ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"PROPUESTA DE MODELO MATEMÁTICO DE FLUJO DE AGUA SUBTERRÁNEA DE UN TAJO ABIERTO"

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero en Minas

Presentado por: Karla Carolina Filian Haz Bryan Joel Salgado Almeida

GUAYAQUIL - ECUADOR Año: 2020

DEDICATORIA

A Dios, por otorgarme sabiduría e inteligencia.

A mis padres, Carlos y Karina, por su amor y paciencia; ustedes siempre se han esforzado y luchado por mi bienestar.

A mi hermana Gabriela, por su cariño y sinceridad.

A mi familia, que siempre ha sido mi soporte y gran bendición.

Karla Filián Haz.

Le dedico este trabajo a Dios por ser mi guía, fuerza y el motivo de mi ser en todo momento.

A mis padres, Layone y Jaqueline, por su sacrificio, apoyo y amor sin condición que me han brindado en cada etapa de mi vida; sin ellos no sería posible nada de esto.

A mis abuelos, Beatriz y Jorge, por su preocupación y cariño desmedido.

A mi hermano Johnny, por velar siempre por mi bienestar y ser fuente de inspiración.

Bryan Salgado Almeida.

AGRADECIMIENTOS

Agradecemos a nuestra tutora, Ph. D. Paola Romero Crespo por motivarnos, ser una guía durante este proceso e impartirnos los conocimientos necesarios para el desarrollo de este proyecto integrador.

A la MsC. Samantha Jiménez Oyola por estar siempre presta a ayudarnos y por su apoyo incondicional.

A la MsC. Esmilka Guerra y MsC. Xiomara Coello por compartir sus conocimientos de manera paciente y dedicada; además del respeto y cariño mutuo.

Los Autores.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Karla Carolina Filian Haz y Bryan Joel Salgado Almeida, damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Karla Filián H. Karla Carolina

Filian Haz

Brvan

Salgado Almeida

EVALUADORES

MsC. Samantha Jiménez Oyola **PROFESOR DE LA MATERIA**

.....

Ph. D. Paola Romero Crespo PROFESOR TUTOR

RESUMEN

El estudio aborda el problema de la presencia de agua dentro de las explotaciones mineras, debido al diseño deficiente del sistema de bombeo que impide realizar un drenaje óptimo. Este inconveniente desencadena problemas geotécnicos y operativos, que a su vez generan pérdidas económicas y ponen en riesgo la viabilidad de un proyecto minero. La investigación permitirá simular, mediante un modelo hidrogeológico matemático construido en FEFLOW, escenarios de drenaje en las labores mineras de una explotación a tajo abierto.

Para este propósito, se construyó un modelo conceptual con los datos tomados del SENACE de Perú, acerca de la geología, hidrogeología y el balance de agua. Esta información permitió el diseño del modelo matemático en el software FEFLOW v 5.2. Una vez calibrado el modelo, fue posible realizar la simulación de diferentes sistemas de drenaje.

De acuerdo con el estudio, el escenario óptimo de drenaje contó con 23 pozos de bombeo y logró descender 116 m del nivel piezométrico inicial con un costo de inversión aproximado de \$404,432.

El estudio revela que el modelo presenta una correlación del 90% entre los datos piezométricos medidos y simulados, y el parámetro más sensible del mismo es el coeficiente de almacenamiento del acuífero. Además, se identificó que el escenario de drenaje seleccionado presenta un radio de influencia que no afecta al recurso de las comunidades aledañas y con este se logra ahorrar un 43% de la inversión original respecto a un sistema que es implementado tradicionalmente en las explotaciones a tajo abierto.

Palabras claves: Modelo hidrogeológico matemático, sistema de drenaje, simulación de escenarios, tajo abierto.

ABSTRACT

This study is based on the problem of the presence of water in mining operations, due to the poor design of pumping system that does not allow an optimal drainage. This inconvenience triggers geotechnical and operational problems, which in turn generate economic losses and affect the project's viability. This research will allow the simulation of drainage scenarios in mining operations of the open pit exploitation by the construction of a mathematical hydrogeological model in FEFLOW.

For this, a conceptual model was built with data taken from SENACE in Peru about geology, hydrogeology and water balance, which allowed the subsequent design of the mathematical model in the FEFLOW v 5.2 software, and once calibrated it made it possible to perform the simulation of different drainage systems.

According to the study, the optimal drainage scenario had 23 pumping wells and it was able to descend 116 m from the initial hydraulic head with and approximate investment cos of \$404,232.

The study reveals that the model presents a correlation of 90% between the measured and simulated hydraulic head data, and the most sensitive parameter corresponds to the storage coefficient. In addition, the selected drainage scenario presents a radius of influence that does not affect the resource of the surrounding communities and it's possible to save 43% of the original investment compared to a system that is traditionally implemented in open-pit operations.

Keywords: Mathematical Hydrogeological Model, drainage system, scenarios simulation, open pit.

ÍNDICE GENERAL

RESUMEN.	I
ABSTRACT	II
ÍNDICE GEN	III III
ÍNDICE DE I	FIGURASV
ÍNDICE DE	TABLAS VI
ÍNDICE DE /	APÉNDICES VII
CAPÍTULO [·]	11
1. INTRO	DUCCIÓN1
1.1. Des	scripción del problema2
1.2. Jus	tificación del problema3
1.3. Obj	etivos3
1.3.1.	Objetivo General
1.3.2.	Objetivos Específicos
1.4. Ma	rco teórico4
CAPÍTULO	2
2. METOD	DOLOGÍA8
2.1. Coi	nstrucción de Modelo conceptual teórico10
2.2. Coi	nstrucción de Modelo Matemático con FEFLOW10
2.3. Ana	álisis de Sensibilidad de Parámetros11
2.4. Sim	nulación de Escenarios12
CAPÍTULO	313
3. CONST	RUCCIÓN DEL MODELO HIDROGEOLÓGICO13
3.1. Mo	delo Conceptual13
3.1.1.	Unidades Hidrogeológicas13
3.1.2.	Piezometría16
3.1.3.	Parámetros hidrodinámicos17
3.1.4.	Balance Hídrico
3.2. Mo	delo Matemático20
3.2.1.	Extensión y Descripción del Modelo20
3.2.2.	Condiciones de Borde21
3.2.3.	Recarga Superficial22
3.2.4.	Conductividad Hidráulica23

3.2.5. Piezometría.		25
CAPÍTULO 4		
4. RESULTADOS Y AN	ÁLISIS	
CAPÍTULO 5		
5. CONCLUSIONES Y	RECOMENDACIONES	42
BIBLIOGRAFÍA		
APÉNDICES		47

ÍNDICE DE FIGURAS

Figura 2.1 Metodología aplicada para el desarrollo del proyecto	9
Figura 3.1 Modelo Conceptual del área de estudio	20
Figura 3.2 Discretización del modelo de flujo matemático	21
Figura 3.3 Condiciones de borde	22
Figura 3.4 Zonificación de la recarga superficial	22
Figura 3.5 Conductividades hidráulicas asignadas a la capa 1	24
Figura 3.6 Conductividades hidráulicas asignadas a la capa 2	24
Figura 3.7 Conductividades hidráulicas asignadas a la capa 3	25
Figura 3.8 Distribución de la piezometría en condiciones iniciales	25
Figura 3.9 Correlación entre la piezometría medida y simulada en estacionario	26
Figura 3.10 Distribución de la piezometría simulada	27
Figura 3.11 Balance hídrico en estacionario (Septiembre, 2009)	28
Figura 3.12 Distribución de la piezometría en régimen transitorio	29
Figura 3.13 Niveles de piezometría medidos y simulados en régimen transitorio	30
Figura 3.14 Niveles de piezometría medidos y simulados en régimen transitorio	
(Continuación)	30
Figura 3.15 Balance hídrico en régimen transitorio	31
Figura 4.1 Variación de la piezometría en el tiempo (Pozo 4)	33
Figura 4.2 Variación de la piezometría en el tiempo (Pozo 5)	33
Figura 4.3 Variación de la piezometría en el tiempo (Pozo 9)	34
Figura 4.4 Variación de la piezometría en el tiempo (Pozo 10)	34
Figura 4.5 Variación de la piezometría en el tiempo (Pozo 17)	35
Figura 4.6 Flujos de entrada y salida en régimen transitorio	36
Figura 4.7 Descenso de la piezometría en el escenario de drenaje 1	37
Figura 4.8 Balance hídrico del escenario de drenaje 1	38
Figura 4.9 Descenso de la piezometría en el escenario de drenaje 2	39
Figura 4.10 Balance hídrico del escenario de drenaje 2	40

ÍNDICE DE TABLAS

Tabla 1.1 Modelos matemáticos hidrogeológicos desarrollados en Ecuador	6
Tabla 1.2 Modelos matemáticos hidrogeológicos desarrollados en Ecuador	
(Continuación)	7
Tabla 3.1 Unidades hidrogeológicas	16
Tabla 3.2 Parámetros hidrodinámicos de las unidades acuíferas	18
Tabla 3.3 Parámetros hidrodinámicos de las unidades hidrogeológicas	18
Tabla 3.4 Tasas de escorrentía e infiltración para un año promedio	19
Tabla 3.5 Tasas de escorrentía e infiltración para año seco y húmedo	19
Tabla 3.6 Conductividad hidráulica ajustada	23
Tabla 3.7 Balance hídrico en estacionario (Septiembre, 2009)	28
Tabla 4.1 Balance hídrico en régimen transitorio	36
Tabla 4.2 Balance hídrico del escenario de drenaje 1	38
Tabla 4.3 Balance hídrico del escenario de drenaje 2	40
Tabla 4.4 Comparación del balance hídrico para diferentes escenarios	41

