ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"CARACTERIZACIÓN GEOQUÍMICA Y PETROGRÁFICA DE FILONES HIDROTERMALES DEL DISTRITO MINERO ZARUMA-PORTOVELO, ECUADOR".

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero en Geología

Presentado por: Catherine Ibeth Espinoza Santos Johnny Joel Loayza Ramirez

GUAYAQUIL - ECUADOR Año: 2019

DEDICATORIA

A mis padres, hermanos y Francisco, por haberme forjado como la persona que soy actualmente; todos mis logros se lo debo a ustedes. Gracias por motivarme constantemente para alcanzar mis anhelos.

A Johnny quien ha sido mi mano derecha durante esta etapa; gracias por siempre brindarme tu ayuda incondicional y por todos los momentos que pasamos juntos.

A mis amigos y profesores, quienes con su motivación y sabios conocimiento me ayudaron a lograr esta meta.

A a mi tía Martha, quien me abrió las puertas de su hogar y me brindó su apoyo cuando más lo necesitaba.

Y sobre todo a Dios, quien me acompaña y me da fortaleza para continuar día a día.

Catherine Espinoza

DEDICATORIA

Dedico este proyecto a:

Mis padres Joel Loayza y Elida Ramírez, por ser mis formadores para ser una persona con valores sólidos, y por velar por mi bienestar y felicidad incluso desde antes de nacer.

Mis hermanos y sobrinos por sus consejos y apoyo incondicional.

Catherine por su cariño y confianza, además del trabajo en conjunto para cumplir un objetivo más de los muchos planteados en esta vida.

Mis tíos Luis y Rosa e hijos, por acogerme como un hijo y hermano, durante esta etapa universitaria.

Mis amigos, por permitirme aprender más de la vida mediante consejos y conocimiento compartido.

Mis profesores, por compartir el conocimiento adquirido en sus años de experiencia e inculcar la idea de siempre mejorar como persona y profesional.

Johnny Loayza

AGRADECIMIENTOS

Gracias a Dios por permitirnos disfrutar de nuestra familia, gracias a nuestra familia por apoyarnos en todo momento.

Al Ing. Oscar Loor, por el apoyo brindado en la realización de este proyecto.

Al Ph.D Paul Carrión, un hombre de gran sabiduría por apoyarnos a llegar al punto donde nos encontramos.

Al Ph.D Edgar Berrezueta, por brindarnos su interés y apoyo desde el inicio de este proyecto hasta su culminación.

Al Ing. Galo Montenegro, por brindarnos sus conocimientos a lo largo de toda la etapa universitaria.

Y a los docentes Ph.D Fernando Morante, Msc. David Altamirano, Msc. Miguel González, Msc. Eduardo Díaz, Ing. Nancy Zumba, por su colaboración y sugerencias para culminar con éxito este proyecto.

Catherine Espinoza Santos Johnny Loayza Ramírez

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *Catherine Espinoza Santos y Johnny Loayza Ramírez* damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Catherine Espinoza S

Johnny Loayza Ramírez

EVALUADORES

Ms. Daniel Garcés

.....

PROFESOR DE LA MATERIA

Ph.D Paul Carrión

PROFESOR TUTOR

RESUMEN

En este estudio se presenta la caracterización petrográfica y geoquímica de tres filones pertenecientes al depósito Zaruma-Portovelo (Ecuador). Este está relacionado a un arco continental de lava andesítica, que alberga una mineralización de sulfuros polimetálicos de Au y Ag. Los filones tienen una tendencia estructural Norte-Sur con buzamiento hacia el Este. El objetivo de este trabajo es el de i) aportar nueva información petrográfica y geoquímica de los filones estudiados (ej. Asociaciones minerales preferentes y paragénesis del depósito) con el fin de optimizar los procesos de recuperación mineral y ii) conocer el funcionamiento y utilización de técnicas de Microscopia óptica de reflexión, Análisis óptico de imágenes, microscopia electrónica, Microsonda electrónica y Difracción de Rayos X. La investigación constó de las siguientes etapas: i) la toma de muestras de roca en los filones seleccionados; ii) la caracterización petrográfica y geoquímica de las muestras en los Laboratorios de la ESPOL, Universidad de Oviedo e Instituto Geológico y Minero de España; iii) La interpretación y correlación de los datos obtenidos en el contexto de los objetivos planteados en el trabajo.

El trabajo desarrollado permitió identificar que el depósito hidrotermal estudiado presenta una etapa temprana de mineralización con la presencia de minerales característicos de alteración hidrotermal, luego una etapa intermedia caracterizada por la depositación de sulfuros polimetálicos de Au y Ag que comprende la unidad económicamente productiva del distrito y por último una etapa tardía o de enriquecimiento supergénico con la presencia de minerales productos de exsolución.

Los resultados obtenidos pusieron de manifiesto la eficiencia del procedimiento aplicado y principalmente, la importancia de este tipo de estudios a la hora de conocer detalles de la mineralización del yacimiento y su futuro aprovechamiento.

Palabras Clave: Zaruma, depósito, hidrotermal, caracterización, paragénesis.

I

ABSTRACT

This study presents the petrographic and geochemical characterization of three veins belonging to the Zaruma-Portovelo deposit (Ecuador). This is related to a continental arc of andesitic lava, which contains a mineralization of polymetallic sulphides of Au and Ag. The veins have a North-South structural tendency with an eastward dip. The objective of this work is to i) provide new petrographic and geochemical information of the studied veins (eg, preferred mineral associations and reservoir paragenesis) in order to optimize mineral recovery processes and ii) to know the operation and use of Reflection Optical Microscopy Techniques, Optical Image Analysis, Electron Microscopy, Electron Microscope and X-Ray Diffraction. The investigation consisted of the following stages: i) taking samples of rock in the selected veins; ii) the petrographic and geochemical characterization of the samples in the Laboratories of ESPOL, University of Oviedo and the Geological and Mining Institute of Spain; iii) The interpretation and correlation of the data presented in the context of the proposed objectives in the work.

The work developed allowed to identify that the hydrothermal deposit studied presents an early stage of mineralization with the presence of minerals characteristic of hydrothermal alteration, then an intermediate stage characterized by the deposition of polymetallic sulphides of Au and Ag that comprises the economically productive unit of the district and finally, to late stage or supergene enrichment with the presence of mineral exsolution products.

The results obtained showed the efficiency of the applied procedure and, mainly, the importance of this type of studies at the time of knowing the mineralization of the deposit and its future use.

Keywords: Zaruma, deposit, hydrothermal, characterization, paragenesis

ÍNDICE GENERAL

RESUMEN	I
ABSTRAC	ΤΙΙ
ÍNDICE GE	NERALIII
ABREVIAT	URASVI
SIMBOLOO	SÍAVII
ÍNDICE DE	FIGURAS IX
ÍNDICE DE	TABLASXI
CAPÍTULO	11
1. INTR	ODUCCIÓN2
1.1 De	scripción del problema3
1.2 Jus	stificación del problema4
1.3 Zoi	na de estudio 4
1.4 Ob	jetivos5
1.4.1	Objetivo General 5
1.4.2	Objetivos Específicos5
CAPÍTULO	27
2. MAR	CO TEÓRICO8
2.1 Ge	ología general
2.1.1	Ambiente geotectónico8
2.1.2	Contexto geológico general8
2.1.3	Ambiente y evolución tectónica9
2.1.4	Metalogénesis11
2.2 Ge	ología regional
2.2.1	Unidades litológicas 12
2.2.2	Geología Local15
2.2.3	Paragénesis mineral del sistema Vizcaya-Nicole

CAP	ÍTULO 3	21	
3.	METODOLOGÍA	22	
3.1	Fase 1 (Trabajo de estudio previo)	22	
3.2	Fase 2 (Trabajo de campo)	23	
3.3	Fase 3 (Trabajo de laboratorio)	23	
3.4	Fase 4 (Trabajo de gabinete)	30	
CAP	ÍTULO 4	31	
4.	RESULTADOS Y ANÁLISIS	32	
4.1	Identificación macroscópica y microscópica de minerales	34	
4.2	Análisis de resultados por medio de difracción de rayos X (DRX)	37	
4.3	Aplicación del análisis óptico de imágenes AOI	40	
4.	3.1 Identificación por medio del MOP y MEB	40	
4.	3.2 Cuantificación por medio del AOI	45	
4.4	Análisis de resultado por medio de microsonda electrónica	46	
4.	4.1 Identificación de fases minerales	46	
4.	4.2 Correlación de elementos y análisis multivariante	50	
4.5	Paragénesis propuesta y tabla de asociaciones	54	
4.	5.1 Descripción de paragénesis propuesta	54	
4.	5.2 Elaboración de tabla de asociaciones minerales	64	
CAP	ÍTULO 5	66	
5.	DISCUSIÓN DE RESULTADOS	67	
5.1	Desde el punto de vista metodológico	67	
5.2	Desde el punto de vista de los resultados	68	
CAP	ÍTULO 6	70	
6.	CONCLUSIONES Y RECOMENDACIONES	71	
6.1	5.1 Conclusiones		
6.2	Recomendaciones	72	

BIBLIOGRAFÍA	
ANEXOS	

ABREVIATURAS

- ESPOL Escuela Superior Politécnica del Litoral
- UNIOVI Universidad de Oviedo
- IGME Instituto Geológico y Minero de España
- Microscopio Óptico De Reflexión MOP
- Análisis Óptico de Imágenes AOI
- DRX Difracción de rayos X
- MEB Microscopia electrónica de barrido
- LEMAT Laboratorio de Ensayos Metrológicos y de Materiales

Abreviaturas de minerales empleadas en la tesis.

Se utilizan las abreviaturas propuestas por Whitney & Evans (2010) y en los casos no consignados, Bonilla (2010) propone una abreviatura.

adularia	Adl
biotita	Bt
bornita	Bn
calcopirita	Сср
calcita	Cal
carbonato	Cb
caolinita	Kln
clorita (grupo)	Chl
covelina	Cv
cuarzo	Qz
electrum	EI
epidota	Ep
esfalerita	Sp
esmectita	Sme
feldespato (grupo)	Fds
galena	Gn
ganga	Gg
hematita	Hem
Illita	llt

pentlandita	Pn
pirita	Ру
pirrotina	Ро
plagioclasa (grupo)	Plag
sericita	Ser
tenantita	Tnt
tetraedrita	Ttr

SIMBOLOGÍA

mm	Milímetro		
cm	Centímetro		
m	Metro		
km	Kilometro		
μm	Micras		
kV	Kilovoltios		
mA	Miliamperios		
рН	Potencia de Hidrógeno		
Eh	Potencial de Oxidación		
Au	Oro		
Ag	Plata		
Те	Teluro		
Cu	Cobre		
As	Arsénico		
Fe	Hierro		
Ni	Níquel		
S	Azufre		
Sb	Antimonio		
Bi	Bismuto		
Zn	Zinc		
Se	Selenio		
Sn	Estaño		
Hg	Mercurio		

Mn Manganeso

Cd Cadmio

ÍNDICE DE FIGURAS

Figura 1.1 Mapa de ubicación de la zona de estudio5
Figura 2.1 Ubicación de las principales regiones fisiográficas del Ecuador. Modificado
:(Coltorti & Ollier, 2000)9
Figura 2.2 Mapa del distrito Zaruma-Portovelo, contiene las Series integradas por
Billingsley para la Unidad Portovelo. Modificado de: Berrezueta et al, 201614
Figura 2.3 Corte geológico del distrito Zaruma-Portovelo entre los puntos A-B de la
figura 2.2. Modificado de: Bonilla, 201214
Figura 2.4 Mapa geológico y perfil geológico del área de estudio A-A'. Modificado de :
(Morante, 2018)
Figura 2.5 Mapa del Sistema Vizcaya-Nicole. Modificado de: Bonilla, 201217
Figura 2.6 Paragénesis del filón Vizcaya, con la evolución de minerales depositados en
cada estadio durante el evento hidrotermal (Bonilla, 2010)20
Figura 3.1 Esquema de la metodología aplicada a este proyecto22
Figura 3.2 Equipo Forcimat para realizar el pulido de las secciones delgadas ubicado
en el Laboratorio de Petrografía en ESPOL24
Figura 3.3 Esquema explicativo de la elaboración de una lámina delgada (Pozo et al.,
2004)
Figura 3.4 Equipo PANalytical XPert Pro utilizado para la difracción de rayos x27
Figura 3.5 Representación esquemática de la secuencia de identificación mineral y
cuantificación usando AOI (Berrezueta et al., 2016)28
Figura 3.6 Conversión de porcentajes de elementos presentes en fases minerales
características a partir de su masa atómica29
Figura 4.1 Subproductos y productos obtenidos aplicando la metodología32
Figura 4.2 Muestreo de los diferentes filones, muestreadas en la visita a la mina Q1/2.
Figura 4.3 Ficha de descripción del filón Vizcaya35
Figura 4.4 Ficha de descripción del filón Octubrina
Figura 4.5 Ficha de descripción del filón Gabi37
Figura 4.6 Difractograma de la muestra M3A del filón Vizcaya
Figura 4.7 Difractograma de la muestra M1A del filón Octubrina
Figura 4.8 Difractograma de la muestra M4B del filón Gabi

Figura 4.9 Fotomicrografías de luz reflejada de 3 de secciones pulidas con aumento de
10x (descripción) de los filones Vizcaya, Octubrina y Gabi42
Figura 4.10 Micrografías electrones retrodispersados de asociaciones minerales del
filón Gabi. La estrella azul indica el análisis de microsonda43
Figura 4.11 Micrografías electrones retrodispersados de asociaciones minerales de los
filones Vizcaya y Octubrina. La estrella azul indica el análisis de microsonda44
Figura 4.12 Diagramas de cuantificación de área mineral del distrito minero Zaruma-
Portovelo. (Berrezueta et al., 2016)45
Figura 4.13 Diagramas de cuantificación de área mineral es de diferentes muestras
Vizcaya, Octubrina y Gabi46
Figura 4.14 Lámina delgada del filón Vizcaya en nicoles paralelos y un aumento de 10x
Figura 4.15 Sección pulida del filón Vizcaya en nicoles paralelos con un aumento de
20x
Figura 4.16 Sección pulida del filón Vizcaya en nicoles paralelos y un aumento de 10x
Figura 4.17 Sección pulida del filón Vizcaya en nicoles paralelos con un aumento de
10x58
Figura 4.18 Lamina delgada del filón Octubrina en nicoles cruzados con un aumento de
10x59
Figura 4.19 Sección pulida del filón Octubrina en nicoles paralelos con un aumento de
10x60
Figura 4.20 Imagen obtenida mediante AOI del filón Octubrina (Escala 1000 micras)61
Figura 4.21 Lámina delgada del filón Gabi en nicoles cruzados con un aumento de 10x.

ÍNDICE DE TABLAS

Tabla 1.1 Tabla de asociaciones minerales de la veta Vizcaya descrita por diversos
autores, pertenecientes al distrito minero Zaruma-Portovelo
Tabla 2.1 Provincias metalogénicas según (Paladines & San Martín, 1980 y Paladines
& Rosero, 1996) del Ecuador11
Tabla 2.2 Cinturones metalogénicos de la cordillera según (PRODEMINCA, 2000)11
Tabla 3.1 Plantilla para la toma de muestras en las estaciones de los filones Vizcaya,
Octubrina y Gabi23
Tabla 3.2 Especificaciones técnicas del equipo Forcimat (Senay, 2014) 25
Tabla 4.1 Estaciones muestreadas en la visita a la mina Q1/2.33
Tabla 4.2 Minerales identificados del filón Vizcaya por medio del difractograma (Se
utilizó 10% de ZnO para la cuantificación)38
Tabla 4.3 Minerales identificados del filón Gabi por medio del difractograma (Se utilizó
10% de ZnO para la cuantificación)
Tabla 4.4 Minerales identificados del filón Octubrina por medio del difractograma (Se
utilizó 10% de ZnO para la cuantificación)38
Tabla 4.5 Datos de salida obtenidos mediante el análisis de microsonda electrónica del
filón Vizcaya
Tabla 4.6 Identificación de fases minerales a partir de datos de microsonda
perteneciente al filón Vizcaya (M3A)49
Tabla 4.7 Identificación de fases minerales a partir de datos de microsonda
perteneciente al filón Octubrina (muestra M1A)
Tabla 4.8 Identificación de fases minerales a partir de datos de Microsonda
perteneciente al filón Octubrina (M2A)50
Tabla 4.9 Identificación de fases minerales a partir de datos de Microsonda
perteneciente al filón Gabi50
Tabla 4.10 Análisis multivariante del filón Vizcaya. 51
Tabla 4.11 Correlación de oro con otros elementos perteneciente al filón Vizcaya52
Tabla 4.12 Análisis multivariante del filón Octubrina 1 52
Tabla 4.13 Correlación de oro con otros elementos perteneciente al filón Octubrina53
Tabla 4.14 Análisis multivariante del filón Octubrina 253
Tabla 4.15 Correlación de oro con otros elementos perteneciente al filón Octubrina
(estación 2)53

Tabla 4.16 Análisis multivariante del filón Gabi54
Tabla 4.17 Correlación de oro con otros elementos perteneciente al filón Gabi
Tabla 4.18 Paragénesis propuesta del filón Vizcaya (línea continua corresponde a un
alto predominio de fase y línea discontinua corresponde a un bajo predominio de fase)
Tabla 4.19 Paragénesis propuesta del filón Octubrina (línea continua corresponde a un
alto predominio de fase y línea discontinua corresponde a un bajo predominio de fase)
Tabla 4.20 Paragénesis propuesta del filón Gabi (línea continua corresponde a un alto
predominio de fase y línea discontinua corresponde a un bajo predominio de fase)64
Tabla 4.21 Asociación mineral del filón Vizcaya65
Tabla 4.22 Asociación mineral del filón Octubrina 65
Tabla 4.23 Asociación mineral del filón Gabi65
Tabla 5.1 Principales aportes de los métodos aplicados en esta investigación68

CAPÍTULO 1

INTRODUCCIÓN Y OBJETIVOS

1. INTRODUCCIÓN

El distrito minero Zaruma-Portovelo se encuentra al SO del Ecuador. La zona de estudio es definida como uno de los depósitos hidrotermales más grandes de la Cordillera Andina. Este depósito mineral está relacionado a un arco continental de lava andesítica con filones de cuarzo y sulfuros (Vikentyev et al., 2005). Este presenta filones discontinuos con mineralización de metales bases y preciosos. En general los filones se presentan con rumbo NNE a NNO y buzamiento de 45 grados aproximadamente a ESE a ENE. Los filones están representados por vetas y vetillas con una importante presencia de oro, lo que la convierte en una zona de interés (ejemplo: unidad económica productiva Q ¹/₂ BIRA) (Bonilla, 2010).

Para este estudio se consideraron tres filones: Vizcaya, Octubrina y Gabi, que están actualmente explotándose por la empresa minera BIRA Bienes Raíces S.A.

A mediados de los 90, Bonilla (1996) determinó dos asociaciones mineralógicas en Vizcaya con interés económico: qz-fds-sp y chl-py-hem. Posteriormente Vikentyev et al. (2005) y Banda (2005) determinaron tres estadios de formación hidrotermal del yacimiento en el filón Vizcaya: qz + py + ccp, qz + gn + sp + ttr-tnt + Au y qz + cb. De acuerdo con los estudios de Bonilla (2010), la evolución paragenética del filón Vizcaya presenta unos procesos hidrotermales de alteración y depósito condicionados por soluciones acuosas a temperaturas superiores a los 50 grados centígrados.

En años recientes, Berrezueta et al., (2016), abordó la estimación cuantitativa de las principales fases minerales y, principalmente, la relación cuantitativa del oro visible con otras fases minerales presentes en los filones Vizcaya, Sanzón, Azul, La Y y Guabo Verde. El estudio de Berrezueta et al., (2016) se planteó como un complemento a la interpretación petrográfica de los principales filones en el distrito minero Zaruma-Portovelo.

1.1 Descripción del problema

El distrito Zaruma-Portovelo presenta una serie de filones hidrotermales, donde, estudios previos se enfocaron principalmente a la caracterización mineralógica y petrográfica del filón Vizcaya (Tabla 1.1). La secuencia paragenética del distrito establecida por Paladines & Rosero (1996) presenta principalmente una asociación de qz, sp, fds, chl y py. A principios del siglo XXI, Bonilla (2002) establece una secuencia paragenética similar a la de Paladines & Rosero (1996) a excepción de hematita. La secuencia que definió Vikentyev et al. (2005) concuerda con las asociaciones previamente definidas por Bonilla (2002). En los últimos años, Berrezueta et al. (2016) encontró en sus estudios 13 fases minerales: Au, sp, ccp, gn, py, po, bn, hem, cct, Au, pn, cv, ttr y Bi nativo.

Autor	Asociaciones				
Paladines & Rosero (1996)	qz+py	qz+py+ccp+sp+gn+bn +Au+Ag	qz+py	qz+gn+ttr	cct+cv
Bonilla (1996)	qz+fds+sp	chl+py+hem			
Vikentyev et al., (2005) qz+py+ccp		qz+gn+sp+ttr-tht+Au			qz+cb
Banda (2005)					
Berrezueta et al., (2016)	Au+sp+ccp+gn+py+po+bn+hem+cct+pn+cv+ttr+Bi			qz+anfibol+ chl+ep	

Tabla 1.1 Tabla de asociaciones minerales de la veta Vizcaya descrita por diversos autores, pertenecientes al distrito minero Zaruma-Portovelo.

Los estudios y referencias cuentan solo con la información mineralógica a detalle del filón Vizcaya, ante esta circunstancia se plantea abordar un estudio enfocado a caracterizar de forma más detallada la mineralogía de los filones Octubrina, Gabi y Vizcaya presentes, para optimizar estrategias de explotación mineral que permitan el aprovechamiento minero eficiente por parte de la empresa, por lo que se plantea la siguiente pregunta clave: ¿Es posible con una caracterización geoquímica y petrográfica el establecimiento de patrones de exploración y seguimiento más seguro para la identificación de minerales metálicos? .

3

1.2 Justificación del problema

En el presente proyecto, los estudios petrográficos sobre los filones Octubrina y Gabi pretenden definir sus asociaciones minerales y, en el caso del filón Vizcaya, analizar la metodología planteada en estudios previos (Berrezueta et al., 2016, Bonilla, 2008 y Banda, 2005). Los resultados a obtener permitirán una mejor caracterización de los filones estudiados y como consecuencia de esto, un mayor conocimiento del depósito.

