antimonio	18	36
Plomo	14	33
Zinc	29	70

El valor **de** fondo y el valor umbral se obtuvo también aplicando la curva **de** distribución acumulativa **de** probabilidad, descrita por C. Lepeltier quien propone trabajar entre 9 a 19 intervalos de clase y pudiendo variar el número de puntos necesarios para la recta entre 10 y 20.

La amplitud de clase está representada por la fórmula:

$$\log \operatorname{int} = \frac{\log R}{n}$$

Donde :

log int = Logaritmo de los intervalos de clase.

R = Amplitud de los valores, expresadas por la relación entre el valor mas alto (V) y el valor mas bajo (b) de la población.

n = Número de observaciones

FREQUENCIA ACOMULATIVA PORCENTLAL

TALLUENCE ACUMULATIVE PORCENTLAL

R7

JAUTHOORD AVITALUMUCA ADROCURS

i libe

El intervalo de clase para antimonio será:

$$\mathbf{R} = \frac{47}{5} = 9$$

$$\frac{\log \text{ int}}{10} = \frac{0.95}{10} = 0.095 \approx 0.1$$

0,1 se selecciona como el mejor intervalo logaritmico por que se ajusta a la mayor parte de la distribución.

Limite de clase (log)0.670.770.870.971.071.17Limite de clase (ppm)4.685.897.419.3011.7014.80

Con estos valores procedemos a calcular la tabla 14, en donde se determina la frecuencia acumulativa absoluta y frecuencia acumulativa porcentual.

Tabla 14. Interpretacion estadistica del analisis geoquimicos.

LIMITE	 !	Sb	:	!	¦ Zn		:	Pb	
CLASE	f	fa 	$\frac{1}{n}$	f	fa 	% <u>fa</u> n	f	fa 	% <u>fa</u> n
4,68		 	1	!		!	 !		 !
	1	141	100				1	t t	
5,89	1	140	99,3	1	8 8 8 8 9 8		12	139	100
	2	139	98,6	1 1		1 1 1	0	127	91,4
9,3	2	137	97,2		4 1 1 1 1		5	127	91,4
14,8	16	135	95,7	2	136	100	48	122	87,8

Tabla 14. Continuacion

	Sb		!	¦ Zn	!	:	¦ Pb	
f	fa 	% <u>fa</u> n	f 	fa 	$\frac{1}{n}$ $\frac{fa}{n}$	f ¦	¦ fa	$\frac{1}{n}$ $\frac{fa}{n}$
38	119	84,4	2	134	 98,5	37	74	53,2
32	81	57,4	28	132	97,1	18	37	26,6
28	49	34,8	20	104	76,5	10	19	13,7
16	21	14,9	37 17	84 47	61,8	4	9 9	
1	1	0,0	14		24,3		2	
		1 · · · · · · · · · · · · · · · · · · ·	10	18	13.2	1	1	0 ~S
			8	8	5,9			6
	f 38 32 28 16 4 1	f fa f fa 38 119 32 81 28 49 16 21 4 5 1 1 1	f fa % fa n 38 119 84,4 32 81 57,4 28 49 34,8 16 21 14,9 4 5 3,5 1 1 0,7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SbZnffa $\frac{\%}{n}$ fafa1fa $\frac{\%}{n}$ fa3811984,423811984,42328157,428328157,4281010476,5162114,9378461,8453,514453,51410,7153324,3101813,2885,9	SbZnffa $\frac{\%}{n}$ faffa $\frac{\%}{n}$ fa $\frac{\%}{n}$ fa3811984,4213498,5328157,42813297,1328157,42813297,134934,82010476,510162114,9378461,84453,5144734,63110,7153324,31885,9101813.21	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

BIBLIGTEC CENTRAL

interpretar los valores Para sе grafican en papel logprobabilidad, la frecuencia acumulativa porcentual contra los limites de clases en ppm, obteniendo una recta en doude se determina el valor de fondo y el umbral.

y el umbral se determinan la E1 fondo por valor de intercepción de la perpendicular con las ordenadas 50 y 2,5 respectivamente hasta la recta trazada.

en muchos casos la recta puede ser guebrada como sucede Pero los gráficos 15, 16 y 17. con

ACUMULATIVA FRECUENCIA

NUMERO DE CLASES 9

9

FIG. 15. DISTRIBUCION DE FRECUENCIA ACUMULATIVA PARA SOLEPELTIER (1969)

& AVITAJUMUDA

FRECUENCIA

.

NUMERO DE CLASES

Ø

% AVITAJUMUDA **FRECUENCLA** 93

i 1

Las causas pueden ser las siguientes

Por exceso de valores altos.
 Por mezcla de doe poblacionec.
 For exceso de valores bajos.

Para las distribuciones de plomo y zinc tenemos que muestra un quiebre en el percentil 18 % y 32 % respectivamente, esto se debe a que la distribución tiene un exceso de valores altos; en estos caeos la rama principal se extiende como una recta de puntos y en ella se hará las lecturas correspondientes

La linea de frecuencia acumulativa de antimonio, también presenta un quiebre, en este caso sucede por exceso de valores bajos; los valores bajos no van a interferir en la interpretación por lo cual se hace las lecturas en la rama principal, de la forma usual.

De las figuras 15, 16 y 17 obtenemos los siguientes valores:

		Valor de Fondo	Valor Umbral		
			•		
Antimonio	-	23		45	
Plomo		17		34	
Zinc		36		7%	
Plomo Zinc		17 36		34 7%	

Finalmente utilizando una sencilla calculadora de boleillo,

con las máo corrientes funciones estadisticas se obtuvo la media aritmética ($\mathbf{\tilde{X}}$) y desviación estandar (S) para valores sin agrupar.