ÍNDICE DE APÉNDICES

Apéndice A 1.1 Ubicación de los pozos de monitoreo	48
Apéndice A 1.2Tabla de datos piezométricos	49
Apéndice A 1.3 Tabla de piezometría medida y simulada en estacionario	50
Apéndice A 1.4 Tabla de piezometría medida y simulada en transitorio	51
Apéndice A 1.5 Piezometría medida y simulada en transitorio (Continuación)	52
Apéndice A 1.6 Piezometría medida y simulada en transitorio (Continuación)	53
Apéndice B 1.1 Balance hídrico para un año promedio	54
Apéndice B 1.2 Balance hídrico para un año húmedo	54
Apéndice B 1.3 Balance hídrico para un año seco	55
Apéndice B 2.1 Recargas para un año promedio	55
Apéndice B 2.2 Recarga para un año húmedo	56
Apéndice B 2.3 Recarga para un año seco	57
Apéndice C 1.1 Curvas características de bombas sumergibles	58
Apéndice C 1.2 Datos de prestación de bombas sumergibles	58
Apéndice C 1.3 Dimensiones de la bomba sumergible	59
Apéndice C 2.1 Detalle de costos por pozo de drenaje	59
Apéndice C 3.1 Costos del sistema de drenaje del escenario 1	59
Apéndice C 3.2 Costos del sistema de drenaje del escenario 2	60

CAPÍTULO 1

1. INTRODUCCIÓN

El agua es un recurso muy importante en diferentes actividades industriales. La industria minera, pese a no consumir gran cantidad de agua, esta se encuentra en sus operaciones. La presencia de agua dentro de los proyectos mineros es una variable crítica que influye en su viabilidad. Las explotaciones mineras, subterráneas y a cielo abierto, casi siempre, forman parte del área de captación de un sistema de aguas superficiales o subterráneas (Salonen et al, 2014).

La filtración de agua en las labores mineras ocasiona, en general, inestabilidad y otros problemas geotécnicos asociados (Herrera, 2009). Esto motiva a buscar soluciones óptimas para drenar el exceso de agua, de manera tal, que no interrumpa las operaciones. Para definir métodos adecuados de drenaje, es fundamental conocer el comportamiento del agua, su dirección y cantidad de flujo, y cómo este afecta las condiciones del entorno.

La importancia del drenaje consiste en minimizar la cantidad de filtración de agua en las labores de extracción del mineral, de tal forma que se cuenten con las condiciones adecuadas en el área de trabajo. Para cumplir con este objetivo, con frecuencia se utilizan sistemas de bombeo, a partir de estudios hidrogeológicos detallados (Herrera, 2009).

Mediante los modelos de simulación hidrogeológica, es posible analizar el comportamiento del flujo de agua subterránea; esto permite realizar predicciones de diferentes escenarios, considerando las condiciones naturales del entorno y el régimen de explotación minera (Martínez Rincón, 2018). Los modelos matemáticos de simulación se usan como instrumentos de gestión para explicar los problemas presentes en la operación y cierre de minas. En áreas activas de las minas, estos modelos son útiles para la elaboración de estrategias de drenaje. También, tienen aplicación en la evaluación cuantitativa del impacto que se genera en las aguas superficiales y subterráneas en la etapa de explotación (Rapantova et al., 2007).

1

En diversas partes del mundo, se han realizado estudios hidrogeológicos empleando modelos de simulación matemática aplicados a la minería a cielo abierto y subterránea. Una de sus aplicaciones se encuentra en los estudios de impacto ambiental de proyectos destinados al manejo adecuado de los lagos mineros (González-Quirós & Fernández-Álvarez, 2019), a la evaluación de riesgos de contaminación de aguas subterráneas (Zeng et al., 2018; Zhao et al., 2017) y a la simulación de escenarios de drenaje (Surinaidu et al., 2014).

A continuación, se describe la propuesta del proyecto integrador, que consiste en el diseño de un modelo matemático de flujo subterráneo en un tajo abierto, que podrá ser replicado en diferentes proyectos mineros.

1.1. Descripción del problema

Todo proyecto minero se encuentra ubicado dentro de una cuenca hidrológica e hidrogeológica y, por lo general su explotación se hace bajo el nivel freático. Los proyectos de minería superficial emplean una geometría y extensión que los hacen susceptibles a captar aguas subterráneas, y este volumen de captación está estrechamente relacionado a las propiedades hidráulicas de los materiales geológicos y a las condiciones meteorológicas del sector.

La presencia de agua en las labores mineras se considera como un problema dentro de una explotación, que puede originarse por un diseño deficiente del sistema de bombeo. La afluencia de agua puede ocasionar paralización de actividades, incremento de costos de explotación, erosión de taludes y del terreno, arrastre de materiales, e inundaciones repentinas; situaciones que ponen en cuestión la viabilidad del proyecto.

La paralización de actividades se debe al deterioro de pistas y a la inundación parcial o total de labores, dificultando el acceso de equipos y máquinas, lo que a su vez encarece los procesos. Por otra parte, la erosión de taludes conlleva, en la mayoría de las ocasiones, a la perdida de estabilidad y a la falla de estos. La

falla de taludes tiene efectos muy negativos que, en algunos casos, comprenden pérdidas humanas, además de materiales y económicas para la explotación.

1.2. Justificación del problema

Este trabajo se presenta como una solución metodológica a la presencia de agua subterránea en las labores mineras. El proyecto aporta, mediante el modelamiento hidrogeológico, escenarios de simulación que sirvan para optimizar los sistemas de bombeo, en función de las características hidrogeológicas, caudal de bombeo y condición ambiental. Además, el estudio permitirá evaluar los efectos de las actividades dentro del área para minimizar el impacto ambiental con respecto a la cantidad del recurso hídrico. Este modelo teórico puede ser replicado para las condiciones reales de diferentes proyectos mineros.

1.3. Objetivos

1.3.1. Objetivo General

 Diseñar un modelo matemático de agua subterránea en un tajo abierto utilizando el software FEFLOW 5.2, para la simulación del drenaje en las labores mineras.

1.3.2. Objetivos Específicos

- Analizar parámetros geológicos, hidrogeológicos, entradas y salidas del balance de agua, y el diseño del tajo, para el desarrollo del modelo conceptual y matemático.
- Realizar análisis de sensibilidad del modelo matemático para el ajuste de la capacidad predictiva de este.
- Definir un sistema de drenaje de la explotación a tajo abierto, en función de los resultados de la simulación de condiciones naturales, plan de minado y bombeo.

1.4. Marco teórico

A partir del empleo de modelos analógicos computacionales en la industria de hidrocarburos en Estados Unidos en 1930, se produjo un indicio para el surgimiento de modelos numéricos aplicados en el modelamiento de flujos subterráneos. Su primera aparición fue en 1960, y a partir de allí se fueron incorporando mejoras en los modelos numéricos para resolver las ecuaciones que describen el flujo de agua subterránea. A inicios de 1970, se dieron a conocer los modelos PLASM y USGS, que resolvían de manera tridimensional el modelo de flujo de agua subterránea basado en el método de diferencias finitas (Szczepiński, 2019). MODFLOW y FEFLOW permitieron la resolución de problemas complejos de agua subterránea (Brown & Trott, 2014), empleando el método de diferencias finitas y elementos finitos respectivamente.

Estos softwares son ampliamente utilizados en la industria minera (Szczepiński, 2019), y su importancia se debe a que se emplean en la resolución de problemas que se presentan en la planificación y desarrollo de sus proyectos. Los tres grandes problemas, asociados al flujo subterráneo, de un proyecto minero son: requerimiento de desagüe de minas, la estabilidad de taludes; y los impactos ambientales en los niveles de aguas subterráneas y su calidad durante las actividades mineras y posterior a estas (Martinez & Ugorets, 2010).

Los modelos numéricos hidrogeológicos son herramientas fundamentales para las proyecciones relacionadas con el agua y las operaciones mineras. En este contexto, se han presentado diversos casos de estudios, tanto en minería a cielo abierto y subterránea, basados en la simulación del flujo de agua subterránea.

En minería subterránea, los modelos de simulación son aplicados principalmente para la evaluación de impacto ambiental por la formación de reservorios subterráneos luego del cierre de minas (González-Quirós & Fernández-Álvarez, 2019), y para la planificación del sistema de drenaje de agua subterránea, teniendo en consideración el desarrollo de las operaciones (Surinaidu et al., 2014). Por otro lado, las aplicaciones en minería superficial son diversas y van desde: la predicción de la inundación de reservorios mineros en varias regiones de España y Estados Unidos (Álvarez et al., 2016; Hernández et al., 2012; Stone & Fontaine, 1998); la evaluación de riesgo de contaminación en aguas subterráneas en China y Australia (Zeng et al., 2018; Zhao et al., 2017); y hasta el drenaje de tajos abiertos en minas de lignito en Polonia (Peksezer-Sayit et al., 2015; Szczepiński, 2019).

En la tabla 1.1 y 1,2 se encuentran modelos matemáticos desarrollados en Ecuador, pese a que la aplicación de estos es variada, los estudios son escasos, y la mayoría de ellos se han limitado a la gestión de recursos hídricos. En pocos casos se ha llevado a cabo la evaluación del comportamiento de los embalses de relaves y el análisis de posibles impactos ambientales causadas por actividades petroleras y mineras.

La exactitud y precisión en las predicciones de los modelos numéricos está en función de la incertidumbre de los parámetros que se ingresan (Álvarez et al., 2016; Peksezer-Sayit et al., 2015). Por lo tanto, la sensibilidad debe evaluarse en el rango de confianza de los parámetros medidos a introducir en el modelo (Martinez et al., 2010). De acuerdo con Álvarez et al. (2016); Peksezer-Sayit et al. (2015); y el Servicio de Evaluación Ambiental del Gobierno de Chile (SEA, 2012), el análisis de sensibilidad es un proceso crucial en la construcción de un modelo para el ajuste de su capacidad predictiva. Los parámetros que más suelen analizarse en las simulaciones de flujo son: conductividad hidráulica, coeficiente de almacenamiento, altura hidráulica inicial, espesor de acuífero (Bahrami et al., 2014), recarga por precipitación e infiltración de arroyos (Fernández Álvarez et al., 2012).

