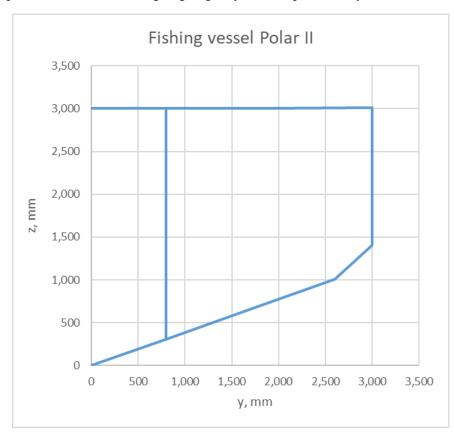
Faculty of Maritime Engineering and Marine Sciences

Ship Structures II

Second evaluation	cond eval	uation
-------------------	-----------	--------

August 26th, 2019

O 1 1	
Ctridante	


1.- In the DNV for ships with L>100m 2016 rules, section 5 "Longitudinal strength", part B "Still water and wave induce bending moment...", formulations to estimate bending moments are presented. Which of the following expressions is true? (5)

a In Hogging:	b In Sagging:	c In Sagging:
$M_{WO} = -0.19\alpha C_W L^2 B C_B$	$M_{WO} = 0.11 \alpha C_W L^2 B(C_B + 0.7)$	$M_{WO} = -0.11\alpha C_W L^2 B(C_B + 0.7)$
d None		

2.- To evaluate the possibility of buckling of deck plate, the following situation must be considered: (5)

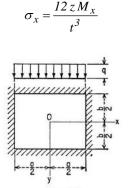
<u> </u>			
a Hogging	b Still water	c Sagging	d All of them

3.- Present a sketch of the shear stress distribution in the following hull section of a small containership (do not think that I am going to give you these points away!): (10)

			taken from DNV ru he required thicknes				ures", part C "Plating	
	302 The	thickne	ess requirement corresp	pondi	ing to lateral pressure	is give	en by:	
				t =	$\frac{15.8k_a s \sqrt{p}}{\sqrt{\sigma}} + t_k \qquad (m)$	ım)		
Which one of	of the follo	wing e	expressions is true?					
a In long framing σ	•	b In σ is l	transverse framing larger		Independent of ming system.	d N	one of the above	
5 What is t	the maxim	um buc	ckling critical stress	that	a steel plate can h	ave? ((5)	
a	. \2		b		c		d	
f=1.88E6	$\left(\frac{t}{b}\right)^{2}K$, kg	$3/cm^2$	b 235 N/mm ²		110 N/mm ²		None of the above	
0 will all	IVI Curino.		nker ship has a trans		se training system.		att region. (10)	
7 Explain the transvers		tages of	f the longitudinal fra	amir	ng system for a shi	p, whe	en it is compared with	
				••••				
I	certify that	t during	g this exam I have o	omp	olied with the Code	e of Eta	thics of our university.	
						,		

Faculty of Maritime Engineering and Marine Sciences

Ship Structures II


Second evaluation

August 26th, 2019

- 1.- Consider a steel ship, with the following main characteristic: $L \times B \times D$: 72 x 12 x 6 m, $\Delta = 2250$ tons, and it has estimated that in Sagging supports a bending moment of 75000 kN-m. At present sectional inertia (considering plating as well as longitudinal stiffeners) is 2.14E4 m²-cm², with the deck plate with a thickness of 7 mm (A_{sect} : 0.336 m², and, y_{med} : 2.79 m, from base line). What would be the normal stresses in bottom and deck when the thickness of deck plate is changed to 8 mm? (25)
- **2.-** Consider a reinforced rectangular steel plate panel (6.0x3.0m) that is going to support a uniform load of 50 kN/m^2 . Assume that all edges are clamped, and make reasonable assumptions for other variables. Select in a preliminary stage of design the plate characteristic, and, stiffener spacing and scantlings. (30)

Useful formulations: *Bending of isotropic rectangular plates*, (Timoshenko):

Table 35. Deflections and Bending Moments in a Uniformly Loaded Rectangular Plate with Built-in Edges (Fig. 91)

b/a	$(w)_{x=0,y=0}$	$(M_x)_{x=a/2,y=0}$	(My)x=0.y=b/2	$(M_x)_{x=0,y=0}$	$(M_y)_{x=0,y=0}$
1.0	0.00126qa4/D	-0.0513qa2	-0.0513qa2	0.0231qa2	0.0231qa2
1.1	0.00150ga4/D	$-0.0581qa^2$	$-0.0538qa^2$	$0.0264qa^2$	0.0231qa2
1.2	0.00172qa4/D	$-0.0639qa^2$	$-0.0554qa^2$	$0.0299qa^2$	0.0228qa2
1.3	$0.00191qa^4/D$	$-0.0687qa^2$	$-0.0563qa^2$	$0.0327qa^2$	0.0222qa2
1.4	0.00207ga4/D	$-0.0726qa^2$	$-0.0568qa^2$	0.0349qa2	0.0212qa2
1.5	0.00220qa4/D	$-0.0757qa^2$	$-0.0570qa^2$	$0.0368qa^2$	0.0203qa2
1.6	0.00230qa4/D	$-0.0780qa^2$	$-0.0571qa^2$	$0.0381qa^2$	0.0193qa2
1.7	$0.00238qa^4/D$	$-0.0799qa^2$	$-0.0571qa^2$	$0.0392qa^2$	0.0182qa2
1.8	0.00245qa4/D	$-0.0812qa^2$	$-0.0571qa^2$	0.0401qa2	0.0174qa2
1.9	$0.00249qa^4/D$	$-0.0822qa^2$	$-0.0571qa^2$	$0.0407qa^{2}$	0.0165qa2
2.0	0.00254ga4/D	$-0.0829qa^2$	$-0.0571qa^2$	$0.0412qa^2$	0.0158qa2
00	0.00260ga4/D	$-0.0833qa^2$	$-0.0571qa^2$	$0.0417qa^2$	0.0125qa2

Equivalent von Mises stress: $\sigma_{eq} = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$.

I certify that during this exam I have complied with the Code of Ethics of our university.

.....