Obteniendo los siguientes valores en ppm:

	Valor de Fondo (X)	Valor Umbral (X+2s)
Antimonio	22	37
Plomo	17	34
Zinc	37	71

Los resultados en ppm de los cuatro métodos utilizados son:

Método de correlación	Valor Umbral para Sb	Valor Umbral para Zn	Valor Umbral para Pb
Levinson	37	7 1	35
C. Lepeltier	45	72	34
Curva de Frec Acumulativa %	36	70	33
Con Calcula- dora.	37	7 1	34

Con exepción de el umbral para antimonio según Lepeltier los resultados entre los cuatro métodos son muy parecidos, de ellos obtenemos la media aritmética:

E lemento	Sb	Zn	Fb
Media aritmética	39	71	34

3.3. CORRELACION ENTRE: ANTIMONIO. PLOMO Y ZINC

correlación entre **dos** variables continuas "La implica 10 siguiente: бi al incrementar los valores de una variable aumenta también los de otra, hablamos de correlación positiva. Si a un número de los valores de una variable corresponde una disminución de los valores de la otra, entendemos que hay una correlación negativa. Y, por ultimo, cuando a valores medios altos o bajos de una variable corresponden valores de cualquier tipo en la otra, se dice que no hay correlación entre ambas".(5)

Se realizó las correlaciones Sb - Zii, Sb - Fb, Zn - Fb utilizando para **ello** un ajuste rectilineo por el método de mínimos cuadrados según Calvo, 1978.

Haciendo uso de las siguientes fórmulas:

Constante	a	=	$\frac{\xi Y \xi X^2 - \xi X \xi X Y}{n \xi X^2 - (\xi X)^2}$
Coeficiente	ь	Ξ	n ≤ XY - (≤ X)(≤ Y) n ≤ X ² - (≤ X) ¹
r de Pearson	r	Ξ	$\frac{\underline{\xi}(\underline{X} - \underline{\overline{X}}) \cdot (\underline{Y} - \underline{\overline{Y}})}{\sqrt{\underline{\xi}(\underline{X} - \underline{\overline{X}})^2 \underline{\xi}(\underline{Y} - \underline{Y})^2}}$

Donde:

X = Valores de abciea.

X = Media aritmética de la abcisa.

Y = Valorec de la ordenada.

 $\overline{\mathbf{Y}}$ = Media aritmética de la ordenada.

n = Número de datos.

Zn (ppm) Sb*Sb Zn*Zn Sb*Ta AAS 517 5331 1660 73 517 5331 1977 85 517 5331 1660 73 517 5331 1660 73 517 5331 1660 73 517 5331 1660 73 517 5331 1660 31 517 533 1138 31 517 517 518 31 517 517 1405 32 517 1405 566 33 526 911 573 33 526 911 573 33 2266 1074 573 33 226 1183 566 33 226 1037 1405 33 226 1036 496 33 226 1036 496 33 236 1036 466 33 226 1037 1562 33 315 198 661 33 326 1036 494 33 326 1036 660 349 10	Sb(ppm) Zn(ppm) Zn(ppm) Sb+Zn TTTULACION AAS 5331 1182 2325 27 85 753 7182 2325 23 73 1255 3131 1960 23 73 318 233 1977 23 75 5331 1966 23 75 5331 1966 23 75 313 293 914 24 31 533 2185 1386 23 75 533 1977 24 31 533 217 449 23 35 914 1133 966 24 37 1275 1337 944 25 315 349 553 966 26 37 1275 1337 1402 27 33 355 994 613 16 33 355 994 617 36 37 1276 1376 573 17 23 316 1366 573 18 315 326 1969 566 18 316 1375 1306 573
Zn(ppm) Sb*Sb Zn*Zn AAS 7182 7182 AAS 7183 7182 753 7182 7182 753 7182 5331 753 7182 5331 753 5316 984 71 593 7182 75 314 5934 31 1255 314 31 1255 3131 31 1255 314 31 1255 314 31 1255 314 32 314 1759 33 315 984 33 315 1759 33 315 1759 33 315 1759 33 315 1733 33 315 1759 33 315 1773 33 325 1017 33 325 1017 33 326 177 33 326 1769 347 12	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Zn(ppm) Sb*Sb AAS 55 AAS 73 B5 753 73 555 73 555 31 517 56 1255 33 318 47 593 56 1255 33 318 349 517 35 318 36 318 37 1255 33 313 349 517 35 314 36 328 37 1255 33 315 33 315 33 315 33 315 33 315 33 315 33 315 33 315 33 315 33 315 33 315 34 325 33 325 34 331 55 343 <	Sb(ppm) Zn(ppm) Sb*Sb TTTULACION AAS Sb*Sb Z7 85 753 55 Z3 73 56 753 27 85 75 56 18 31 314 314 17 35 56 753 18 31 75 593 17 33 56 314 17 33 57 517 23 75 31 314 17 33 55 314 17 33 55 314 17 33 35 517 19 37 1275 315 19 31 315 315 19 31 315 315 19 31 315 315 19 31 315 315 19 117 23 320 19 117 23 321 19 11 23 321
Zn (ppm) AAS AAS 56 333 31 473 333 333 333 333 333 333 333 333 333	Sb(ppm) Zn(ppm) TITTULACION AAS 27 85 23 73 35 56 18 31 17 33 18 31 17 33 18 31 17 33 18 31 17 33 18 31 17 33 18 31 19 37 23 55 19 32 19 33 16 32 17 23 23 23 24 23 25 45 16 33 17 23 18 23 17 23 18 23 17 23 18 23 17 23 16 445 17 23 18 22 24
	TITULEACH TITULEACH TITULEACH TITULEACH Sb TITULEACH SC T