La definición del mallado y su discretización horizontal depende del objetivo de modelamiento, la heterogeneidad del acuífero, la disposición de las fuentes, sumideros y zonas de alto gradiente, y sensibilidad ambiental. Por otro lado, la discretización vertical se define en función de los estratos tomados en cuenta en el modelo conceptual (SEA, 2012).

Según Álvarez et al. (2016); y Stone & Fontaine (1998), la discretización del mallado empleado en los simuladores debe estar en función de los parámetros más sensibles, es así que se presentan casos en el que la discretización se realiza conforme a la permeabilidad por zonas, de tal manera que permita el ajuste de las simulaciones locales y globales; así mismo, la discretización vertical puede ser establecida en función de parámetros como la geometría del tajo y las pendientes de la zona.

Estudio/Proyecto	Institución/ Autor(es)	Año	Tipo de modelo	Aplicación
Modelación del Acuífero Pusuquí-San Antonio de Pichincha	EPN/ Sandra Procel	2008	Modelo de flujo en régimen estacionario	Estudio del comportamiento del sistema acuífero y validar valores de parámetros hidrogeológicos
Hidrogeología y modelación del Acuífero Pifo-El Quinche	EPN/ Catalina Delgado	2008	Modelo de flujo en régimen estacionario	Estudio del comportamiento del sistema acuífero y validar valores de parámetros hidrogeológicos
Geología y análisis del Recurso Hídrico subterráneo de la Subcuenca del Sur de Quito	EPN/ Lilia Peñafiel	2009	Modelo de flujo en régimen estacionario	Estudio del comportamiento del sistema acuífero y validar valores de parámetros hidrogeológicos
Aplicación del modelo hidrogeológico para la determinación de las posibles afectaciones ambientales al agua subterránea y superficial, en la relavera El Quimi del Proyecto Minero Mirador	Dixon Elicio Briceño Martínez	2013	Modelo de flujo y transporte en régimen transitorio	Evaluación de impacto ambiental

Tabla 1.1 Modelos matemáticos hidrogeológicos desarrollados en Ecuador

Tabla 1.2 Modelos matemáticos hidrogeológicos desarrollados en Ecuador (Continuación)

Estudio/Proyecto	Institución/ Autor(es)	Año	Tipo de modelo	Aplicación
Evaluación de la intrusión salina en un acuífero costero y el impacto al suministro de agua potable en Manglaralto Provincia de Santa Elena	ESPOL/ Emilia Merino	2014	Modelo de flujo y transporte en régimen estacionario	Análisis de la intrusión salina en acuífero e impacto en el suministro de agua potable
Modelación de Flujo Subterráneo. Aplicación en la cuenca del Milagro Ecuador y análisis de pozo en subcuenca del Río Suquía	Universidad Nacional de Córdoba/Omar Yagual	2016	Modelo de flujo en régimen transitorio	Evaluación de capacidad y comportamiento de unidades acuíferas sometidas a explotación
Evaluación de un Modelo Hidrogeológico en una zona de almacenamiento de hidrocarburos	Universidad de Las Américas /Juan Francisco Narváez Poveda	2017	Modelo de flujo en régimen estacionario	Evaluar posible contaminación de aguas subterráneas
Estudio de Impacto Ambiental Complementario y Plan de Manejo Ambiental para la Fase de Beneficio de Minerales Metálicos, Proyecto Mirador.	EcuaCorriente S.A Proyecto Mirador Mirador	2019	Modelo de flujo en régimen estacionario	Estudio de impacto ambiental

CAPÍTULO 2

2. METODOLOGÍA

Para el desarrollo del presente proyecto se empleó una metodología que consta de cuatro fases: la primera fase se basó en la construcción del modelo conceptual a partir de la información tomada del SENACE de Perú de la geología, hidrogeología y los datos de la precipitación que permitieron realizar el balance hídrico; la segunda fase se basó en la construcción del modelo matemático de flujo de agua subterránea en régimen estacionario y transitorio, con su respectiva calibración; en la tercera fase se realizó un análisis de sensibilidad de los parámetros de entrada, se variaron diferentes parámetros hasta lograr un buen ajuste entre la piezometría medida y simulada registrada por 5 pozos de monitoreo ubicados dentro y fuera del tajo; y finalmente se realizaron las simulaciones de los diferentes escenarios de drenaje (Figura 2.1).

Figura 2.1 Metodología aplicada para el desarrollo del proyecto

2.1. Construcción de Modelo conceptual teórico

El modelo conceptual es una forma esquemática de simplificar las características más importantes del sistema acuífero sin perder su complejidad, a partir de condiciones hidrogeológicas que lo asemejan a la realidad (SEA, 2012). Para este trabajo, se elaboró un modelo conceptual teórico representando las condiciones geológicas e hidrogeológicas, geometría del acuífero, parámetros hidrogeológicos, entradas y salidas del sistema, piezometría y parámetros hidrodinámicos.

Al modelo inicial, se le adaptó una operación minera a tajo abierto con la finalidad de determinar la influencia del plan de minado en el sistema de aguas subterráneas, para esto se consideró el diseño y secuencia de explotación, y las alternativas de sistemas de drenaje.

Para la construcción del modelo conceptual, se realizó el siguiente procedimiento:

- Definir las unidades hidrogeológicas y tipo de acuífero.
- Definir los límites y geometría de unidades hidrogeológicas
- Identificar las entradas y salidas del balance hídrico: Precipitación, evapotranspiración, bombeo, recarga y escorrentía.
- Definir la piezometría e hidrodinámica de la zona: Conductividad hidráulica, porosidad, transmisividad y coeficiente de almacenamiento.

2.2. Construcción de Modelo Matemático con FEFLOW

Los modelos matemáticos permiten representar de forma simplificada la realidad, basándose en leyes físicas y expresiones matemáticas, ecuaciones lineales o diferenciales, etc.; estos pueden clasificarse en modelos analíticos y numéricos. El modelo numérico puede ser resuelto mediante métodos de diferencias o elementos finitos, y es aplicado en diferentes softwares de modelamiento. Cuando se realiza el modelo es fundamental el objetivo a plantearse, existen diferentes tipos de propósitos de simulación, los cuales pueden ser: interpretativos, de control y predictivos. El software elegido para el desarrollo del modelo propuesto fue FEFLOW v. 5.2 (Finite Element Subsurface Flow and Transport Simulation System), que resuelve la ecuación de Darcy y la ecuación de Richards mediante elementos finitos y sirve para la simulación hidrogeológica tridimensional de modelos de flujo y transporte, en medios saturados y no saturados.

Esta fase, se representaron los diferentes elementos del modelo conceptual definido, para lo cual discretizó el área de estudio en función de los datos disponibles, las condiciones iniciales y de contorno necesarias para la resolución de la ecuación diferencial de Darcy. Las condiciones de contorno utilizadas fueron: altura piezométrica constante (de primer orden o Dirichlet), flujo fijo (de segundo orden o Neumann), nivel de agua de referencia fijo con velocidad de transferencia adicional (de tercer orden o Cauchy).

Además, se emplearon otros parámetros para la construcción del modelo matemático, como:

- Límites, área, y geometría de la zona
- Discretización horizontal y vertical
- Condiciones de contorno
- Tipo de Modelo: Flujo Estacionario y Transitorio
- Tipo de problema: Medio saturado, agua subterránea
- Tipo de acuífero
- Parámetros: conductividad hidráulica, coeficiente de almacenamiento
- Pozos de observación

2.3. Análisis de Sensibilidad de Parámetros

En virtud de la revisión bibliográfica que se realizó, los parámetros de entrada utilizados generalmente para llevar acabo el análisis de sensibilidad del modelo fueron: conductividad hidráulica, coeficiente de almacenamiento, condiciones de contorno y la recarga. Para realizar este análisis, se definió un rango de variación para cada parámetro y se evaluó su influencia en los resultados del modelo.

2.4. Simulación de Escenarios

Una vez finalizado el desarrollo del modelo de flujo matemático para las condiciones iniciales, se efectuaron los escenarios de simulación para el análisis de los efectos ocasionados en el área del estudio, en diferentes etapas, por el desarrollo de la actividad minera. La simulación de estos escenarios es una herramienta importante para realizar la planificación y tomar decisiones cruciales para el proyecto.

- Simulación 1: Área de estudio en condiciones iniciales.
- Simulación 2: Diseño de Explotación minera en función del plan de minado.
- Simulación 3: Diseño de alternativas de métodos de drenaje.

CAPÍTULO 3

3. CONSTRUCCIÓN DEL MODELO HIDROGEOLÓGICO

Hasta la actualidad, en Ecuador los estudios hidrogeológicos para el sector minero no son desarrollados a profundidad, solo es posible encontrar información acerca de modelos conceptuales, y esta carece de detalles y es limitada.

Por otro lado, el Servicio Nacional de Certificación Ambiental para Inversiones Sostenibles (SENACE) del Gobierno de Perú, exige el desarrollo de modelos hidrogeológicos matemáticos para tramitar procesos de licenciamiento ambiental. A partir de esta información fue posible desarrollar el presente proyecto tomando como caso de estudio un proyecto de minería superficial a gran escala.

3.1. Modelo Conceptual

3.1.1. Unidades Hidrogeológicas

El área de estudio se encuentra dividida en ocho unidades hidrogeológicas, descritas en este apartado. La unidad hidrogeológica superficial corresponde a sedimentos compuestos por material fino y las unidades subyacentes están constituidas por lecho de roca. Las formaciones de rocas intrusivas son la unidad más frecuente en la zona (Figura 3.1). Cada una de las unidades se ha establecido de acuerdo con la distribución geológica de las capas y su respectiva conductividad hidráulica.

