

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE CIENCIAS QUÍMICAS Y AMBIENTALES

AÑO:	2018	PERIODO:	PRIMER TÉRMINO
MATERIA:	QUÍMICA GENERAL	COORDINADOR:	MICHAEL RENDÓN M.
EVALUACIÓN:	PRIMERA	FECHA:	26 de junio del 2018

1. Geometría Molecular (10 puntos).

- 1.1 ¿Cuántos pares de electrones enlazantes están en una molécula trigonal planar?
 - a. 2
- **b. 3**
- c. 4
- d 5
- e 6
- 1.2 ¿Cuántos pares de electrones no enlazantes están en una molécula de forma angular?
 - <u>a.</u> 2
- b. 3
- c. 4
- d. 5
- e. 6
- 1.3 Un compuesto con 3 pares de electrones enlazantes y un par de electrones libres, ¿cuál de las siguientes formas moleculares tiene?
- a. Tetraédrica
- b. Trigonal plana
- c. Forma angular
- d. Pirámide trigonal
- e. Octaédrica
- 1.4 Dibuje la estructura de Lewis de los compuestos de la pregunta 2.1.

1.5 Asumiendo la repulsión de pares de electrones libres, elija la opción con la combinación correcta.

	Número de pares de electrones	Número de pares de	Geometría molecular
	enlazantes	electrones libres	
A	1	3	Pirámide trigonal
В	0	3	Bipirámide trigonal
С	1	2	Forma de V
D	0	6	Octaédrica
E	4	2	Cuadrado plano

- 1.6 Un elemento X tiene una configuración electrónica $1s^2 2s^2 2p^6 3s^2 3p^3$, otro elemento Y tiene la configuración electrónica $1s^2 2s^2 2p^6 3s^2 3p^5$. ¿Si X y Y forman una compuesto molecular $X_n Y_m$ que cumple con la regla del octeto, ¿qué geometría molecular formaría?
- a. Trigonal planar
- b. Trigonal piramidal
- c. Tetraédrica
- d. Octaédrica
- e. Cuadrado planar

Las preguntas 1.1; 1.2; 1.3 y 1,5 tienen el valor de 1 punto cada una (4 puntos). La pregunta 1.4 (4 puntos). La pregunta 1.6 (2 puntos).

2. Fuerzas Intermoleculares (10 puntos).

2.1. Identifique la fuerza intermolecular más importante presente en muestras puras de las siguientes sustancias, adicional indique la fórmula condensada de cada sustancia:

Sustancia	Fórmula química	Fuerza intermolecular principal	
Amoniaco	NH ₃	Puente de Hidrógeno	
Tricloruro de fósforo	PCl ₃	Dipolo-dipolo	
Etano	C_2H_6	Dispersiva de London	
Cloruro de potasio	KCl	Ion-ion	

2.2. Explique las siguientes afirmaciones con razones científicas.

a. Sustancias con puntos de ebullición diferentes pero con similares pesos moleculares.

Ácido acético	н п—о—т — о О	118 °C
Metanoato de metilo	O C C CH ₃	56.9 °C

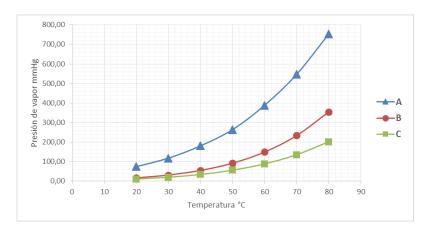
El ácido acético presenta fuerzas intermoleculares por puente de hidrógeno, algo que el metanato de metilo no lo tiene.

b. Nitrógeno (N_2) es un gas a temperatura ambiente; sin embargo, ¿por qué el fósforo (P_4) ubicado en el mismo grupo es un sólido?

Aunque estén ubicados en el mismo grupo, la molécula de P_4 tiene mayor masa que la del N_2 . El aumento de masa (moléculas) favorece el aumento de las fuerzas intermoleculares.

2.3. Elija la combinación de respuesta correcta en base a estos dos compuestos mostrados:

¿Cuál de los dos compuestos tiene mayor presión de vapor? y ¿cuál tiene mayor punto de ebullición?


- a. A; B
- b. A; A
- c. B; B
- d. **B**; **A**

La pregunta 2.1, 1 punto por cada pregunta bien contestada (4 puntos). La pregunta 2.2, 2 puntos por cada justificación bien planteada (4 puntos). La pregunta 2.3, (2 puntos).

NOTA: en la pregunta 2.1 la fórmula química no se califica.

3. Clausius Clapeyron (10 puntos).

3.1. Analice el siguiente gráfico y escriba la respuesta correcta.

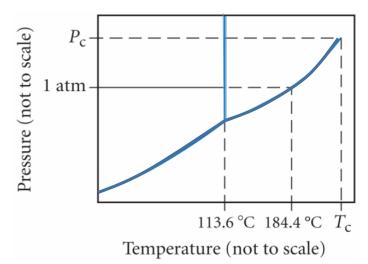
- a. ¿Qué compuesto presenta mayor punto de ebullición a presión normal? ______C___
- c. ¿Qué compuesto tiene menor entalpia molar de vaporización? ______A_____
- d. Asigne <u>la principal</u> fuerza intermolecular que una las moléculas de cada compuesto: dipolodipolo; puentes de hidrógeno, dispersiva de London. A. <u>dispersiva de London</u>;
 B. <u>dipolo-dipolo</u>; C. <u>puentes de hidrógeno</u>.
- 3.2. En base a la siguiente tabla de datos y utilizando la ecuación de Clausius Clapeyron encuentre el punto de ebullición normal para cada compuesto:

Temperatura (°C)	Presión de vapor (mmHg)	
Temperatura (C)	ácido acético	Benceno
20	11.7	74.7
30	20.6	118.2
40	34.8	181.1
50	56.6	264
60	88.9	388.6
70	136	547.4
80	202.3	753.6

$$Ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{vap}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

ÁCIDO ACÉTICO:

 $\Delta H_{vap} = 40.78 \text{ kJ/mol}$ Rango en que puede caer el resultado (40.11 - 41.45) Punto de ebullición = 391.0 K (118 °C)


BENCENO:

 $\Delta H_{vap} = 33.08 \text{ kJ/mo}$ l Rango en que puede caer el resultado (31.96 - 34.20) Punto de ebullición = 353.3 K (80.3 °C)

La pregunta 3.1, 1.25 puntos por cada pregunta bien contestada (5 puntos). La pregunta 3.2, 1 punto por la fórmula bien planteada; 1 punto por cada respuesta obtenida (5 puntos).

4. Diagramas de Fases (5 puntos).

Considere el siguiente diagrama de fases del Iodo (I₂) y responda a las preguntas propuestas:

- 4.1. ¿Cuál es el punto de ebullición normal del Iodo? 184.4 °C
- 4.2.¿Cuál es el punto de fusión del Iodo a 1 atm? 113.6 °C
- 4.3.¿Qué fase está presente a una temperatura ambiente (22°C) y presión normal atmosférica? **SÓLIDO**
- 4.4. ¿Qué fase está presente a 186 °C y 1 atm de presión? **GASEOSO**
- 4.5.¿Qué proceso ocurre cuando el Iodo a 100°C a 1 atm de presión es calentado hasta 140°C a 1 atm de presión? **FUSIÓN**

La pregunta 4.1 al 4.5, 1 punto por cada pregunta bien contestada (5 puntos).

5. Curvas de calentamiento (10 puntos).

5.1 Grafique la curva de calentamiento de una sustancia desconocida que presenta los siguientes datos: Punto de fusión normal: 15 °C; Punto de ebullición normal: 120 °C; masa de la sustancia: 250 g;

$$q1_{(5^{\circ}C-15^{\circ}C)} = 10 \text{ Kcal};$$

$$q_{2 (15^{\circ}C \text{ sól} - 15^{\circ}C \text{ líq})} = 30 \text{ Kcal};$$

$$q3_{(15^{\circ}\text{C}-120^{\circ}\text{C})} = 60 \text{ Kcal};$$

$$q4_{(120^{\circ}C \text{ líq} - 120^{\circ}C \text{ vap})} = 100 \text{ Kcal};$$

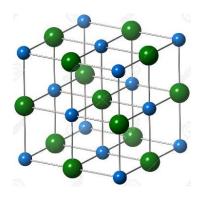
$$q_{5} (120 \, ^{\circ}\text{C} - 130 \, ^{\circ}\text{C}) = 15 \text{ Kcal.}$$

5.2. Calcule los calores específicos y latentes de la sustancia.

Calor específico

Calor latente

5.3. Calcule el calor total del proceso cuando la sustancia pasa de 100°C a 20°C. Indique si el proceso es exotérmico o endotérmico.


$$q = m. c_{lig}. \Delta T$$
 $q = 250 \ g. \ 0.0023 \ kcal. \ g^{-1}. \ ^{\circ}C^{-1}. -80 \ ^{\circ}C$ $c_{lig} = -46 \ kcal$

El proceso es exotérmico

La pregunta 5.1, 3 puntos por el gráfico bien realizado (3 puntos). La pregunta 5.2, 1 punto por cada calor específico y latente hallado (5 puntos) La pregunta 5.3, 1 punto por el calor hallado y 1 punto por contestar correctamente el proceso exotérmico (2 puntos).

6. Celda unitaria (5 puntos).

¿Cuántas celdas unitarias caben en un cubo de cristal de NaCl cuya masa es 1 gramo? Na = 23 g/mol; Cl = 35.5 g/mol.

Densidad = masa /volumen

$$d = \frac{m}{v} = \frac{\frac{1}{N^{\circ} Avogadro} x PMxZ}{\frac{N^{\circ} Avogadro}{a^{3}} x PMxZ}$$

$$m = d. v = \frac{\frac{1}{N^{\circ} Avogadro} x PMxZ}{a^{3}} x a^{3}$$

$$m_{celda} = \frac{1}{N^{\circ} Avogadro} x PMxZ$$

m es la masa que tiene una celda unitaria, para saber cuántas celdas hay en 1 gramo, dividimos $\frac{1g}{m_{celda}}$; entonces:

$$\frac{1}{\frac{1}{N^{\circ} Avogadro} x \ PMxZ} = \frac{1g}{\frac{1}{6.022x10^{23} \ mol\'eculas/mol} x \ 58.5 \ g/mol\ x \ 4 \ mol\'eculas}} = 2.6 \ x \ 10^{21} \ celdas$$

O la realización puede ser por regla de 3

- 1 punto por encontrar el número de moléculas por celda.
- 1 punto por plantear el proceso de cálculo (proceso propuesto o regla de tres).
- 3 puntos por el resultado