Sb*Sb $Zn*Zn$ $Sb*Zn$ 171171 450 278 171 450 278 245 584 566 2298 1075 584 2298 1075 584 504 533 583 524 534 566 278 584 328 572 574 433 572 583 467 574 433 560 374 433 467 574 433 467 572 673 2338 563 470 561 374 433 470 374 433 521 563 521 563 572 521 563 572 521 1268 573 521 563 563 521 560 572 521 560 572 521 560 573 523 476 573 585 476 573 585 540 573 585 540 573 585 539 569 572 585 572 585 539 573 586 539 573 586 539 573 586 539 573 586 2316 573 2366 2316 573 238 2527 523 238 2527 560 256 <td< th=""><th>Zn(ppm)Sb*SbZn*ZnSb*ShAAS21171450$584$2121245$584$329212191075$584$36631141937$467$32921524584336328215241058561379215244391075364215244391075364215244391075364215244391075364215244394704792152443957336721524439470479223744835211060235725877315562357258710336732357258710336732357258710336732357258710336732423310335731060233455395395392423310336502442333653953953924539539549539245395395495392433653924210442433653954953924337336246103324337336</th><th>Sb(ppm) Zn(ppm) Zn(ppm) Sb*Sn Sh*Sn Sh*Sn TITULACION AAS 21 171 450 278 15 21 21 245 544 352 15 33 21 171 450 278 15 33 21 171 450 278 15 33 219 1056 561 352 15 33 219 1075 486 561 15 33 219 1075 486 561 16 22 21 1755 473 363 467 23 24 454 678 561 316 21 274 374 433 561 198 21 27 27 236 470 403 27 287 1401 203 673 467 27 21 219 203 198 476 27 374 413 3135 516 414 27 216 443 413 413 413 27 216 443 413 414 27 140 213</th></td<> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th>• •</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>~ -</th> <th></th> <th>•••</th>	Zn(ppm)Sb*SbZn*ZnSb*ShAAS21171450 584 2121245 584 329212191075 584 36631141937 467 32921524584336328215241058561379215244391075364215244391075364215244391075364215244391075364215244394704792152443957336721524439470479223744835211060235725877315562357258710336732357258710336732357258710336732357258710336732423310335731060233455395395392423310336502442333653953953924539539549539245395395495392433653924210442433653954953924337336246103324337336	Sb(ppm) Zn(ppm) Zn(ppm) Sb*Sn Sh*Sn Sh*Sn TITULACION AAS 21 171 450 278 15 21 21 245 544 352 15 33 21 171 450 278 15 33 21 171 450 278 15 33 219 1056 561 352 15 33 219 1075 486 561 15 33 219 1075 486 561 16 22 21 1755 473 363 467 23 24 454 678 561 316 21 274 374 433 561 198 21 27 27 236 470 403 27 287 1401 203 673 467 27 21 219 203 198 476 27 374 413 3135 516 414 27 216 443 413 413 413 27 216 443 413 414 27 140 213		1					 					 	• •									~ -																											•••
Sb*SbSb*Sb $2n*Zn$ 171 450 171 450 245 245 245 245 245 546 229 1058 229 1058 229 1058 2319 1075 174 328 174 328 174 328 175 937 572 572 572 572 573 899 1075 937 573 899 1075 937 563 1075 572 5216 447 433 563 1075 563 1075 563 2216 447 4139 563 1033 447 2633 563 2316 572 52316 572 52316 560 2316 560 2316 560 2316 560 2316 560 2316 560 2316 560 1350 560 720 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 560 756 <	Zn (ppm)Sb*Sb $xxxn$ AAS 171 $5xxn$ 21 171 450 21 171 450 21 225 544 33 219 1075 31 141 937 21 504 433 33 219 1075 31 174 328 33 219 1075 31 174 333 21 504 433 22 345 473 23 572 587 23 563 473 23 563 473 23 563 473 23 563 521 331 1401 966 67 225 587 23 563 521 331 1401 966 231 1401 966 521 523 563 232 563 524 331 1401 956 233 563 523 523 539 523 524 2316 2316 232 539 529 24 231 2326 24 3378 539 231 2329 529 24 3378 529 24 3378 529 24 3378 239 24 3378 238 24 3378 236 24 3378 236 <	Sb(ppm) Zn(ppm) Sb*Sb Zn*Zn TITULACION AAS 245 441 15 21 215 229 584 16 21 229 1075 584 17 33 219 1075 584 17 33 219 1075 584 17 33 219 1075 584 17 33 219 1075 584 13 13 141 937 937 22 21 224 229 1075 23 21 27 345 470 24 23 217 554 433 23 21 27 345 470 24 23 345 470 328 27 345 467 678 433 27 345 470 263 470 27 345 470 284 433 27 345 470 283 443 27 <td>Sb*Zn</td> <td></td> <td>278</td> <td>329</td> <td>366</td> <td>561</td> <td>480</td> <td>364</td> <td>467</td> <td>480</td> <td>030</td> <td>000</td> <td>424</td> <td>1889</td> <td>781</td> <td>198</td> <td>0 4 4</td> <td></td> <td>403</td> <td>436</td> <td>479</td> <td>1163</td> <td>3135</td> <td>673</td> <td>1060</td> <td>211</td> <td>433</td> <td>650</td> <td>1044</td> <td>1414</td> <td>544</td> <td>476</td> <td>539</td> <td>416</td> <td>921</td> <td>193</td> <td>290</td> <td>331</td> <td>1271</td> <td>242</td> <td>351</td> <td>294</td> <td>359</td> <td>974</td> <td>694</td> <td>651</td> <td>628</td> <td>0 L (</td> <td>955</td>	Sb*Zn		278	329	366	561	480	364	467	480	030	000	424	1889	781	198	0 4 4		403	436	479	1163	3135	673	1060	211	433	650	1044	1414	544	476	539	416	921	193	290	331	1271	242	351	294	359	974	694	651	628	0 L (955
Sb*Sb 1122293 12229 122	Zn(ppm) Sb*Sb AAS 21 Sb*Sb 21 21 171 21 21 245 21 21 245 21 21 245 21 21 245 21 21 245 21 21 229 33 219 229 33 219 174 22 324 229 23 345 345 23 31 141 23 345 345 23 345 345 23 345 345 23 345 345 23 345 345 23 345 345 23 345 345 23 345 345 23 345 345 23 33 345 23 33 345 24 337 346 24 337 348 26	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	zn*Zn		450 1	441	584	1058	1015	937 1	433 1	439	805	8/9	480	2033	687	521		040	4(1) 1	483	407	. 966 .	4434	1579	1508	503 I	834	1033	2442	4139	549 1	599	398	585 1	2316	720	404	454	2527	195	389	669	298	1360	613	756	873		1216
	Zn (ppm) AAS AAS AAS 21 21 21 21 22 23 33 33 33 33 22 22 23 23 23 23 23	Sb(ppm) Zn(ppm) TITULACION AAS 13 21 15 21 15 21 15 23 15 23 16 21 17 33 18 21 17 33 18 23 23 21 23 23 19 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 23 23 23 23 24 23 19 23 23 23 23 23 23 23 23 23 24 23 25 24 26 <t< td=""><td>Sb*Sb</td><td></td><td>171</td><td>245 1</td><td>229</td><td>800</td><td>219 </td><td>141 </td><td>504</td><td>504</td><td>174</td><td> 462</td><td>374</td><td>1755</td><td>889</td><td>75-</td><td></td><td>210</td><td>345</td><td>394 </td><td>563</td><td>1401</td><td>2216</td><td>287</td><td>745</td><td>010</td><td>225</td><td>409</td><td>447</td><td>483</td><td>539 </td><td>378</td><td>731</td><td>295</td><td>366</td><td>52 1</td><td>209 </td><td>320</td><td>639. [</td><td>302 </td><td>317 </td><td>130 </td><td>432</td><td>698</td><td>785</td><td>560</td><td>451</td><td></td><td>752</td></t<>	Sb*Sb		171	245 1	229	800	219	141	504	504	174	 462	374	1755	889	75-		210	345	394	563	1401	2216	287	745	010	225	409	447	483	539	378	731	295	366	52 1	209	320	639. [302	317	130	432	698	785	560	451		752