Con base en el emplazamiento de las unidades y sus propiedades hidráulicas, se identifican dentro del sistema tres acuíferos, dos de tipo libre y uno semiconfinado. Además, algunas de las unidades geológicas se agrupan en una unidad hidrogeológica como muestra la tabla 3.1.

3.1.1.1. Aluviales

La capa de material superficial está constituida por sedimentos predominantes de arenas granulares y gravas, que se extiende en el área de estudio como un depósito delgado sobre las formaciones yacentes de lecho rocoso dentro del sistema. Se representa como una unidad acuífera libre. Sus valores de saturación tienen un carácter variable. Presenta una conductividad hidráulica comprendida entre 7.78E-02 y 3.46 m/día.

3.1.1.2. Roca Volcánica

La unidad se localiza emplazada hacia la parte sur desde la ubicación del tajo. Presenta potencias de 20 m hasta más de 100 m. Esta capa actúa como la unidad semiconfinante del acuífero correspondiente al Paleocanal. Está formada por material volcánico piroclástico. Su conductividad hidráulica varía entre 8.64 E-03 y 4.32E-02 m/día.

3.1.1.3. Paleocanal

El material se extiende debajo de las rocas volcánicas como una unidad acuífera semiconfinada, con una transmisividad considerable. El depósito está formado principalmente por gravas y arenas del cuaternario y cuenta con zonas de conductos abiertos, a lo que se debe su capacidad hidráulica. Presenta una permeabilidad aproximada de 1.73E+02 m/día.

3.1.1.4. Rocas Intrusivas

Es la formación más dominante en el área de estudio y está compuesta de dioritas, granodioritas y varias monzonitas. En la zona del tajo, las rocas presentan un fracturamiento moderado, con espacios rellenos de arcilla. La unidad cuenta con una permeabilidad baja a media con valores entre 1.73E-04 y 1.73 m/día.

3.1.1.5. Intrusivos meteorizados y Skarn

Se encuentran en la zona de estudio, rocas intrusivas meteorizadas hasta casi 30 m de profundidad. Estas rocas tienen una mayor permeabilidad respecto a los intrusivos intactos, con un valor medio próximo a 1.81E-01 m/día.

Por otro lado, en el área se presentan escasas formaciones de Skarn en pocas partes al interior y en la zona perimetral del tajo contenidas en las unidades geológicas de las rocas intrusivas. La conductividad hidráulica tiene aproximadamente el mismo valor que el de las rocas intrusivas meteorizadas.

Con base en las propiedades hidráulicas y la ubicación de las dos formaciones, se consideran en una sola unidad hidrogeológica.

3.1.1.6. Calizas

Las rocas de esta formación se emplazan de manera predominante alrededor de la zona del tajo, delimitando su perímetro en casi un 70%. De acuerdo con sus parámetros hidrodinámicos se deduce la existencia de zonas con carstificación.

En la construcción del modelo conceptual, la unidad geológica se divide en calizas intactas y calizas cárstificadas. Las calizas cárstificadas se encuentran distribuidas por toda el área cerca del perímetro sur y este del tajo y se extienden hasta antes de los 3600 msnm. Las unidades cárstificadas que afloran en superficie y en contacto con los sedimentos aluviales se representan como un acuífero libre.

La conductividad hidráulica de las calizas intactas tiene una media geométrica de 7.78E-03 m/día y las calizas cárstificadas presentan un valor entre 4.32 y 1.73 E+02 m/día.

15

3.1.1.7. Sedimentos Clásticos

Los sedimentos de esta unidad se depositan encima de la formación de calizas. Los materiales de esta unidad se encuentran un poco alejado del área donde se ubica la infraestructura de mina y sobremina. Presentan una permeabilidad baja a media de 8,64 x 10 ⁻⁴ m/día asumida para el modelo conceptual.

Código	Unidades Geológicas	Unidad Hidrogeológica
UHG-01	Aluviales	Acuífero
UHG-02	Roca Volcánica	Acuitardo
UHG-03	Paleocanal	Acuífero
UHG-04	Rocas Intrusivas	Acuifugo
UHG-05	Intrusivos meteorizados + Skarn	Acuifugo
UHG-06	Caliza Intacta	Acuifugo
UHG-07	Caliza Cárstica	Acuífero
UHG-08	Sedimentos Clásticos	Acuícludo

Tabla 3.1 Unidades hidrogeológicas

3.1.2. Piezometría

Los niveles piezométricos, cuyos pozos se encuentran en rocas intrusivas, presentan generalmente una carga cercana a la superficie. Los niveles de piezómetros ubicados en zonas donde se emplazan las formaciones de calizas son más bajos. Esto último debido al efecto de carstificación presente en las unidades de roca caliza.

En el Apéndice A2 se muestran los niveles de agua registrados por piezómetros de alambre vibratorio y pozos de monitoreo, para las perforaciones realizadas en el área del tajo.

3.1.2.1. Pozos de Observación

En el área del tajo, para el control del agua subterránea se utilizó un sistema de 7 piezómetros ubicados en puntos distintos como se muestra en el mapa del Apéndice A1. Estos proporcionaron información de la carga y conductividad hidráulica de las diferentes unidades hidrogeológicas.

Se registraron variaciones estacionales de carga que fluctúan entre 5 y 130 m. Los piezómetros que presentan mayor fluctuación estacional están localizados en o cerca de las rocas calizas, lo que sugiere que esta unidad permite una recarga mayor que la formación de rocas intrusivas.

Además, el descenso gradual de los niveles en la mayoría de los piezómetros, indica que gran parte de las rocas son poco permeables. También se deduce, que la profundidad de la carstificación no se extiende demasiado.

3.1.3. Parámetros hidrodinámicos

Los parámetros hidrodinámicos correspondientes a cada unidad acuífera e hidrogeológica son definidos en las tablas 3.2 y 3.3; para las unidades acuíferas se presentan los valores de porosidad, transmisividad y coeficiente de almacenamiento. Además, la permeabilidad fue definida para todas las unidades hidrogeológicas.

A la unidad cárstica se le asignaron diferentes valores en sus propiedades hidrodinámicas de acuerdo con su grado de carstificación.

Código	Unidad	Hidrogeológica	Tipo de acuífero	Porosidad (%)	Conductividad (m/día)	Transmisividad (m²/día)	Coeficiente de Almacenamiento
UHG- 01	Acu	ífero Aluvial	Libre	25	5.70E-01	1.43E+01	1,60E-01
UHG- 03	Acuífe	ero Paleocanal	Semiconfinado	40	1.73E+02	5.18E+03	1,00E-01
UHG-	Acuífero	Moderadamente	Libro	15	4.33E+00	1.04E+03	5,00E-02
07	Cárstico	Altamente	Lible	20	1.73E+02	4.15E+04	1,00E-01

Tabla 3.2 Parámetros hidrodinámicos de las unidades acuíferas

Tabla 3.3 Parámetros hidrodinámicos de las unidades hidrogeológicas

Código	Unidad Hidrogeológica	Conductividad (m/s)	Conductividad (m/día)
UHG-02	Roca Volcánica	1.00E-07	8.64E-03
UHG-04	Intrusivos	1.50E-07	1.30E-02
UHG-06	Caliza Intacta	9.00E-08	7.78E-03
UHG-08	Sedimentos Clásticos	1.00E-08	8.64E-04

3.1.4. Balance Hídrico

Se desarrolló el balance hídrico mensual tomando para un año promedio, un año húmedo y uno seco, con el fin de determinar la recarga en la zona de interés; para esto, fueron calculados el exceso de humedad disponible para la infiltración hacia el agua subterránea y las reservas a partir de los datos de precipitaciones y evapotranspiración potencial (ETP).

3.1.4.1. Exceso de Humedad

La recarga ocurre durante los meses de diciembre a marzo para un año promedio, de diciembre hasta abril para un año húmedo y de enero hasta marzo en un año seco.

En el balance hídrico, La evapotranspiración potencial (ETP) se considera variable, desde 76% para un año promedio a un 85% durante uno húmedo y 70% para un año seco. La evapotranspiración real (ETR) está limitada a la disponibilidad de agua. Por otra parte, se tomó un almacenamiento del suelo de 100 mm, para representar la retención del agua en el suelo en épocas lluviosas. El exceso de humedad por escorrentía o infiltración tiene un valor calculado de 614 mm, 357 mm y 996 mm durante un año promedio, seco y húmedo, respectivamente.

3.1.4.2. Infiltración y escorrentía

En la tabla 3.4 se detallan las proporciones de precipitación neta que se vuelven escorrentía e infiltración en flujo de agua subterránea profunda o superficial para las calizas e intrusivos, dentro del balance hídrico para un año promedio. La tabla 3.5 contiene las proporciones para cuando el año es seco y húmedo.

 Tabla 3.4 Tasas de escorrentía e infiltración para un año promedio

	Escorrentía	Agua Subterránea Superficial	Agua Subterránea Profunda
Factores de Piedra Caliza	20%	60%	20%
Factores Intrusivos	76%	12%	12%

Tabla 3.5 Tabas ac escorrentia e minicación para ano seco y numero
--

	Año Seco			Año húmedo		
	Escorrentía	Agua Subterránea Superficial	Agua Subterránea Profunda	Escorrentía	Agua Subterránea Superficial	Agua Subterránea Profunda
Factores de Piedra Caliza	7%	60%	33%	25%	60%	15%
Factores Intrusivos	66%	17%	17%	80%	10%	10%

Figura 3.1 Modelo Conceptual del área de estudio

3.2. Modelo Matemático

Se realizó un modelo de elementos finitos para la representación del flujo de agua subterránea de las distintas áreas dentro de una explotación a tajo abierto. El modelo fue utilizado como base para la predicción de los descensos de niveles piezométricos en el área debido al desarrollo de un tajo.

