ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Marítima y Ciencias del Mar

Evaluación de eficiencia energética de dos embarcaciones rápidas de transporte de pasajeros interislas de Galápagos

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Naval

Presentado por: Ericka Katiuska Vásquez Cevallos

> GUAYAQUIL - ECUADOR Año: 2021

DEDICATORIA

El presente proyecto lo dedico a Dios por ser mi fuente de fortaleza, esfuerzo y sabiduría. También lo dedico a mi familia, que, desde un inicio de mi carrera, han sido un pilar fundamental para no titubear ante los obstáculos.

AGRADECIMIENTOS

Mi más sincero agradecimiento a mis padres por apoyarme siempre, a mi hija, a mi compañero de vida y a todos los docentes de la carrera Ingeniería Naval.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, me corresponde conforme al reglamento de propiedad intelectual de la institución; *Ericka Katiuska Vásquez Cevallos* y doy mi consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Ericka Katiuska Vásquez Cevallos

EVALUADORES

Alejandro Chanabá, MSc

Rubén J. Paredes, PhD

PROFESOR CO-TUTOR

PROFESOR TUTOR

Nadia R. Muñoz, MSc PROFESOR DE LA MATERIA

RESUMEN

En el 2018, aproximadamente 311,000 personas, incluyendo turistas y colonos, se transportaron entre las islas pobladas de Galápagos con 15,000 viajes en lanchas de 9 a 14 metros de eslora y velocidad promedio 28 nudos propulsadas con motores fueraborda de potencias instaladas entre 500HP y 950HP. No obstante, el sobredimensionamiento de potencia ocasiona elevados consumos de combustible y daños frecuentes en su sistema propulsor ocacionando altos costos operativos.

El presente proyecto evaluó los indicadores de Eficiencia Energética Operacional (EEOI) de 2 lanchas interislas usando las recomendaciones de la Organización Marítima Internacional. Dónde, durante su recorrido diario, en las rutas Isabela – Santa Cruz – San Cristobal, se midió la gasolina consumida. Luego, se calculó el consumo con un modelo desarrollado cuyos parámetros principales fueron: dimensión de las hélices y posición del centro de gravedad; y, combinó el modelo Radojcic de Gawn Burril para estimar coeficientes de la hélice, predicciones de resistencia al avance de Savitsky y cálculos de potencia.

Este modelo fue validado con mediciones de las pruebas realizadas, obtteniendo 12% como error máximo. Adicionalmente, los resultados del EEOI durante las pruebas variaron entre 4360 y 9800gCO₂/(tons*Nm), dando una diferencia mínima de 200% con resultados embarcaciones de características similares. Esto sugiere que es posible mejorar los indicadores y costos operacionales de las interislas, por ejemplo, el asiento dinámico y dimensionamiento de hélices óptimos logran reducir el combustible consumido en un 3%, esto podría representar 78,000galones de gasolina y \$195,000 ahorrados al año si se aplicara a 89 embarcaciones de la flota interislas.

Palabras Claves: Eficiencia Energética, Consumo de combustible, embarcaciones rápidas, propulsión

ABSTRACT

In 2018, approximately 311,000 people, including tourists and settlers, were transported between the populated islands of Galapagos with 15,000 trips in high-speed-craft of 9 to 14 meters in length and an average speed of 28 knots propelled with outboard motors with installed powers between 500HP and 950HP. However, oversizing power causes high fuel consumption and frequent damage to their propulsion system, causing high operating costs.

This project evaluated the Operational Energy Efficiency indicators (EEOI) of 2 interisland boats using the recommendations of the International Maritime Organization. Where, during its daily route, on the Isabela - Santa Cruz - San Cristobal routes, the gasoline consumed was measured. Then, the consumption was calculated with a developed model whose main parameters were: dimension of the propellers and position of the center of gravity; and, it combined Gawn Burril's Radojcic model to estimate propeller coefficients, Savitsky drag predictions, and power calculations.

This model was validated with measurements from the tests carried out, obtaining a maximum error of 12%. Additionally, the EEOI results during the tests varied between 4360 and 9800 gCO2/(tons*Nm), giving a minimum difference of 200% with results for boats with similar characteristics. This suggests that it is possible to improve the indicators and operational costs of the inter-island, for example, the optimal dynamic seating and propeller sizing reduce the fuel consumed by 3%, this could represent 78,000 gallons of gasoline and \$ 195,000 saved per year if It will apply to 89 vessels of the interisland fleet.

Keywords: Energy efficiency, fuel consumption, High Speed Craft, propulsion.