Tabla 15. Tercera parte

MUESTRA	Sb(ppm) TITULACION	Zn(ppm) AAS	Sb*Sb	Zn*Zn	Sb*Zn
MUESTRA 822 823 824 825 826 827 828 829 830 831 832 833 834 834 838 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1022 1023 1024 1025	$\begin{array}{c} {\rm Sb(ppm)}\\ {\rm TITULACION}\\ & 12\\ & 18\\ & 15\\ & 24\\ & 12\\ & 36\\ & 28\\ & 27\\ & 13\\ & 17\\ & 22\\ & 40\\ & 28\\ & 37\\ & 31\\ & 25\\ & 14\\ & 15\\ & 27\\ & 19\\ & 12\\ & 15\\ & 16\\ & 24\\ & 32\\ & 24\\ & 32\\ & 24\\ & 32\\ & 24\\ & 13\\ & 12\\ & 18\\ & 18\\ & 12\\ & 18\\ & 18\\ & 12\\ & 18\\ $	$\begin{array}{c} 2n (ppm) \\ AAS \\ 22 \\ 22 \\ 22 \\ 22 \\ 23 \\ 30 \\ 83 \\ 47 \\ 73 \\ 61 \\ 29 \\ 36 \\ 31 \\ 49 \\ 66 \\ 64 \\ 47 \\ 35 \\ 35 \\ 37 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 39 \\ 31 \\ 34 \\ 38 \\ 76 \\ 34 \\ 26 \\ 23 \\ 29 \\ 26 \\ 31 \\ 27 \\ 33 \\ 67 \\ 52 \\ 41 \\ 50 \\ 63 \\ 83 \\ \end{array}$	5b*5b 138 337 231. 553 135 1277 791 735 175 281 486 1563 795 1372 966 636 190 222 754 342 142 226 244 590 1028 598 574 164 147 342 156 139 428 1588 2073 284 1376 598 1112	2n*2n 503 490 477 527 895 6837 2180 5300 3671 829 1269 940 2420 4417 4159 2194 1213 1232 1345 1129 1486 960 1148 1471 5847 1134 686 539 830 693 950 743 1080 444% 2739 1676 2467 4014 6936	5b*2n 263 406 332 540 348 2955 1313 1974 802 483 785 1212 1387 2462 2004 1181 480 522 1007 622 459 466 529 932 2452 824 627 297 350 4137 384 322 680 2656 2383 689 1842 1549 2777
1026 1028 1029 1030	18 26 21 28	47 36 39 82	314 653 442 807	2198 1261 1536 6649	831 908 823 2316
; TOTAL	2893	5060	69950	227101	115303

Tabla 16. Correlacion entre antimonio y plomo.

Tabla 16. Segunda parte.

MUESTRA	¦ Sb(ppm) ¦TITULACION	Pb(ppm) AAS	Sb*Sb	Pb*Pb 	Sb*Pb
MUESTRA 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 801 802 803	Sb(ppm) TITULACION 13 16 15 17 15 17 15 17 15 17 15 17 15 12 22 23 13 21 19 42 30 9 24 19 20 24 17 20 24 17 20 24 17 20 24 37 47 15 20 21 22 23 19 21 22 23 19 19 11 12 21 22 23<	$\begin{array}{c} {\rm Pb}({\rm ppm})\\ {\rm AAS}\\ & 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$	$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	$\begin{array}{c c} Pb*Pb\\ & 152\\ 144\\ 146\\ 713\\ 145\\ 152\\ 146\\ 148\\ 142\\ 285\\ 148\\ 142\\ 285\\ 148\\ 144\\ 288\\ 302\\ 147\\ 145\\ 399\\ 297\\ 463\\ 582\\ 376\\ 582\\ 376\\ 582\\ 376\\ 582\\ 376\\ 502\\ 151\\ 304\\ 290\\ 1949\\ 739\\ 282\\ 149\\ 96\\ \end{array}$	$\begin{array}{c c} Sb*Pb \\ \hline 161 \\ 188 \\ 183 \\ 461 \\ 179 \\ 147 \\ 272 \\ 279 \\ 157 \\ 363 \\ 235 \\ 502 \\ 506 \\ 151 \\ 290 \\ 224 \\ 396 \\ 409 \\ 805 \\ 1136 \\ 328 \\ 611 \\ 182 \\ 261 \\ 345 \\ 926 \\ 574 \\ 369 \\ 283 \\ 190 \\ \end{array}$
803 804 805 806 807 808 808 809	19 27 17 19 7 14 18	10 12 10 14 17 17 12	378 731 295 366 52 209 320.	96 155 94 208 302 294 153	190 337 166 276 125 248 222
810 811 812 813 814 815 816 817 818 819 826	25 17 18 11 21 26 28 24 21 27	22 12 12 12 12 12 12 17 17 17 12	639 302 317 130 432 698 785 560 451 752	482 145 152 155 144 155 300 295 278 147	555 209 220 142 249 329 486 407 354 332

Tabla 16. Tercera parte.