3.2.1. Extensión y Descripción del Modelo

Se delimitó la zona de acuerdo con las condiciones de contorno definidas por las características de los materiales geológicos y la presencia del río. Las formaciones presentes en los límites del área de estudio corresponden a rocas intrusivas y a sedimentos cretácicos de la Formación Mara y Soraya los cuales presentan una permeabilidad casi nula.

El modelo abarca un área de 45.798 km² y comprende la explotación de un tajo abierto que tiene una vida útil de 15 años, este tiene una superficie de 3.166 km².

La malla de elementos finitos fue discretizada de forma horizontal por una red de 2340 nodos y 3201 elementos (figura 3.3); con estos parámetros se

obtuvo un error del 2.4% para el modelo estacionario de septiembre del 2009 considerando un acuífero superficial libre.

Para el modelo de flujo se realizó una discretización vertical de cuatro capas que corresponden a: (1) Volcánicos, (2) Paleocanal, (3) Intrusivos y (4) Calizas cársticas; se le asignó a cada una de estas capas un espesor de 50 m, 30 m, 1820 m y 1897 m respectivamente. Las unidades con espesores menores a 15 cm como los aluviales no se tomaron en cuenta dentro de las capas del modelo matemático, por ser considerados valores despreciables en el cálculo numérico.

Figura 3.2 Discretización del modelo de flujo matemático

3.2.2. Condiciones de Borde

Las condiciones de borde establecidas para el modelo son de primer orden (figura 3.3). El borde noroeste está definido por una divisoria de agua subterránea, a la que se le asignó una carga constante de 4400 m, y al borde sureste le corresponde una carga hidráulica constante de 3700 m.

Figura 3.3 Condiciones de borde

3.2.3. Recarga Superficial

La recarga aplicada en la primera capa fue zonificada considerando los valores obtenidos en el balance hídrico, como se muestra en la figura 3.4, para simular la infiltración de la precipitación en las capas aflorantes. En las unidades intrusivas y volcánicas se consideró una recarga de 161 mm/año y en las calizas 211 mm/año.

Figura 3.4 Zonificación de la recarga superficial

3.2.4. Conductividad Hidráulica

Las conductividades hidráulicas descritas en el modelo conceptual fueron consideradas para la construcción del modelo matemático. Las calizas presentaron una conductividad hidráulica más elevada que las rocas intrusivas, volcánicas y clásticas, en cada una de las unidades hidrogeológicas se asumió un comportamiento isótropo.

En la tabla 3.6 se muestran los valores de conductividad hidráulica asignados a las capas del modelo para su respectivo ajuste.

Entidod	٦D	Unidad	Conductividad Hidráulica		
Entidad	U	geológica	Medida (m/s)	Simulada (m/s)	
	1	Roca Volcánica	1.00E-07	9.00E-08	
Сара	2	Paleocanal	2.00E-03	2.00E-04	
	3	Calizas 9.00E-08		5.01E-05	
	4	Intrusivos	1.50E-07	9.00E-08	
Zonas	5	Aluviales 6.60E-06		6.60E-06	
	6	Calizas cárstificadas	-	2.00E-4	

Tabla 3.6 Conductividad hidráulica ajustada

Para la asignación de las conductividades hidráulicas en el modelo matemático, se tomaron en cuenta las unidades de mayor extensión y potencia, las rocas intrusivas y las calizas cársticas. Esta propiedad fue asignada por zonas en las distintas capas del modelo, respetando el emplazamiento de cada unidad hidrogeológica; esto se muestra en las figuras 3.5, 3.6 y 3.7.

Figura 3.5 Conductividades hidráulicas asignadas a la capa 1

Figura 3.6 Conductividades hidráulicas asignadas a la capa 2

Figura 3.7 Conductividades hidráulicas asignadas a la capa 3

3.2.5. Piezometría

3.2.5.1. Piezometría medida

Dentro de la zona de estudio se encuentran 33 pozos de monitoreo, estos fueron empleados para conocer los niveles piezométricos medidos. En la figura 3.8, se observa el rango de piezometría, donde en el límite noroeste toma valores de 4228 msnm y en el límite sureste de 3698 msnm, lo que significa que el agua fluye en sentido noroeste-sureste.

Figura 3.8 Distribución de la piezometría en condiciones iniciales

La piezometría medida tiene un comportamiento casi constante a lo largo del año, presenta variaciones muy pequeñas como se muestra en las figuras 3.13 y 3.14.

3.2.5.2. Piezometría Simulada

Calibración en régimen estacionario

La fase de calibración tuvo como objetivo reproducir el comportamiento de la zona de estudio, de forma que los valores de piezometría simulados se asemejen a los valores medidos. Este proceso fue llevado a cabo manualmente a partir de la variación de la recarga y la conductividad hidráulica de las capas, siendo esta última variación la que tuvo un mejor ajuste como se muestra en la figura 3.9.

Se obtuvo un coeficiente de correlación de 0.90 y un error estimado estándar de 56.35 m entre los valores medidos y simulados.

Además, los valores de la piezometría simulada tienen un rango entre 3700 y 4466 msnm como se aprecia en la figura 3.10; se registran mayores niveles piezométricos en la zona noroeste, lo que indica que el sentido del flujo de agua subterránea tiene una dirección NW-SE.

Figura 3.10 Distribución de la piezometría simulada

Balance hídrico

El balance hídrico para el mes de septiembre en un año promedio en la zona de estudio corresponde a la figura 3.11, se puede observar que se presentó un superávit. Además, se presentan las entradas y salidas del modelo en la tabla 3.7.

Figura 3.11 Balance hídrico en estacionario (Septiembre, 2009)

Parámatros	Cau	dal		
Farametros	m3/d	L/s		
Recarga	23088.75	267.232		
Flujo entrante	9473.507	109.647		
Entradas	32562.257	376.879		
Drenaje del tajo	0	0.000		
Flujo saliente	32562.24	376.879		
Salidas	32562.24	376.879		
Balance	0.017	0.0002		

Tabla 3.7 Balance hídrico en estacionario (Septiembre, 2009)

Calibración en Régimen transitorio

Para el régimen transitorio, se emplearon datos de recarga de enero a diciembre del año 2009; se registraron en los pozos de monitoreo valores simulados correspondiente a la piezometría, estos se encuentran en un rango de 3700 a 4427 msnm (Figura 3.12). Al igual que en el régimen estacionario, se observa un mayor nivel en la zona noroeste.

Figura 3.12 Distribución de la piezometría en régimen transitorio

Los resultados de la simulación de la piezometría en el régimen transitorio fueron comparados con los valores medidos, estos presentan una mínima variación y un comportamiento muy similar a lo largo del año (Figuras 3.13 y 3.14). La carga registrada por estos tiene un comportamiento constante a lo largo del año; con excepción al pozo 4, cuyos niveles incrementan desde enero a mayo y disminuyen a partir de este último.

Figura 3.13 Niveles de piezometría medidos y simulados en régimen transitorio

Figura 3.14 Niveles de piezometría medidos y simulados en régimen transitorio (Continuación)

Balance hídrico

Según el balance hídrico realizado en régimen transitorio, en condiciones naturales la zona presenta un superávit de agua de 0.015 m³ diarios (Figura 3.15)

Figura 3.15 Balance hídrico en régimen transitorio

CAPÍTULO 4

4. RESULTADOS Y ANÁLISIS

Análisis de sensibilidad

Para realizar el análisis de sensibilidad se tomó como parámetro de variación el coeficiente de almacenamiento de las unidades acuíferas, se analizó el comportamiento de la piezometría a través de 5 pozos de monitoreo correspondientes a las zonas altas, medias y bajas del área de estudio. En los siguientes gráficos se muestra la variación de la piezometría a través del tiempo para diferentes coeficientes de almacenamiento (S), se han denotado 4 casos diferentes de variación:

- 1. Acuífero libre (S= 1E-02)
- 2. Acuífero semiconfinado; (S= 1E-04)
- 3. Acuífero libre (S= 1E-02) y zona del tajo como acuífero confinado (S= 1E-05)
- Acuífero libre (S= 1E-02) y zona del tajo como acuífero semiconfinado (S= 1E-04)

La piezometría en la zona intermedia y alta del tajo, pozos 4 y 9 respectivamente (Figura 4.1 y 4.3), no presentan una variación significativa al tener diferentes valores de coeficientes de almacenamiento; mientas que, en la zona baja del mismo (pozo 5; figura 4.2) se observan variaciones bruscas de los niveles de agua. Este mismo comportamiento se replica en toda el área de estudio, donde en la zona baja (pozo 10; Figura 4.4) existe mucha variación y en la zona alta (pozo 17; Figura 4.5) se mantiene un comportamiento casi constante.

De acuerdo con los casos estudiados, el que mejor se ajusta para la simulación del modelo corresponde al escenario 3, donde se representa a la zona del tajo como un acuífero confinado con coeficiente de almacenamiento de 1E-05. Esto concuerda con la disposición de las unidades hidrogeológicas dentro de la explotación, donde se encuentra la unidad confinante de los intrusivos sobre el acuífero cárstico.

El ajuste de los valores simulados con los medidos es menor en varios puntos debido a las características complejas que presentan las unidades cársticas por su alta anisotropía.

Figura 4.1 Variación de la piezometría en el tiempo (Pozo 4)

Figura 4.2 Variación de la piezometría en el tiempo (Pozo 5)

Figura 4.3 Variación de la piezometría en el tiempo (Pozo 9)

Figura 4.4 Variación de la piezometría en el tiempo (Pozo 10)

Figura 4.5 Variación de la piezometría en el tiempo (Pozo 17)

Simulación en Condiciones Naturales

Para la simulación en condiciones naturales, se obtuvo un balance hídrico positivo (Tabla 4.1); además, la recarga presentada en el balance hídrico representa el 15% de la precipitación de un año promedio. Se observa el flujo de salida, de 32568 m³ por día, en la parte sureste del área de estudio y en una pequeña sección del borde noroeste, como indica la Figura 4.6.