El estudio está enfocado a una caracterización de filones muestreados en frentes de labores mineras, la selección de estas puede considerarse representativas de los filones estudiados. Además, se plantea utilizar las mejores técnicas disponibles en la ESPOL y en dos centros españoles con los que la ESPOL tiene un convenio de colaboración: Instituto Geológico y Minero de España (IGME) y la Universidad de Oviedo (UNIOVI).

Como consecuencia específica del trabajo a desarrollar se pretende: aportar información referente al conocimiento detallado del depósito estudiado, proponer un orden de depositación mineral respecto a conocimientos previos en otras zonas de muestreo y aportar la información mineralógica para la búsqueda de métodos que optimicen los procesos de concentración mineral y el correspondiente beneficio económico y ambiental.

1.3 Zona de estudio

La zona de estudio pertenece a la mina Q ½ BIRA Bienes Raíces S.A., localizada en la ciudad de Zaruma en la provincia de El Oro, al Suroeste del Ecuador (Figura 1.1), en la Cordillera Occidental de los Andes Ecuatorianos de Sudamérica, formando parte del Distrito minero Zaruma-Portovelo.

Figura 1.1 Mapa de ubicación de la zona de estudio

1.4 Objetivos

1.4.1 Objetivo General

Caracterizar los filones hidrotermales Vizcaya, Octubrina y Gabi, mediante técnicas petrográficas y geoquímicas, para la identificación, cuantificación de los minerales metálicos presentes y, principalmente, la definición de la evolución del yacimiento en los filones estudiados.

1.4.2 Objetivos Específicos

 Identificar las fases minerales en las muestras mediante Microscopio Óptico, cuantificando su abundancia con la aplicación de análisis de imagen óptico (AOI) para el complemento del estudio de petrografía de menas.

- Obtener un conocimiento del funcionamiento y alcance de las técnicas utilizadas, mediante metodologías de investigación actuales para la evaluación de su aplicabilidad al momento de caracterizar depósitos minerales.
- Determinar la geoquímica de la composición de fases minerales comunes mediante microsonda electrónica que permitan su asignación en el estadio de mineralización (paragénesis) correspondiente.
- Correlacionar información mineralógica-geoquímica obtenida de los filones estudiados mediante estudios previos y definición detallada de paragénesis mineral para la caracterización de filones auríferos.

CAPÍTULO 2

MARCO TEÓRICO

2. MARCO TEÓRICO

2.1 Geología general

2.1.1 Ambiente geotectónico

La cordillera andina tiene una extensión aproximada de 700 kilómetros. Esta cadena montañosa en el Ecuador pertenece al fragmento de los Andes del Norte (PRODEMINCA, 2000). En la parte oeste del Ecuador presenta un complejo tectónico oceánico, el cual se encuentra acrecionado al margen continental pertenecientes al Cretácico superior (Kerr, Aspden, Tarney, & Pilatasig, 2002). Es decir que existe subducción ortogonal de la placa Nazca por debajo del continente sudamericano en el segmento del margen activo. Existiendo más detalle, la corteza oceánica joven de Nazca-Cocos se encuentra subducida en la fosa ecuatoriana (Rea & Malfait, 1974; Lonsdale, 1978).

2.1.2 Contexto geológico general

El Ecuador, geográfica y geomorfológicamente conserva tres áreas principales; una cuenca amazónica (Oriente), una región del los andes o cordillera andina (Sierra) y una llanura occidental (Costa), como se muestra en la (Figura 2.1). La cuenca amazónica sedimentaria se define por su gran extensión que posee series de plataforma carbonatada con un basamento cratónico más antiguo, las cuales están intruidas por grandes batolitos granitoideos principalmente a lo largo del borde entre el Oriente y la Sierra (PRODEMINCA, 2000).

La parte central de los Andes muestra dos cadenas montañosas subparalelas distanciadas por un valle interandino (Litherland & Aspden 1992). Entre las cadenas montañosas al este se encuentra la Cordillera Real descrita por cinturones lineales de rocas metamórficas del Mesozoico (Aspden & Litherland 1992; Aspden et al. 1992a, 1992b; Litherland et al. 1994), continua hacia el oeste por el valle interandino rodeado

8

de fallas activas y secuencias volcano-sedimentarias y la Cordillera Occidental que posee terrenos oceánicos como rocas volcánicas y basálticas volcanoclásticas del Mesozoico tardío al Cenozoico temprano y turbiditas clásticas intruidas por granitoides. (Aspden et al., 1987a; Eguez & Aspden, 1993).

La región litoral está definida por zonas con relieve bajo, que simbolizan una sucesión de depresiones ubicadas por encima de la corteza oceánica debido a la subducción., Estas se hallan exhibidas en las cumbres de las cadenas montañosas. (PRODEMINCA, 2000).

Figura 2.1 Ubicación de las principales regiones fisiográficas del Ecuador. Modificado :(Coltorti & Ollier, 2000)

2.1.3 Ambiente y evolución tectónica

Hacia el norte de la cordillera presenta de subducción oblicua, traslación y conjuntamente acreción de terrenos alóctonos. Durante el Mesozoico concurrió el avance del margen noroccidental, debido a una suprasubducción tectono-magmática (Aspden et al, 1987; Jaillard et al, 1990). Luego en el Jurásico presenta acreción de terrenos oceánicos y continentales, también con presencia de fallas dextrales transcurrentes. (Litherland et al, 1994; Jaillard et al, 1997)

El mayor evento de acreción-colisión concurrió en Peltetec-Palenque, el cual se presenta como un acontecimiento tectono-metamórfico durante el Jurásico y Cretácico, que formó mosaicos de terrenos en el Ecuador anteriormente que sumara el terreno Piñón. (Litherland et al, 1994) y las fallas mayores de la Cordillera Real reactivaron fallas extensionales durante este suceso (PRODEMINCA, 2000).

La provincia del El Oro se caracteriza por ser un complejo acrecionario que reúne fracciones removidas de la cordillera Real, además de inclusiones de origen oceánico que fueron colocados entre un régimen transpresivo dextral. El terreno Chaucha se cree que se encuentre relacionado a este evento. (Eguez & Aspden, 1993; Aspden 1995)

La cuenca Lancones de tipo pull-apart está relacionada dentro del terreno Amotape, el cual se estableció en la rotación de tipo horaria paulatina del bloque El Oro con una orientación este-oeste. Durante el Jurásico la zona de falla cizalla Peltetec-Baños despliega más de 2000 kilómetros. En el Cretácico temprano, Piñón y Pallatanga van a constituir parte del basamento de la cordillera Occidental y de la planicie costera, luego sobre estas se acrecionó el arco de isla Macuchi, donde se fueron aislando de la placa Chaucha en el Cretácico-Terciario temprano (PRODEMINCA, 2000). El sistema de fallas Calacalí/ Pallatanga-Bulubulu, contrasta el contacto tectónico entre el terreno y el complejo que fue acrecionado durante el Jurásico- Cretácico. La cordillera Real surgió durante el Cretácico, esto se manifiesta por ambientes sedimentarios a los lados, como las facies sedimentarias de la unidad Yunguilla y de la formación Tena. (Baldock, 1982).

En el Mioceno se constaba de volcanismo del margen continental, el cual subducía el grupo Saraguro que empezó por la colisión y acreción del arco Macuchi. La estructura pull-apart establecida por el movimiento de fracciones de Macuchi, permitió a ascender magmas andesíticos. Luego continuó la separación de la placa Farallón en Nazca y Cocos (Pilger, 1983; Somoza, 1998). La geotectónica en el Ecuador continúa en subducción hacia el este de la placa de Nazca. (Litherland et al., 1994)

10

Durante el Oligoceno-Mioceno, el grupo Saraguro presentaba una actividad volcánica silícica. Luego este presenta períodos de compresión y extensión, lo cual forma depresiones fluvio-lacustres en el valle interandino (PRODEMINCA, 2000).

2.1.4 Metalogénesis

El Ecuador tiene dos provincias metalogénicas según (Paladines & San Martín, 1980 y Paladines & Rosero, 1996) (Tabla 2.1):

 Tabla 2.1 Provincias metalogénicas según (Paladines & San Martín, 1980 y Paladines & Rosero, 1996) del Ecuador.

Eddddii			
arco y antearco de la provincia oceánica del occidente	Fe, Pt, Cr, Ti, Cu, Mo, Pb, Zn, Au, Ag		
arco y trasarco de la provincia continental del Oriente	Au, Cu-Mo, Fe, Pb, Zn, Sn, W, Tierras Raras, U-Th		

Según (PRODEMINCA, 2000) existe un patrón general de cinturones metalogénicos de la cordillera. (Tabla 2.2).

, second s	3 (, , , , , , , , , , , , , , , , , ,	
Piñón y San Lorenzo – planicie costera	Fe-Cu-Au y Cr-Ni-Ti-Pt	
Pallatanga y Macuchi – cordillera occidental	Cu-Mo-Au y Ag-polimetálicos	
Chaucha-Amotape, Guamote y Loja - valle interandino y la Cordillera Real	Au-Ag-polimetálicos y Ag-Cu-Sn-W-Tierras Raras	
Cinturón subandino	Cu-Au-Mo, Au-Bi y Ag-Au-polimetálicos	

Tabla 2.2 Cintu	rones metalogénicos	de la cordillera	según (PRODEMINCA.	2000)

2.2 Geología regional

La geología y mineralogía del depósito descrita por primera vez por Billingsley (1926), expone que se sitúa en el SO de la cordillera de los Andes inmerso en la zona estructural Amotape-Tahuín, regido al SO por la falla de rumbo Piñas-Portovelo que divide la Provincia Metamórfica del Oro del depósito volcánico del Grupo Saraguro, de acuerdo a Banda et al. (2005) las rocas encajantes pertenecen a la Formación Célica de composición andesitas alcalinas y basálticas definiendo la unidad Portovelo, el depósito además presenta lavas ácidas y rocas piroclásticas de la Formación Pisayambo y de la unidad Piedras presenta anfibolitas y gneises.

2.2.1 Unidades litológicas

Grupo Saraguro

Este Grupo se encuentra en la zona central y sur del Ecuador, El Grupo Saraguro presenta diversos depósitos Volcánicos de lavas intermedias, datados entre Oligoceno al Mioceno, sobreyacen al levantamiento de la Cordillera Occidental y de forma parcial cubren rocas de Cordillera Real (Baldock, 1982).

Formación Célica

Esta Formación se presenta al Sur de la falla Jubones, comprende andesitas masivas, gris verdoso, tobas andesíticas, esta Formación sobreyace a rocas metamórficas y subyacen a sedimentos y volcánicos del Cretácico Superior y Paleoceno, se intuye potencias de varios miles de metros y se sugiere una edad del Cretácico inferior de acuerdo a la datación del batolito Tangula que se encuentra intruyendo a la Fm. Célica, y que fue datado en 114+- 30 Ma (Baldock, 1982).

Formación Pisayambo

Esta Formación representa una secuencia volcánica que cubre gran superficie de la Cordillera de los Andes Ecuatorianos, incluye brechas gruesas y aglomerados, flujos de

lavas basálticas y andesitas en el techo de la Formación, debido a la presencia de material tobáceo en sedimentos del Mioceno Superior, se ha considerado tomar esta edad para la Formación (Baldock, 1982).

Unidad Portovelo

Esta unidad fue definida por Billingsley (1926). Sus estudios indicaron que esta unidad se caracterizaba por una actividad magmática plutónica y volcano efusiva terciaria. Esta unidad se divide en tres series de E a O: Muluncay, Portovelo y Faique (Figura 2.2 y Figura 2.3).

- 1. La Serie Muluncay subyace a la Serie Portovelo y consiste en brechas volcánicas, tobas y flujos andesíticos e ignimbritas.
- La Serie Portovelo consiste de lavas andesíticas y basalto-andesíticas, con rumbo NO-SE y buzamiento 45 a 40º al SO, esta serie subyace a la Serie Faique.
- 3. La Serie Faique está conformada por rocas volcánicas similares a la Serie Muluncay con mayor porcentaje de tobas y menor de lavas andesíticas, además se presentan intrusivos subvolcánicos, dioríticos, granodioríticos y riolíticos que forma un sigmoide con lineamiento N a N-O, al sur del distrito.

Figura 2.2 Mapa del distrito Zaruma-Portovelo, contiene las Series integradas por Billingsley para la Unidad Portovelo. Modificado de: Berrezueta et al, 2016.

Figura 2.3 Corte geológico del distrito Zaruma-Portovelo entre los puntos A-B de la figura 2.2. Modificado de: Bonilla, 2012.

Bloque Amotapes-Tahuín

Este bloque está conformado por la unidad Piedras del Precámbrico y el grupo Tahuín del Paleozoico, según (Feininger, 1978), está constituido principalmente por gneises, micaesquistos, sedimentos epimetamórficos, asociados a rocas ultra-básicas y esquistos que presentan metamorfismo de alta presión. Tectónicamente se encuentra

limitado al Norte por la falla Jubones de dirección EO, la falla Girón NNE-SSO lo limita al Este (Kennerly, 1973; Benítez et al, 1993).

Unidad Piedras

La unidad Piedras consiste de rocas metamórficas pelíticas de alto y bajo grado de composición máfica como gneises, anfibolitas, esquistos verdes, mica esquistos y cuarcitas (Baldock, 1982).

Grupo Tahuín

Este Grupo incluye la Formación San Roque formada por Gneises de alto grado y esquistos de edad Precámbrico a Paleozoico inferior, y la Formación Capiro establecida por esquistos y filitas de bajo grado, y más al suroeste se muestra con menor metamorfismo del Paleozoico, el grupo se encuentra subyacente y discordante a las Formaciones Célica y Alamor, compuestas por rocas volcánicas Cretácicas y volcaniclásticas respectivamente (Baldock, 1982).

2.2.2 Geología Local

El Área de estudio presenta sistemas de depósitos minerales correspondientes a filones aurífero-polimetálico con temperatura de formación epitermal y de baja sulfuración (Hedenquist et al. 2000). Según Vikentyev et al. (2005) el sistema epitermal del depósito se encuentra asociado al magmatismo tipo MORB (Mid Ocean Ridge Basalt) (Chiaradia et al. 2004) de un arco continental del Mioceno temprano y consiste en un bloque con lineamientos NO limitado por la falla sinestral Piñas-Portovelo, compuesto por tres series descritas por Billingsley (1926) que son Muluncay, Portovelo y Faique, además de numerosos diques riolíticos que cortan las unidades volcánicas.

De acuerdo con Vikentyev et al. (2005), en la zona de estudio (Distrito Minero Zaruma-Portovelo) es posible identificar alrededor de 30 vetas auríferas polimetálicas con ángulos de buzamientos entre 45 a 70°, con longitudes que alcanzan los 2.5 Km y potencias de 0.8 a 1.5 m, algunas de las vetas cruzan por los diques de riolita perteneciente a la formación Pisayambo.

La litología presente en las partes más altas son tobas riolíticas y saprolitos generalmente y en el sur afloran andesitas que pertenecen al área Toscón Blanco. En el nivel Q1/2 a 1184 m.s.n.m donde se encuentra los filones Vizcaya, Gabi y Nicole, se caracterizan por andesitas, andesitas porfiríticas y microdioritas. (Figura 2.4)

Figura 2.4 Mapa geológico y perfil geológico del área de estudio A-A'. Modificado de: (Carrión et al., 2019)

De acuerdo a Bonilla (2010), el sistema se localiza al N del enjambre de vetas del distrito, estos filones se encuentran unidos por un crucero de rumbo O-E integrando a los filones Octubrina y Gabi de rumbo NNE a NNO, que representan la unidad productiva de la empresa además de ser los filones usados en esta investigación (Figura 2.5).

Figura 2.5 Mapa del Sistema Vizcaya-Nicole. Modificado de: Bonilla, 2012.

2.2.3 Paragénesis mineral del sistema Vizcaya-Nicole

Los estudios geológicos y mineralógicos realizados en el distrito Zaruma-Portovelo se han llevado a cabo sobre el sistema mineralizado Vizcaya-Nicole, Vikentyev et al. (2005) define tres etapas de mineralización, distinguida la primera etapa por una asociación qz+py y 2 paragénesis: qz+py+hem y qz+ccp+py, observando que la formación mineral inició con la piritización y luego se formó las venas de cuarzo lechoso, la clorita y la hematita por lo general acompañan a fragmentos de cuarzo blanco.

La segunda etapa relacionada con cuarzo-polimetálicos, como minerales sp+qz+gn+ccp, producidas en zonas de brecha y dentro de los cuarzos anteriores por cataclasis con presencia de oro llenando espacios intergranulares de qz, ccp y raramente en gn. La tercera etapa presenta asociación qz+cb que no se acompañan de py.

De acuerdo a (Bonilla, 2010), Vizcaya presenta una secuencia paragenética integrada por 5 estadios como se muestra en la (Figura 2.6) representando eventos mineralizantes discretos que posiciona cada estadio en un orden evolutivo cronológico.

A continuación, se presenta, de forma resumida, las características de los cinco estadios de mineralización propuestos por Bonilla (2010) debido a su interés y base de comparación a los trabajos realizados en este proyecto.

Estadio 1 (e1)

Este estadio presenta la alteración propilítica de la roca andesíticas, con una paragénesis definida como $chl_1 + ep_1 + ser_1 + cb_1 + qz_{mg1} + hem_1 + py_1 + ilt_1 + adl_1$, donde la chl y ep son los minerales de alteración abundante, cb presenta forma anhedral y se localiza en fracturas, generalmente en stockworks, la ser e ilt, remplazan a plagioclasas, el cuarzo microgranoso (qzmg) es anhedral y se halla formando stockworks, py posee forma subhedral y se observa remplazando al qz que se encuentra acompañado de hem, la adl es subhedral microgranosa y se encuentra en vetas y venillas.

Estadio 2 (e2)

Este estadio presenta una paragénesis $ill_2 + chl_2 + cal_1 + adl_2 + qz_{gf-mg1} + py_2 + qz_{mg2} + hm_2 + cb_2 + ser_2 + sp_1 + Au_1 + gn_1$ con presencia de alteraciones propilítica, argilíca intermedia, sílica y fílica en los hastiales, se interpreta la cal espática que es de la etapa de ebullición acompañada de qz, py y hem en forma de venillas, la clorita presenta forma subhedral en rellenos de fracturas del qz, la hem es anhedral se presenta como relleno junto a la py, la sp es anhedral y se encuentra remplazando al cuarzo microgranoso, el oro es anhedral microgranoso y esta como relleno de espacios intergranulares del qz.
Estadio 3 (e3)

Este estadio representa el estadio económico de explotación, integrado por la asociación $qz_{mg3} + py_3 + sp_2 + Au_2 + ptz_1 + el_1 + chl_3 + sm_1 + gn_1 + cp_1 + bn_1 + tn_1 - ttr_1$, asociado a alteraciones propilítica, argílica intermedia, argílica, sílica y fílica, de la andesita como roca encajante.

El estadio 3, se relaciona a una segunda etapa de ebullición, con precipitación de gran cantidad de sulfuros, rellenando los espacios intergranulares del qz microgranoso. La chl es subhedral y se encuentra como relleno de fracturas del qz, vinculado a una deformación por presión-disolución, la ilt y esmectita fueron determinadas por Portable Infrared Mineral Analyzer (PIMA), la py de este estado es subhedral a euhedral y se localiza como remplazo del qz, la ccp se observa intercrecida en espacios abiertos o como exsolución en la sp, la gn reemplaza a la sp a lo largo de su clivaje.

El microanálisis de electrón determinó la presencia de Au nativo y electrum, depositados en el estadio 3, el Au y electrum se presenta con tamaños finos a microgranoso, asociado a la py, esto es observado en las deformaciones y zonas de debilidad.

Estadio 4 (e4)

Este estadio presenta la paragénesis $qz_{gf-gm2} + sme_2 \pm Au_3 \pm sp_3 \pm cp_2 \pm el_2$, asociada a argilización y silicificación, el qz es subhedral fino a medio de color blanco lechoso, la sme a es determinada por el PIMA, la sp es pobre en Fe y se encuentra rellenando fracturas de qz, el Au se localiza como absorción en los planos de fractura en la py del estadio 3 que genera una zona de densidad con carga negativa que adsorbe los cationes de Au, la ccp se observa como exsolución de la sp, interpretada como una depositación sincrónica con Au y electrum, el electrum se encuentra como inclusión dentro de la sp.

Estadio 5 (e5)

Este estadio presenta la paragénesis $qz_{gg1} + Au_4$ vinculado a silicificación, el Au de este estadio se sustenta por el análisis macroscópico de las muestras de mano, que se observa como relleno de fracturas del qz granoso y grueso de coloraciones gris a violeta.

Figura 2.6 Paragénesis del filón Vizcaya, con la evolución de minerales depositados en cada estadio durante el evento hidrotermal (Bonilla, 2010).

CAPÍTULO 3

METODOLOGÍA

3. METODOLOGÍA

El proceso desarrollado en este trabajo incluyó cuatro fases principales (Figura 3.1): 1) trabajo de estudio previo; 2) trabajo de campo; 3) trabajo de laboratorio; 4) trabajo de gabinete. Cada una de estas fases se dividió en unos pasos específicos que se describen a continuación.

Figura 3.1 Esquema de la metodología aplicada a este proyecto

3.1 Fase 1 (Trabajo de estudio previo)

1. Revisión de trabajos previos que se realizaron en la zona de estudio (bibliografía), mediante consultas en revistas electrónicas y bases de datos científicas.

2. Visita a la mina estudiada con los datos e información previa obtenida, donde se verifico, corrigió datos específicos de localización de avances de mina donde muestrear.

Para este estudio se realizó una plantilla tipo donde se identificaron datos de las campañas de muestreos (Tabla 4).

3. Las visitas de campo para planificar toma de muestras y la propia toma de muestras se realizaron siguiendo un protocolo de seguridad requerido por la empresa. Además, se realizó el ingreso a la mina con equipación necesaria (martillo, brújula, libreta de campo, mascarilla, guantes, casco, entre otros).

3.2 Fase 2 (Trabajo de campo)

- 1. Visita a la mina para descripción detallada de zona de muestreo. Esta actividad consistió en realizar un esquema detallado de la disposición de la galería, filón y roca caja (orientación, mineralogía, dimensiones).
- Toma de muestras representativas. Las muestras se tomaron en las cuatro estaciones de los filones Vizcaya (1), Gabi (1) y Octubrina (2) de forma sistemática (Tabla 3.1).
- 3. Descripción de cada una de las muestras de mano (filón y caja). Para esta tarea se utilizó una lupa y se asignó un código de muestra a cada roca recogida.