ÍNDICE GENERAL

RESU	JMEN		I
ABST	RAC	Τ	II
ÍNDIC	E GE	NERAL	. 111
ABRE	VIAT	URAS	V
SIMB	OLOC	ΞίΑ	.VI
ÍNDIC	E DE	FIGURAS	VII
ÍNDIC	E DE	TABLAS	X
ÍNDIC	E DE	PLANOS	XII
CAPÍ	TULO	1	1
1.	Intro	ducción	1
1.1	De	scripción del problema	2
1.2	Jus	stificación del problema	4
1.3	Ob	jetivos	5
1.3	.1	Objetivo General	5
1.3	.2	Objetivos Específicos	5
1.4	Ma	ırco teórico	6
1.4	.1	Eficiencia energética en la industria naval	6
1.4	.2	Trabajos previos de eficiencia energética	9
1.4	.3	Movilidad y descripción de la flota autorizada	11
CAPÍ	TULO	2	28
2.	Meto	odología	28
2.1	Fa	se l: Metodología de verificación de movilidad de personas entre las isla	S
pobl	adas	de Galápagos	28
2.2	Fa	se II: Evaluación de Eficiencia Energética	30
2.2	.1	Obtención de datos mediante pruebas de mar	30

2.2	2.2.2 Comparación de resultados con línea base de eficiencia energética3	
2.3	Fase III: Estimación del consumo de combustible a partir de curvas de	
resis	tencia	37
2.3	.1 Datos de ingreso en procedimiento para consumo de combustible	38
2.3	.2 Función de cálculo de resistencia del modelo matemático	45
2.3	.3 Función de cálculo de potencia del modelo matemático	51
2.3	.4 Función de consumo de combustible del modelo matemático	57
2.3	.5 Validación del modelo matemático	59
2.4	Fase IV: Método de elección del asiento dinámico óptimo para cada	
cond	lición	64
2.5	Fase V: Técnicas para selección de hélices marinas de las embarcaciones	
plane	eadoras	64
CAPÍI	TULO 3	66
3.	Resultados y Análisis	66
3.1	Verificación de movilidad interislas	66
3.2	Índices de eficiencia marítima	72
3.3	Equilibrio dinámico de las embarcaciones	75
3.4	Efecto de la variación del asiento dinámico en la eficiencia energética	76
3.5	Opciones disponibles de hélices marinas	79
3.6	Costos operativos	85
CAPÍI	TULO 4	96
4.	Conclusiones y Recomendaciones	96
4.1	Conclusiones	96
4.2	Recomendaciones	97
BIBLI	OGRAFÍA	98
APÉN	IDICES1	03

ABREVIATURAS

- ABG Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos
- BHP Brake Horse Power
- CO2 Dióxido de carbono
- DHP Delivered Horse Power
- EEDI Energy Efficiency Design Index
- EEOI Energy Efficiency Operational Index
- ESPOL Escuela Superior Politécnica del Litoral
- FAO Food and Agriculture Organization
- GPS Global Positioning System
- ITTC International Towing Tank Conference
- MCR Maximum Continous Rating
- MTOP Ministerio de Transporte y Obras Públicas
- NOX Dióxido de nitrógeno
- OMI Organización Marítima Internacional
- OTG Observatorio de Turismo en Galápagos
- RPM Revoluciones por minutos
- SOX Dióxido de azufre
- SPTMF Subsecretaría de Puertos y Transporte Marítimo y Fluvial
- TRN Net Tonnage

SIMBOLOGÍA

σ	Número de cavitación
DAR	Área desarrollada de la hélice
Δ	Desplazamiento de la embarcación
g	Gramos
Gal	Galones
gCO2	Gramos de dióxido de carbono
HP	Caballos fuerza
H _{sig}	Altura significativa de la ola
J	Coeficiente de avance de la hélice
kg	Kilogramos
Kn	Nudos
Kq	Coeficiente de torque de la hélice
Kτ	Coefficiente de empuje de la hélice
m	metros
N	Newtons
Nm	Millas náuticas
ηο	Eficiencia de la hélice
S	segundos
S _{MOJ}	Superficie Mojada de la embarcación
tons	Toneladas métricas
Va	Velocidad de avance de la hélice