MUESTRA	Sb(ppm) TITULACION	Pb(ppm) AAS	Sb≭Sb	Pb∗Pb	Sb*Pb /
$\begin{array}{c} 821\\ 822\\ 823\\ 824\\ 825\\ 826\\ 827\\ 828\\ 829\\ 830\\ 831\\ 832\\ 833\\ 834\\ 835\\ 836\\ 837\end{array}$	27 12 18 15 24 12 36 28 27 13 17 22 40 28 33 35 35	AAS 7 7 7 10 12 22 12 22 12 22 12 22 12 22 12 12 7 7 7 7	$\begin{array}{r} 750\\ 138\\ 337\\ 231\\ 553\\ 135\\ 1277\\ 791\\ 735\\ 175\\ 281\\ 486\\ 1563\\ 795\\ 1071\\ 1250\\ 1223\end{array}$	$\begin{array}{c} 54\\ 53\\ 54\\ 53\\ 95\\ 146\\ 479\\ 142\\ 465\\ 292\\ 144\\ 52\\ 52\\ 52\\ 52\\ 279\\ 1642\\ 978\\ 708\\ 708\\ \end{array}$	$\begin{array}{c} 201\\ 86\\ 135\\ 111\\ 230\\ 140\\ 782\\ 335\\ 584\\ 226\\ 201\\ 159\\ 284\\ 471\\ 1326\\ 1106\\ 931\\ \end{array}$
838 1001 1002 1003 1004 1005 1006 1007 1008 1010 1011 1012 1013 1014 1015 1016 1017	35 37 31 25 14 15 27 19 12 15 24 32 24 32 24 24 32 24 13 12 18 12	27 22 12 17 15 12 17 14 17 12 17 12 12 17 1% 22 10 22	$ \begin{array}{r} 1223 \\ 1372 \\ 966 \\ 636 \\ 190 \\ 222 \\ 754 \\ 342 \\ 142 \\ 226 \\ 590 \\ 1028 \\ 598 \\ 574 \\ 164 \\ 147 \\ 342 \\ 156 \\ \end{array} $	$\begin{array}{c} 498 \\ 154 \\ 304 \\ 223 \\ 153 \\ 301 \\ 207 \\ 299 \\ 156 \\ 54 \\ 474 \\ 153 \\ 288 \\ 146 \\ 467 \\ 95 \\ 470 \end{array}$	$\begin{array}{c} 9.31\\ 827\\ 385\\ 440\\ 206\\ 184\\ 476\\ 267\\ 206\\ 188\\ 179\\ 698\\ 303\\ 407\\ 155\\ 262\\ 180\\ 270\\ \end{array}$
$ \begin{array}{r} 1017\\ 1018\\ 1019\\ 1020\\ 1021\\ 1022\\ 1023\\ 1024\\ 1025\\ 1026\\ 1028\\ 1029\\ 1030\\ \end{array} $	$ \begin{array}{r} 12\\ 12\\ 21\\ 40\\ 46\\ 17\\ 37\\ 24\\ 33\\ 18\\ 26\\ 21\\ 28\\ \end{array} $	22 10 12 22 22 17 17 17 17 17 17 17 17 12 20	156 139 428 1588 2073 284 1376 598 1112 314 053 442 807	$\begin{array}{r} 470\\91\\150\\472\\476\\305\\302\\300\\294\\305\\298\\143\\386\end{array}$	270 113 254 866 993 294 645 424 572 309 441 251 558
TOTAL	3009 ;	2390	73935	51345	52905 ;

MUESTRA	Zn(ppm) AAS	Pb (ppm) AAS	Zn*Zn	Pb*Pb 	Zn*Pb
MUESTRA 201 202 203 204 205 206 207 208 401 402 403 404 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416	Zn(ppm) AAS 85 73 56 48 47 31 30 33 67 75 35 42 37 42 36 33 30 32 31 33 30 32 31 33 29 42 32 26	Pb (ppm) AAS 37 22 25 21 17 27 7 7 7 27 27 7 7 12 12 17 17 17 12 12 12 12 12 12 12 12 12	Zn*Zn 7182 5331 3116 2278 2185 984 911 1074 4459 5637 1193 1738 1337 1759 1262 1086 911 1017 959 1088 843 1769 994 690	$\begin{array}{c} {\rm Pb*Pb} \\ 1350 \\ 500 \\ 621 \\ 461 \\ 290 \\ 727 \\ 53 \\ 52 \\ 708 \\ 710 \\ 55 \\ 55 \\ 153 \\ 305 \\ 290 \\ 2494 \\ 281 \\ 155 \\ 156 \\ 143 \\ 146 \\ 300 \\ 143 \\ 148 \\ \end{array}$	$\begin{array}{c} \text{Zn}*\text{Pb}\\ & 3114\\ 1632\\ 1391\\ 1025\\ 797\\ 846\\ 220\\ 237\\ 1777\\ 2000\\ 256\\ 310\\ 452\\ 733\\ 605\\ 1646\\ 506\\ 397\\ 387\\ 394\\ 351\\ 728\\ 376\\ 320\\ \end{array}$
$\begin{array}{c} 415\\ 416\\ 417\\ 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 425\\ 426\\ 425\\ 426\\ 427\\ 428\\ 429\\ 431\\ 432\\ 434\\ 603\\ 604\\ 605\\ 606\\ 607\\ 608\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 609\\ 608\\ 609\\ 608\\ 609\\ 608\\ 609\\ 609\\ 609\\ 609\\ 609\\ 609\\ 609\\ 609$	32 26 31 45 37 21 55 49 49 22 45 23 43 21 45 75 90 34 23 25 32 29 22 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 994\\ 690\\ 957\\ 1988\\ 1375\\ 433\\ 3006\\ 2387\\ 2385\\ 486\\ 1984\\ 551\\ 1810\\ 430\\ 2002\\ 5646\\ 8131\\ 1132\\ 527\\ 602\\ 1005\\ 822\\ 469\\ 459\end{array}$	$\begin{array}{c} 143\\ 148\\ 156\\ 301\\ 1928\\ 55\\ 752\\ 483\\ 721\\ 207\\ 281\\ 149\\ 473\\ 145\\ 303\\ 993\\ 1336\\ 283\\ 143\\ 295\\ 291\\ 280\\ 151\\ 151\\ \end{array}$	$\begin{array}{c} 376\\ 320\\ 386\\ 773\\ 1628\\ 155\\ 1503\\ 1074\\ 1312\\ 317\\ 747\\ 287\\ 926\\ 250\\ 778\\ 2368\\ 3296\\ 566\\ 275\\ 421\\ 541\\ 479\\ 267\\ 267\\ \end{array}$