Datos de las muestras tomadas en Bira								
Fecha: 05/09	/2018							
Integrantes:								
Ph.D. Edgar Berrezueta								
Ph.D María D	omínguez							
Catherine Es	pinoza							
Johnny Loay	za							
ESTACIONES	FILÓN	UBICACIÓN	ESPESOR DEL FILÓN					
Estación 1								
Estación 2								
Estación 3								
Estación 4								

 Tabla 3.1
 Plantilla para la toma de muestras en las estaciones de los filones Vizcaya, Octubrina y Gabi.

3.3 Fase 3 (Trabajo de laboratorio)

1. Descripción de las muestras de mano de los filones obtenidas en las diferentes estaciones.

Para esto se utilizó un documento base: Instructivo de manejo de fichas de descripción macroscópica de muestra de rocas, elaborado por (PPGME – INIGEMM, 2013), en donde se colocó la estructura, color, tamaño de grano, forma de cristales, minerales primarios presentes, entre otros. Para la identificación de los minerales primarios se utilizó instrumentos como lupa y lápiz de dureza, además de porcelana para determinar el color de la raya del mineral.

 Elaboración y análisis de secciones pulidas de las muestras obtenidas en la fase anterior.

El procedimiento para la elaboración de las secciones pulidas se tomó de la metodología según (Kenl, 1954), donde primeramente se procedió a cortar la roca de cada una de las estaciones con el equipo Geoform, tomando en cuenta que llegue a un espesor adecuado. A continuación, se pulió la sección de vidrio para pegar el fragmento de roca obtenida en el corte, finalmente se pulió y desbastó con el equipo adecuado para dar el acabado final de la sección pulida, en este caso se utilizó el equipo Forcimat (Figura 3.2). El detalle de este proceso se presenta en la (Tabla 3.2).

Figura 3.2 Equipo Forcimat para realizar el pulido de las secciones delgadas ubicado en el Laboratorio de Petrografía en ESPOL.

Equipo	Forcimat	Forcimat TS
Aplicación de la fuerza	Individual	Individual
Fuerza (N)	5 – 60	5 - 60
Velocidad (rpm)	50 – 150	35
Dirección de rotación	CW/CCW	CW
Monitor	DP	DP
Lubricador de goteo automático	Estándar	Estándar
Dimensiones WxDxH (cm)	23x43x25	23x43x25
Peso (kg)	16	16
Potencia del motor (Hp)	100 W	100 W
Suministro de aire	6 Bar	6 Bar

Tabla 3.2 Especificaciones técnicas del equipo Forcimat (Senay, 2014)

Después de haber culminado con la elaboración de las secciones pulidas, se procedió a realizar el análisis mediante técnicas establecidas para obtener las propiedades de los minerales observados por medio del microscopio de luz transmitida/reflejada que se encuentra en el laboratorio de petrografía en ESPOL.

Con el fin de facilitar la descripción mineralógica se utilizó las abreviaturas de minerales definidas por Whitney & Evans (2010).

4. Elaboración y análisis de láminas delgadas para las muestras del filón y caja

El proceso de preparación de una sección delgada se muestra en la (Figura 3.3). En el primero paso se seccionó la muestra hasta llegar a una pastilla de 25 x 45 mm y 10 mm de grosor aproximadamente con un disco de metal de borde de diamante, luego de esto se realizó un desbaste mecánico hasta lograr un grosor de 0.1 mm aproximadamente. Por último, con la mano y abrasivos especiales se realizó el acabado final hasta llegar a 0.03 mm de espesor aproximadamente lavando la muestra con ultrasonido para no dejar residuos.

Figura 3.3 Esquema explicativo de la elaboración de una lámina delgada (Pozo et al., 2004)

5. Identificación de minerales por medio de Difracción de Rayos X (DRX).

Se realizó el ensayo en 6 muestras, dos de cada filón, las cuales fueron molidas previamente a un tamaño apropiado (< $20 \mu m$) utilizando el molino de bolas ubicado en el laboratorio de Metalurgia de FICT.

El rango utilizado en la difracción fue de 5-80°, con un diámetro de 20, el difractómetro utilizado fue PANalytical XPert Pro (Figura 3.4) ubicado en el Laboratorio de Ensayos Metrológicos y de Materiales (LEMAT) operado a 35 kV Y 40 mA. Para el análisis se utilizó los softwares X'pert highscore plus y Match! 3.

Figura 3.4 Equipo PANalytical XPert Pro utilizado para la difracción de rayos x.

5. Identificación y cuantificación de la mineralogía sobre probetas pulidas mediante la utilización de Microscopio de reflexión (MOP), Microscopia de barrido (MEB), Análisis óptico de imágenes (AOI).

Se analizaron las secciones pulidas en el microscopio de reflexión y por medio AOI se obtuvo una cuantificación preliminar de los minerales identificados. Esta etapa del proceso se basó en el trabajo de Berrezueta et al. (2016), donde menciona que el AOI permite la observación microscópica para mejorar la caracterización mineral, proporcionando valores numéricos exactos y representativos para estudios petrográficos, en la escala de secciones pulidas (Berrezueta et al., 2002; Berrezueta & Castroviejo, 2007; Castroviejo & Berrezueta, 2009). El equipo empleado en la AOI se presenta en el Anexo A.

El procedimiento para la identificación y cuantificación de fases minerales por AOI incluyó tres pasos principales (Figura 3.5):

a. El primer paso fue la selección de muestras y una caracterización mineral visual produciendo información sobre el sitio.

b. El segundo paso fue la caracterización de mineral que comprende estudios texturales y mineralógicas de las muestras de mineral por MOP (Leica DM 6000 microscopio de polarización) y microscopia de barrido MEB (JEOL 6100 MEB) en secciones pulidas, en donde se utilizó el software Inca Energía 200 en el IGME, Oviedo. Luego se incluyó una correlación con estudios preliminares.

La técnica de Microscopia electrónica de Barrido (MEB) brinda la información local o completa. Para aplicar esta técnica se requirió cantidades menores de muestra en comparación con otras técnicas (por debajo de 10nm de diámetro), que facilitan información de áreas de menor tamaño (Goberna & Faraldos, 2011).

El microscopio de barrido puede presentar grandes ventajas como un rango de ampliación y profundidad de campo de una imagen, la cual va a permitir enfocar superficies a distintas alturas (Goberna & Faraldos, 2011).

c. El paso final consistió en la cuantificación AOI de minerales que se encuentran en muestras pulidas.

Figura 3.5 Representación esquemática de la secuencia de identificación mineral y cuantificación usando AOI (Berrezueta et al., 2016)

6. Estudios Geoquímicos mediante microsonda electrónica

Se realizaron unos análisis químicos de los minerales presentes en las secciones pulidas mediante microsonda electrónica. Esta técnica es muy utilizada actualmente. Raimond Castaing presentó la idea original de que un microanálisis con rayos X secundarios permitiría la identificación de minerales. El equipo utilizado en la microsonda electrónica se observa en el Anexo B.

La técnica por microsonda electrónica de barrido (EPMA) aporta información cualitativa y cuantitativa en análisis elemental para volúmenes micrométricos en la superficie de los materiales, con sensibilidades del orden de los ppm. La técnica permite obtener de forma simultánea imágenes de rayos X (WDS y EDS), MEB y BSE, además de microscopia óptica (Melgarejo et al., 2010).

La cuantificación del porcentaje de un elemento en un mineral, permite identificar la fase mineral a la que pertenece, a partir de un mineral característico, con su masa atómica, se obtiene el porcentaje teórico del elemento de un compuesto mineral y esta a su vez se compara con los porcentajes obtenidos en el análisis de microsonda, en la (Figura 3.6) se presenta un cuadro de conversión desde el compuesto mineral hasta el porcentaje teórico de un elemento en dicha fase mineral.

Conversión de Fases minerales mediante datos de microsonda electrónica								
Vasa Atómica de los elementos (g/mol)								
Fe: 55,845 Cu: 63,546 S: 32,065 Zn: 65,39 Pb: 207								
Formula Mineral: A	Formula Mineral: ABx							
masa eleme	nto (A) + masa elemento (B*	numero de átomos x)	= valor = 100%					
	valor	100%						
	masa elemento (A	,B) %						
Pirita FeS2	Calcopirita CuFeS2	Galena PbS	Esfalerita ZnS					
55,845 + 64,13= 119	63,546 + 55,845 + 64,13= 183,516	207+32,065= 239,065	65,39+32,065= 97,45					
119 100%	183,516 100%	239,065 100%	97,45 100%					
55,845 46,52%	63,54634,62%	20786,58%	65,3967,097%					
64,13 53,45%	55,845 30,427%	32,065 13,41%	32,065 32,90%					
	64 13 34 94%							

3.4 Fase 4 (Trabajo de gabinete)

- Se interpretó los resultados mineralógicos obtenidos y se realizó una correlación de los resultados obtenidos con estudios previos (ej. Bonilla, 2010), y se obtuvo una mejor caracterización mineralógica.
- 2. Se interpretó los datos de geoquímica obtenidos mediante la microsonda electrónica.
- Se elaboró el informe final con los resultados alcanzados con una tabla de asociaciones minerales más comunes utilizando diferentes técnicas de identificación y una paragénesis propuesta de cada veta.

CAPÍTULO 4

RESULTADO Y ANÁLISIS

4. RESULTADOS Y ANÁLISIS

Como resultado de la aplicación de la metodología se obtuvieron en un principio subproductos como fichas de descripción macroscópica, difractogramas, diagramas de cuantificación mineral y tablas de composición de elementos. A continuación, se obtuvieron unos productos más específicos de la investigación realizadas como secuencias paragenéticas y tablas de asociaciones minerales de los filones evaluados (Figura 4.1).

Figura 4.1 Subproductos y productos obtenidos aplicando la metodología

Las muestras tipo para el estudio petrográfico de menas se obtuvieron del muestreo descrito en Tabla 4.1.

Datos de las muestras tomadas en Bira							
Fecha: 05/09	/2018						
Integrantes:							
Ph.D. Edgar Berrezueta							
Ph.D María D	omínguez						
Catherine Es	pinoza						
Johnny Loay	za						
ESTACIONES	FILÓN	UBICACIÓN	ESPESOR DEL FILÓN				
Estación 1	Octubrina	653826/9592939	40 cm				
Estación 2	Octubrina	653792/9592950	40 cm				
Estación 3	Vizcaya	653852/9593224	60 cm				
Estación 4	Gabi	653915/9593059	20 cm				

 Tabla 4.1 Estaciones muestreadas en la visita a la mina Q1/2.

Una visualización general de las cuatro estaciones de trabajo estudiadas se presenta en la (Figura 4.2).

Figura 4.2 Muestreo de los diferentes filones, muestreadas en la visita a la mina Q1/2.

4.1 Identificación macroscópica y microscópica de minerales

La identificación preliminar de los principales minerales de 14 muestras de mano de veta de los tres filones de estudio se realizó con ayuda de lupa, lápiz de dureza, porcelana, imán y ácido clorhídrico. En las muestras estudiadas se pudo identificar minerales como py, ccp, gn, hem, cv y qz. Este análisis permitió confirmar que las muestras obtenidas poseían la mineralogía previamente identificada en el depósito (ejemplo: Berrezueta et al.,2016).

Luego de la descripción macroscópica se elaboraron 18 secciones pulidas de los tres filones estudiados muestra de mano de los filones y 19 láminas delgadas para la identificación a mayor detalle de minerales opacos y trasparentes en zonas próximas a la mineralización de los tres filones estudiados. En las siguientes fichas de descripción (Figura 4.3, Figura 4.4 y Figura 4.5) se presentan en detalle las descripciones de las muestras de mano y secciones pulidas de los tres filones Vizcaya, Octubrina y Gabi.

Filón Vizcaya	Descripcio	ón Macroscópica
Hematita Esfalarita Pirita Cuarzo No Diferenciado	Estación : 3 Código: Estructura: Color: Textura: Tamaño de granos: Forma de cristales: Miner Cuarzo: 40% He Pirita: 5% No	Fecha:17 /10/2018 M3A Roca ignea masiva azul pálido (Munsel,2009) Porfiritica grano fino subhedral rales Principales ematita: 15% Esfalerita: 5% o Diferenciado: 35%
M3A (Compared of the second o	Descripcio Se observa tres fa por su textura, el p masiva con inclusio un segundo fluido y calcopirita, que Hematita, la terco de cuarzo granula exsolución de ca principales.	ón Mineralógica ases de cuarzo diferenciado orimer se encuentra de forma ones solidas de sulfuros, luego masivo con presencia de pirita oxidaron y dieron origen a la er fase se observa un cuerpo r con inclusiones de pirita alcopirita, como minerale
N// M3A 10X		
N// M3A 20X	NX IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Figura 4.3 Ficha de descripción del filón Vizcaya.

		on maerescopied
	Estación : 2	Fecha:17 /10/2018
	Codigo:	M1A
	Estructura:	Roca ignea masiva
	Color:	azul pálido (Munsel,2009)
	Textura:	Faneritica
Esfalerita	Tamaño de granos:	grano fino
	Forma de cristales:	subhedral
	Mine	erales Principales
Cuarzo No Diferenciado	Cuarzo: 15% Esfal	erita: 5% Galena: 2%
0 2 4 ^[Cm]	Pirita: 5% Calco	pirita: 3% No Diferenciado: 70%
M2A	Descripcio	ón Mineralógica
	Se observan fases	predominantes de calcopirita
Not the Base	con inclusiones de	e pirita que presenta un halo
	de alteración a co	ovelina, de manera aislada se
and the second design of the s	observa cristale	es subhedrales de galena.
and the second		
and the second sec	Cristales grande	es de pirita fracturada se
	encuentra con relle	eno de calcopirita y sobre ellos
	aparece la esfale	rita y otros minerales como
0 [Cm] 1	tetraedrita-tenanti	ta, y minerales de alteración.
N// M2A 10X	NX	
Py		
N// M2B 10X	NX	

Figura 4.4 Ficha de descripción del filón Octubrina

Filón Gabi	Descripción Macroscópica				
Galena Pirita Estalerita Cuarzo	Estacion : 4Fecha:17 /10/2018Codigo:M4BEstructura:Roca ignea masivaColor:Gris claro (Munsel,2009)Textura:AfaniticaTamaño de granos:grano finoForma de cristales:subhedralMinerales PrincipalesCuarzo: 15%Pirita: 10%Estactor de cristales:Subhedral				
M4B	Galena: 1,5% No diferenciado: 70% Descripción Mineralógica Se observan tres eventos de introducción de cuarzo, el primero microgranular y masivo con pirita subhedral brechificada, un segundo evento de cuarzo con bajo contenido de sulfuros que intruyo la primer fase y sobre el un tercer evento de cuarzo granular con inclusiones de pirita subhedral.				
N// M4B 10X	NX				

Figura 4.5 Ficha de descripción del filón Gabi.

4.2 Análisis de resultados por medio de difracción de rayos X (DRX)

Por medio del análisis de difracción de rayos X se identificó las siguientes fases minerales de cada filón como se muestras en las (Tabla 4.2, 4.3 y 4.4) incluyendo su cuantificación utilizando 10% de ZnO como patrón cuantitativo.

Tabla 4.2 Minerales identificados del filón Vizcaya por medio del difractograma (Se utilizó 10% de ZnO para la cuantificación).

Vizcaya	Fase mineral	Porcentaje		
	Cuarzo	54,30%		
	Calcopirita	1,40%		
N/2A	Micas (cloritas)	1,70%		
IVISA	Pirita	6,80%		
	Esfalerita	0,20%		
	Amorfo	25,50%		

Tabla 4.3 Minerales identificados del filón Gabi por medio del difractograma (Se utilizó 10% de ZnO para la cuantificación).

Gabi	Fase mineral	Porcentaje
	Cuarzo	46,30%
	Feldespato	21,30%
MAR	Pirita	2,30%
IVI4D	Biotita	3,40%
	Micas (cloritas)	2,60%
	Amorfo	14,00%

Tabla 4.4 Minerales identificados del filón Octubrina por medio del difractograma (Se utilizó 10% de ZnO para la cuantificación).

Octubrina	Fase mineral	Porcentaje		
	Pirita	9,30%		
	Cuarzo	48,70%		
N <i>1</i> 1 A	Calcopirita	8,00%		
MIN	Esfalerita	0,60%		
	Micas (cloritas)	5,80%		
	Amorfo	17,50%		

Para la muestra del filón Vizcaya el difractograma (Figura 4.6) se observan picos principales de cuarzo y pirita, en cambio para el filón Octubrina (Figura 4.7), los picos principales además de cuarzo y pirita se tiene calcopirita. En el difractograma de la muestra del filón Gabi (Figura 4.8) los picos principales son de cuarzo y feldespatos, con un pico menor de pirita. Además, las muestras presentan minerales de feldespatos y micas, como principal posiblemente se tuvo microclina y clorita respectivamente.

Figura 4.7 Difractograma de la muestra M1A del filón Octubrina.

Figura 4.8 Difractograma de la muestra M4B del filón Gabi.

4.3 Aplicación del análisis óptico de imágenes AOI

4.3.1 Identificación por medio del MOP y MEB

El análisis óptico de imagen permitió la identificación automatizada y cuantificación de minerales por medio de la reflectancia. Para este proyecto el análisis óptico de imágenes se realizó mediante el sistema automatizado disponible en la Oficina de Proyectos del IGME en Oviedo (España). El sistema AOI está compuesto por un microscopio automatizado de luz reflejada (Leica-DM-6000), una cámara de color de alta resolución (ProgRes 5) y un software de análisis de imagen (Image Pro-plus) (Berrezueta et al., 2015).

Se utilizaron 200 imágenes de minerales con un aumento de 10X para cada sección pulida cuantificada. Las 200 imágenes por sección pulida permitieron obtener de forma representativa, a escala de probeta pulida, las abundancias de las distintas fases minerales presentes.

Para la aplicación del proceso de cuantificación por medio de AOI fue importante analizar previamente las características texturales y mineralógicas de las secciones pulidas por medio de la microscopia óptica y microscopia electrónica de barrido (MEB) (JEOL 6100 SEM).La identificación previa de la mineralogía presente en las muestras estudiadas se incluyó en la fase automatizada de identificación con el fin de que la aplicación de reconocimiento solo cuantificara las fases que habían sido previamente encontradas al Microscopio Óptico.

Para este estudio se prepararon 6 probetas pulidas de los filones estudiados: muestra M3A y M3B de Vizcaya; muestras M1A, M1B y M2A de Octubrina; muestran M4B de Gabi.

En general y de forma representativa, por medio del análisis del microscopio de reflexión (Figura 4.9) y MEB (Figura 4.10 y 4.11) se identificaron los siguientes minerales: py, ccp, sp, gn, hem, ttr-tnt, cct y cv. Además, se identificaron minerales gg

40

como el qz, chl y plagioclasas, espacios o fracturas de relleno hidrotermal y efectos de sustitución mineral local.

En forma más detallada, mediante microscopia óptica se pudo determinar que, en la muestra M3A (Figura 4.6) se identificaron como componentes mayores a sp, gn y qz mientras que como componentes menores a py y ccp. Además, como componentes accesorios escasos, se identificaron cov, ttr, cct. Esta muestra presenta una textura masiva. La fase mineral más dominante es el qz cristalino de grano grueso, además de sulfuros asociados a dicho qz.

En las muestras M1A y M1B se definió una textura diseminada para ambas muestras. Sin embargo, las muestras presentaron diferentes abundancias de los minerales que las componen. Por ejemplo, en la primera muestra la py es un componente principal mientras que en M1B, ya no lo es.

En la muestra M4B se pudo identificar un predominio de py diseminada sobre una masa cristalina de qz y, en menor medida, presencia de ccp.

Figura 4.9 Fotomicrografías de luz reflejada de 3 de secciones pulidas con aumento de 10x (descripción) de los filones Vizcaya, Octubrina y Gabi.

En el caso de los estudios basados en Microscopia electrónica, esta técnica pudo corroborar las mineralogías descritas con microscopia óptica. En forma descriptiva, los resultados de las aplicaciones del MEB sobre las muestras como M4B, M3A, M1A y M1B, como se muestra en las (Figura 4.7 y Figura 4.8) correspondiente a Gabi, Vizcaya y Octubrina.

La utilización de un análisis MEB, además de la identificación adecuada de fases minerales orientadas a una cuantificación mediante AOI permitió obtener información que no fue posible determinar con el estudio al Microscopio Óptico. Por ejemplo, fue posible obtener la asociación de py+Au (Figura 4.7) en la muestra M4 B del filón Gabi. Estos datos en detalle fueron evaluados y corroborados posteriormente mediante microsonda electrónica.

Figura 4.10 Micrografías electrones retrodispersados de asociaciones minerales del filón Gabi. La estrella azul indica el análisis de microsonda.

43

M3A (Vizcaya)

M1A (Octubrina)

M2B (Octubrina)

Figura 4.11 Micrografías electrones retrodispersados de asociaciones minerales de los filones Vizcaya y Octubrina. La estrella azul indica el análisis de microsonda

4.3.2 Cuantificación por medio del AOI

La técnica de AOI utilizada basada en imágenes en color y un programa de análisis de imagen permitió una cuantificación de las fases minerales a escala de la sección pulida. En los siguientes diagramas (Figura 4.12 y Figura 4.13) representan el área de granos minerales detectados con una búsqueda automatizada que muestra la distribución de los granos minerales que han sido seleccionados, esto se da por medio de porcentaje.

En la (Figura 4.12) los literales a y b muestran previos del filón Vizcaya (Berrezueta et al., 2016) aplicando AOI. En el literal c de la (Figura 4.13) se puede observar que coinciden con la cuantificación de fases varia. El literal f de la (Figura 4.13), la muestra M2A presenta un pequeño porcentaje de Au y en la muestra M4B y M4Bb aparece únicamente sp, ccp, py y minerales ganga, las cuales pertenecen al filón Gabi. Es importante indicar que se cuantifican fases minerales visibles con instrumentos ópticos y que los estudios previos mediante MEB se orientaron a corroborar las identificaciones de minerales realizadas con MOP.

Figura 4.12 Diagramas de cuantificación de área mineral del distrito minero Zaruma-Portovelo. (Berrezueta et al., 2016).

Figura 4.13 Diagramas de cuantificación de área mineral es de diferentes muestras Vizcaya, Octubrina y Gabi.