ÍNDICE DE FIGURAS

Figura 1.1 Referencia de emisiones de dióxido de azufre en el transporte marítimo1
Figura 1.2 Ejemplo de embarcación típica de transporte interislas4
Figura 1.3 Distribución de cantidad de embarcaciones por servicio autorizado 12
Figura 1.4 Histograma de embarcaciones autorizadas en Galápagos por la
Subsecretaría de Puertos y Transporte Marítimo y Fluvial
Figura 1.5 Distribución de embarcaciones según capacidad de pasajeros
Figura 1.6 Distribución de cantidad de embarcaciones según eslora [m]14
Figura 1.7 Distribución de cantidad de embarcaciones según manga [m]14
Figura 1.8 Distribución de cantidad de embarcaciones según puntal [m]15
Figura 1.9 Distribución de cantidad de embarcaciones según el radio de aspecto
eslora-manga15
Figura 1.10 Distribución de cantidad de embarcaciones según el radio de aspecto
manga-puntal15
Figura 1.11 Distribución de cantidad de embarcaciones según potencia instalada [hp]
Figura 1.12 Distribución de cantidad de embarcaciones según TRN
Figura 1.13 Ejemplo del panel de control de las interislas
Figura 1.14 Posición de los motores fuera de borda19
Figura 1.15 Tipo de máquina principal usado por las embarcaciones de transporte
interislas de Galápagos19
Figura 1.16 Tipo de combustible usado por las embarcaciones de transporte interislas
de Galápagos20
Figura 1.17 Esquema de un motor fuera de borda21
Figura 1.18 Montaje correcto de un motor fuera de borda
Figura 1.19 Curvas comparativas de consumo de combustible de una lancha
pesquera de 13 metros de eslora23
Figura 1.20 Consumo efectivo de combustible relativo
Figura 1.21 Curva de consumo de combustible típica para un motor fuera de borda 24
Figura 1.22 Características de los parámetros de diferentes series de hélices26
Figura 2.1 Porcentaje de equipaje inspeccionado por la Agencia de Regulación y
Control de la Bioseguridad y Cuarentena para Galápagos en el año 2019

Figura 2.2 Movilidad de personas en una embarcación de Santa Cruz a Santa Is	sabela
	30
Figura 2.3 Rutas marítimas entre las islas pobladas de galápagos	30
Figura 2.4 Rutas y velocidades correspondientes en las pruebas de mar	32
Figura 2.5 Recomendación de ITTC de la trayectoria por cada potencia	33
Figura 2.6 Trayectoria seguida en las pruebas de mar	34
Figura 2.7 Corrientes típicas presentes en marzo del 2005 en Galápagos	34
Figura 2.8 Estimación de la curva de resistencia total para diferentes velocidade	s de
la embarcación Ship A	46
Figura 2.9 Diagrama de una embarcación en el régimen de planeo	49
Figura 2.10 Datos de prueba a motor fuera de borda	51
Figura 2.11 Comparación de los resultados de coeficientes de la hélice para una	a .
prueba experimental y los resultados del polinomio Gawn Burril con FN 0.7	53
Figura 2.12 Comparación de los resultados de coeficientes de la hélice para una	a
prueba experimental y los resultados del polinomio Gawn Burril con FN 1.6	54
Figura 2.13 Comparación de los resultados de coeficientes de la hélice para una	a .
prueba experimental y los resultados del polinomio Gawn Burril con FN 2.3	55
Figura 2.14 Esquema de las pérdidas en las transmisiones mecánicas	57
Figura 2.15 Curvas de consumo específico para cada motor	58
Figura 2.16 Relación de RPM de motores según la velocidad de la embarcación	ı en la
prueba 1	60
Figura 2.23 Comparación de tendencia de la curva de consumo de combustible	а
diferentes velocidades de la prueba 1	62
Figura 2.24 Curva de litros/kilómetros versus RPM del motor en la prueba 1	63
Figura 2.25 Curva de litros/kilómetro versus RPM del motor en la prueba 4	63
Figura 3.1 Tendencia de la movilidad marítima en el año 2014	67
Figura 3.2 Tendencia de la movilidad marítima en el año 2015	68
Figura 3.3 Tendencia de la movilidad marítima en el año 2016	69
Figura 3.4 Tendencia de la movilidad marítima en el año 2017	70
Figura 3.5 Tendencia de la movilidad marítima en el año 2018	71
Figura 3.6 Comparación del indicador de eficiencia energética con líneas	
referenciales de la OMI	73

Figura 3.7 Comparación del indicador de eficiencia energética con líneas	
referenciales de "Inland Vessels"	73
Figura 3.8 Comparación del indicador de eficiencia energética con trabajos previos	75
Figura 3.9 Resultado del asiento dinámico en las pruebas de mar	77
Figura 3.10 Efecto del asiento dinámico en la resistencia total Ship A	78
Figura 3.11 Efecto del asiento dinámico en la resistencia total Ship M	79
Figura 3.12 Consumo de combustible anual para Ship A en cada combinación de	
hélice, considerando 3 alturas significativas diferentes	81
Figura 3.13 Consumo de combustible anual ponderado para Ship A en cada	
combinación de hélice	82
Figura 3.14 Consumo de combustible anual para Ship M en cada combinación de	
hélice	83
Figura 3.15 Consumo de combustible ponderado para Ship M en cada combinación	ì
de hélice	84