Tabla 17. Correlation entre zinc y plomo

1																							·																										
Zn*Fb	252	292	869 207	389 9 9 9 9	87.6	252	255	216	440	287	541	47E0	044 000	- A - A - A - A - A - A - A - A - A - A	102	261	439	348	669	1606	770	870	175	503	548	1343	1081	286	240	249	234	695	467	344	264	1104	168	243	322	207	460	429	473	493	0 0 V	20 C C C	000	717	1 6 /
Pb*Pb	144	146		145	152	146	148	142	285	148	1 V V	- 886		200	141	145	399 -	297	463	582	376	502	151	304	290 1	739	282	149	96	155 -	94	208	302	294	153 -	482	145	152	155	144	155	300	295	5078 578	1 1 7 1		- 707	54 -	
Zn*Zn	441	584	1058	1075	937	433	439	328	678	480	1 202	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		170	540	470	483	407	996	4434	1579	1508	203	834	1033	2442	4139	549	599	398	585	2316	720	404	454	2527	195	389	669	298	1360	613	756	- 628	1010	- 905 1 205		550	
Pb (ppm) AAS	12 1	12	27	12	12	12	12	12						- C -i •	TZ	12	20	17 1	22	24	19	22	12	17	17	27	17	12	10	12	10	14	17	17	12	22	12	12	12	12		171	17 -			 7 C F	7	_	-
Zn(ppm)	21	24	33	33-	31	21	2]	8	26	600	 1 1 1 1 1 1			n n N	67	22	22	20	31 -	67	40	66	14	62		67	64	23	24	20 1	24	48	27	20	21	50 1	14	20	26	17	37	- 10			 0 00	 0 40 0 6		52	•
MUESTRA	610 1	611	612	613 4	614	615	616	617	618	019	- 0070 1070		1700	220	623	624	625	626	627	628	629	630	631	632	633	635	801	802	803	804 1	805	806 1	807	808	808	810	811	812	813	814	815	818 918	817		- 010		070	128	

Tabla 17. Segunda par m.

Tabla 17. Tercera parte.

MUESTRA	Zn(ppm) AAS	Pb (ppm) AAS	Zn*Zn 	Pb*Pb	Zn*Pb
823	22	7	490	54	163
824	22	7	477	53	159
825	23	10	527	95	224
826	30	12	895	146	361
827	83	22	6837 ¦	479	1810
828	47	12	2180	142	556
829	73	22	5300	465	1569
830	61	17	3671	292	1036
831	29	12	829	144	346
832	36	7	1269	52	257
833	31	7	940	52	220
834	49	17	2420	279	822
838	66	22	4417	498	1483
1001	64	12	4159	154	800
1002	47	17	2194	304	817
1003	35	15	1213 ¦	223	520
1004	35	12	1232	153	434
1005	37	17	1345	301	636
1006	34	14 ¦	1129	207	484
1007	39	17	1486	299	667
1008	31 ¦	12	960	156	387
1010	38	7	1471 ¦	54	283
1011	76	22	5847	474	1665
1012	34	12	1134	153	417
1013	26	17	686	288	445
1014	23	12	539	146	281
1015	29	22	830 ;	467	622
1016 ¦	26 ;	10	693	95	257
1017	31 ¦	22	950	470	668
1018	27	10	743	91	261
1019	33	12	1080	150	403
1020	67 ;	22	4442	472	1449
1021	52	22	2739 ;	476	1141
1022	41	17	1676	305	715
1023	50	17	2467	302	863
1024 ¦	63	17	4014 .	300	1098
1025	83	17	6936	294	1428
1026	47	17	2198	305	818
1028	36	17	1261	298	613
1029	39	12	1536	143	468
1030	82 ;	20	6649	386	1602
TOTAL	5006	2183	225556	41940	89988

Con los datos de las tablas 1.5, 16 y 17, se obtuvieron los Eiguientes resultados.

	a	ь	r
Sb - Zn	0,9	17,8	0,2
Sb - Pb	0,1	14,3	0,0
Zn - Fb	0,2	8,1	0,3

Con los valores de a y b se obtiene las ecusciones de las regresiones con la formula Y = aX + b, que se pueden ver en los gráficos 18, 19 y 20.

Otro tipo de correlación utilizado es el descrito por Lepeltier (1969), aplicado a este caso particular. Haciendo u los gráficos 18, 19 y 20 y de la media aritmética de cada elemento.

El procedimiento será demostrado con el ejemplo de la correlación antimonio - zinc:

En el gráfico 18 de antimonio ve zinc se traza una perpendicular al eje x en el valor de la media aritmética de antimonio, así mismo una perpendicular al eje y en el valor de la media aritmética de zinc.