4.4 Análisis de resultado por medio de microsonda electrónica.

4.4.1 Identificación de fases minerales

La técnica de microsonda electrónica permitió la identificación de las diferentes fases minerales presentes en las secciones pulidas a partir del reconocimiento y cuantificación de los elementos químicos presentes en los puntos de muestreo seleccionados. En la (Tabla 4.5) se muestra los datos de salida del filón Vizcaya, de igual forma en los anexos C, D y E, se muestra los datos de salida de los filones Octubrina y Gabi.

La identificación de esas fases minerales se llevó a cabo mediante la conversión de los datos proporcionados por la microsonda (% de elementos químicos) a una formula química. Además de la identificación de las fases fue posible determinar características particulares de las fases como la presencia de Au, Ag y Te en estas fases. Los resultados de esta interpretación se presentan en la (Tabla 4.6, 4.7, 4.8 y 4.9) de las cuales pertenecen a los filones Vizcaya, Octubrina y Gabi correspondientemente.

En este análisis se pudo encontrar porcentajes menores de Au en py, gn, ccp y mineral gg, permitiendo correlacionar el Au para la elaboración de la paragénesis en el filón Vizcaya (Tabla 4.6). De la misma forma se encontró porcentaje de Au en py, gn, ccp y mineral gg en el filón Octubrina (Tabla 4.7), para la veta Gabi se encontró porcentajes pequeños de Au solamente en pirita (Tabla 4.9).

Woight	97.																			<u> </u>
Datao	/0																			
et/Poi																				Comme
nt	Cu	As	Fe	Co	Ni	s	Ag	Sb	Те	Au	Bi	Zn	Se	Sn	Hg	Pb	Mn	Cd	Total	nt
1/1.	0,0105	0,0333	0,8630	0,0000	0,0000	32,4855	0,0391	0,0000	0,0094	0,0000	0,0000	65,5857	0,0000	0,0108	0,0000	0,0000	0,0284	0,6788	99,7447	M3A-1
2/1.	0,0290	0,0000	0,6421	0,0000	0,0000	33,1982	0,0000	0,0000	0,0300	0,0000	0,2090	65,4194	0,0000	0,0256	0,0000	0,0000	0,0911	0,8495	100,4938	M3A-2
3/1.	0.0659	0.0000	0.5157	0.0000	0.0000	32,7198	0.0039	0.0164	0.0000	0.0000	0.0000	66.2521	0.0000	0.0000	0.0000	0.0000	0.0322	0.7943	100,4002	M3A-3
4/1.	0.0506	0.0362	0.7194	0.0000	0.0000	33,5996	0.0000	0.0133	0.0168	0.0000	0,1564	65,7318	0.0000	0,0000	0.0000	0.0000	0.0488	0.6259	100,9987	M3A-4
5/1.	0.0081	0.0000	0.9093	0.0000	0.0000	33,1239	0.0000	0.0000	0.0273	0.0000	0.0000	66.1416	0.0000	0.0016	0.0000	0.0000	0.0144	0.7005	100,9267	M3A-5
6/1	0.0241	0.0040	0,8069	0,0000	0.0194	33 2921	0.0408	0,0000	0,0000	0,0000	0.0951	65 9274	0.0334	0,0000	0,0000	0,0000	0.0340	0.8037	101 0809	M3A-6
	0,0211	0,00.0	0,0000	.,	0,0.0.		0,0.00	0,0000	0,0000	0,0000	0,000.		.,	.,	0,0000	0,0000	0,00.0	0,000.	,	
- / /	0.0005					05 0407		0.0040						0.0005		0.0000		0.5000	75 0000	
//1.	0,0025	0,0981	0,5939	0,0000	0,0000	25,3167	0,0000	0,0243	0,0019	0,0000	0,0338	49,1051	0,0000	0,0265	0,0000	0,0000	0,0428	0,5926	75,8382	M3A-7
8/1.	0,0000	0,0027	0,0000	0,0137	0,0000	0,0007	0,0144	0,0000	0,0097	0,0061	0,0000	0,0000	0,0355	0,0000	0,0000	0,0346	0,0000	0,0001	0,1175	M3A-8
9/1.	0,5750	0,0077	0,9537	0,0000	0,0130	33,0280	0,0000	0,0000	0,0200	0,0000	0,0000	63,7500	0,0000	0,0000	0,0000	0,0000	0,0453	0,7248	99,1175	M3A-9
10/1.	0,7580	0,0000	0,2933	0,0000	0,0000	48,7193	0,0417	0,0000	0,0000	0,0000	0,0000	8,6664	0,0058	0,0000	0,0204	0,0000	0,0000	0,1214	58,6263	M3A-10
11/1.	6.2385	0.0639	5.8587	0.0000	0.0329	35.9187	0.0040	0.0000	0.0000	0.0000	0.0000	49,7983	0.0195	0.0216	0.0000	0.0000	0.0256	0.6730	98.6548	M3A-11
	0,2000	0,0000	0,000.	.,	0,00-0		0,00.00	.,		0,0000	0,0000		.,	0,02.0	.,	0,0000	0,0200	.,		
12/1.	0.2860	0.0000	0.6010	0.0000	0.0080	36.0327	0.0190	0.0032	0.0365	0.0000	0.0000	63.0729	0.0196	0.0161	0.0000	0.0000	0.0475	0.8359	100.9783	M3A-12
13/1.	0.0000	0.0213	0.0007	0.0000	0.0078	0.0031	0.0000	0.0000	0.0187	0.0000	0.0332	0.1115	0.0060	0.0285	0.0000	0.0493	0.0000	0.0094	0.2894	M3A-13
14/1.	0.0018	0.0624	0.5832	0.0000	0.0000	35,1906	0.0280	0.0000	0.0026	0.0000	0.1512	62,9319	0.0310	0.0000	0.0000	0.0000	0.0677	0.7810	99.8315	M3A-14
15/1.	0.0033	0.0010	0.0000	0.0178	0.0000	13,5060	0.0615	0.1379	0.0104	0.1269	0.0000	0.0000	0.0759	0.0055	0.0000	86.0617	0.0401	0.0000	100.0479	M3A-15
16/1.	0.0043	0.0467	0.0000	0.0071	0.0000	13,2734	0.0000	0.0171	0.0192	0.0098	0.0000	0.0000	0.1007	0.0000	0.0368	87.0136	0.0000	0.0000	100.5287	M3A-16
17/1	0,0000	0,0000	0,0088	0,000	0,0000	13,4551	0.0120	0.0418	0.0655	0 1203	0,0000	0.0205	0.0017	0,0000	0 1167	86 1024	0,0000	0,0000	100,0207	M34-17
19/1	0,0000	0,0000	0,0000	0,0000	0,0000	12 4242	0,0123	0,0410	0,0000	0,1200	0,0000	0,0200	0,0017	0,0000	0,0000	96 4697	0,0000	0,0000	100,0445	M2A-19
10/1	0,0000	0,0000	0,0000	0,0000	0,0000	13 5015	0,0007	0.0500	0,0000	0,0000	0,0000	0,0000	0,1001	0,0046	0,0000	85 6654	0,0400	0,0000	99.4351	M34-19
20/1	0,0072	0,0000	0,0000	0,0000	0,0000	12,5020	0,0000	0,0500	0,0042	0,0000	0,0000	0,0005	0,0000	0,0040	0,0113	96,2626	0,0100	0,0000	100 1260	M3A-20
20/1.	0,0000	0,0230	0,0000	0,0000	0,0000	13,5020	0,0113	0,0500	0,0271	0,0002	0,0000	0,0093	0,1173	0,0000	0,0000	95 2024	0,0223	0,0000	00 2972	M2A-21
21/1.	0,0002	0,0000	0,0019	0,0043	0,0000	12 55 47	0,0031	0,0000	0,0422	0,0000	0,0000	0,0001	0,2003	0,0042	0,0302	03,3534	0,0000	0,0000	09,3072	M3A-21
22/1.	0,0044	0,0000	45,7600	0,0090	0,0000	F2 4522	0,0472	0,0000	0,0701	0,0010	0,0000	0,0243	0,2020	0,0049	0,0000	04,1001	0,0041	0,0000	90,1902 00,2075	M3A-22
23/1.	0,0130	0,0034	45,7600	0,0000	0,0000	55, 1522	0,0013	0,0000	0,0004	0,0365	0,0000	0,0772	0,0030	0,0120	0,0000	0,0000	0,0000	0,0000	99,2075	IVI3A-23
24/1.	0,0000	0,0286	46,4775	0,0000	0,0092	52,5608	0,0052	0,0000	0,0446	0,0000	0,1174	0,0269	0,0282	0,0131	0,0000	0,0000	0,0073	0,0000	99,3187	M3A-24
25/1.	0,0134	0,0000	0,2660	0,0000	0,0119	13,0111	0,0000	0,0000	0,0198	0,0218	0,0000	0,0000	0,1442	0,0000	0,0000	86,6291	0,0052	0,0000	100,1225	M3A-25
26/1.	0,0000	0,0320	0,0315	0,0000	0,0040	0,0122	0,0138	0,0000	0,0114	0,0000	0,0672	0,0000	0,0162	0,0025	0,0000	0,0000	0,0114	0,0036	0,2058	M3A-26
27/1.	0,0000	0,0000	0,0455	0,0113	0,0030	0,0134	0,0000	0,0000	0,0232	0,0412	0,0000	0,0124	0,0053	0,0000	0,0347	1,2784	0,0000	0,0214	1,4898	M3A-27
28 / 1	0.0256	0.0055	40 4550	0 0000	0 0000	49 2506	0.0040	0 0000	0.0150	0 0000	0 0000	0.0000	0.0278	0.0016	0 1220	5 2325	0.0035	0.0214	95 1/30	M34-28
20/1.	0,0200	0,0007	0,9200	0,0000	0,0000	0 4422	0,0040	0,0000	0,0100	0,0000	0,0000	0,0000	0,0270	0,0010	0,1220	0,2020	0,0000	0,0214	1 2050	M2A-20
30/1	0,0000	0.0012	0,0299	0,0000	0.0000	13 1956	0.0206	0.0037	0.0216	0 1249	0,0000	0.0024	0.0754	0.0147	0,0000	84 4773	0,0000	0.0214	97 9373	M3A-30
31/1	31 8751	0.0402	20 7024	0,0000	0,0000	36,8809	0.0580	0.0181	0.0020	0.0000	0,0000	0.4765	0.0226	0.0102	0 1625	0.0000	0,0000	0.0214	00 3625	M34-31
32/1	31 0026	0.1160	28 4724	0,0000	0,0000	36 7322	0,0000	0.0106	0.0265	0,0000	0,0000	3 4964	0,0220	0.0034	0,1000	0,0000	0.0172	0.0214	100 0000	M34-32
32/1.	0.9260	0,1109	1 2629	0,0000	0,0000	36,7322	0,0000	0,0100	0,0203	0,0000	0,0000	5,4504	0,0200	0,0004	0,0202	0,0000	0,0172	0,0214	100,0033	M3A-32
3371.	0,0309	0,0244	1,3030	0,0000	0,0000	33,4347	0,0000	0,0000	0,0013	0,0000	0,1040	01,4045	0,0000	0,0000	0,0000	0,0000	0,0003	0,0214	100,2003	WI3A-33
24/1	24 4519	0 0000	22 41 40	0 0000	0.0000	27 0209	0.0000	0.0270	0.0012	0.0000	0.1759	15 1494	0.0000	0.0156	0 0000	0.0000	0.0222	0.0214	100 3760	M2A-24
34/1.	24,4518	0,0000	45.0674	0,0000	0,0000	51,9308	0,0000	0,0370	0,0013	0,0000	0,1758	0.5102	0,0000	0,0156	0,0000	0,0000	0,0322	0,0214	09.3544	M2A 25
33/1.	0,0548	0,0104	45,0674	0,0000	0,0267	32,8299	0,0544	0,0001	0,0000	0,0000	0,0000	0,5103	0,0000	0,0000	0,0000	0,0000	0,0000	0,0214	98,3541	IVIJA-JO
30/1.	0,0000	0,0297	0,0050	0,0000	0,0298	13,0254	0,1106	0,0000	0,0098	0,0000	0,0000	0,5003	0,2424	0,0000	0,0000	0,0005	0,0095	0,0214	99,6236	NI3A-30
3//1.	0,0000	0,0136	0,1587	0,0047	0,0102	0,0422	0,0113	0,0000	0,0000	0,0000	0,0000	0,0217	0,0000	0,0105	0,0198	0,0005	0,0000	0,0214	0,2932	NISA-37
30/1.	0,0089	0,0523	45,1491	0,0000	0,0000	03,8704	0,0000	0,0232	0,0000	0,1043	0,0000	0,0544	0,0216	0,0000	0,0000	0,0000	0,0075	0,0214	99,2918	IVIJA-38
39/1.	0,0357	0,0000	0,6610	0,0000	0,0000	33,5414	0,0208	0,0000	0,0000	0,0000	0,0000	05,6300	0,0918	0,0000	0,0000	0,0000	0,1092	0,0214	100,8084	IVI3A-39
40/1.	0,1839	0,0251	1,0958	0,0000	0,0000	32,2269	0,0000	0,0000	0,0000	0,0000	0,2188	04,6470	0,1018	0,0056	0,0000	0,0000	0,0650	0,0214	99,2647	IVI3A-40
41/1.	0,0315	0,0440	46,2753	0,0000	0,0000	53,0212	0,0026	0,0024	0,0000	0,0399	0,0000	0,1120	0,0589	0,0000	0,0759	0,0000	0,0000	0,0214	99,6638	M3A-41
42 / 1	0.0181	0.0078	0.0138	0 0000	0.0202	0.0014	0 0000	0 0000	0 0000	0.0123	0.0618	0 0049	0 0000	0.0057	0.0253	0.0138	0.0036	0.0214	0 2118	M34-42

 Tabla 4.5
 Datos de salida obtenidos mediante el análisis de microsonda electrónica del filón Vizcaya.

Comment	fase mineral	Oro (%)	Plata (%)	Teluro (%)	Comment	fase mineral	Oro (%)	Plata (%)	Teluro (%)
M3A-1	Esfalerita		0,0391	0,0094	M3A-22	Galena	0,0018	0,0472	0,0781
M3A-2	Esfalerita			0,0300	M3A-23	Pirita	0,0385	0,0013	0,0064
M3A-3	Esfalerita		0,0039		M3A-24	Pirita		0,0052	0,0446
M3A-4	Esfalerita			0,0168	M3A-25	Galena	0,0218		0,0198
M3A-5	Esfalerita			0,0273	M3A-26	Ganga		0,0138	0,0114
M3A-6	Esfalerita		0,0408		M3A-27	Ganga	0,0412		0,0232
M3A-7	Esfalerita			0,0019	M3A-28	Pirita		0,0040	0,0150
M3A-8	Ganga	0,0061	0,0144	0,0097	M3A-29	Ganga			0,0068
M3A-9	Esfalerita			0,0200	M3A-30	Galena	0,1249	0,0206	0,0216
M3A-10	Esfalerita		0,0417		M3A-31	Calcopirita		0,0580	0,0080
M3A-11	Esfalerita		0,0040		M3A-32	Calcopirita			0,0265
M3A-12	Esfalerita		0,0190	0,0365	M3A-33	Esfalerita			0,0013
						Solucion Solida Intermedia de			
M3A-13	Ganga			0,0187	M3A-34	Cu,S,Zn,Fe			0,0013
M3A-14	Esfalerita		0,0280	0,0026	M3A-35	Pirita		0,0544	
M3A-15	Galena	0,1269	0,0615	0,0104	M3A-36	Galena		0,1166	0,0098
M3A-16	Galena	0,0098		0,0192	M3A-37	Ganga		0,0113	
M3A-17	Galena	0,1293	0,0129	0,0655	M3A-38	Pirita	0,1043		
M3A-18	Galena	0,0605	0,0307		M3A-39	Esfalerita		0,0208	
M3A-19	Galena		0,0899	0,0042	M3A-40	Esfalerita			
M3A-20	Galena	0,0882	0,0113	0,0271	M3A-41	Pirita	0,0399	0,0026	
M3A-21	Galena		0,0631	0,0422	M3A-42	Ganga	0,0123		

 Tabla 4.6 Identificación de fases minerales a partir de datos de microsonda perteneciente al filón Vizcaya (M3A).

 Tabla 4.7 Identificación de fases minerales a partir de datos de microsonda perteneciente al filón Octubrina (muestra M1A).

Comment	fase mineral	Oro (%)	Plata (%)	Teluro (%)	Comment	fase miner	Oro (%)	Plata (%)	Teluro (%)
M1A-1	Esfalerita		0,0335	0,0335	M1A-20	Esfalerita			
M1A-2	Esfalerita			0,0064	M1A-21	Ganga	0,0187		
M1A-3	Ganga			0,0006	M1A-22	Pirita	0,1333		
M1A-4	Esfalerita		0,0013		M1A-23	Pirita		0,0112	0,0007
M1A-5	Esfalerita		0,0109	0,0144	M1A-24	Pirita			
M1A-6	Pirita	0,0778	0,0131		M1A-25	Ganga		0,0024	0,0012
M1A-7	Pirita				M1A-26	Esfalerita		0,0083	
M1A-8	Calcopirita			0,013	M1A-27	Galena	0,0317	0,045	0,0395
M1A-9	Calcopirita	0,1082		0,0145	M1A-28	Galena	0,0564	0,0511	0,0532
M1A-10	Pirita	0,0234	0,0027		M1A-29	Ganga	0,0622		
M1A-11	Pirita		0,0361	0,0013	M1A-30	Calcopirita		0,029	0,0582
M1A-12	Ganga				M1A-31	Pirita	0,0618	0,0512	
M1A-13	Calcopirita		0,0332	0,0063	M1A-32	Esfalerita			0,0327
M1A-14	Esfalerita		0,0079		M1A-33	Galena	0,0801	0,2155	0,0296
M1A-15	Galena	0,045	0,0143		M1A-34	Galena		0,0988	0,0577
M1A-16	Ganga		0,0082	0,0027	M1A-35	Esfalerita		0,0459	
M1A-17	Galena	0,045		0,0646	M1A-36	Pirita	0,097	0,0014	0,0066
M1A-18	Calcopirita			0,0289	M1A-37	Calcopirita		0,036	0,0013
M1A-19	Esfalerita				M1A-38	Calcopirita	0,0809	0,0266	

Comment	fase mineral	Oro (%)	Plata (%)	Teluro(%)	Comment	fase mineral	Oro (%)	Plata (%)	Teluro(%)
M2A-1	Pirita		0,0460		M2A-13	Pirita		0,0067	
M2A-2	Pirita	0,0344	0,0256		M2A-14	Pirita		0,0371	0,0297
M2A-3	Calcopirita		0,0275	0,0055	M2A-15	Pirita	0,0321	0,2036	0,0110
M2A-4	Calcopirita			0,0089	M2A-16	Pirita	0,1037	0,0396	0,0129
M2A-5	Pirita	0,0067	0,0215	0,0399	M2A-17	Calcopirita	0,1589	0,0464	
M2A-6	Ganga	0,0998		0,0258	M2A-18	Calcopirita	0,0389		
M2A-7	Pirita		0,0508		M2A-19	Pirita			
M2A-8	Calcopirita		0,0374		M2A-20	Pirita	0,0442	0,0360	
M2A-9	Ganga		0,0052		M2A-21	Calcopirita	0,1014	0,0143	
M2A-10	Calcopirita	0,0299		0,0098	M2A-22	Calcopirita		0,0636	
M2A-11	Pirita		0,0080		M2A-23	Calcopirita	0,0567		0,0397
M2A-12	Pirita	0,1372	0,0240	0,0085	M2A-24	Pirita			0,0052
					M2A-25	Calcopirita		0,0272	0,0025

Tabla 4.8 Identificación de fases minerales a partir de datos de Microsonda perteneciente al filón Octubrina (M2A).

 Tabla 4.9 Identificación de fases minerales a partir de datos de Microsonda perteneciente al filón Gabi.

Comment	fase mineral	Oro (%)	Plata (%)	Teluro(%)	Comment	fase mineral	Oro (%)	Plata (%)	Teluro(%)
M4B-1	Pirita	0,0777	0,0360		M4B-15	Pirita		0,0065	
M4B-2	Pirita	0,0031	0,0654		M4B-16	Pirita		0,0330	0,0360
M4B-3	Pirita	0,0900	0,0121		M4B-17	Pirita		0,0224	
M4B-4	Pirita	0,0863	0,0105		M4B-18	Pirita	0,0495		0,0119
M4B-5	Pirita	0,0605	0,0374	0,0215	M4B-19	Ganga			0,0099
M4B-6	Pirita	0,0187			M4B-20	Pirita		0,0068	0,0040
M4B-7	Pirita		0,0121	0,0309	M4B-21	Pirita		0,0433	0,0317
M4B-8	Pirita	0,0263	0,0454	0,0139	M4B-22	Pirita	0,1522	0,0534	0,0377
M4B-9	Pirita	0,0393	0,0013	0,0255	M4B-23	Pirita			0,0260
M4B-10	Pirita	0,0065	0,0744	0,0007	M4B-24	Pirita		0,0568	0,0316
M4B-11	Pirita	0,0424	0,0125	0,0020	M4B-25	Pirita	0,0188	0,0040	
M4B-12	Pirita			0,0151	M4B-26	Pirita	0,1040	0,0226	
M4B-13	Pirita	0,0026	0,0172	0,0193	M4B-27	Pirita		0,0175	0,0342
M4B-14	Pirita		0,0081	0,0033					

4.4.2 Correlación de elementos y análisis multivariante

Uno de los aspectos más relevantes de la utilización de la microsonda sobre las muestras sobre las que se aplicó esta técnica fue la identificación de Au en estas. Su identificación en la estructura cristalina de sulfuros como pirita corroboro el interés de los filones de donde se extrajeron las muestras, aunque ópticamente no fue posible su identificación y cuantificación.

Al disponer de una cantidad de datos que permitía un análisis estadístico básico (Tabla 4.10 y 4.11), se realizó un estudio preliminar enfocado a determinar numéricamente relaciones entre elementos químicos. El análisis realizado fue el de un análisis multivariante orientado a correlacionar la asociación de oro con otros elementos, para

así, inferir la presencia probable de concentraciones dentro de las fases minerales de dichos elementos asociados. Cabe recalcar que para el análisis de la correlación se tomó el rango según (Cohen, 1992) donde para valores mayores de 0,5 se tomó como alta correlación y para valores mayores a 0,3 se tomó como relación media.