ÍNDICE DE TABLAS

Tabla 1.1 Diferencia entre los indicadores recomendados por la OMI	8
Tabla 1.2 Características de las embarcaciones a evaluar	16
Tabla 2.1 Rutas de pruebas de mar	31
Tabla 2.2 Límites de potencias recomendadas para pruebas de mar	33
Tabla 2.3 Condiciones de las pruebas de mar realizadas	35
Tabla 2.4 Factores usados para calcular las líneas base referenciales del indica	ador
de eficiencia energética según la OMI	36
Tabla 2.5 Factores usados para calcular las líneas base referenciales del indica	ador
de eficiencia energética según base de datos de Bangladesh	36
Tabla 2.6 Características de las embarcaciones llevadas a comparación	36
Tabla 2.7 Ejemplo de ingreso de datos para la validación en la hoja "General D	ata" 40
Tabla 2.8 Ejemplo de ingreso de datos para la validación en la hoja "Operacion	nes".41
Tabla 2.9 Ejemplo de ingreso de datos para la optimización en la hoja "Genera	l Data"
	42
Tabla 2.10 Ejemplo de ingreso de datos para la optimización en la hoja "Iteraci	ones" 43
Tabla 2.11 Ejemplo de ingreso de datos para la optimización en la hoja "Opera	tion"44
Tabla 2.12 Ejemplo de ingreso de datos para la optimización en las hojas	
"Hidrotrimxx"	44
Tabla 2.13 Verificación de función de resistencia en régimen de desplazamient	io47
Tabla 2.14 Verificación de función de resistencia en régimen de pre-planeo	48
Tabla 2.15 Verificación de función de resistencia en régimen de planeo	49
Tabla 2.16 Consumo de combustible específico para el motor fuera de borda Y	'amaha
LF350	58
Tabla 2.17 Resultados de asiento dinámico para la prueba 1	59
Tabla 2.18 Resultados de BHP para cada intervalo de tiempo de la prueba 1	60
Tabla 2.19 Resultados de la validación del modelo matemático	61
Tabla 2.20 Datos de la prueba 1 realizada a un motor de 300 hp	61
Tabla 2.21 Condiciones evaluadas para Ship A	64
Tabla 2.22 Condiciones evaluadas para Ship M	64
Tabla 2.23 Estados de mar evaluados en el análisis de consumo de combustib	le65

Tabla 3.1 Resultados de las pruebas de mar	.72
Tabla 3.2 Resultados del indicador de eficiencia energética de las pruebas de mar	у
las líneas referenciales	.74
Tabla 3.3 Valores óptimos de centro de gravedad recomendados según el modelo	
matemático	.78
Tabla 3.4 Hélices disponibles por cada motor	.79
Tabla 3.5 Costos operacionales actuales de las interislas	.85
Tabla 3.6 Detalle de la disminución de consumo de combustible para los cambios	
recomendados en la condición 3 de Ship A	.86
Tabla 3.7 Detalle de la disminución de consumo de combustible para los cambios	
recomendados en la condición 2 de Ship A	.87
Tabla 3.8 Detalle de la disminución de consumo de combustible para los cambios	
recomendados en la condición 1 de Ship A	.88
Tabla 3.9 Detalle de la disminución de consumo de combustible para los cambios	
recomendados en la condición 3 de Ship M	.89
Tabla 3.10 Detalle de la disminución de consumo de combustible para los cambios	i
recomendados en la condición 2 de Ship M	.90
Tabla 3.11 Detalle de la disminución de consumo de combustible para los cambios	i
recomendados en la condición 1 de Ship M	.91
Tabla 3.12 Estimación de consumo de combustible anual para Ship A	.92
Tabla 3.13 Estimación de consumo de combustible anual para Ship M	.92
Tabla 3.14 Cambios recomendados a las hélices de las interislas	.93
Tabla 3.15 Centro de gravedad óptimo para cada interisla	.94
Tabla 3.16 Posible ahorro en costos operacionales para Ship A	.94
Tabla 3.17 Posible ahorro en costos operacionales para Ship M	.94
Tabla 3.18 Detalle de inversión por embarcación	95

ÍNDICE DE PLANOS

PLANO 1 Distribución original de la embarcación SHIP M	160
PLANO 2 Líneas de formas de la embarcación SHIP M	161
PLANO 3 Distribución original de la embarcación SHIP A	162
PLANO 4 Líneas de forma de la embarcación SHIP A	163
PLANO 5 Ubicación de los pasajeros en SHIP A – prueba 1	165
PLANO 6 Ubicación de los pasajeros en SHIP A – prueba 2	166
PLANO 7 Ubicación de los pasajeros en SHIP M – prueba 3	167
PLANO 8 Ubicación de los pasajeros en SHIP M – prueba 4	168
PLANO 9 Esquema de redistribución de 29 pasajeros en SHIP A	169
PLANO 10 Esquema de redistribución de 25 pasajeros en SHIP A	170
PLANO 11 Esquema de redistribución de 15 pasajeros en SHIP A	171
PLANO 12 Esquema de redistribución de 34 pasajeros en SHIP M	172
PLANO 13 Esquema de redistribución de 25 pasajeros en SHIP M	173
PLANO 14 Esquema de redistribución de 15 pasajeros en SHIP M	174