De esta manera el gráfico queda dividido en cuatro cuadrantes,

FIG 18. GRAFICO DE CORRELACION

CONTENTRACION DE ZINC (BHM)

FIG 19. GRAFICO DE CORRELACION

соисеишеской ое вгомо (рыш)

se numan los puntos que caen en el primero y tercer cuadrante obteniendo asi n1, luego se suman los puntos del II y III cuadrante obteniendo así n2.

En el ejemplo tenemos:

1	cuadrante	=	30
11	cuadrante	=	61
111	cuadrante	=	17
ΙV	cuadrante	=	28

nl = 30 + 61 = 91n2 = 17 + 28 = 45

El coeficiente de correlación se obtiene con la siguiente fórmula:

$$\mathcal{F} = \text{Sen} \left[\frac{\pi}{2} \left(\frac{n1 - n2}{n1 + n2} \right) \right]$$
$$\mathcal{F} = 0,5$$

Los resultados finales son los siguientes:

		an a				•			
			$\mathbf{I}_{\mathrm{res}} = \mathbf{I}_{\mathrm{res}}^{\mathrm{res}}$	III	n1	II	IV	n2	P
							·		
Sb	-	Zn	30	6 1	91	17	28	45	0,5
Sb	-	Pb	28	54	a2	26	31	57	0,6
Zn	-	Pb	40	59	99	28	7	35	0,7
3.4. MAPAS DE ISOCONCENTRACIONES.

Loa datos de la tabla 6 son ubicados en cada punto de la **red** de muestreo e interpoladoe para obtener los **mapas** de iaoconcentraciones para antimonio, zinc y plomo, los cuales se muestran en el Anexo E (fig 1, 2 y 3).

En loa mapae de isoconcentración de antimonio, zinc y plomo se ubican las respectivas zonas anomálicas marcando las zonas que son mayores al valor umbral. Para esto se utilizó la media aritmética del valor umbral entre los cuatro resultados que se obtuvieron por los diferentes métodos.

CONCLUSIONES Y RECOMENDACIONES

De los datos obtenidos con los métodos analiticos y su tratamiento estadistico se puede concluir:

- 1. Los resultados de valor umbral obtenidos fueron: 39 ppm para antimonio, 34 ppm para plomo y 71 ppm para zinc. Según (Beuss and Grigorian, 1975) los contenidos normales de estos elementos en una roca de tipo esquisto son: 1,5 ppm para antimonio, 20 ppm para plomo y 95 ppm para zinc. Basados en esto se puede decir que en el area existen valores anomálicos de antimonio y plomo, no asi para zinc que el valor umbral obtenido es menor que la concentración normal. Sin embargo existen valores altos de zinc con respecto a los obtenidos en el resto de el area.
- 2. Existen tres localidades con valores anomalos de antimonio y plomo. Estas se distribuyen de la siguiente forma: Dos de antimonio en el centro de la red de muestreo y una en el borde inferior de esta. Una de plomo en la esquina superior derecha y las dos restantes en el borde superior de la red de muestreo (Anexo E).
- 3. Las dos localidades de valores altos de autimonio que se encuentran en el centro de la red de muestreo presentan una

alineación con el rumbo de las vetas de estibina del area, que es N 20 E. Esto puede indicar que existen un sistema de vetas ocultas, que son causantes de los valores anomálicos en el suelo suprayacente.

- De la tercera localidad no se puede obtener mayor información por encontrarse al borde de la red de muestreo, haciendo falta información al exterior de esta.
- 5. Las correlaciones entre antimonio y zinc (0,5) y antimonio y plomo (0,3) son bajas. Por lo que se puede decir que no existe correlación antre antimonio y los otros dos elementos analizados.
- 5. Por otra parte la'correlación entre zinc y plomo si es buena y esto se observa también en los mapas de isoconcentración ya que hay una coincidencia de los valores anomalicos de plomo y los valores altos de zinc.
- 7. Con respecto a los análisis de zinc por fotometria espectral como se puede ver en la tabla del anexo A, guardan una relación con los analisis de zinc por absorción atómica. Esta relación es de el doble Riendo siempre mayor los recultados obtenidos por absorción atómica.
- 3. De esto se puede decir que para futuras campañas geoquímicas en las que se requiera de anásis de zinc se

puede utilizar el método por fotometria espectral descrito en esto trabajo, ya que es menos costoso y complicado que los análisis por absorción atómica.

Finalmente se recomienda:

- Iniciar una investigación más detallada en los sitios en que se detectaron valores anomálicos de antimonio. Asi también en los sitios en que coinciden los valores anomálicos de plomo y los valores altos da zinc.
- 2. Organizar nuevas campañas mas detalladas con el fin de ampliar el ancho y largo de la actual red de muestreo y obtener mayor información de las localidades con valores altos que se encontraron en los extremos.
- 3. En las nuevas campañas geoquimicas desarrollar nuevas técnicas analiticas para otros elementos con el fin de encontrar uno que tenga buena correlación con antimonio y pueda ser utilizado como elemento guia.

La intención de este trabajo es por otra parte demostrar aunque sea en parte la utilidad e importancia de la geoquímica en la investigación mineral, ya que de las muchas concesiones mineras existentes son pocas las que asignan parte de su inversión a campañas geoquímicas.