El análisis multivariante de los datos de la tabla de resultados de la relación entre oro y otros elementos muestra coeficientes de correlación significativos positivos y negativos, lo que indica que el oro se encuentra estrechamente ligado a otros elementos, por lo que se encuentra como agregado en fases minerales.

El filón Vizcaya muestra un coeficiente relativamente bajo de Fe, Co, Te, Se, Sn y Hg con respecto a Au, por ejemplo, Fe tiene valor bajo y positivo por lo que no se puede discriminar que en sulfuros de hierro se recuperara oro en el proceso de explotación y extracción mineral.

La correlación de Au entre Sb y Pb muestra un coeficiente alto, por lo que se esperaría encontrar valores significativos de oro en tetraedrita y galena respectivamente (Tabla 4.10 y 4.11).

	Си	As	Fe	Со	Ni	S	Ag	Sb	Te	Au	Bi	Zn	Se	Sn	Hg	Pb	Mn	Cd
Cu	1,000																	
As	0,399	1,000																
Fe	0,306	0,351	1,000															
Co	-0,122	-0,219	-0,214	1,000														
Ni	-0,084	0,001	0,024	-0,159	1,000													
S	0,199	0,296	0,696	-0,424	-0,016	1,000												
Ag	0,004	-0,192	-0,120	0,161	0,242	-0,106	1,000											
Sb	0,078	-0,087	-0,097	0,450	-0,259	-0,159	0,309	1,000										
Те	-0,050	-0,190	-0,104	0,216	-0,172	-0,176	0,017	0,093	1,000									
Au	-0,153	-0,108	0,049	0,240	-0,224	-0,129	-0,010	0,545	0,179	1,000								
Bi	0,052	0,034	-0,061	-0,217	-0,093	0,188	-0,259	-0,130	-0,110	-0,266	1,000							
Zn	-0,123	0,032	-0,324	-0,294	0,005	0,328	-0,212	-0,233	-0,170	-0,370	0,454	1,000						
Se	-0,154	-0,144	-0,151	0,230	0,028	-0,237	0,434	0,140	0,431	0,214	-0,215	-0,314	1,000					
Sn	0,034	0,002	-0,077	-0,133	-0,034	-0,110	-0,038	-0,028	-0,091	0,084	0,026	-0,048	0,142	1,000				
Hg	0,336	-0,006	0,273	0,032	-0,199	0,062	0,144	0,116	0,279	0,089	-0,247	-0,347	0,138	-0,139	1,000			
Pb	-0,183	-0,266	-0,314	0,279	-0,062	-0,432	0,475	0,505	0,414	0,501	-0,326	-0,441	0,738	0,125	0,135	1,000		
Mn	-0,065	0,000	-0,296	-0,168	-0,138	0,222	-0,126	0,007	-0,194	-0,169	0,556	0,772	-0,097	0,162	-0,371	-0,222	1,000	
Cd	-0,132	0,024	-0,329	-0,289	0,037	0,323	-0,214	-0,238	-0,173	-0,368	0,461	0,991	-0,322	-0,029	-0,347	-0,441	0,777	1,000

Tabla 4.10 Análisis multivariante del filón Vizcaya.

Correlación de elementos	Viz	zcaya	Coeficiente			
	Fe	Baja	0,049			
	Со	Baja	0,240			
	Sb	Alta	0,545			
Δ.,	Te	Baja	0,179			
Au	Se	Baja	0,214			
	Sn	Baja	0,084			
	Hg	Baja	0,089			
	Pb	Alta	0,501			

Tabla 4.11 Correlación de oro con otros elementos perteneciente al filón Vizcaya.

La correlación de elementos con respecto al filón Octubrina de la estación 1 muestra un coeficiente medio entre Au y As, además de un coeficiente bajo de Au con respecto a Ag, Cu, Fe, Co, S, Te, Se, Hg, Pb y Mn. Esto indica la presencia de Au en minerales con estos elementos asociados como la tnt para As y electrum con Ag (Tabla 4.12 y 4.13).

	Си	As	Fe	Со	Ni	S	Ag	Sb	Te	Au	Bi	Zn	Se	Sn	Hg	Pb	Mn	Cd
Cu	1,000																	
As	-0,066	1,000																
Fe	0,309	0,272	1,000															
Co	-0,130	-0,049	-0,224	1,000														
Ni	-0,205	-0,103	0,137	-0,145	1,000													
S	0,182	0,243	0,824	-0,266	0,203	1,000												
Ag	-0,004	-0,102	-0,121	0,033	-0,158	-0,125	1,000											
Sb	0,146	-0,090	-0,192	0,094	-0,063	-0,185	-0,098	1,000										
Те	0,131	-0,110	-0,249	0,057	-0,083	-0,224	0,362	0,144	1,000									
Au	0,043	0,452	0,294	0,071	-0,143	0,147	0,179	-0,021	0,015	1,000								
Bi	0,308	0,092	0,263	-0,171	-0,082	0,282	-0,079	-0,108	-0,222	-0,120	1,000							
Zn	-0,274	-0,099	-0,475	-0,158	0,103	0,071	-0,153	0,099	-0,113	-0,389	0,036	1,000						
Se	-0,238	-0,085	-0,267	0,302	-0,099	-0,235	0,758	-0,037	0,413	0,127	-0,188	-0,086	1,000					
Sn	-0,178	-0,102	-0,225	0,390	-0,135	-0,050	0,047	-0,041	0,311	-0,186	-0,119	0,195	0,408	1,000				
Hg	0,280	-0,086	-0,027	-0,020	0,164	-0,262	0,071	-0,109	0,109	0,053	-0,159	-0,366	0,147	-0,081	1,000			
Pb	-0,196	-0,100	-0,360	0,531	-0,116	-0,391	0,555	-0,048	0,639	0,217	-0,307	-0,257	0,675	0,325	0,130	1,000		
Mn	-0,115	-0,110	-0,437	0,059	0,066	-0,088	-0,052	0,358	0,144	-0,273	0,044	0,650	0,010	0,000	-0,190	-0,034	1,000	
Cd	-0,281	-0,102	-0,484	-0,158	0,065	0,053	-0,162	0,041	-0,121	-0,393	0,052	0,988	-0,075	0,242	-0,367	-0,261	0,582	1,000

 Tabla 4.12
 Análisis multivariante del filón Octubrina 1

Correlación de elementos	Octu	ıbrina 1	Coeficiente
	Cu	Baja	0,043
	As	Media	0,452
	Fe	Baja	0,294
	Со	Baja	0,071
٨	S	Baja	0,147
Au	Ag	Baja	0,179
	Те	Baja	0,015
	Se	Baja	0,127
	Hg	Baja	0,053
	Pb	Baja	0,217

 Tabla 4.13
 Correlación de oro con otros elementos perteneciente al filón Octubrina.

Así mismo para la correlación del filón Octubrina de la estación 2, se obtuvo un coeficiente medio entre Au y Hg, mientras que, para Cu, Co, Ag, Te, Se y Sn el coeficiente es bajo (Tabla 4.14 y 4.15).

	Си	As	Fe	Со	Ni	S	Ag	Sb	Te	Au	Bi	Zn	Se	Sn	Hg	Mn	Cd
Cu	1,000																
As	0,261	1,000															
Fe	-0,360	0,247	1,000														
Co	-0,169	-0,298	-0,564	1,000													
Ni	0,133	0,276	0,064	-0,143	1,000												
S	-0,327	0,256	0,998	-0,579	0,097	1,000											
Ag	-0,122	0,218	0,262	-0,146	-0,025	0,260	1,000										
Sb	-0,145	0,353	0,216	-0,092	-0,110	0,205	0,307	1,000									
Те	-0,105	-0,334	-0,091	0,298	0,047	-0,073	-0,050	0,058	1,000								
Au	0,096	-0,129	-0,142	0,284	-0,008	-0,153	0,022	-0,198	0,104	1,000							
Bi	0,032	-0,057	0,037	-0,012	-0,067	0,057	0,005	-0,163	0,503	-0,008	1,000						
Zn	0,263	0,108	-0,041	-0,077	-0,084	-0,044	0,074	-0,137	-0,192	-0,081	0,339	1,000					
Se	-0,068	0,348	-0,004	-0,081	0,130	-0,011	-0,043	-0,157	-0,050	0,087	0,048	-0,122	1,000				
Sn	-0,224	0,073	-0,024	0,154	-0,133	-0,019	0,213	0,298	0,357	0,018	0,199	-0,295	-0,014	1,000			
Hg	0,320	-0,192	-0,141	-0,091	-0,104	-0,139	-0,048	0,081	0,354	0,303	0,057	-0,129	0,055	-0,063	1,000		
Mn	0,044	-0,156	0,185	-0,150	-0,309	0,182	-0,058	-0,018	-0,238	-0,212	-0,148	-0,111	-0,187	-0,096	-0,094	1,000	
Cd	-0,169	-0,254	-0,564	-0,042	-0,086	-0,578	-0,119	-0,092	-0,133	-0,145	-0,089	-0,067	0,163	0,052	-0,003	-0,150	1,000

Tabla 4.14 Análisis multivariante del filón Octubrina 2

 Tabla 4.15
 Correlación de oro con otros elementos perteneciente al filón
 Octubrina (estación 2).

Correlación de elementos	Octu	brina 2	Coeficiente			
	Cu	Baja	0,096			
	Со	Baja	0,284			
	Ag	Baja	0,022			
Au	Te	Baja	0,104			
	Se	Baja	0,087			
	Sn	Baja	0,018			
	Hg	Media	0,303			

El filón Gabi muestra coeficientes bajos de correlación de Au con As, Fe, S, Sb y Bi, por lo que se resalta la presencia de oro en las asociaciones minerales que contienen estos elementos (Tabla 4.16 y 4.17). En la interpretación de los datos originales de la microsonda se identificó Au asociado a algunos granos de py.

	Си	As	Fe	Ni	S	Ag	Sb	Te	Au	Bi	Zn	Se	Sn	Hg	Mn
Cu	1,000					U									
As	-0,021	1,000													
Fe	0,207	0,120	1,000												
Ni	-0,263	-0,039	0,194	1,000											
S	0,221	0,090	0,996	0,172	1,000										
Ag	0,348	0,000	0,203	-0,393	0,212	1,000									
Sb	0,248	-0,150	0,092	0,215	0,091	0,020	1,000								
Те	0,025	-0,113	0,081	-0,140	0,061	0,175	0,025	1,000							
Au	-0,013	0,005	0,150	-0,337	0,151	0,121	0,222	-0,074	1,000						
Bi	0,219	-0,149	0,142	-0,026	0,150	0,104	0,261	-0,074	0,077	1,000					
Zn	-0,274	-0,200	-0,594	0,090	-0,578	-0,320	-0,213	0,118	-0,198	-0,217	1,000				
Se	-0,121	0,440	-0,306	-0,134	-0,330	-0,085	-0,160	-0,194	-0,048	-0,422	-0,185	1,000			
Sn	-0,173	-0,129	0,128	0,106	0,120	-0,133	-0,193	-0,144	-0,122	0,193	0,129	-0,210	1,000		
Hg	-0,032	0,146	0,116	0,103	0,121	0,061	-0,083	0,100	-0,264	-0,061	-0,189	-0,151	-0,149	1,000	
Mn	-0,226	-0,133	-0,997	-0,161	-0,997	-0,207	-0,092	-0,088	-0,163	-0,145	0,577	0,305	-0,113	-0,119	1,000

Tabla 4.16 Análisis multivariante del filón Gabi

Correlación de elementos	G	aby	Coeficiente
	As	Baja	0,005
	Fe	Baja	0,150
۸	S	Baja	0,151
Au	Ag	Baja	0,121
	Sb	Baja	0,222
	Bi	Baja	0,077

Tabla 4.17 Correlación de oro con otros elementos perteneciente al filón Gabi.

4.5 Paragénesis propuesta y tabla de asociaciones

4.5.1 Descripción de paragénesis propuesta

La caracterización petrográfica y geoquímica realizada en este trabajo junto con los estudios previos realizados en la zona de estudio han permitido proponer una paragénesis para los filones, Vizcaya, Octubrina y Gabi y, consecuentemente relacionar la interpretación realizada con la paragénesis más detallada descrita hasta ahora en la zona (Bonilla,2010)
El estudio realizado a partir del análisis de muestras (roca mineralizada y roca caja) de los tres filones seleccionados mediante la caracterización de: i) laminas delgadas con MOP de transmisión mediante y DRX y ii) secciones pulidas mediante MOP de reflexión, MEB, AOI y microsonda electrónica, aunque con limitaciones permitió aportar información complementaria a lo descrito en la literatura científica.

Para el filón Vizcaya, se propone (Tabla 4.18):

Estadio 1

Este estadio presenta la paragénesis $qz_{f-1} \pm chl_1 \pm ser_1 + py_1 + hem_1 + qz_{m-1}$ se observa masivo conjunto a clorita chl_1 y ser_1 que remplazaron a plagioclasas y minerales maficos, estos minerales se observaron mediante el análisis de láminas delgadas (Figura 4.14). El qz_f y qz_m se observa subhedral variando de tamaño fino a mediano (50-500 µm).

La pirita py_1 se observa como pequeños cristales subhedrales diseminados entre el cuarzo fino como inclusiones sólidas, observados mediante análisis de secciones pulidas. La hematita hem_1 aparece como resultado de la oxidación de los sulfuros, en este caso la pirita diseminada.

Figura 4.14 Lámina delgada del filón Vizcaya en nicoles paralelos y un aumento de 10x

Estadio 2

Este estadio se definido por la paragénesis $qz_{f-2} + qz_{m-2} \pm ser_2 \pm chl_2 + py_2 + hem_2 + sp_1 \pm Ag_1 \pm Au_1$, continua la presencia de dos tipos de cuarzo diferenciado por su textura y tamaño, la clorita y la sericita se presentó en este estadio ya que por ser minerales de alteración se van formando junto al cuarzo, que contienen una segunda fase de pirita como inclusiones solidas hasta un estado masivo con cristales de mayor tamaño, la hematita continua apareciendo como oxidación de la pirita diseminada.

La pirita masiva py_2 presenta un fracturamiento, que evidencia un posterior reemplazamiento pseudomorfo de esfalerita sp_1 (Figura 4.15). Por medio del estudio de microsonda electrónica se observó porcentajes de elementos traza de plata Ag_1y oro Au_1 asociados a la pirita y Ag_1 a esfalerita.

Figura 4.15 Sección pulida del filón Vizcaya en nicoles paralelos con un aumento de 20x.

Estadio 3

Este estadio está definido por la paragénesis $py_3 + sp_2 + ccp_1 + gn_1 \pm Ag_2 \pm Au_2 \pm tnt_1 - ttr_1$ corresponde a un estadio importante de mineralización con la aparición de ccp_1 como masas irregulares en los espacios de fracturamiento de la py_3 masiva (Figura 4.16).

La calcopirita ccp_1 se encuentra con textura disease o de exsolución con la sp_2 , luego aparece la gn_1 subhedral como remplazo de la esfalerita, tomando en cuenta de que esta ya presenta una textura disease.

El análisis de microsonda electrónica determino la presencia de Au y Ag asociado a py y gn mayoritariamente, lo que deriva en que se presente en esta paragénesis a lo largo de este estadio. La $tnt_1 - ttr_1$, aparece sobre la base de la ccp_1 y sp_2 es anhedral y formado posterior a metales base de Cu y Fe.

Figura 4.16 Sección pulida del filón Vizcaya en nicoles paralelos y un aumento de 10x

Estadio 4

Este estadio está definido por la secuencia paragenética $qz_{g-1} \pm Au_3 \pm Ag_3$, se observa un cuarzo grueso masivo como ganga con contenido de Au_3 y Ag_3 representativos.

Estadio 5

Este estadio presenta la paragénesis $cv_1 \pm cct_1$ dado por el enriquecimiento supergénico de cv y cct como halo de alteración secundaria de la ccp en sus respectivos estadios (Figura 4.17).

Figura 4.17 Sección pulida del filón Vizcaya en nicoles paralelos con un aumento de 10x

 Tabla 4.18
 Paragénesis propuesta del filón Vizcaya (línea continua corresponde a un alto predominio de fase y línea discontinua corresponde a un bajo predominio de fase)

VIZCAYA	Estadio 1	Estadio 2	Estadio 3	Estadio 4	Estadio 5
Sericita	1	2			
Clorita	1	2			
Cuarzo fino	1				
Pirita	1	2	3		
Esfalerita		1	2		
Calcopirita			1		
Galena			1		
Hematita	1	2			
Cuarzo medio	1	2			
Cuarzo grueso				1	
Tenantita - Tetrahedrita			1.		
Covelina					1
Calcosina					1
Oro		1	2	.3	
Plata		1.	2		
Electrum			1?		

Para el filón Octubrina se propone (Tabla 4.19):

Estadio 1

Este estadio está representado por la paragénesis $qz_{f-1} + qz_{m-1} + chl_1 + py_1 + hem_1$, se distinguen dos fases de cuarzo, el qz_{f-1} de tamaño fino es la matriz con textura panaliotromorfa y el qz_{m-1} de tamaño medio que se observa como una vetilla resultado del relleno de fractura de la matriz (Figura4.18).

La chl_1 se observa anhedral y diseminada como resultado de alteración de piroxenos y plagioclasas. La py_1 es subhedral y se encuentra diseminadas en el cuarzo de tamaño fino y como resultado de la oxidación de este sulfuro se observa la hem_1 .

Figura 4.18 Lamina delgada del filón Octubrina en nicoles cruzados con un aumento de 10x

Estadio 2

Este estadio está definido por la paragénesis mineral $qz_{f-2} + py_2 + sp_1 + ccp_1 + gn_1 \pm Au_1 \pm Ag_1$, se mantiene la matriz de cuarzo fino, la py incrementa el tamaño del grano aparece la sp con diseminación de ccp como textura disease o exsolución.

La galena gn_1 (Figura 4.19) se observa subhedral determinada por la presencia de triángulos producto del pulido con abrasivos, se encuentra por encima de la esfalerita y calcopirita.

La microsonda electrónica permitió determinar la presencia de $Au_1y Ag_1$, presentes en los porcentajes de concentración de esfalerita, pirita y galena, lo cual indica su presencia en este estadio.

Figura 4.19 Sección pulida del filón Octubrina en nicoles paralelos con un aumento de 10x

Estadio 3

Este estadio se reconoce por ser el estadio de importancia para la explotación económica y presenta la configuración paragenética $qz_{m-2} + py_3 + gn_2 + sp_2 + ccp_2 \pm Au_2 \pm Ag_2 \pm tnt_1 - ttr_1 \pm el_1$

La pirita py_3 es masiva euhedral se encuentra fracturada y rellena con calcopirita ccp_2 y esfalerita sp_2 El qz_{m-2} presenta textura masiva con presencia de sulfuros, la gn_2 es euhedral a subhedral y se distingue en este estadio por aparecer antes que la esfalerita y calcopirita.

El Au y Ag de este estadio corroborado por microsonda electrónica se encuentra presente en la py, ccp, sp y gn, dado los porcentajes total la gn no presentan Au en todos sus granos.

La tenantita-tetraedrita $tnt_1 - ttr_1$ se observó mediante el análisis óptico de imagen de secciones pulidas (Figura 4.20). Electrum el_1 es estimado de acuerdo con la correlación estadística de Pearson, donde su concentración tiene un valor diferente de cero, por lo que se infiere que estos elementos se encuentran posiblemente asociados.

Figura 4.20 Imagen obtenida mediante AOI del filón Octubrina (Escala 1000 micras).

Estadio 4

Este estadio presenta una mineralización en la ganga con la secuencia $qz_{m-3} \pm Au_3 \pm Ag_3 \pm el_2$, donde el cuarzo se observa masivo con concentraciones de Au y Ag determinados mediante microsonda electrónica y el electrum es inferido de la correlación estadística de Pearson.

Estadio 5

Este estadio presenta la paragénesis $cv_1 \pm cct_1$ dado por el enriquecimiento supergénico de cv y cct como halo de alteración secundaria de la ccp en sus respectivos estadios de formación.

 Tabla 4.19
 Paragénesis propuesta del filón Octubrina (línea continua corresponde a un alto predominio de fase y línea discontinua corresponde a un bajo predominio de fase)

OCTUBRINA	Estadio 1	Estadio 2	Estadio 3	Estadio 4	Estadio 5
Clorita	1				
Cuarzo fino	1	2			
Pirita	1	2	3		
Calcopirita		1	2		
Esfalerita		1	2		
Galena		1	2 2		
Hematita					
Cuarzo medio	1		2	3	
Tenantita - Tetrahedrita			_1.		
Covelina					1
Calcosina					1
Oro		_1_	2	3.	
Plata		.1.	2	3	
Electrum			1	2	

Para el filón Gabi se propone (Tabla 4.20):

Estadio 1

Este estadio presenta la siguiente configuración paragenética $qz_{m-1} \pm ser_1 + py_1 \pm fds_1 + chl_1 \pm bt_1 + hem_1$, donde el cuarzo de tamaño medio qz_{m-1} es (*Figura* 4.21) gris, se presenta como matriz con textura alotriomorfa con cristales anhedrales, la ser_1 aparece como trazas debido a la alteración de plagioclasas, la py_1 es subhedral y se muestra como inclusiones solidas de la primera fase de qz, el grupo de fds, la chl y bt son minerales reconocidos por medio del difractograma, la hem se identificó con el análisis óptico de imagen con una escasa presencia .

Figura 4.21 Lámina delgada del filón Gabi en nicoles cruzados con un aumento de 10x.

Estadio 2

Este estadio presenta la paragénesis $chl_2 + qz_{f-1} + py_2 \pm ccp_1 + sp_1 \pm Au_1 \pm Ag_1$, se observa una segunda fase con un cuarzo lechoso fino con vetillas finas de py subhedral, que intruyó en las fracturas de la matriz de cuarzo del estadio 1, se observa una escaza presencia de chl alterada. La py de este estadio se reconoce por medio de la microsonda electrónica con fases minerales que en su composición presentan valores de Au y Ag. La ccp y sp se encuentran diseminada a lo largo del estadio.

Estadio 3

Este estadio presenta la paragénesis $py_3 + qz_{m-2} \pm ser_2 + gn_1 \pm Au_2 \pm Ag_2$, el análisis por medio de microsonda a granos minerales sugiere que para este estadio se encuentra la fase mineral de py en abundancia con presencia de Au y Ag en su composición. El qz medio en esta etapa se formó junto con la ser. La gn se identificó por medio del análisis óptico de imagen con porcentajes menores de abundancia que la py.