CAPÍTULO 1

1. INTRODUCCIÓN

En el 2019, la industria marítima fue responsable del 3% de las emisiones globales de dióxido de carbono (CO₂) [1], alcanzando 1,480 millones de toneladas métricas, equivalente a la contaminación generada por 65 millones de autos [2]. De igual manera ocurre con la emisión de los óxidos de azufre SO_x, dónde en promedio la contaminación de 1 buque equivale a la contaminación de 3,300 autos, como se muestra en la Figura 1.1.

Comparación entre las emisiones de SOX de autos promedio a embarcaciones de pasajeros (crucero) en distintas ciudades de Europa. Fuente: Transport&Enviorement [3].

Por lo antes mencionado, la Organización Marítima Internacional (OMI) ha introducido regulaciones y guías sobre eficiencia energética que permitirán reducir

los gases de efecto invernadero en el sector marítimo, principalmente para embarcaciones del sector naviero [1]. Estas regulaciones limitan el dióxido de carbono, gas de efecto invernadero que causa mayor contaminación global [4], y plantea la meta de reducir en un 30% las emisiones de este gas hasta el año 2030 y en un 50% para el 2050 [1], con referencia a las emisiones del año 2008.

La OMI proporciona indicadores de eficiencia energética en las etapas de diseño y operación (EEDI,EEOI) que permiten cuantificar la cantidad de gases de efecto invernadero emitida por una embarcación en función del trabajo que realiza [1]. Estos indicadores han sido principalmente acogidos por el sector naviero conformado en su mayoría por buques graneros, metaneros, tanqueros, contenedores, y de carga general, mismos que tienen por obligación la implementación del EEDI y cómo opcional la implementación del EEOI [5].

Ecuador no es la excepción, recientemente entró en vigor la "Ley Orgánica de Eficiencia Energética" con énfasis en el sector eléctrico, construcción y transporte [6]. El Ministerio de Transporte y Obras Públicas (MTOP), a través de la Subsecretaría de Puertos y Transporte Marítimo y Fluvial (SPTMF) sigue los parámetros establecidos por la OMI, sobre la obligación de evaluar el indicador de eficiencia energética de diseño (EEDI) sólo para embarcaciones mayores a 400 tons de carga o de transporte internacional [7].

1.1 Descripción del problema

El sistema de transporte marítimo entre las islas pobladas de Galápagos es usado por turistas y residentes permanentes; y genera altos costos operativos lo que disminuye las inversiones en mejoras al servicio y diseño de las interislas. Estos costos se originan mayormente por los constantes daños mecánicos, especialmente en la transmisión del sistema propulsivo, ocasionado por cambio inadecuado del aceite de transmisión, eje desbalanceado por instalación incorrecta o hélice defectuosa [8]. Además, la falta de aplicación de principios navales apropiados en los procesos de mantenimiento y reparación también son fuente de gastos adicionales [9]. Por ejemplo, la potencia instalada está sobredimensionada para algunas de las interislas, ocasionado por un incremento improvisado de

2

motores y selección inadecuada de la hélice, aumentando innecesariamente el consumo de combustible y, por ende, los costos operativos de las embarcaciones.

Así mismo, los dueños de las embarcaciones reportan reportaron más de un daño en el sistema propulsivo en los últimos 6 meses, relacionados a fallas en la transmisión de los motores, consumos elevados de combustible y aceleraciones verticales que causan excesivos mareos, relacionado con las condiciones de mar en las que se opera. Adicionalmente, se sospecha que el diseño y operación de embarque y desembarque de pasajeros y carga, no ha cambiado en los últimos 20 años [10].

Debido a esto, los armadores están en la búsqueda de soluciones de fácil implementación que permitan reducir sus costos operativos y, a largo plazo, esperan obtener un diseño mejorado de sus embarcaciones e implementación de procesos óptimos en su operación basado en la retroalimentación de la problemática que viven actualmente.

Por otra parte, en el 2018 todas las industrias operando en Galápagos emitieron alrededor de 50 mil toneladas de CO₂, mediante el consumo 7 millones galones de combustibles fósiles, [11], afectando severamente el frágil ecosistema local. En ese año, alrededor de 311,000 personas se movilizaron, por vía marítima entre las islas habitadas de Galápagos en más de 15,000 viajes [12] utilizando embarcaciones rápidas pequeñas, conocidas como interislas, las cuales tienen instalados motores fuera de borda, ver Figura 1.2, que usan gasolina extra [10].