Se puede interpretar que, debido a que fueron definidos dos límites impermeables, la única vía de salida del agua es el límite definido por el río y una pequeña área en el borde suroeste.

Parámetros	Caudal				
i didineti os	m³/d	L/s			
Recarga	23088.75	267.232			
Flujo entrante	9479.985	109.722			
Entradas	32568.735	376.954			
Drenaje del tajo	0	0			
Flujo saliente	32568.72	376.954			
Salidas	32568.72	376.954			
Balance	0.015	0.0002			

Tabla 4.1 Balance hídrico en régimen transitorio

Figura 4.6 Flujos de entrada y salida en régimen transitorio

Escenario 1: Avance de la explotación minera a 15 años con 23 pozos de 15 l/s

Figura 4.7 Descenso de la piezometría en el escenario de drenaje 1

Al simular un sistema de drenaje con 23 pozos se extrajo un caudal de 357 L/s; se observan zonas de depresión con niveles piezométricos similares, esto se debe a la intersección de los radios de influencia de los pozos (Figura 4.7).

Se obtuvo un descenso de los niveles piezométricos en varias zonas del tajo, donde el nivel más bajo alcanzado fue de 3581 m; sin embargo, en el área donde el fondo de la explotación llega a 3540 m, los niveles piezométricos se encuentran por encima de esta cota.

Se observa que la dirección del flujo es perturbada en las proximidades del tajo, esto se debe al sistema de drenaje empleado; sin embargo, el flujo no cambia su punto de descarga.

El balance hídrico en estas condiciones (Tabla 4.2 y Figura 4.8) muestra que en la zona de estudio se tiene un déficit de 1718.4298 L/s.

Parámetros	Caudal					
r arametros	m³/d	L/s				
Recarga	15763	182.443				
Flujo entrante	7901	91.447				
Entradas	23664	273.890				
Drenaje del tajo	30895	357.582				
Flujo saliente	141241	1634.737				
Salidas	172136	1992.319				
Balance	-148472	-1718.4298				

Tabla 4.2 Balance hídrico del escenario de drenaje 1

Figura 4.8 Balance hídrico del escenario de drenaje 1

Escenario 2: Avance de la explotación minera a 15 años con 34 pozos de 15 L/s

Figura 4.9 Descenso de la piezometría en el escenario de drenaje 2

Al simular un sistema de drenaje conformado por 32 pozos, el caudal extraído fue 500 L/s. Se añadieron otros pozos al primer escenario, para aumentar la intersección entre los radios de influencia y disminuir los niveles piezométricos en la zona más baja de explotación (Figura 4.9); sin embargo, no se obtuvo una mejora, el agua aumentó 2 m sobre el nivel del escenario anterior. Una posible explicación a este comportamiento es que puede estar relacionado con la carstificación de la zona

Al igual que en el escenario anterior, no se evidencia una perturbación en la zona de descarga del flujo, pero se presenta un cambio en su dirección en la altura del tajo.

Al analizar la simulación del escenario 2, se notó que el nivel del agua en la zona sureste aumentó de 94 metros en los 15 años de explotación.

El balance hídrico en estas condiciones (Tabla 4.3 y Figura 4.10) muestra que en la zona de estudio se tiene un déficit de 1802.122 L/s.

Parámotros	Caudal				
Falametios	m3/d	L/s			
Recarga	15763	182.443			
Flujo entrante	7901	91.447			
Entradas	23664	273.890			
Drenaje del tajo	30895	357.582			
Flujo saliente	148472	1718.430			
Salidas	179367	2076.012			
Balance	-155703	-1802.122			

Tabla 4.3 Balance hídrico del escenario de drenaje 2

Figura 4.10 Balance hídrico del escenario de drenaje 2

Comparación de escenarios de drenaje

Al analizar la tabla 4.4, se observa que el modelo en régimen estacionario y transitorio tienen una mayor recarga que en los escenarios donde se simuló el avance de la explotación, esto sucede ya que al remover material se genera una variación en el régimen de recarga y una infiltración restringida.

De acuerdo con el análisis de los escenarios de drenaje planteados, se determinó que la mejor alternativa es el escenario que cuenta con 23 pozos de bombeo debido al descenso obtenido en el nivel piezométrico, este presentó un radio de influencia que solo abarca el área minera y de esta forma no afectaría a poblaciones aledañas que pudieran depender de este recurso. Además, implementar esta alternativa presentaría un menor costo en comparación con el otro escenario.

Componentes del	Modelo	Modelo	Escenario	Escenario
Balance [m ³ /d]	estacionario	transitorio	1	2
Recarga	23088.75	23088.75	15763	15763
Flujo entrante	9473.507	9479.985	7901	7901
Entradas	32562.257	32568.735	23664	23664
Drenaje del tajo	0	0	30895	43177
Flujo saliente	32562.24	32568.72	141241	193627
Salidas	32562.24	32568.72	172136	236804
Balance	0.017	0.015	-148472	-213140

Tabla 4.4 Comparación del balance hídrico para diferentes escenarios

Dentro de los costos del sistema de bombeo se contemplaron los costos de instalación, materiales, equipos y herramientas utilizados, obteniendo un valor de \$404,432.00 para el escenario 1 y \$597,856.00 para el escenario 2 de drenaje (Apéndice C 3.1 y C 3.2).

Además, fue posible determinar el ahorro del proyecto comparando con el sistema implementado para el drenaje al no realizar un modelamiento hidrogeológico. De acuerdo con la información consultada del SENACE, el área del tajo utiliza 40 pozos y es posible reducir el número a 23 con la simulación, obteniendo un ahorro del 43%.

CAPÍTULO 5

5. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

El presente estudio permitió el diseño de un modelo matemático de agua subterránea en un tajo abierto utilizando el software FEFLOW v 5.2, considerando información publicada por el SENACE del Gobierno de Perú, para la simulación de escenarios de drenaje en las labores mineras.

El análisis de los parámetros geológicos, hidrogeológicos y el balance hídrico permitieron desarrollar el modelo conceptual de la zona, que consta de 8 unidades hidrogeológicas, destacando las calizas cársticas y las rocas intrusivas como las unidades de mayor potencia y extensión.

A partir del balance hídrico del área se obtuvo una recarga del 15% de la precipitación en un año promedio, con tasas de infiltración del 80% en los afloramientos de calizas y un 76% en los intrusivos.

Se logró construir el modelo matemático a partir de las condiciones de contorno definidas por los límites hidrogeológicos del área, que comprende una superficie de 46 km²; fue empleada una discretización horizontal de 3201 elementos y 2340 nodos, y una discretización vertical de 4 capas que corresponden a las unidades hidrogeológicas de mayor potencia y extensión. El error de la malla empleada en el modelo matemático fue de 2.4%.

Se realizó la calibración manual del modelo a partir de la variación de la conductividad hidráulica y se obtuvo un coeficiente de correlación del 90% entre la piezometría medida y simulada, de esta forma se asegura la capacidad predictiva del modelo.

A partir del análisis de sensibilidad llevado a cabo, se determinó que la variación del coeficiente de almacenamiento tiene una alta influencia en la simulación de

los niveles piezométricos; se definieron diferentes escenarios donde se varió este parámetro y se obtuvo un mejor ajuste del modelo al considerar a la unidad cárstica como un acuífero libre y a la zona del tajo como un acuífero confinado.

Con base en la simulación de condiciones naturales y el plan de minado, se realizaron 2 escenarios de drenaje, con 23 y 34 pozos respectivamente, para descender el nivel piezométrico hasta el final de la explotación. En ambos escenarios no se observó un cambio significativo en la dirección del flujo del área total. Se consideró, a partir del análisis de los descensos y los costos de instalación, a la alternativa 1 de bombeo como la opción más viable.

El escenario de drenaje escogido tiene un costo de \$404,432.00, lo que representa un 43% de ahorro respecto a un sistema que es implementado tradicionalmente en las explotaciones a tajo abierto.

5.2. Recomendaciones

Se sugiere realizar, en estudios posteriores, el modelamiento incluyendo el botadero y la relavera para determinar la influencia de la explotación minera en la zona de estudio.

Se recomienda realizar una calibración rigurosa que permitan al modelo ajustarse a las condiciones complejas que presenta la zona de estudio.

Se sugiere realizar una malla de elementos finitos con un número considerable de nodos, de esta forma se tendrá un menor error al obtener las aproximaciones del modelo. Además, es importante realizar un refinamiento de la malla en las zonas de mayor interés o que poseen mayor complejidad.

Es recomendable, para realizar un drenaje óptimo, el empleo de drenes horizontales adicionales al sistema de bombeo propuesto que permitan asegurar la extracción total del agua en las labores mineras.

BIBLIOGRAFÍA

- Álvarez, R., Ordóñez, A., De Miguel, E., & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. *Journal of Environmental Management*, *184*, 219–228. https://doi.org/10.1016/j.jenvman.2016.09.072
- Bahrami, S., Doulati Ardejani, F., Aslani, S., & Baafi, E. (2014). Numerical modelling of the groundwater inflow to an advancing open pit mine: Kolahdarvazeh pit, Central Iran. *Environmental Monitoring and Assessment*, *186*(12), 8573–8585. https://doi.org/10.1007/s10661-014-4025-x
- Brown, K., & Trott, S. (2014). Grundwassermodellierung bei Tagebauprojekten: Was gilt es zu verbessern? *Mine Water and the Environment*, 33(2), 187–190. https://doi.org/10.1007/s10230-014-0270-z
- Fernández Álvarez, J. P., Álvarez Álvarez, L., & Díaz Noriega, R. (2012). Groundwater Numerical Simulation in an Open Pit Mine in a Limestone Formation Using MODFLOW. *Mine Water and the Environment, June*. https://doi.org/10.1007/s10230-015-0334-8
- González-Quirós, A., & Fernández-Álvarez, J. P. (2019). Conceptualization and finite element groundwater flow modeling of a flooded underground mine reservoir in the Asturian Coal Basin, Spain. *Journal of Hydrology*, *578*(August). https://doi.org/10.1016/j.jhydrol.2019.124036
- Hernández, J. H., Padilla, F., Juncosa, R., Vellando, P. R., & Fernández, álvaro.
 (2012). A numerical solution to integrated water flows: Application to the flooding of an open pit mine at the Barcés river catchment - La Coruña, Spain. *Journal of Hydrology*, 472–473, 328–339. https://doi.org/10.1016/j.jhydrol.2012.09.040
- Herrera, J. (2009). Introducción al Drenaje de Explotaciones.
- Martinez, C., Pereira, C., & Hoz, K. D. la. (2010). Groundwater Flow Modelling Applications in Mining: Scopes and Limitations. *IMWA Symposium*, *May*, 349–353.
- Martinez, C., & Ugorets, V. (2010). Use of Numerical Groundwater Modelling for Mine Dewatering Assessment. *Wim 2010*, 10.