Estadio 4

Este estadio presenta la paragénesis $qz_{m-3} \pm Au_3 \pm Ag_3$. El qz de grano medio se observa en abundancia reconocido por el análisis óptico de imagen y la observación de láminas delgadas. El análisis de estos granos en microsonda indica presencia de porcentajes de Au y Ag en su composición de elementos.

GABI	Estadio 1	Estadio 2	Estadio 3	Estadio 4
Sericita	1		2	
Clorita	_1	2		
Biotita	_1			
Feldespatos	1			
Cuarzo Fino		1		
Pirita	1	2	3	
Galena			1	
Cuarzo medio	1		.2	3
Hematita	1			
Calcopirita		1		
Esfalerita		1		
Oro		1	2	3
Plata		.1	2	3

 Tabla 4.20 Paragénesis propuesta del filón Gabi (línea continua corresponde a un alto predominio de fase y línea discontinua corresponde a un bajo predominio de fase).

4.5.2 Elaboración de tabla de asociaciones minerales

Con los datos obtenidos se han elaborado 3 tablas con las principales asociaciones minerales correspondientes a cada filón de estudio (Tabla 4.21, 4.22 y 4.23). Cabe recalcar que la py, gn y gg son minerales asociados mayormente de Au.

	Asociaciones minerales										
Vizcaya											
Estadio 1	Estadio 2	Estadio 3	Estadio 4	Estadio 5							
ser+chl+qz	py+sp	ccp+(py+Au)+(gn+el)	gg+Au	cv+cct							
qz+py+hem											

Tabla 4.21 Asociación mineral del filón Vizcaya

Tabla 4.22 Asociación mineral del filón Octubrina

Asociaciones minerales										
Octubrina										
Estadio 1	Estadio 2	Estadio 3	Estadio 4	Estadio 5						
chl+qz	py+ccp+gn	(ccp+Au)+(py+Au)+(gn+el)	gg+Au	cct+cv						
qz+py+hem										

Tabla 4.23 Asociación mineral del filón Gabi

	Asociaciones minerales									
	Gabi									
Estadio 1	Estadio 2	Estadio 3	Estadio 4							
ser+qz	qz+py	(py+Au)	gg+Au							

CAPÍTULO 5

DISCUSIÓN DE RESULTADOS

5. DISCUSIÓN DE RESULTADOS

5.1 Desde el punto de vista metodológico.

El número limitado de estaciones de muestreo son un condicionante importante, a la hora de obtener resultados que permitan definir una secuencia paragenética exacta de la evolución del depósito (Castroviejo & Berrezueta, 2009). Sin embargo, resulta de gran importancia abordar estudios de caracterización petrográfica y geoquímica basados en técnicas cuantitativas y cualitativas sobre muestras puntuales que permitan un análisis exhaustivo de estas (Berrezueta et al., 2015; Berrezueta et al., 2016).

La información recolectada en una primera fase de caracterización, con el objetivo de que a futuro se realice nuevas planificaciones de investigación y, constatar las variaciones en cuanto a química y mineralogía que se pueden presentar a escala de la roca matriz, permitió realizar una propuesta de evolución del depósito. Además, se determinaron las fases minerales que contienen el mineral de interés, como Au y Ag.

Las técnicas de identificación mineral que se aplicaron en este proyecto permitieron proponer una secuencia de depositación de minerales a partir de fluidos mineralizantes en diferentes etapas de su evolución. La paragénesis se realizó por medio del análisis de propiedades como relieve, anisotropía, reflectancia y textura de los minerales observadas en el microscopio. Con el análisis óptico de imagen (AOI) se cuantificó el área mineral presente para cada sección pulida. Mediante microsonda electrónica se identificó fases minerales de acuerdo con el porcentaje de elementos y su contenido de Au y Ag como elementos trazas. La Tabla 5.1 muestra los principales aportes de los diferentes análisis realizados en esta investigación.

Los cinco estadios descritos e identificados en cada uno de los filones estudiados enmarcan eventos de evolución propios de los yacimientos hidrotermales. El estadio 1 está conformado por los minerales principales de alteración hidrotermal como: ser y chl, además del relleno de material silíceo. En los estadios 2, 3 y 4, se integra el relleno posterior de material silíceo y la depositación de sulfuros polimetálicos, el estadio 5 también reconocido como estadio tardío o de enriquecimiento supergénico, involucra

los minerales resultados de exsolución de los sulfuros de los estadios y evolución precedente.

Método	Aporte	Observación
MOP	Identificación de minerales opacos por medio de secciones pulidas.	Se observó, py, ccp, gn, qz, sp, cv, cct, hem, tnt- ttr. No fue posible la identificación de Au.
DRX	Identificación de minerales opacos y transparente.	La interpretación del difractograma se debe realizar con la guía de minerales característicos del depósito.
AOI	Identificación y cuantificación de minerales.	Se cuantificó Au en los filones Octubrina y Vizcaya.
Microsonda electrónica	Identificación de Fases minerales de acuerdo a su composición química.	Se identificó las fases minerales que presentan Au en su composición, para los tres filones estudiados.

 Tabla 5.1
 Principales aportes de los métodos aplicados en esta investigación.

5.2 Desde el punto de vista de los resultados

Mediante la aplicación de la microsonda electrónica se han identificado las fases minerales que contenían Au en su estructura cristalina, estas fueron: py, gn, qz y ccp. A diferencia de las propuestas de secuencia paragenética previamente desarrolladas por Paladines & Rosero, (1996); Bonilla, (1996); Vikentyev et al., (2005); Banda, (2005); Berrezueta et al., (2016).

En el filón Vizcaya se identificaron que las fases minerales gn, py y qz presentan porcentajes de Au, con respecto al porcentaje de granos estudiados de cada mineral. La gn tuvo en el 72,2% de los granos estudiados de este mineral 0,07% de Au. En el caso de py se cuantificó que el 50% de las partículas evaluadas presentó 0,061% de Au. El qz presentó 0,019% de Au en el 42,85% de granos analizados.

En el filón Octubrina las fases minerales como: py, gn, qz y cp se identificó porcentajes de Au en su composición. La gn cuantificó 83,3% de los granos de este mineral con 0,051% de Au. Para la py el 55,5 % se tuvo 0,078% de Au. En el caso de ccp presento 28,57% de los granos con 0,09455% de Au y el qz con 0,040% de Au en el 33,3% de fases con su contenido.

En el filón Gabi, por la baja mineralización del filón se tuvo en la py un 61,5% de los granos minerales con 0,045% de Au.

Los resultados se ajustaron a la secuencia evolutiva del Sistema Vizcaya-Nicole del distrito minero Zaruma-Portovelo propuesta por Bonilla, (2010). Además, se propone una paragénesis local para cada uno de los filones estudiados, primero se destaca la presencia de minerales de alteración hidrotermal como ser y chl en la etapa temprana de evolución del depósito correspondiente al primer estadio de mineralización, luego la etapa intermedia corresponde a depositación de sulfuros polimetálicos de Au, Ag en la cordillera occidental de los Andes Ecuatorianos y por último la etapa tardía corresponde a la zona de oxidación del depósito, caracterizado por la presencia de minerales de sulfuro de cobre, precipitados a partir de sulfuros primarios.

El depósito estudiado se caracterizó como epitermal de intermedia sulfuración de acuerdo con la clasificación propuesta por Hedenquist et al., (2001). Esta clasificación se presenta en el Anexo M, dado que se analizaron las siguientes características:

- Las rocas huéspedes de la mineralización son de origen andesíticos relacionado a arcos volcánicos.
- La depositación mineral ocurre en forma de filones y el mineral ganga principalmente es el qz.
- Los sulfuros polimetálicos de Au-Ag son py, gn, ccp, ttr-tnt y además, sp la cual no se encuentra asociada con Au.
- Los metales base presentes son Ag-Au-Pb-Zn, Cu, Ba, Mn, Se, As, Hg.
- Entre los minerales de alteración presentes se tienen chl, ser y fds alterados.

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Se obtuvo por medio del microscopio óptico de reflexión (MOP) y el análisis óptico de imágenes (AOI), las principales fases minerales: py, gn, ccp, sp y se cuantificó su abundancia. Además, se identificaron dos fases de qz diferenciados por el tamaño de grano, textura y contenido de sulfuros, estas fases se encuentran predominando los primeros estadios de evolución del depósito.

Mediante la microsonda electrónica, se determinó que las fases minerales fueron: py, ccp, qz y gn, que tienen Au y Ag en su composición. Conjuntamente con el análisis multivariante de Au con respecto a otros elementos como Fe, Pb, S, As, Sb, Hg, Cu, Ag, Te, Sn, Se, Co, Bi, se determinó que en la gn no se presenta el Au libre sino asociado a la Ag (electrum). Además, se tuvo Au libre asociado al mineral gg (cuarzo).

Con la combinación de las técnicas petrográficas y geoquímicas desarrolladas, se propuso una secuencia paragenética del depósito para los filones Vizcaya, Octubrina y Gabi. La paragénesis consta de cinco estadios de evolución: la primera etapa está caracterizada por la presencia de minerales de alteración hidrotermal como ser, chl y una introducción de sílice con presencia de sulfuros. Luego, los estadios 2, 3 y 4 corresponden a la etapa intermedia caracterizada por la precipitación de sulfuros polimetálicos de Au y Ag. Por último, el estadio 5 o de enriquecimiento supergénico, corresponde a la etapa tardía de evolución caracterizado por la exsolución de sulfuros en la zona de oxidación a partir de sulfuros primarios.

De acuerdo con los resultados obtenidos, se comprobó que las técnicas aplicadas (MOP), (AOI), (DRX) y Microsonda electrónica, poseen considerables ventajas como la identificación de fases minerales y su composición química, que son claves para realizar una caracterización mineral a detalle de un depósito.

El depósito estudiado presenta características de un deposito epitermal de sulfuración intermedia de acuerdo con las características texturales, sulfuros presentes, minerales

de alteración, correlación de elementos con oro, estructuras que albergan mineralización en forma de vetas o filones, y ambiente de formación de la roca huésped.

6.2 Recomendaciones

Proponer una secuencia de evolución y paragénesis mineral para un yacimiento hidrotermal, está basado en el estudio de su mineralogía mediante las técnicas de caracterización disponibles. Este estudio es fundamental para conocer las características del depósito a explotar, por lo que luego de la presente investigación se recomienda lo siguiente:

La toma de muestras se debe realizar en la zona representativa de mineralización del filón para tener una mayor observación de las propiedades de las fases minerales y como estos interactúan entre sí.

Realizar una recolección de un mayor número de muestras en diferentes lugares de los filones para una mejor correlación de datos o análisis multivariantes lo que permitirá proponer una secuencia evolutiva con mayor exactitud del área estudiada.

Para una futura investigación se recomienda el uso de la técnica de inclusiones fluidas que permitan obtener una temperatura de formación, lo que implicara mayor exactitud al momento de la elaboración de una tabla de asociaciones minerales y su secuencia evolutiva.

Se recomienda utilizar la metodología aplicada en este estudio, en diferentes filones del trend mineralizado, para obtener una caracterización general del distrito.

BIBLIOGRAFÍA

Tesis

Bonilla, W. R. (2010). Metalogenia del distrito minero Zaruma-Portovelo, República del Ecuador, 219.

Libros

Baldock, J. (1982). Geología del ecuador. Quito: División De Investigación Geológico -Minera.

Goberna, C., & Faraldos, M. (2011). Técnicas De Análisis Y Caracterización De Materiales (Segunda). Madrid: Consejo Superior De Investigaciones Científicas.

Geology of the Cordillera Occidental of Ecuador between I°00' and 2°00'S. Proyecto de Desarrollo Minero y Control Ambiental (PRODEMINCA), Programa de Información Cartográfica y Geología (PICG), Report No 3.

Kehl, G. (1954). Fundamentos de la práctica metalográfica. (Ed. Aguilar, Ed.). Madrid.

Paladines, A. and Rosero, G., 1996. Zonificación mineralógica del Ecuador. Láser Editores, Quito. pl46.

Pozo, Manuel; Gonzalez, Javier; Giner, J. (2004). Geología Práctica (Pearson). Madrid.

PRODEMINCA. (2000). Evaluación De Distritos Mineros Del Ecuador. Journal of Medical Internet Research (Vol. 10). Quito.

Senay, E. (2014). Operating and Instructions Manual. FORCIMAT automatic specimen mover. Metkon Instruments Inc.

Artículo presentado a una conferencia

Bonilla, W., 1996, Vizcaya de Ecuador: Historia de una veta aurífera: Revista Latino minería N° 21, p. 67-75.

Artículos de revista tomados de Internet

Banda, R., Vikentyev, I. V, & Nosik, L. P. (2005). Sulfur isotopic composition of the Vizcaya and Nikol veins, Portovelo Zaruma deposit, Ecuador. Doklady Earth Sciences, 405 A (9), 1388–1392. Retrieved from <u>http://www.scopus.com/inward/record.url?eid=2-s2.0-32344449160&partnerID=40&md5=56370a3faa5f40d3071a0652b9a89ed3</u>

Berrezueta, E., Castroviejo, R., Pantoja, F., Álvarez, R. (2002) Estudio mineralógico y cuantificación por análisis digital de imagen de las menas auríferas de Nariño (Colombia). Aplicación a la mejora del proceso mineralúrgico. Boletín Geológico y Minero, 113 (4), 369-379.

Berrezueta, E. & Castroviejo, R. (2007). Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: Un apoyo al proceso mineralúrgico. I: ensayo metodológico. Rev. Met. 43 (4), 294-309. DOI: 10.3989/revmetalm. 2007.v43.i4.75

Berrezueta, E., Ordóñez-Casado, B., Bonilla, W., Banda, R., Castroviejo, R., Carrión, P., & Puglla, S. (2016). Ore Petrography Using Optical Image Analysis: Application to Zaruma-Portovelo Deposit (Ecuador). Geosciences, 6(4), 30. https://doi.org/10.3390/geosciences6020030

Castroviejo, R. & Berrezueta, E. (2009). Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: Un apoyo al proceso mineralúrgico. II: Criterios metalogenéticos discriminantes. Rev. Met. 45 (6), 439-456. DOI: 10.3989/revmetalm.0923

Cohen, J. (1992). Quantitative Methods In Psychology, 112(1), 155–159.

Hedenquist, J. (2001). Types of sulfide-rich epithermal deposits , and their affiliation to porphyry systems : Lepanto-Victoria-Far Southeast deposits , Philippines , as examples Types of sulfide-rich epithermal deposits , and their affiliation to porphyry systems : Lepanto – V, (May).

Kerr, A. C., Aspden, J. A., Tarney, J., & Pilatasig, L. F. (2002). The nature and provenance of accreted oceanic terranes in western Ecuador: geochemical and tectonic

constraints. Journal of the Geological Society, 159(5), 577–594. https://doi.org/10.1144/0016-764901-151

Melgarejo, J. C., Proenza, J. A., Galí, S., & Llovet, X. (2010). Técnicas de caracterización mineral y su aplicación en exploración y explotación minera. Boletín de La Sociedad Geológica Mexicana, 62(1), 1–23. https://doi.org/10.18268/BSGM2010v62n1a1

Vikentyev, I., Banda, R., Tsepin, A., Prokofiev, V., & Vikentyev, O. (2005). Mineralogy and formation conditions of Portovelo-Zaruma gold-sulphide vein deposit, Ecuador. Geochemistry, Mineralogy and Petrology, 43(September), 148–154. Retrieved from http://www.geology.bas.bg/mineralogy/gmp_files/gmp43/Vikentyev.pdf

Whitney, Donna; Evans, B. (2010). Abbreviations for names of rock-forming minerals, 95(1993), 185–187. https://doi.org/10.2138/am.2010.3371

Artículos de revistas

Aspden, J.A., Litherland, M., Duque, P., Salazar, E., Bermúdez, R. & Viteri, F. 1987a. Nuevo cinturón ofiolítico en la Cordillera Real, Ecuador y su posible significación regional. Politecnica, Monografia de Geologia, 5(XII (2)), 80–93.

Aspden, J.A. McCourt, W.J. and Brook, M., 1987

Aspden, J.A., Fortey, N., Litherland, M., Viteri, F. & Harrison, S.M. 1992a. Regional Stype granites in the Ecuadorian Andes—possible remnants of the breakup of Western Gondwana. Journal of South American Earth Sciences, 6, 123–132.

Aspden, J.A., Harrison, S.H. & Rundle, C.C. 1992b. New geochronological control for the tectonomagmatic evolution of the metamorphic basement, Cordillera Real and El-Oro Province of Ecuador. Journal of South American Earth Sciences, 6, 77–96.

Aspden, J.A., Bonilla, W. & Duque, R, 1995. The El Oro Metamorphic Complex, Ecuador: geology and economic mineral deposits. British Geological Survey, Overseas Geology and Mineral Resources, 67, 63pp. Billingsley, P. (1926). Geology of the Zaruma gold district of Ecuador. American Institute of Mining and Metallurgical Engineering, 74(1601), 255–275.

Coltorti, M., & Ollier, C. D. (2000). Geomorphic and tectonic evolution of the Ecuadorian Andes, 1–19.

Eguez, A. & Aspden, J.A. 1993. The Mesozoic–Cenozoic evolution of the Ecuadorian Andes. Andean Geodynamics, Extended Abstracts. ORSTOM/ Oxford University, Paris/Oxford, 179–182.

Hedenquist, J., Arribas, A., & Gonzalez, E. (2000). Exploration for Epithermal Gold Deposits. SEC; Reviwss, 13(1), 245–277.

Jaillard, E., Soler, R, Carber, G. and Mourier, T., 1990. Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: A Tethyan model. Journal of the Geological Society of London, 147, 1009-1022.

Jaillard, E., Benitez, S. and Másele, G.H., 1997. - !' Les déformationes paléogenes de la zone d'avant are sud-équatoriennes en relation avec l'évolution géodynamique. // Bulletin de Sociéte Géologique de France, 168, 403-412.

Kretz, R., 1983, Symbols for rock-forming minerals: American Mineralogists, v. 68, p. 277-279.

Litherland, M. & Aspden, J.A. 1992. Terrane boundary reactivation—a control on the evolution of the Northern Andes. Journal of South American Earth Sciences, 5, 71–76.

Litherland, M., Aspden, J.A. & Jemielita, R.A. 1994. The Metamorphic Belts of Ecuador. British Geological Survey, Overseas Memoir, 11.

Carrión, P., Sánchez, C., Sánchez, A., Morante, F., Blanco, R., Domínguez, M. (2019). Geodynamic phenomena analysis in mining sectors northern Zaruma (Ecuador) and its impact on the sustainable development of the area. Geosciences. Pilger, R.H., 1983. Kinematics of the South American subduction zone from global plate reconstructions. Geodynamics of the Eastern Pacific Región, Caribbean and Scotia ares. Am. Geophys. Un. Geodynamics Ser., 9, 113-126

Rubinstein, N., & Gargiulo, M. F. (2005). Análisis textural de cuarzo hidrotermal del depósito El Pantanito, provincia de Mendoza: Nuevos aportes sobre su génesis. Revista de La Asociación Geológica Argentina, 60(1), 96–103.

Somoza, R., 1998. Updated Nazca (Farallon)-South America relative motions during the last 40My: implications for mountain building in the central Andean region. Journal of South American Earth Sciences, 11, 211-216

Mapas

McCourt W.J., Duque P., Pilatasig L.F., Villagomez R., 1997. Mapa Geológico de la Cordillera Occidental del Ecuador entre 1° - 2° S, escala 11200000, CODIGEM-BGS.

Paladines, A., & Sanmartín, H. (1980). Mapa metallogenico de la República del Ecuador (Explanation to the 1: 1,000,000 metallogenic map of Ecuador).

ANEXOS

ANEXO A. Equipo de AOI utilizado en la determinación y cuantificación de fases minerales del Laboratorio "de Petrografía de la Universidad de Oviedo, España" de Microscopía Aplicada del IGME (Unidad de Oviedo).

ANEXO B. Microsonda Electrónica CAMECA SX-100 utilizado en la determinación de fases minerales del Laboratorio de Petrografía de la Universidad de Oviedo, España.