Se estima que las emisiones generadas por esta actividad alcanzarían las 10 mil toneladas de CO₂ al año, lo que representa el 20% de las emisiones anuales [12]. Adicionalmente, aunque existen 26 lanchas autorizadas para el transporte interislas por la SPTMF, operan otras 63 embarcaciones con la capacidad de prestar este servicio considerando la similitud de sus características principales con las interislas [10]. En base a los registros oficiales, se considera que las diferencias entre las 89 lanchas planeadoras se deben a modificaciones sugeridas por los armadores y realizadas en talleres artesanales sin soporte técnico [9]. Como consecuencia, muchas de estas lanchas han cambiado su distribución de pesos, lo que afecta

3

directamente a su resistencia al avance, consumo de combustible y a su comportamiento dinámico.

Figura 1.2 Ejemplo de embarcación típica de transporte interislas Lancha rápida usada para el transporte interislas, con 3 motores fuera de borda marca Suzuki de potencia 250HP.

Fuente: tomada durante Pruebas de mar realizadas en Galápagos [9].

Sin embargo, no existen estudios técnicos sobre el consumo de combustible, eficiencia energética, u operación de la flota de transporte interislas en Galápagos. A pesar de los esfuerzos realizados por las principales cooperativas autorizadas, TRANSMARTISA y TRANSGAL, para registrar el consumo de combustible de sus embarcaciones de manera artesanal, provocando imprecisiones en los datos reportados [9]. Por tal motivo, este proyecto propone la evaluación de la eficiencia energética de embarcaciones de transporte interislas autorizadas en Galápagos mediante el uso de indicadores recomendados por la OMI para determinar posibles mejoras en su operación. Finalmente, mediante el desarrollo de un modelo matemático para el cálculo del consumo de combustible, se plantean cambios que permitan disminuir los costos operativos.

1.2 Justificación del problema

La importancia de este proyecto se fundamenta en la necesidad de evaluar la eficiencia energética de las embarcaciones "Ship A" y "Ship M". El desarrollo de un

procedimiento para el cálculo de consumo de combustible ayudará a evaluar el consumo anual y permitirá identificar cambios en el sistema propulsivo y en la distribución de carga y pasajeros, que permitan disminuir los costos operativos.

Adicionalmente, este estudio servirá de precedente a futuras iniciativas internacionales, cómo las recomendaciones y programas de la OMI, y establecerá una línea base para potenciales mejoras del diseño de las interislas. Por otro lado, se podrá realizar cambios en la operación de embarque y desembarque de pasajeros, para cumplir estándares internacionales para el beneficio del turismo y habitantes de las islas.

Finalmente, dado que los parámetros usados en este proyecto se basan en el transporte marítimo de pasajeros y carga y la eficiencia propulsiva, este estudio puede ser extendido a las 89 lanchas de la flota interisla de Galápagos, para reducir su consumo de combustible y, por consiguiente, sus costos operativos de todo el archipiélago.

1.3 Objetivos

1.3.1 Objetivo General

Evaluar la eficiencia energética de dos embarcaciones de transporte interislas autorizadas de Galápagos, mediante el uso de indicadores recomendados por la Organización Marítima Internacional para la determinación de las posibles mejoras en su operación.

1.3.2 Objetivos Específicos

- Determinar la movilidad marítima entre las islas pobladas de Galápagos mediante el procesamiento de datos oficiales y la toma de datos en Galápagos, para el conocimiento de los detalles de la operación del transporte interislas.
- Identificar los índices de eficiencia energética de dos embarcaciones de transporte interislas de Galápagos para la evaluación del estado actual de las lanchas.

5

 Estimar el posible ahorro de los costos de operación de las embarcaciones interislas analizadas, para la determinación de las posibles mejoras en su operación.

1.4 Marco teórico

1.4.1 Eficiencia energética en la industria naval

El uso eficiente de la energía, llamado también eficiencia energética o ahorro de energía, tiene como objetivo reducir la cantidad de energía requerida para realizar un trabajo determinado. En el transporte marítimo, la eficiencia energética puede ser cuantificada como el consumo de combustible en un viaje específico. Una de las alternativas existentes para cuantificar la eficiencia energética es el uso de indicadores que son establecidos por entes reguladores como la OMI [13].

1.4.1.1 Regulaciones de Eficiencia Energética Marítima

La OMI, con la finalidad de lograr un transporte marítimo más responsable con el medio ambiente, ha implementado un conjunto de guías y reglamentos para mitigar los efectos de la contaminación causada por los buques [13]. De tal manera que, la eficiencia energética se ha convertido en un parámetro importante para la regulación de las emisiones de gases de efecto invernadero [14].