- Martínez Rincón, C. M. (2018). Modelo hidrogeológico conceptual y matemático para el municipio de Castilla La Nueva, ubicado en el departamento del Meta. In *Gastrointestinal Endoscopy* (Vol. 10, Issue 1). https://doi.org/10.1542/peds.2006-2099
- Pedrollo. (2020). *Catálogo de bombas sumergibles Pedrollo*. 222–235. https://www.pedrollo.com/public/allegati/6SR_ES_60Hz.pdf
- Peksezer-Sayit, A., Cankara-Kadioglu, C., & Yazicigil, H. (2015). Assessment of Dewatering Requirements and their Anticipated Effects on Groundwater Resources: A case Study from the Caldag NickeMine, Western turkey. *Mine Water and the Environment*, 34(2), 122–135. https://doi.org/10.1007/s10230-014-0306-4
- Rapantova, N., Grmela, A., Vojtek, D., Halir, J., & Michalek, B. (2007). Ground water flow modelling applications in mining hydrogeology. *Mine Water and the Environment*, 26(4), 264–270. https://doi.org/10.1007/s10230-007-0017-1
- Servicio de Evaluación Ambiental del Gobierno de Chile. (2012). *Guía para el uso de modelos de aguas subterráneas en el Sistema Evaluación de Impacto Ambiental* (Servicio de Evaluación Ambiental (ed.)).
- SNC Lavalin Perú. (2016). Estudio de las unidades hidrograficas de la unidad minera Las Bambas. http://ceropapel.senace.gob.pe/share/s/Et_OdrkiSPyNQRNCG6j5jg
- Stone, D. B., & Fontaine, R. C. (1998). Simulation of groundwater fluxes during open-pit filling and under steady state pit lake conditions. *Proceedings of the 1998 Conference on Hazardous Waste Research*, 303, 32–42.
- Surinaidu, L., Gurunadha Rao, V. V. S., Srinivasa Rao, N., & Srinu, S. (2014).
 Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. *Water Resources and Industry*, 7–8, 49–65.
 https://doi.org/10.1016/j.wri.2014.10.002
- Szczepiński, J. (2019). The significance of groundwater flow modeling study for simulation of opencast mine dewatering, flooding, and the environmental impact. *Water (Switzerland)*, *11*(4). https://doi.org/10.3390/w11040848

Zeng, B., Zhang, Z. X., & Yang, M. (2018). Risk assessment of groundwater with multi-

source pollution by a long-term monitoring programme for a large mining area. *International Biodeterioration and Biodegradation*, *128*, 100–108. https://doi.org/10.1016/j.ibiod.2017.01.002

Zhao, L., Ren, T., & Wang, N. (2017). Groundwater impact of open cut coal mine and an assessment methodology: A case study in NSW. International Journal of Mining Science and Technology, 27(5), 861–866. https://doi.org/10.1016/j.ijmst.2017.07.008

APÉNDICES

Apéndice A

Apéndice A1. Información de piezometría del área de estudio

Apéndice A 1.1 Ubicación de los pozos de monitoreo

MAPA DE UBICACIÓN DE POZOS DE MONITOREO

Pozo	Este (m)	Norte (m)	Piezometría (m)
1	9548	5119	3875.262
2	9874	4895	3880.92
3	9924	4548	3885.794
4	10001	4023	3741.806
5	9080	4788	3952.037
6	9919	3750	3756.363
7	9905	3782	3763.055
8	12857	1752	3697.287
9	11236	2487	3723.85
10	9977	4626	3916.172
11	9870	2568	3697.317
12	7658	4596	3832.746
13	8033	4341	3821.4
14	6459	5784	4072.236
15	6327	6019	4100.484
16	3373	4441	4233.411
17	3554	4583	4209.505
18	3501	4627	4207.758
19	3576	4610	4204.33
20	3521	4662	4201.449
21	3850	4670	4158.12
22	3842	4959	4162.086
23	6893	5502	4086.782
24	6201	4836	3937.063
25	6519	4456	3956.55
26	7529	4628	3849.216
27	6227	3870	4005.206
28	5350	3465	4046.193
29	4877	3733	4050.729
30	7103	4739	3873.772
31	3998	4461	4142.47
32	5867	3356	4054.581
33	8148	4321	3821.655

Apéndice A 1.2Tabla de datos piezométricos

Apéndice A 1.3 Tabla de piezometría medida y simulada en estacionario

Pozo	Piezon	netría (m)			
1 0 2 0	Medida	Simulada			
1	3875.262	3712.65967			
2	3880.92	3711.5061			
3	3885.794	3711.49878			
4	3741.806	3707.88062			
5	3952.037	3705.90894			
6	3756.363	3714.93237			
7	3763.055	3715.34741			
8	3697.287	3700.41821			
9	3723.85	3701.10083			
10	3916.172	3710.07886			
11	3724.586	3700.74487			
12	3735.191	3702.51123			
13	3763.501	3702.50806			
14	3697.317	3701.58057			
15	3832.746	3705.56494			
16	3821.4	3705.41626			
17	4072.236	3824.54639			
18	4100.484	3838.03931			
19	4233.411	4163.80127			
20	4209.505	4157.15283			
21	4207.758	4159.10254			
22	4204.33	4156.34033			
23	4201.449	4158.33887			
24	4158.12	4140.33545			
25	4162.086	4144.80957			
26	4086.782	3772.81445			
27	3937.063	3876.42822			
28	3956.55	3805.43311			
29	3849.216	3705.4375			
30	4005.206	3821.21289			
31	4046.193	3939.25806			
32	4050.729	4025.87085			
33	3873.772	3746.93774			
34	4142.47	4128.5708			
35	4054.581	3834.89063			
36	3821.655	3705.44556			

Pozo	Tiempo	Piezometría (m)				
F 020	(días)	Medida	Simulada			
4	0	3949.000	3805.649			
4	30	3975.000	3810.411			
4	60	3995.000	3813.290			
4	90	4010.000	3814.792			
4	120	4002.000	3815.189			
4	150	3990.000	3814.933			
4	180	3980.000	3814.207			
4	210	3970.000	3813.148			
4	240	-	3811.856			
4	270	-	3810.403			
4	300	-	3808.846			
4	330	-	3807.217			
4	360	-	3805.586			
6	0	-	3786.007			
6	30	-	3782.310			
6	60	-	3778.238			
6	90	-	3774.320			
6	120	-	3770.869			
6	150	-	3768.095			
6	180	3769.000	3765.924			
6	210	3768.000	3764.226			
6	240	3767.000	3762.884			
6	270	3763.000	3761.806			
6	300	3762.000	3760.923			
6	330	3761.000	3760.182			
6	360	-	3759.582			
7	0	3699.000	3700.094			
7	30	3699.200	3700.041			
7	60	3699.400	3700.024			
7	90	3699.600	3700.018			
7	120	3699.800	3700.014			
7	150	3700.000	3700.012			
7	180	-	3700.010			
7	210	-	3700.009			
7	240	-	3700.008			
7	270	-	3700.008			
7	300	-	3700.007			
7	330	-	3700.007			
7	360		3700.006			

Apéndice A 1.4 Tabla de piezometría medida y simulada en transitorio

Apéndice A 1.5 Piezometría medida y simulada en transitorio (Continuación)

Pozo Tiempo		Piezom	etría (m)
F020	(días)	Medida	Simulada
8	0	3720.000	3743.531
8	30	3725.000	3720.321
8	60	3726.000	3712.303
8	90	3730.000	3708.899
8	120	3728.000	3707.121
8	150	3727.000	3706.037
8	180	-	3705.298
8	210	-	3704.751
8	240	-	3704.323
8	270	-	3703.978
8	300	-	3703.688
8	330	-	3703.442
8	360	-	3703.244
9	0	3915.000	3792.260
9	30	3940.000	3791.843
9	60	3950.000	3791.377
9	90	3950.000	3790.933
9	120	3949.900	3790.444
9	150	3949.000	3790.021
9	180	-	3789.664
9	210	-	3789.361
9	240	-	3789.103
9	270	-	3788.880
9	300	-	3788.685
9	330	-	3788.511
9	360	-	3788.389
10	0	-	3779.012
10	30	-	3741.622
10	60	-	3725.593
10	90	-	3718.508
10	120	-	3714.782
10	150	-	3712.536
10	180	3710.000	3711.001
10	210	3700.000	3709.858
10	240	3699.000	3708.952
10	270	3699.300	3708.204
10	300	3699.500	3707.571
10	330	3699.700	3707.027
10	360	3698.000	3706.575

Apéndice A 1.6 Piezometría medida y simulada en transitorio (Continuación)