DataSet/																				Comm
Point	Cu	As	Fe	Со	Ni	S	Ag	Sb	Те	Au	Bi	Zn	Se	Sn	Hg	Pb	Mn	Cd	Total	ent
43/1.	0,0343	0,0254	1,2955	0,0000	0,0051	32,5706	0,0335	0,0253	0,0335	0,0000	0,0000	66,1642	0,0423	0,0000	0,0000	0,0000	0,0941	0,4443	100,7681	E1A-1
44/1.	0,0007	0,0087	0,6359	0,0000	0,0185	32,1559	0,0000	0,0053	0,0064	0,0000	0,0000	66,1572	0,0000	0,0003	0,0000	0,0000	0,0453	0,4549	99,4891	E1A-2
45 / 1 .	0,0193	0,0482	0,0009	0,0085	0,0000	0,0109	0,0000	0,0080	0,0006	0,0000	0,0374	0,4146	0,0146	0,0000	0,0000	0,0000	0,0000	0,0103	0,5734	E1A-3
46/1.	0,4800	0,1415	1,1208	0,0000	0,0003	31,9172	0,0013	0,0125	0,0000	0,0000	0,0000	64,2735	0,0000	0,0034	0,0000	0,0000	0,0438	0,4927	98,4871	E1A-4
47/1.	0,2965	0,0127	0,3046	0,0000	0,0000	22,3811	0,0109	0,0000	0,0144	0,0000	0,0898	41,5502	0,0539	0,0294	0,0000	0,0000	0,0137	0,4821	65,2393	E1A-5
48/1.	0,0123	0,0700	45,9014	0,0000	0,0000	53,4850	0,0131	0,0000	0,0000	0,0778	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	99,5596	E1A-6
49/1.	0,0306	0,0201	45,8793	0,0000	0,0000	53,0758	0,0000	0,0000	0,0000	0,0000	0,0000	0,0015	0,0111	0,0236	0,0000	0,0000	0,0000	0,0000	99,0420	E1A-7
50/1.	31,9041	0,1243	29,7810	0,0000	0,0021	37,0436	0,0000	0,0000	0,0130	0,0000	0,0000	0,0000	0,0000	0,0014	0,1948	0,0000	0,0005	0,0000	99,0648	E1A-8
51/1.	31,8165	0,0000	29,8972	0,0000	0,0021	36,6702	0,0000	0,0223	0,0145	0,1082	0,0875	0,0000	0,0000	0,0000	0,0000	0,0000	0,0048	0,0000	98,6233	E1A-9
52/1.	0,0624	0,0120	45,8427	0,0000	0,0213	54,0101	0,0027	0,0000	0,0000	0,0234	0,0000	0,0000	0,0000	0,0030	0,0000	0,0000	0,0000	0,0000	99,9776	E1A-10
53/1.	0,0000	0,0970	46,4677	0,0000	0,0091	52,9633	0,0361	0,0015	0,0013	0,0000	0,0506	0,0000	0,0000	0,0055	0,0000	0,0000	0,0006	0,0000	99,6327	E1A-11
54/1.	0,0173	0,0000	0,0179	0,0000	0,0000	0,1062	0,0000	0,0000	0,0000	0,0000	0,0000	0,0984	0,0405	0,0000	0,0570	0,0893	0,0167	0,0046	0,4481	E1A-12
55 / 1 .	31,4733	0,0142	29,4410	0,0000	0,0000	34,7192	0,0332	0,0002	0,0063	0,0000	0,2884	1,5224	0,0000	0,0015	0,0134	0,0000	0,0061	0,0000	97,5191	E1A-13
56/1.	1,0288	0,0621	1,8050	0,0000	0,0024	33,2232	0,0079	0,0000	0,0000	0,0000	0,1782	63,6011	0,0000	0,0002	0,0000	0,0000	0,0616	0,5009	100,4713	E1A-14
57/1.	0,0511	0,0000	0,0000	0,0377	0,0000	13,6658	0,0143	0,0000	0,0000	0,0450	0,0000	0,0000	0,0233	0,0000	0,0000	86,4175	0,0175	0,0000	100,2722	E1A-15
58/1.	0,0059	0,0000	0,0053	0,0011	0,0061	0,0039	0,0082	0,0063	0,0027	0,0000	0,0000	0,0192	0,0000	0,0019	0,0445	0,0000	0,0020	0,0276	0,1348	E1A-16
59/1.	0,0421	0,0000	0,0000	0,0000	0,0116	13,4966	0,0000	0,0047	0,0646	0,0450	0,0000	0,0470	0,0202	0,0247	0,1079	86,7557	0,0048	0,0000	100,6248	E1A-17
60/1.	29,8070	0,0492	28,7274	0,0000	0,0000	36,4381	0,0000	0,0094	0,0289	0,0000	0,1173	0,4011	0,0000	0,0000	0,0687	0,0000	0,0061	0,0000	95,6532	E1A-18
61/1.	0,0829	0,0000	0,7727	0,0000	0,0064	32,4204	0,0000	0,0000	0,0000	0,0000	0,0737	65,1304	0,0000	0,0260	0,0000	0,0000	0,0553	0,5289	99,0967	E1A-19
62/1.	0,2797	0,0000	0,7872	0,0000	0,0000	32,9714	0,0000	0,0000	0,0000	0,0000	0,0000	65,9452	0,0333	0,0234	0,0000	0,0000	0,0049	0,5821	100,6273	E1A-20
63/1.	0,0060	0,0000	0,3272	0,0000	0,0047	0,0407	0,0000	0,0000	0,0000	0,0187	0,0504	0,0989	0,0000	0,0000	0,1299	0,0239	0,0284	0,0000	0,7287	E1A-21
64 / 1 .	0,1060	1,8682	42,7668	0,0000	0,0000	50,1096	0,0000	0,0000	0,0000	0,1333	0,0730	0,0300	0,0059	0,0000	0,0000	0,0000	0,0000	0,0000	95,0929	E1A-22
65 / 1 .	0,2068	0,0680	46,8461	0,0000	0,0251	53,2917	0,0112	0,0000	0,0007	0,0000	0,0891	0,0000	0,0762	0,0000	0,0969	0,0000	0,0000	0,0000	100,7119	E1A-23
66 / 1 .	0,0116	0,1243	46,2864	0,0000	0,0000	53,3863	0,0000	0,0000	0,0000	0,0000	0,1334	0,0000	0,0663	0,0159	0,0221	0,0000	0,0000	0,0000	100,0463	E1A-24
67 / 1 .	0,0149	0,0000	0,0671	0,0000	0,0000	0,0019	0,0024	0,0175	0,0012	0,0000	0,0000	0,1246	0,0000	0,0000	0,0249	0,0123	0,0000	0,0091	0,2759	E1A-25
68 / 1 .	0,3738	0,0000	0,8991	0,0000	0,0000	33,4536	0,0083	0,0000	0,0000	0,0000	0,0582	63,7707	0,0256	0,0452	0,0000	0,0000	0,0000	0,5656	99,2000	E1A-26
69/1.	0,0000	0,0498	0,1351	0,0334	0,0007	13,0897	0,0450	0,0116	0,0395	0,0317	0,0000	0,0167	0,2095	0,0821	0,0607	86,6480	0,0282	0,0000	100,4818	E1A-27
70/1.	0,0000	0,0000	0,0521	0,0000	0,0000	13,7995	0,0511	0,0000	0,0532	0,0564	0,0000	0,0408	0,1437	0,0094	0,0000	85,4819	0,0226	0,0000	99,7108	E1A-28
71/1.	0,0000	0,0000	0,1180	0,0000	0,0061	0,0219	0,0000	0,0000	0,0000	0,0622	0,0269	0,0391	0,0000	0,0000	0,0770	0,0000	0,0000	0,0000	0,3512	E1A-29
72/1.	32,1703	0,0710	30,0999	0,0000	0,0000	37,5808	0,0290	0,0000	0,0582	0,0000	0,0000	0,0000	0,0000	0,0237	0,0087	0,0000	0,0136	0,0000	100,0552	E1A-30
73/1.	0,0301	0,0840	46,1224	0,0000	0,0023	53,7201	0,0512	0,0000	0,0000	0,0618	0,1480	0,0000	0,0141	0,0070	0,0000	0,0000	0,0000	0,0000	100,2410	E1A-31
74/1.	0,4958	0,0555	0,8183	0,0000	0,0058	32,7213	0,0000	0,0000	0,0327	0,0000	0,0822	65,5074	0,0264	0,0074	0,0000	0,0000	0,0531	0,5766	100,3825	E1A-32
75/1.	2,9020	0,0000	1,4442	0,0000	0,0000	14,3855	0,2155	0,0000	0,0296	0,0801	0,0000	0,1513	0,2738	0,0000	0,0926	84,0273	0,0070	0,0000	103,6088	E1A-33
76/1.	0,0439	0,0204	0,6322	0,0000	0,0000	13,2624	0,0988	0,0000	0,0577	0,0000	0,0000	0,2113	0,0764	0,0159	0,0000	85,9249	0,0000	0,0000	100,3440	E1A-34
77/1.	0,1192	0,0000	0,8785	0,0000	0,0073	32,7785	0,0459	0,0000	0,0000	0,0000	0,0237	62,1204	0,0691	0,0237	0,0000	0,0000	0,0060	0,5109	96,5832	E1A-35
78/1.	0,0701	0,0000	46,0152	0,0000	0,0000	53,5152	0,0014	0,0000	0,0066	0,0970	0,0000	0,0606	0,0000	0,0005	0,0000	0,0000	0,0000	0,0000	99,7667	E1A-36
79/1.	31,9739	0,0000	29,8129	0,0000	0,0000	37,4825	0,0360	0,0067	0,0013	0,0000	0,1178	0,0122	0,0000	0,0000	0,0000	0,0000	0,0272	0,0000	99,4704	E1A-37
80/1.	31,3766	0,0219	29,6756	0,0000	0,0038	37,6957	0,0266	0,0000	0,0000	0,0809	0,0000	0,0060	0,0000	0,0000	0,1124	0,0000	0,0088	0,0000	99,0084	E1A-38

ANEXO C. Datos de salida obtenidos mediante el análisis de microsonda electrónica de la veta Octubrina 1

DataSet/																			Comm
Point	Cu	As	Fe	Со	Ni	S	Ag	Sb	Те	Au	Bi	Zn	Se	Sn	Hg	Mn	Cd	Total	ent
81/1.	0,0000	0,0815	46,2986	0,0000	0,0022	53,2087	0,0460	0,0385	0,0000	0,0000	0,0000	0,0000	0,0023	0,0230	0,0609	0,0000	0,0000	99,7617	E2-1
82/1.	0,0000	0,0000	46,1460	0,0000	0,0036	54,0182	0,0256	0,0082	0,0000	0,0344	0,0000	0,0233	0,0000	0,0000	0,0370	0,0141	0,0000	100,3104	E2-2
83/1.	30,9912	0,0575	29,2077	0,0000	0,0393	37,7487	0,0275	0,0000	0,0055	0,0000	0,0000	0,0000	0,0000	0,0217	0,0000	0,0043	0,0000	98,1035	E2-3
84/1.	31,9122	0,0593	30,3058	0,0000	0,0000	37,0734	0,0000	0,0158	0,0089	0,0000	0,0000	0,0000	0,0450	0,0114	0,0000	0,0169	0,0000	99,4486	E2-4
85 / 1 .	0,0000	0,0077	45,4274	0,0000	0,0000	54,0051	0,0215	0,0000	0,0399	0,0067	0,2535	0,0000	0,0333	0,0324	0,0758	0,0018	0,0000	99,9052	E2-5
86 / 1 .	0,0090	0,0000	0,0410	0,0054	0,0000	0,0030	0,0000	0,0000	0,0258	0,0998	0,0340	0,0000	0,0127	0,0169	0,0090	0,0000	0,0000	0,2566	E2-6
87/1.	0,0680	0,0079	45,8894	0,0000	0,0027	53,3908	0,0508	0,0000	0,0000	0,0000	0,0000	0,0184	0,0000	0,0000	0,0798	0,0256	0,0000	99,5334	E2-7
88 / 1 .	32,7881	0,0552	30,4384	0,0000	0,0000	36,0309	0,0374	0,0000	0,0000	0,0000	0,1368	0,2343	0,0004	0,0000	0,0000	0,0000	0,0000	99,7216	E2-8
89/1.	0,0269	0,0056	0,0201	0,0000	0,0031	0,1078	0,0052	0,0000	0,0000	0,0000	0,0100	0,0022	0,0521	0,0116	0,0366	0,0000	0,0265	0,3077	E2-9
90/1.	31,7962	0,0106	29,5577	0,0000	0,0000	35,0095	0,0000	0,0000	0,0098	0,0299	0,0000	0,0000	0,0025	0,0086	0,0451	0,0161	0,0000	96,4859	E2-10
91/1.	0,0307	0,0649	45,5980	0,0000	0,0000	53,2949	0,0080	0,0000	0,0000	0,0000	0,0000	0,0000	0,1024	0,0211	0,0000	0,0104	0,0000	99,1305	E2-11
92/1.	0,0042	0,0357	46,1011	0,0000	0,0068	53,8149	0,0240	0,0000	0,0085	0,1372	0,0000	0,0042	0,0299	0,0278	0,0000	0,0000	0,0000	100,1943	E2-12
93/1.	0,0238	0,0839	46,1395	0,0000	0,0262	54,1415	0,0067	0,0000	0,0000	0,0000	0,0245	0,0016	0,0670	0,0021	0,0000	0,0000	0,0000	100,5168	E2-13
94 / 1 .	0,0122	0,0568	45,6575	0,0000	0,0247	53,4868	0,0371	0,0106	0,0297	0,0000	0,0492	0,0114	0,0531	0,0000	0,0000	0,0029	0,0000	99,4320	E2-14
95 / 1 .	1,5633	0,0528	44,8129	0,0000	0,0018	52,9293	0,2036	0,0148	0,0110	0,0321	0,0282	0,0000	0,0000	0,0267	0,0000	0,0046	0,0000	99,6811	E2-15
96 / 1 .	1,2700	0,0358	43,9971	0,0000	0,0178	53,2920	0,0396	0,0000	0,0129	0,1037	0,1451	0,0315	0,0559	0,0000	0,0000	0,0000	0,0000	99,0015	E2-16
97/1.	33,2671	0,0603	31,2595	0,0000	0,0000	35,9222	0,0464	0,0002	0,0000	0,1589	0,0059	0,0089	0,0863	0,0000	0,2027	0,0023	0,0000	101,0207	E2-17
98 / 1 .	31,9556	0,0616	30,1352	0,0000	0,0000	36,8606	0,0000	0,0000	0,0000	0,0389	0,1412	0,0133	0,0000	0,0100	0,0000	0,0185	0,0000	99,2348	E2-18
99/1.	0,0462	0,0203	46,0650	0,0000	0,0082	53,7928	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0094	0,0000	0,0000	0,0059	0,0000	99,9479	E2-19
100/1.	0,0282	0,0179	45,7550	0,0000	0,0000	52,8298	0,0360	0,0007	0,0000	0,0442	0,0000	0,0273	0,0000	0,0000	0,0038	0,0110	0,0000	98,7541	E2-20
101 / 1 .	32,6200	0,0373	30,6780	0,0000	0,0279	36,5425	0,0143	0,0000	0,0000	0,1014	0,0000	0,0236	0,0000	0,0000	0,0316	0,0000	0,0000	100,0765	E2-21
102 / 1 .	32,2118	0,0477	29,9442	0,0000	0,0180	36,5701	0,0636	0,0000	0,0000	0,0000	0,0488	0,0322	0,0923	0,0000	0,0524	0,0000	0,0000	99,0809	E2-22
103 / 1 .	30,1294	0,0093	28,0202	0,0000	0,0112	35,1351	0,0000	0,0076	0,0397	0,0567	0,0655	0,000	0,0000	0,0092	0,2676	0,0000	0,0000	93,7514	E2-23
104 / 1 .	0,1039	0,0139	45,6140	0,0000	0,0000	53,9192	0,0000	0,0000	0,0052	0,0000	0,0000	0,000	0,0000	0,0000	0,0000	0,0000	0,0000	99,6563	E2-24
105 / 1 .	32,0536	0,0554	30,0105	0,0000	0,0000	36,5798	0,0272	0,000	0,0025	0,0000	0,0000	0,000	0,0000	0,0000	0,0358	0,0000	0,0000	98,7649	E2-25

ANEXO D. Datos de salida obtenidos mediante el análisis de microsonda electrónica de la veta Octubrina 2

DataSet																	Comm
/Point	Cu	As	Fe	Ni	S	Ag	Sb	Те	Au	Bi	Zn	Se	Sn	Hg	Mn	Total	ent
106 / 1 .	0,0170	0,0713	45,7368	0,0000	53,9232	0,0360	0,0000	0,0000	0,0777	0,0366	0,0240	0,0000	0,0000	0,0671	0,0069	99,9967	E4-1
107 / 1 .	0,0243	0,0280	45,7893	0,0032	53,9450	0,0654	0,0000	0,0000	0,0031	0,0000	0,0000	0,0515	0,0213	0,0896	0,0046	100,0255	E4-2
108 / 1 .	0,0049	0,0556	45,7615	0,0014	54,1180	0,0121	0,0000	0,0000	0,0900	0,0450	0,0000	0,0609	0,0167	0,0000	0,0076	100,1736	E4-3
109/1.	0,0026	0,0605	45,6224	0,0009	53,3805	0,0105	0,0000	0,0000	0,0863	0,0000	0,0315	0,0210	0,0181	0,0143	0,0000	99,2486	E4-4
110/1.	0,0000	0,0607	45,7708	0,0000	52,9754	0,0374	0,0000	0,0215	0,0605	0,1871	0,0183	0,0000	0,0202	0,0294	0,0087	99,1899	E4-5
111/1.	0,0094	0,0781	45,7384	0,0181	52,9191	0,0000	0,0000	0,0000	0,0187	0,1738	0,0499	0,0000	0,0492	0,0000	0,0000	99,0546	E4-6
112/1.	0,0179	0,0505	46,2276	0,0000	53,4471	0,0121	0,0000	0,0309	0,0000	0,0000	0,0100	0,0000	0,0000	0,1580	0,0000	99,9541	E4-7
113/1.	0,0339	0,0400	45,9144	0,0000	53,1143	0,0454	0,0094	0,0139	0,0263	0,2245	0,0005	0,0000	0,0081	0,0000	0,0096	99,4403	E4-8
114/1.	0,0198	0,0323	46,3713	0,0000	52,9629	0,0013	0,0000	0,0255	0,0393	0,1588	0,0000	0,0309	0,0124	0,0000	0,0000	99,6544	E4-9
115/1.	0,0196	0,1137	46,5145	0,0093	53,8285	0,0744	0,0000	0,0007	0,0065	0,0628	0,0000	0,0317	0,0000	0,0000	0,0078	100,6694	E4-10
116/1.	0,0000	0,0000	46,9299	0,0292	53,8377	0,0125	0,0138	0,0020	0,0424	0,0000	0,0000	0,0578	0,0000	0,0382	0,0036	100,9672	E4-11
117/1.	0,0140	0,0964	46,8576	0,0401	53,4773	0,0000	0,0000	0,0151	0,0000	0,0000	0,0212	0,0000	0,0000	0,0365	0,0035	100,5616	E4-12
118/1.	0,0192	0,0126	45,6924	0,0000	53,1836	0,0172	0,0000	0,0193	0,0026	0,0000	0,0187	0,0464	0,0122	0,0055	0,0000	99,0296	E4-13
119/1.	0,0000	0,0610	46,6903	0,0389	52,8992	0,0081	0,0000	0,0033	0,0000	0,0487	0,0244	0,0000	0,0486	0,0487	0,0335	99,9047	E4-14
120/1.	0,0191	0,0088	45,5191	0,0290	53,2358	0,0065	0,0319	0,0000	0,0000	0,1222	0,0117	0,0133	0,0000	0,0000	0,0141	99,0115	E4-15
121 / 1 .	0,0077	0,0694	45,5759	0,0294	53,6648	0,0330	0,0000	0,0360	0,0000	0,0166	0,0740	0,0000	0,0000	0,0000	0,0000	99,5067	E4-16
122 / 1 .	0,0000	0,0000	42,7401	0,0076	48,5762	0,0224	0,0000	0,0000	0,0000	0,1093	0,0156	0,0000	0,0320	0,0000	0,1108	91,6140	E4-17
123 / 1 .	0,0000	0,0600	45,8399	0,0032	53,9492	0,0000	0,0000	0,0119	0,0495	0,0000	0,0340	0,0000	0,0000	0,0073	0,0059	99,9609	E4-18
124 / 1 .	0,0000	0,0000	7,6886	0,0000	0,0789	0,0000	0,0000	0,0099	0,0000	0,0000	0,0937	0,0748	0,0000	0,0098	0,9541	8,9098	E4-19
125 / 1 .	0,0000	0,0623	45,6590	0,0432	53,3719	0,0068	0,0077	0,0040	0,0000	0,1875	0,0000	0,0000	0,0000	0,1626	0,0136	99,5186	E4-20
126 / 1 .	0,0068	0,0386	46,2758	0,0000	53,5670	0,0433	0,0000	0,0317	0,0000	0,0769	0,0383	0,0000	0,0000	0,0882	0,0000	100,1666	E4-21
127 / 1 .	0,0159	0,0811	46,3001	0,0000	52,6499	0,0534	0,0252	0,0377	0,1522	0,0860	0,0000	0,0000	0,0056	0,0167	0,0000	99,4239	E4-22
128 / 1 .	0,0085	0,0435	46,2748	0,0317	52,8462	0,0000	0,0072	0,0260	0,0000	0,0000	0,0598	0,0000	0,0354	0,0435	0,0000	99,3766	E4-23
129/1.	0,0000	0,1942	46,1392	0,0000	52,5097	0,0568	0,0000	0,0316	0,0000	0,0285	0,0000	0,0343	0,0163	0,0719	0,0000	99,0825	E4-24
130/1.	0,0090	0,5620	45,0175	0,0110	50,2437	0,0040	0,0000	0,0000	0,0188	0,0000	0,0000	0,1166	0,0000	0,0549	0,0235	96,0612	E4-25
131 / 1 .	0,0052	0,0638	46,6319	0,0212	52,6479	0,0226	0,0000	0,0000	0,1040	0,0508	0,0199	0,0339	0,0000	0,0000	0,0000	99,6012	E4-26
132 / 1 .	0,0000	0,0000	47,1505	0,0247	53,4322	0,0175	0,0000	0,0342	0,0000	0,0000	0,0000	0,0790	0,0100	0,0000	0,0000	100,7482	E4-27

ANEXO E. Datos de salida obtenidos mediante el análisis de microsonda electrónica de la veta Gabi