En primer lugar, la OMI ha adoptado reglas para abordar las emisiones de contaminantes atmosféricos procedentes de los buques y medidas de eficiencia energética obligatorias para reducir las emisiones de gases de efecto invernadero procedentes del transporte marítimo internacional, que implica principalmente a buques navieros o con capacidad de carga mayor a 400 Tons [13], de conformidad con el Anexo VI del Convenio de la Convención Internacional para la Prevención de la Contaminación Marina (MARPOL).

En segundo lugar, la OMI gestiona varios proyectos mundiales de creación de capacidad que ayudarán en la aplicación de estas reglas y alentarán la transferencia de tecnología. Un ejemplo claro de esto, es la implementación del programa Greenvoyage 2050 o la asociación con programas existentes como Green shipping de Noruega [15].

1.4.1.2 Planteamiento de la OMI

La implementación de la eficiencia energética en el ámbito marítimo no es reciente, la OMI adoptó el Anexo VI de MARPOL desde 1997, donde se restringen los principales contaminantes atmosféricos contenidos en los gases de escape de los buques, en particular los óxidos de azufre (SOx) y los óxidos de nitrógeno (NOx), y se prohíben las emisiones deliberadas de sustancias que agotan la capa de ozono [16]. Adicionalmente en 2011, el Comité de protección del medio marino (MEPC) estableció como obligatorio el uso de indicadores de eficiencia energética para los buques nuevos que tienen la función de cuantificar la cantidad de gases emitidos por la embarcación en función del trabajo que realiza y el Plan de gestión de eficiencia energética del buque (SEEMP) [14].

La finalidad de los requerimientos establecidos es la reducción de los gases de efecto invernadero (GEI) producido por los buques, y así, cumplir con la meta de reducir la emisión en un 30% hasta el año 2030 y en un 50% hasta el año 2050, respecto a las emisiones del 2008 [1]. Desde entonces se han publicado varios estudios sobre la evaluación de eficiencia energética, mediante el uso de indicadores, enfocados principalmente a embarcaciones del sector naviero, conformado en su mayoría por los buques graneros, metaneros, tanqueros, contenedores, y de carga general [5, p. 2]. Estos últimos buques poseen una capacidad de carga entre 400 a 600.000 tons y su EEDI se encuentra en un orden de magnitud de 10^2 gCO2 / (tons x Nm) [17].

Dentro del SEEMP, la OMI proporciona opciones para la mejora de la eficiencia energética en un documento guía [18], algunos de los aspectos a considerar son:

 Operaciones de uso eficiente de combustible: implican "la mejora del plan de viaje; predicción de la ruta meteorológica a seguir; comunicación constante con el puerto a fin de mejorar los tiempos de embarque y desembarque; determinación de la velocidad óptima que genere el menor consumo de combustible; Optimización de potencia, se recomienda mantener constante la velocidad rotativa".

7

- Manejo óptimo de la embarcación: selección del asiento óptimo de la embarcación que genere el menor valor de resistencia, es importante determinar este valor para cada condición diferente de la embarcación. También se debe tener en consideración el uso de lastre, para alcanzar los valores óptimos de asiento y dirección de la embarcación. Determinación de la hélice más eficiente para la embarcación, misma que genere el menor consumo de combustible. El uso de sistemas automatizados en el control de la dirección para aguas calmada.
- Mantenimiento del casco: Se recomienda tener un control de limpieza de casco y mantenimiento general a fin de disminuir la fricción y la resistencia causada.
- **Tipo de combustible:** el uso de combustibles que generen la menor cantidad de dióxido de carbono.

De esta manera, la OMI también plantea el cálculo de indicadores, a fin de evaluar la evolución de las embarcaciones y determinar acciones de acuerdo con los resultados. La Tabla 1.1 muestra la diferencia entre los 3 indicadores usados para la evaluación que son:

- a) Indicador de Diseño de Eficiencia Energética (EEDI),
- b) Indicador Operacional de Eficiencia Energética (EEOI)
- c) Indicador de Diseño de Embarcaciones Existentes (EVDI) [19].

Tabla 1.1 Diferencia entre los indicadores recomendados por la OMI

Se muestra la diferencia entre las variables principales usadas para el cálculo de los indicadores de eficiencia energética recomendados por la Organización Marítima Internacional

Indicador	Consumo de combustible	Distancia usada	Capacidad
EEDI: Energy Efficiency	Potencia del motor y	Según velocidad de	Capacidad
Design Index	consumo estimado	diseño	disponible
EEOI: Energy Efficiency	Consumo reportado	Reportes de ruta	Carga
Operational Index		actual	transportada
EVDI: Existing Vessel	Potencia del motor y	Según velocidad de	Capacidad
Design Index	consumo estimado	diseño	disponible

Fuente: IMO [19]

El EEDI es el valor de eficiencia energética sobre las toneladas por millas náutica calculadas en el diseño de la embarcación, lo cual deberá estar desarrollado en un expediente técnico que contenga las pruebas y documentaciones [5, p. 2]. Se realizan dos verificaciones: i) la verificación preliminar mediante cálculos basados en pruebas de tanques y ii) la verificación final mediante pruebas de mar [5, p. 2].