ANEXOS

A. TABLA DE RESULTADOS DE ZINC ANALIZADOS CON SQ 115.

	MUESTRA NUMERO	 	Zn (ppm) AAS		Zn (ppm) SQ 115	ΑΑ/%
; 1	202	<u>,</u>	73	•	32	2,3
1	203	1	56	ı	30	1.9
1	204	I	48	1	24	2, 0
t	205	I	47	1	25	1,9
1	206	I.	31	1	20	1,6
!	207	1	30	•	19	1,6
;	401	1	67	1	33	2,0
I	403	1	35	4	21	1.7
1	406	I	42		18	2.4
I.	408	I	33		14	2,3
I.	409	ł	30	ļ	25	1,2
1	410	ł	32		25	1.3
ŧ	411	ŧ	31	ŧ	26	1.3
ł	414	ŧ	42	ļ	16	2,6
•	603	1	34	ł	12	2,7
1	607	ł	29	ł	14	2.0
1	609	1	21	1	14	1,5
1	610	1	. 21	!	19	1,1
1	611	t	24	1	91	2,6
•	612	ł	33	I.	25	1,3
1	617	1	18	1	11	1,7

B. ANALISIS PETROGRAFICO DE ROCAS

ł,

MUEST	ľRA,		:	1.1.1.1.1.1.1	
TIFO	DE	MUESTRA	•	CUARCITA	
FORM	ACIO	DN	:	ESQUISTO	CAFIRO

DESCRTCION MACROSCOPICA

Roca de color rosado. Se ve gran cantidad de cuarzo (aproximadamente el 75%) y clorita, que le da a la roca pequeñas manchas de color verde claro. Probablemente el color rosado de la roca se debe a la alteración de feldespatos. La roca presenta manchas de color café debido a la precencia de oxidos de hierro y manganeso. El tamaño de grano es muy fino.

119

DESCRIPCION MICROSCOPICA

Į,

La matriz es cuarcitica ocupando aproximadamente del 80 % al 90 %. Los feldespatos en un 50 % presentes se encuentran alterados a damourita. Otros minerales como zircón y sericita se encuentran en cantidades pequeñas ani tombién los minerales opacos como hematita. MUESTRA : 2 TIPO DE NUESTRA : GNEIS FORMACION : GNEIS SAN ROQUE

DESCRIPCION MACROSCOPICA

La roca es de color café. El tamaño de grano es grueso. Se ve gran cantidad de moscovita y biotita muy desarrolladas. El cuarzo existe en poca cantidad aproximadamente del 20 al 30 %, pero igualmente muy desarrollado. La roca no es muy resistente y se quiebra con facilidad.

120

DESCRIPCION MICROSCOPICA

El mineral de mayor importancia es la sericita que se ve en un 40 %. El cuarzo está presente en un 30 %. La biotita se encuentra en un 10 % aproximadamente. Clorita 7 % y epidota 3 %. MUESTRA : 3 TIPO DE MUESTRA : CUARCITA FORMACION : ESQUISTO CAPIRO

DESCRIPCION MACROSCOPICA

Ea una roca de color gris claro. El tamaño del grano es muy fino. Se ven pequeñas vetillas de cuarzo. Fenocristales feldespáticos se encuentran pero en poca cantidad. Manchas de color café obscuro debido a la oxidación de hierro y manganeso. Se observa moscovita y biotita muy péqueñas y en poca cantidad. La roca es muy resistente.

DESCRIPCION MICROSCOPICA

El 80 % corresponde a cuarzo (con extinción ondulosa). Los feldespatos presentes aproximadamente en un 50 % se encuentran alterados a damourita. El zircón se ve en un 4 % Y la sericita en un 8 %:

C. MAPA GEOLOGICO DE LA CONCESION MINERA LOMA LARGA ESCALA 1 : 10000. D. MAPA DE UBICACION DE LA RED DE MUESTREO GROQUIMICO

E. MAFAS DE ISOCONCENTRACIÓN

EIBLIOGRAFIA

- AUCOTT, J. W., Métodos estadisticos sin computar para la exploración geoquímica en los países en vias de desarrollo, INGEOMINAS. A.A., Cali - Colombia., 1983 (sin publicar).
- BEUS, A.A. AND GRIGORIAN S.V., Geoquimical exploration methods for mineral deposits, Applied Fublishing Ltd., Wilmete - Illinois - U.S.A., 1977. 247 p.
- BIBLOGRAF S.A., Atlas Geográfico Universal y de la República del Ecuador, Primera Edición, Barcelona -España, 1982.

夯

 BRISTOW, C. HOFFSTETTER, Léxique Stratigrafique International, Segunda Edición, Vol V, Fasc 6 a 2, Ecuador, 1977. 295 p.

- CALVO, F., Estadistica Aplicada, Segunda Edición, Ediciones DEUSTO S.A., Bilbao - España, 1978. 97-110 p.
- FIALLOS, V. S., Prospección Geológica y Geoquímica en la sección norte del área Chuquírahúas provincia del Cotopaxi, Tesis de Grado, FIGMP - ESPOL, Guayaquil - Ecuador, 1977. 37 p.

- 7. FLETCHER, W.K., Analitical Methods in Geochemical prospecting, Vol 1, ELSEVIER, Amsterdam, 1981, 98 p.
- B. JACKSON, M.L., Análisis Quimico de suelos, Tercera Edición, OMEGA S.A., Barcelona - España, 1976. 550 p.
- 9. JANDER WENDT, Einfuhrung in das anorganisch chemische Praktikum, Funfte Auflage, S. Hirzel Verlag Stuttgart, Alemania, 1958. 230 p.
- 10. KAHN HERBERT AND THE PERKIN ELMER CORP., Instrumentación para espectrofotometría por absorción atómica U.S.A., 1976. (Manual de uso):
- 11. KOLLER, B., Métodos analíticos de campo utilizados en la exploración geoquímica, ESPOL, Guayaquil Ecuador, 1985.
- KOLLER, B., Seminario de geoquímica y métodos geoquímicos en la exploración de minerales, ESPOL, Guayaquil - Ecuador, 1984.
- LEPELTIER, C., A simplified statistical treatment of geochemical data by graphical representation, Economic Geology, Vol 64, U.S.A., 1969. 538 p.
- MERCK, Rapid test handbook, E. Merck Frankfurter strasse
 250 D-6100 darmstadt 1, Federal Republic of Germany,

1987.

- MERCK, Spectroquant Manual de Instrucciones de uso Fotómetro SQ 115, E. Merck Frankfurter strasse 250 D-6100 darmstadt postfach 4119, Federal Republic of Germany.
- 16. UNIVERSIDAD DE GUAYAQUIL, Apuntes de clases del curso de prospección geoquimica, Departamento de Publicaciones, Guayaquil - Ecuador, 1979. 145 p.