Comment	fase mineral	Comentarios	Oro (%)	plata (%)	Teluro (%)
M3A-1	Esfalerita	Valores minimos de Sn, Mn, Cd, Cu, Fe, As, Ag, Te.		0,0391	0,0094
M3A-2	Esfalerita	Valores minimos de Cu, Fe, Te, Bi, Sn, Mn, Cd.		í í	0,0300
M3A-3	Esfalerita	Valores minimos de Cu, Fe, Ag, Sb, Mn, Cd.		0,0039	
M3A-4	Esfalerita	Valores minimos de Cu, As, Fe, Sb, Te, Bi, Mn, Cd.			0,0168
M3A-5	Esfalerita	Valores minimos de Cu, Fe, Te, Sn, Mn, Cd.			0,0273
M3A-6	Esfalerita	Valores minimos de Cu, As, Fe, Ni, Ag, Bi, Se, Mn, Cd.		0,0408	
		Contiene menos S v Zn de lo esperado, v valores minimos de Cu. As Fe. Sb.			
M3A-7	Esfalerita	Te. Bi, Sn. Mn. Cd.			0.0019
M3A-8	Ganga	Valores minimos de Au Ag As Co S Te Se Pb Cd	0.0061	0 0144	0 0097
M3A-9	Esfalerita	Valores minimos de Cu. As, Fe, Ni, Te, Mn, Cd.	0,0001	0,0111	0.0200
		Cotione man S y monor. Zn de la constrada, y viblores minimos de Cu. Es Ag			
M2A 10	Estalorita	Collette mas S y menos Zi de lo esperado, y valores mínimos de Cu, r e, Ag,		0.0417	,
MSA-10	Estalenta			0,0417	
1120 11	Estalssite	Contiene mas S ymenos Zn de lo esperado, y valores representativos de Cu		0.0040	
WI3A-11	Estalerita	6%, Fe 5%, Y valores minimos de As, NI, Sn, Se, Min, Ca.		0,0040	
M2A 12	Esfalorita	Contiene mas 5 de lo esperado y valores minimos de Cu, r.e., Ni, Ag, 5b, re,		0.0100	0.0265
M3A-12	Canga	Se, Sh, Min, Cu. Valores minimos de As, Ee, Ni, S, Te, Bi, Zh, Se, Ph, Cd		0,0190	0,0365
MJA-13	Ganga	Contiene mas S v menos Zn de lo esperado v valores minimos de Cu. As Ea			0,0107
M3A 14	Esfalorita	Contrelle mas s y menos 21 de lo esperado y valores minimos de Cu, As, Fe,		0.0280	0.0026
M3A-14	Galena	Ag, re, bi, Se, Win, Cd.	0 1269	0,0280	0,0020
M3A-16	Galena	Valores minimos de Au, Ay, Cu, As, Co, Sb, Te, Sh, Min.	0,1203	0,0015	0,0104
M3A-17	Galena	Valores minimos de Ad, Cd, AS, Co, Sb, Te, Ce, Fig.	0,0000	0.0129	0,0152
M3A-18	Galena	Valores minimos de Au Ag. Sb. Se. Sn. Mn.	0,1255	0,0123	0,0000
M3A-19	Galena	Valores minimos de Cu, Ag, 55, 56, 51, Mn.	0,0003	0,0307	0.0042
M3A-20	Galena	Valores minimos de Au Ag As Sh Ta Zn Sa Mn	0.0882	0,0000	0.0271
M3A-21	Galena	Valores minimos de Cu, Ag, Fe, Co, Sb, Te, Zn, Se, Sn, Ha	0,0002	0.0631	0.0422
M3A-22	Galena	Valores minimos de Au, Cu, Co, Ag, Te, Zn, Se, Sn, Hg, Mn,	0.0018	0.0472	0.0781
M3A-23	Pirita	Valores minimos de Au, Cu, Ag, As, Te, Zn, Se, Sn	0.0385	0.0013	0 0064
			0,0000	0,0010	0,0001
1120 24	Divite	T- B: Z- C- C- M-		0.0050	0.0440
N3A-24	Calana	Te, DI, Zh, Se, Sh, Mh.	0.0019	0,0052	0,0446
M3A-25	Galena	Valores minimos de Cu, Fe, Ni, Te, Au, Se, Mn.	0,0210	0.0120	0,0196
N3A-26	Ganga	Valores minimos de As, Fe, Ni, Te, S, Ag, Di, Se, Sn, Win, Cd.	0.0412	0,0138	0,0114
IVISA-27	Ganga		0,0412		0,0232
		Contiene menos Fe y S de lo esperado y valores minimos de Cu, As, Ag, Te,			
M3A-28	Pirita	Se, Hg, Pb, Mn.		0,0040	0,0150
M3A-29	Ganga	Valores minimos de As, Fe, S, Te, Sn.			0,0068
M3A-30	Galena	Valores minimos de As, Ag, Sb, Te, Au, Zn, Se, Sn.	0,1249	0,0206	0,0216
M3A-31	Calcopirita	Valores minimos de As, Ag, Sb, Ie, Zn, Se, Sn, Hg.		0,0580	0,0080
M3A-32	Calcopirita	Valores minimos de As, Sb, Te, Zn, Se, Sn, Hg, Mn.			0,0265
M3A-33	Estalerita	Valores minimos de Cu, As, Fe, Te, Bi, Mn, Cd.			0,0013
	Solucion				
	Solida				0.0040
M3A-34	Intermedia de	Valores minimos de Sp. 1e, Bi, Sn, Min y Cd		0.0544	0,0013
N3A-35	Pinta	Valores minimos de Cu, As, Ni, Ag, Sb, Zh.		0,0544	0.0000
IVI3A-36	Galena	Valores minimos de As, Fe, NI, Co, S, Ag, Te, Zh, Se, Mn.		0,1166	0,0098
N12A-37	Ganga	Valores minimos de As, Fe, NI, Co, S, Ag, Zh, Sh, Hg, Pb.	0 1043	0,0113	
N2A-30	Filla	Valores minimos de Cu, As, SD, Au, Zh, Se, Mn.	0,1043	0.0000	
M3A 40	Estalerita	Ivalores minimos de Cu, Fe, Ag, Se, Min, Cd.	+	0,0208	
M34-40	Dirita	Valores minimos de Cu, rie, As, Di, Zi, Se, Sti, Mit, Cu.	0.0300	0.0026	
M3A-41	Ganga	Valores minimos de Cu, As, Ag, 50, Au, Bi, 56, Hg.	0,0399	0,0020	+

ANEXO F. Análisis de datos de microsonda electrónica para la veta Vizcaya.

Comment	fa s e mineral	Comentarios	Oro (%)	Plata (%)	Teluro (%)
E1A-1	Esfalerita	Valores minimo de Cu,As,Fe,Ni,Ag,Sb,Te,Se,Mn y Cd		0,0335	0,0335
E1A-2	Esfalerita	Valores minimos de Cu,As,Fe,Ni,Sb,Te,Sn,Mn y Cd			0,0064
E1A-3	Ganga	Valores minimos de Cu,As,Fe,Co,S,Sb,Te,Bi,Zn,Se y Cd			0,0006
E1A-4	Esfalerita	Valores minimos de Fe,Cu,As,Ni,Ag,Sb,Sn,Mn y Cd		0,0013	
	Fofolorito	Contiene menor porcentaje de los esperado de S y Zn. Valores			
E1A-5	Esialenta	minimos de Cu,As,Fe,Ag,Te,Bi,Se,Sn,Mn y Cd		0,0109	0,0144
E1A-6	Pirita	Valores minimos de Au,Ag,Cu y As	0,0778	0,0131	
E1A-7	Pirita	Valores minimos de Cu,As,Zn,Se,Sn			
E1A-8	Calcopirita	Valores minimos de As,Ni,Te,Sn,Hg y Mn			0,0130
E1A-9	Calcopirita	Valores minimos de Au,Ni,Sb,Te,Bi y Mn	0,1082		0,0145
E1A-10	Pirita	Valores minimos de Au,Ag,Cu,As,Ni y Sn	0,0234	0,0027	
E1A-11	Pirita	Valores minimos de Ag,As,Ni,Sb,Te,Bi,Sn y Mn		0,0361	0,0013
E1A-12	Ganga	Valores minimos de Cu,Fe,S,Zn,Se,Hg,Pb;Mn y Cd			
E1A-13	Calcopirita	Valores minimos de Ag,As,Sb,Te,Bi,Zn,Sn,Hg y Mn		0,0332	0,0063
E1A-14	Esfalerita	Valores minimos de Ag,Cu,As,Fe,Ni,Bi,Sn,Mn y Cd		0,0079	
E1A-15	Galena	Valores minimos de Au,Ag,Cu,Co,Se y Mn	0,0450	0,0143	
E1A-16	Ganga	Valores minimos de Cu,Fe,Ni,S,Ag,Sb,Te,Zn,Sn,Hg,Mn y Cd		0,0082	0,0027
E1A-17	Galena	Valores minimos de Au,Cu,Ni,Sb,Te,Zn.Sn,Hg y Mn	0,0450		0,0646
E1A-18	Calcopirita	Valores minimos de As,Sb,Te,Bi,Zn,Hg y Mn			0,0289
E1A-19	Esfalerita	Valores minimos de Cu,Fe,Ni,Bi,Sn,Mn y Cd			
E1A-20	Esfalerita	Valores minimos de Cu,Fe,Sn,Mn y Cd			
E1A-21	Ganga	Valores minimos de Au,Cu,Ni,S,Bi,Zn,Hg,Pb y Mn	0,0187		
E1A-22	Pirita	Valores minimos de Au,Cu,As,Bi,Zn y Se	0,1333		
E1A-23	Pirita	Valores minimos de Ag,Cu,As,Ni,Te,Bi,Se,Hg		0,0112	0,0007
E1A-24	Pirita	Valores minimos de Cu,As,Bi,Se,Sn,Hg			
E1A-25	Ganga	Valores minimos de Ag,Cu,Fe,S,Sb,Te,Zn,Hg y Pb		0,0024	0,0012
E1A-26	Esfalerita	Valores minimos de Ag,Cu,Fe,Bi,Se,Sn y Cd		0,0083	
E1A-27	Galena	Valores minimos de Au,Ag,As,Fe,Co,Sb,Te,Zn,Se,Sn,Hg y Mn	0,0317	0,0450	0,0395
E1A-28	Galena	Valores minimos de Au,Ag,Fe,Te,Zn,Se,Sn y Mn	0,0564	0,0511	0,0532
E1A-29	Ganga	Valores minimos de Au,Fe,Ni,S,Zn y Hg	0,0622		
E1A-30	Calcopirita	Valores minimos de Ag,As,Te,Sn,Hg y Mn		0,0290	0,0582
E1A-31	Pirita	Valores minimos de Au,Ag,Cu,As,Ni,Bi,Se y Sn	0,0618	0,0512	
E1A-32	Esfalerita	Valores minimos de Cu,As,Fe,Ni,Te,Bi,Se,Sn,Mn y Cd			0,0327
E1A-33	Galena	Valores minimos de Au,Ag,Cu,Fe,Te,Zn,Se y Hg	0,0801	0,2155	0,0296
E1A-34	Galena	Valores minimos de Ag,Cu,As,Fe,Te,Zn,Se y Sn		0,0988	0,0577
E1A-35	Esfalerita	Valores minimos de Ag,Cu,Fe,Ni,Bi,Se,Sn,Mn y Cd		0,0459	
E1A-36	Pirita	Valores minimos de Au,Ag,Cu,Te,Zn y Sn	0,0970	0,0014	0,0066
E1A-37	Calcopirita	Valores minimos de Ag,Sb,Te,Bi,Zn y Mn		0,0360	0,0013
E1A-38	Calcopirita	Valores minimos de Au,Ag,As,Ni,Zn,Hg y Mn	0,0809	0,0266	

ANEXO G. Análisis de datos de microsonda electrónica para la veta Octubrina estación 1.

Comment	fase mineral	Comentarios	Oro (%)	Plata (%)	Teluro(%)
E2-1	Pirita	Valores minimos de Ag,As,Ni,Sb,Se,Sn y Hg		0,0460	
E2-2	Pirita	Valores minimos de Au,Ag,Ni,Sb,Zn,Hg y Mn	0,0344	0,0256	
E2-3	Calcopirita	Valores minimos de As,Ni,Ag,Te,Sn y Mn		0,0275	0,0055
E2-4	Calcopirita	Valores minimos de As,Sb,Te,Se,Sn y Mn			0,0089
E2-5	Pirita	Valores minimos de Au,Ag,As,Te,Bi,Se,Sn,Hg y Mn	0,0067	0,0215	0,0399
E2-6	Ganga	Valores minimos de Au,Cu,Fe,Co,S,Te,Bi,Se,Sn y Hg	0,0998		0,0258
E2-7	Pirita	Valores minimos de Ag,Cu,As,Ni,Zn y Hg		0,0508	
E2-8	Calcopirita	Valores minimos de Ag,As,Bi,Zn y Se		0,0374	
E2-9	Ganga	Valores minimos de Ag,Cu,As,Fe,Ni,S,Bi,Zn,Se,Sn,Hg y Cd		0,0052	
E2-10	Calcopirita	Valores minimos de Au,As,Te,Se,Sn,Hg y Mn	0,0299		0,0098
E2-11	Pirita	Valores minimos de Ag,Cu,As,Se,Sn y Mn		0,0080	
E2-12	Pirita	Valores minimos Au,Ag,Cu,As,Ni,Te,Zn,Se y Sn	0,1372	0,0240	0,0085
E2-13	Pirita	Valores minimos de Ag,Cu,As,Ni,Bi,Zn,Se y Sn		0,0067	
E2-14	Pirita	Valores minimos de Cu,As,Ni,Ag,Sb,Te,Bi,Zn,Se y Mn		0,0371	0,0297
E2-15	Pirita	Valores minimos de Au,Ag,Cu,As,Ni,Sb,Te,Bi,Sn y Mn	0,0321	0,2036	0,0110
E2-16	Pirita	Valores minimos de Au,Ag,Cu,As,Ni,Te,Bi,Zn y Se	0,1037	0,0396	0,0129
E2-17	Calcopirita	Valores minimos de Au,Ag,As,Sb,Bi,Zn,Se,Hg y Mn	0,1589	0,0464	
E2-18	Calcopirita	Valores minimos de Au,As,Bi,Zn,Sn y Mn	0,0389		
E2-19	Pirita	Valores minimos de Cu,As,Ni,Se y Mn			
E2-20	Pirita	Valores minimos de Au,Ag,Cu,As,Sb,Zn,Hg y Mn	0,0442	0,0360	
E2-21	Calcopirita	Valores minimos de Au,Ag,As,Ni,Zn y Hg	0,1014	0,0143	
E2-22	Calcopirita	Valores minimos de Ag,As,Ni,Bi,Zn,Se y Hg		0,0636	
E2-23	Calcopirita	Valores minimos de Au,As,Ni,Sb,Te,Bi,Sn y Hg	0,0567		0,0397
E2-24	Pirita	Valores minimos de Cu,As y Te			0,0052
E2-25	Calcopirita	Valores minimos de Ag,As,Te y Hg		0,0272	0,0025

ANEXO H. Análisis de datos de microsonda electrónica para la veta Octubrina estación 2.

Comment	fase mineral	Comentarios	Oro (%)	Plata (%)	Teluro(%)
E4-1	Pirita	valores minimos de Au, Ag, Cu, As, Bi, Zn, Hg, Mn.	0,0777	0,0360	
E4-2	Pirita	valores minimos de Au, Ag, Cu, As, Ni, Se, Sn, Hg, Mn.	0,0031	0,0654	
E4-3	Pirita	valores minimos de Au, Ag, Cu, As, Ni, Bi, Se, Sn, Mn.	0,0900	0,0121	
E4-4	Pirita	valores minimos de Au, Ag, Cu, As, Ni, Zn, Se, Sn, Hg.	0,0863	0,0105	
E4-5	Pirita	valores minimos de Au, Ag, As, Te, Bi, Zn, Sn, Hg, Mn.	0,0605	0,0374	0,0215
E4-6	Pirita	valores minimos de Au, Cu, As, Ni, Zn, Sn.	0,0187		
E4-7	Pirita	valores minimos de Ag, Cu, As, Te, Zn, Hg.		0,0121	0,0309
E4-8	Pirita	valores minimos de Au, Ag, Cu, As, Sb, Te, Bi, Zn, Sn, Mn.	0,0263	0,0454	0,0139
E4-9	Pirita	valores minimos de Au, Ag, Cu, As, Te, Bi, Se, Sn.	0,0393	0,0013	0,0255
E4-10	Pirita	valores minimos de Au, Ag, Cu, As, Ni, Te, Bi, Se, Mn.	0,0065	0,0744	0,0007
E4-11	Pirita	valores minimos de Au, Ag, Ni, Sb, Te, Se, Hg, Mn.	0,0424	0,0125	0,0020
E4-12	Pirita	valores minimos de Cu, As, Ni, Te, Zn, Hg, Mn.			0,0151
E4-13	Pirita	valores minimos de Au, Ag, Cu, As, Te, Zn, Se, Sn, Hg.	0,0026	0,0172	0,0193
E4-14	Pirita	valores minimos de Ag, As, Ni, Te, Bi, Zn, Sn, Hg, Mn.		0,0081	0,0033
E4-15	Pirita	valores minimos de Ag, Cu, As, Ni, Sb, Bi, Zn, Se, Mn.		0,0065	
E4-16	Pirita	valores minimos de Ag, Cu, As, Ni, Te, Bi, Zn.		0,0330	0,0360
E4-17	Pirita	Valores minimos de Ag, Ni, Bi, Zn, Sn, Mn.		0,0224	
E4-18	Pirita	Valores minimos Au, As, Ni, Te, Zn, Hg, Mn.	0,0495		0,0119
E4-19	Ganga	Valores minimos de Fe, S, Te, Zn, Se, Hg, Mn.			0,0099
E4-20	Pirita	Valores minimos de Ag, As, Ni, Sb, Te, Bi, Hg, Mn.		0,0068	0,0040
E4-21	Pirita	Valores minimos de Ag, Cu, As, Te, Bi, Zn, Hg.		0,0433	0,0317
E4-22	Pirita	Valores minimos de Au, Ag, Cu, As, Sb, Te, Bi, Sn, Hg.	0,1522	0,0534	0,0377
E4-23	Pirita	Valores minimos de Cu, As, Ni, Sb, Te, Zn, Sn, Hg.			0,0260
E4-24	Pirita	Valores minimos de Ag, As, Te, Bi, Se, Sn, Hg.		0,0568	0,0316
E4-25	Pirita	Valores Minimos de Au, Ag, Cu, As, Ni, Se, Hg, Mn.	0,0188	0,0040	
E4-26	Pirita	Valores minimos de Au, Ag, Cu, As, Ni, Bi, Zn, Se.	0,1040	0,0226	
E4-27	Pirita	Presenta mas Fe de lo esperado y valores minimos de Ni, Ag, Te, Se, Sn.		0,0175	0,0342

ANEXO I. Análisis de datos de microsonda electrónica para la veta Gabi.

ANEXO J. Tabla de asociación paragenética propuesta para el Distrito minero Zaruma-Portovelo, por Paladines y Rosero (1996).

ESTADIAS DE MINERALIZACIÓN DEL DISTRITO ZARUMA-PORTOVELO, PALADINES Y ROSERO (1996)						
MINERALES	1a	2a	3a	4a	ES	
CUARZO	•••••	•••••	•••••	•••••		
PIRITA	•••••		••••			
CALCOPIRITA						
ESFALERITA						
GALENA				•••		
BORNITA		•••				
TETRAHEDRITA				•••		
TENNANTITA						
ORO		•••				
PLATA		•••				
CALCOSINA					•••••	
COVELINA						

ES = ENRIQUECIMIENTO SECUNDARIO

Anexo K. Paragénesis propuesta para la veta Vizcaya, según Vikentyev et. Al., (2005).

ESTADIOS DE MINERALIZACIÓN DE LA VETA VIZCAYA, VIKENTYEV et. al. (2005)						
MINERALES	Ι	=		SUPERGÉNICO		
CALCITA						
ADULARIA		•••				
CLORITA						
HEMATITA		•••				
PIRITA		•••	•••			
CALCOPIRITA			•••			
ESFALERITA						
GALENA			•••			
FAHLORE		•••				
ORO			•••			
PETZITA		•••				
HESSITA		•••				
TETRADIMITA		•••• ———				
BORNITA						
COVELINA						
CALCOSINA						
LIMONITA						
MALAQUITA						

ANEXO L. Paragénesis propuesta para la veta Vizcaya según Bonilla (2002)

ESTADIOS DE MINERALIZACIÓN DE LA VETA VIZCAYA, BONILLA (2002)						
MINERALES		I	I II	IV		
PIRITA						
HEMATITA						
CLORITA						
ORO						
CUARZO						
ESFALERITA						
GALENA						
CALCOPIRITA						
BORNITA						
FELDESPATO						
	Low sulfidation	Intermediate sulfidation	High sulfidation			
------------------------------------	--	---	--	--		
Setting, related volcanic rocks	Bimodal rhyolite- basalt; extension	Andesite-rhyodacite; arcs	Andesite-rhyodacite, dominated by calc-alkalic magmas; arcs			
Depth of formation	0-400 m	300-800 m (rarely >1000 m)	<100-1000 m	>1000 m		
Setting, typical host rock	Domes; pyroclastic and sedimentary rocks	Domes; diatremes; . pyroclastic and sedimentary rocks	Domes, central vent; pyroclastic and sedimentary rocks	Dome-diatreme. Porphyry, volcanic, sedimentary rocks		
Deposit form	Vein, vein swarm, stockwork, disseminated	Vein, breccia body, disseminated	Disseminated, breccia, veinlet down to massive veins	Dissemination, veinlets, breccia		
Ore textures	Fine bands, combs, crustiform, breccia	Coarse bands	Vuggy quartz hosts replacement, down to massive sulfide	Replacement		
Alteration	Alunite-kaolinite blanket, clay halo	Clays, sericite, carbonates; roscoellite	Silicic (vuggy), quartz- alunite, to pyrophyllite- dickite-sericite roots	Pyrophyllite- sericite, quartz- sericite		
Gangue	Chalcedony-adularia- illite-calcite	Quartz-carbonate- rhodonite-sericite± adularia-barite- anhydrite- hematite- chlorite	Alunite, barite, kaolinite to deeper anhydrite, dickite	Sericite, pyrophyllite		
Sulfides	Cinnabar, stibnite; pyrite/marcasite- arsenopyrite, Fe-rich sphalerite, pyrrhotite, Au-Ag selenides, Se sulfosalts,	Pyrite-Au-Ag sulfides/sulfosalts, variable sphalerite, galena, chalcopyrite, tetrahedrite/tennantite	Enargite/luzonite, covellite, pyrite to later (deeper) tetrahedrite- ten nantite, chalcopyrite, Fe-poor sphalerite	Bomite, digenite, chalcocite, covellite; enargite- luzonite		
Metals	Au-Ag-As-Sb-Se- (Te)-Hg-Tl Low Ag:Au (~1:1); <0.1-1% base metals	Ag-Au-Pb-Zn, Ba, Mn, Se High Ag:Au (10:1-100s:1); 2-10 (20+)% base metals	Au-Ag, Cu leached (Hg overprint) to deeper Cu- Au-Ag-Bi-Te-Sn; locally bonanza Au grades	Cu(-Au)		
Notable features	Sinter, chalcedony blanket	Some IS veins adjacent to HS ore	Steam-heated blanket over vuggy quartz host	Overprinted on porphyry features		
Fluids	<1% NaCl, gas-rich, <220°C	3-5 and 10-20% NaCl, 220-280+°C	4-15+ wt% NaCl	Variable, typically hypersaline		
Examples	McLaughlin, Sleeper, Midas, Ivanhoe, Hishikari (Round Mountain)	Comstock, Tonopah, Creede, Fresnillo, Pachuca, Casapalca, Arcata, Orcopampa, Victoria, Baguio, Toyoha, Thames, Baia Mare	Yanacocha, Pueblo Viejo, Pierina, La Coipa, El Indio-Tambo, Pascua- Lama, Summitville, Goldfield, Rodalquilar, Chelopech, Lahóca, Lepanto, Chinkuashih	Bisbee, MM, Chuquicamata, down to Far Southeast, Resck		

ANEXO M. Características de los depósitos epitermales de baja, intermedia y alta sulfuración.