Bozo	Tiempo	Piezometría (m)			
F020	(días)	Medida	Simulada		
11	0	-	3819.863		
11	30	-	3818.814		
11	60	-	3819.118		
11	90	-	3819.627		
11	120	3804.000	3819.658		
11	150	3804.000	3819.285		
11	180	3804.000	3818.704		
11	210	3804.000	3817.727		
11	240	3804.000	3816.460		
11	270	3804.000	3814.960		
11	300	3804.000	3813.347		
11	330	3804.000	3811.548		
11	360	3804.000	3809.734		
12	0	-	3905.135		
12	30	-	3905.377		
12	60	-	3905.489		
12	90	-	3905.560		
12	120	4057.000	3905.559		
12	150	4057.000	3905.551		
12	180	4057.000	3905.540		
12	210	4057.000	3905.528		
12	240	4057.000	3905.515		
12	270	4057.000	3905.500		
12	300	4057.000	3905.484		
12	330	4057.000	3905.468		
12	360	4057.000	3905.469		
14	0	-	4158.296		
14	30	-	4158.381		
14	60	-	4158.479		
14	90	-	4158.584		
14	120	4238.000	4158.678		
14	150	4237.000	4158.775		
14	180	4236.000	4158.873		
14	210	4237.000	4158.972		
14	240	4237.000	4159.072		
14	270	4236.000	4159.172		
14	300	4235.000	4159.272		
14	330	4234.000	4159.373		
14	360	4233.000	4159.478		

Apéndice B

Apéndice B1. Balance Hídrico

		Delesses	In failure a		~ ~ _	
Abendice B	1.1	Balance	niarico	bara un	ano	promedio

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total	%
Precipitación	258	234	218	67	12	6	6	11	33	77	133	187	1242	100
ETP	59	48	48	62	82	88	97	107	95	98	90	76	950	
ETR	59	48	48	62	82	36	6	11	33	77	90	76	628	50,56
Déficit	0	0	0	0	0	52	91	96	62	21	0	0	322	
Reserva	100	100	100	100	30	0	0	0	0	0	43	100		
Excedentes	199	186	170	5	0	0	0	0	0	0	0	54	614	49,44

Apéndice B 1.2 Balance hídrico para un año húmedo

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total	%
Precipitación	358	325	303	93	16	8	8	16	46	107	185	260	1725	100
ETP	66	54	54	69	91	98	108	119	106	109	100	85	1059	
ETR	66	54	54	69	91	33	8	16	46	107	100	85	729	58,70
Déficit	0	0	0	0	0	65	100	103	60	2	0	0	330	
Reserva	100	100	100	100	25	0	0	0	0	0	85	100		
Excedentes	292	271	249	24	0	0	0	0	0	0	0	160	996	80,19

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total	%
Precipitación	188	171	159	49	9	4	4	8	24	56	98	137	907	100
ETP	72	44	45	49	9	4	4	8	24	56	98	137	550	
ETR	72	44	45	49	9	4	4	8	24	56	98	137	550	44,28
Déficit	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reserva	100	100	100	100	100	100	100	100	100	100	100	100		
Excedentes	116	127	114	0	0	0	0	0	0	0	0	0	357	28,74

Apéndice B 1.3 Balance hídrico para un año seco

Apéndice B2. Tasas de Recarga

		Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
	Precipitación	258	234	218	67	12	6	6	11	33	77	133	187	1242
	ETP	59	48	48	62	82	88	97	107	95	98	90	76	950
	Excedentes	199	186	170	5	0	0	0	0	0	0	0	54	614
	Escorrentía	39,8	37,2	34	1	0	0	0	0	0	0	0	10,8	122,8
Calizas -	Basamento Poco Profundo	119,4	111,6	102	3	0	0	0	0	0	0	0	32,4	368,4
(mm)	Basamento Profundo	39,8	37,2	34	1	0	0	0	0	0	0	0	10,8	122,8
~ /	Agua Subterránea Total	159.2	148.8	136	4	0	0	0	0	0	0	0	43.2	491.2
	Escorrentía	151,24	141,36	129,2	3,8	0	0	0	0	0	0	0	41,04	466,64
Intrusivos-	Basamento Poco Profundo	23,88	22,32	20,4	0,6	0	0	0	0	0	0	0	6,48	73,68
(mm)	Basamento Profundo	23,88	22,32	20,4	0,6	0	0	0	0	0	0	0	6,48	73,68
· · /	Agua Subterránea Total	47.76	35.712	32.64	0.96	0	0	0	0	0	0	0	10.368	117.88

Apéndice B 2.1 Recargas para un año promedio

		Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
	Precipitación	358	325	303	93	16	8	8	16	46	107	185	260	1725
	ETP	66	54	54	69	91	98	108	119	106	109	100	85	1059
	Excedentes	292	271	249	24	0	0	0	0	0	0	0	160	996
	Escorrentía	73	67,75	62,25	6	0	0	0	0	0	0	0	40	249
Calizas -	Basamento Poco Profundo	175,2	162,6	149,4	14,4	0	0	0	0	0	0	0	96	597,6
(mm)	Basamento Profundo	43,8	40,65	37,35	3,6	0	0	0	0	0	0	0	24	149,4
()	Agua Subterránea Total	292	271	249	24	0	0	0	0	0	0	0	160	996
	Escorrentía	233,6	216,8	199,2	19,2	0	0	0	0	0	0	0	128	796,8
Intrusivos-	Basamento Poco Profundo	29,2	27,1	24,9	2,4	0	0	0	0	0	0	0	16	99,6
(mm)	Basamento Profundo	29,2	27,1	24,9	2,4	0	0	0	0	0	0	0	16	99,6
~ /	Agua Subterránea Total	292	271	249	24	0	0	0	0	0	0	0	160	996

Apéndice B 2.2 Recarga para un año húmedo

		Enero	Febrer o	Marzo	Abril	May o	Juni o	Juli o	Agost o	Septiembr e	Octubr e	Noviembr e	Diciembr e	Total
	Precipitación	358	325	303	93	16	8	8	16	46	107	185	260	1725
	ETP	66	54	54	69	91	98	108	119	106	109	100	85	1059
	Excedentes	292	271	249	24	0	0	0	0	0	0	0	160	996
	Escorrentía	20,44	18,97	17,43	1,68	0	0	0	0	0	0	0	11,2	69,72
Calizas -	Basamento Poco Profundo	175,2	162,6	149,4	14,4	0	0	0	0	0	0	0	96	597,6
(mm)	Basamento Profundo	96,36	89,43	82,17	7,92	0	0	0	0	0	0	0	52,8	328,6 8
	Agua Subterránea Total	292	271	249	24	0	0	0	0	0	0	0	160	996
	Escorrentía	192,7 2	178,86	164,3 4	15,8 4	0	0	0	0	0	0	0	105,6	657,3 6
Intrusivos - Recarga	Basamento Poco Profundo	49,64	46,07	42,33	4,08	0	0	0	0	0	0	0	27,2	169,3 2
(mm)	Basamento Profundo	49,64	46,07	42,33	4,08	0	0	0	0	0	0	0	27,2	169,3 2
	Agua Subterránea Total	292	271	249	24	0	0	0	0	0	0	0	160	996

Apéndice B 2.3 Recarga para un año seco

Apéndice C

Apéndice C 1.1 Curvas características de bombas sumergibles

Apéndice C 1.2 Datos de prestación de bombas sumergibles

MODELO	N.	POTEN	CIA (P2)	m³/h	0	12	24	36	48	60	72
Trifásica	ETAPAS	kW	HP	l/min	0	200	400	600	800	1000	1200
6SR 225G/75	2	5.5	7.5		33	31	29	26	23	18	10
6SR 225G/100	3	7.5	10		50	47	43	39	34.5	27.5	15
6SR 225G/150	5	11	15		84	79	72	65.5	57.5	46	25
6SR 225G/200	7	15	20	H metros	117	110	101	91.5	80.5	64.5	35
6SR 225G/250	9	18.5	25		151	142	130	118	104	83	46
6SR 225G/300	10	22	30		167	157	144	131	115.5	92	51
6SR 225G/400	14	30	40		235	220	202	183.5	161.5	129	71

Q = Caudal H = Altura manométrica total

Tolerancia de las curvas de prestación según EN ISO 9906 Grado 3B.

Modelo		6SR 225 G/250			
Boca DN (pul	g)	3			
Dimensiones (mm)	Diámetro	149.5			
Dimensiones (mm)	Dimensiones (mm) Longitud				
Peso (kg)		30.1			

Apéndice C 1.3 Dimensiones de la bomba sumergible

Apéndice C2: Costos por pozo de drenaje

Apéndice C 2.1	Detalle de costos	s por pozo	de drenaje
----------------	-------------------	------------	------------

Descripción	Unidad	Cantidad	Precio Unitario	Precio Total
Transporte e instalación de equipo	Global	1	200	\$ 200.00
Tubo conductor para paredes superficiales	ml	12	20	\$ 240.00
Perforación de pozo	ml	150	70	\$ 10,500.00
Suministro y colocación de tubería PVC	ml	150	8	\$ 1,200.00
Suministro y colocación de empaque de grava	m3	3	40	\$ 120.00
Prueba de alineado	ml	30	2	\$ 60.00
Desarrollo y limpieza del pozo profundo con aire comprimido	Horas	24	20	\$ 480.00
Costo de la bomba	Global	1	4484	\$ 4,484.00
Instalación eléctrica y acabado de boca de pozo	Global	1	300	\$ 300.00
	То	tal		\$ 17,584.00

Apéndice C3: Costos de sistemas de drenaje

Apéndice C 3.1	Costos del	sistema de o	drenaje del	escenario 1
----------------	------------	--------------	-------------	-------------

	Presupuesto para Escenario 1											
Año		8		12		15						
# Pozos		12		10		1						
Inversión	\$	211,008.00	\$	175,840.00	\$	17,584.00						
Inversión total	\$					404,432.00						

	Presupuesto para Escenario 2												
Año		8		12		15							
# Pozos		12		10		12							
Inversión	\$	211,008.00	\$	175,840.00	\$	211,008.00							
Inversión total	\$					597,856.00							

Apéndice C 3.2 Costos del sistema de drenaje del escenario 2