La OMI establece la ecuación 1.1 para calcular la línea referencial del EEDI, dónde a y c son factores que varían según el tipo de embarcación (mostrados en la Tabla 2.4) y b es la carga transportada [7].

$$Linea\ referencial\ de\ EEDI = a * b^{-c}$$
(1.1)

Por otro lado, el EEOI se lo calcula a partir del desempeño de una embarcación a lo largo de su tiempo de operación. Para poder calcular el indicador EEOI de cada viaje, la IMO proporciona la ecuación 1.2, misma que relaciona la cantidad de combustible consumido, respecto la carga transportada y la distancia recorrida [20].

Indicador de eficiencia energética =
$$\frac{\sum_{j} FC_{j}xC_{Fj}}{m_{carao}xD}$$
 (1.2)

Dónde:

- FCj es el consumo de combustible
- CFj es el factor de conversión a masa de CO2
- *m_{cargo}* es la carga transportada en toneladas, en el caso de embarcaciones de pasajeros se toma en consideración el peso de los pasajeros y su equipaje.
- D la distancia recorrida en millas náuticas

1.4.2 Trabajos previos de eficiencia energética

Los Indicadores de Eficiencia Energética cambian en función del tipo de buque analizado y son inversamente proporcional a la carga transportada, partiendo de altos valores, en un orden de magnitud de 10² gCO2 / tons x Nm cuando la carga es de aproximadamente 400 tons hasta llegar a 10¹ gCO2 / tons x Nm cuando la carga llega a las 50,000 toneladas [5]. Entre las investigaciones realizadas sobre

este tema, se encuentra el estudio realizado en Bangladesh [21] a 526 embarcaciones de carga, 247 embarcaciones de pasajeros, 70 tanqueros y 36 ferries, dónde la carga transportada de las embarcaciones de pasajeros varía aproximadamente entre 10 a 1,500 toneladas. Se demostró que el EEDI se acerca más a la línea referencial para embarcaciones con mayor capacidad. Adicionalmente, los autores concluyen que combinando los efectos una correcta elección de motor principal, la disminución de las pérdidas de potencia y navegar a una velocidad óptima ayudan a disminuir el valor del EEDI [21].

En otra de las investigaciones recientes, Prill y Igielski (2018) [22] evalúan el EEOI de una embarcación monocasco de investigación, con carga promedio de 2.5 tons, eslora de 60 metros, navegando a 15 nudos, con la finalidad de comparar los resultados con las referencias de otras embarcaciones de transporte. Los autores sugieren que la metodología de cálculo de este indicador propuesta por la OMI debe modificarse en términos de parámetros operativos de buques de menores dimensiones y servicios diferentes. Sin embargo, no se propone formulación alguna. Adicionalmente, un informe de De Melo et al. [23] analiza los resultados de eficiencia energética de un catamarán de 22 m de eslora con una velocidad promedio de 30 nudos y carga de 490 tons. En este reporte, se evalúan los cambios en el sistema propulsivo y la distribución de pesos, para lograr la disminución del consumo de combustible. Entre las variaciones consideradas se encuentra: el reemplazo de dos waterjet con 4 motores estacionarios, con hélice de paso fijo; cambio en la forma del fondo para la instalación de las nuevas hélices; redistribución de máquinas auxiliares para generar cambio de asiento; Instalación de dos hélices laterales.

Actualmente, no se encuentran registros de evaluaciones de estos indicadores a embarcaciones en Ecuador. Sin embargo, las publicaciones mencionadas anteriormente se pueden tomar como referencias para determinar el nivel de eficiencia inicial de las lanchas de transporte interislas de Galápagos desde el punto de vista energético y poder cuantificar el impacto de las mejoras y cambios que puedan realizarse.

10

1.4.3 Movilidad y descripción de la flota autorizada

Las tres islas con mayor población en Galápagos son San Cristóbal, Isabela y Santa Cruz y existen 2 medios encargados la movilidad de pasajeros, estos son aéreo y marítimo. En el primer caso, se usa el aeropuerto de Baltra para la llegada a la isla Santa Cruz, mientras las otras islas cuentan con aeropuerto propio, y los valores por pasaje, solo de ida, rondan entre los \$140 a \$190 [24]. En el segundo caso, las lanchas interislas llegan a los puertos de cada isla: Puerto Villamil, Puerto Baquerizo Moreno y Puerto Ayora respectivamente. El costo por pasaje, sólo de ida, en lancha interislas está regulado y es \$30 [25], lo cual lo convierte como una opción atractiva para pobladores y turistas.

La duración aproximada de viaje en estas lanchas de una isla a otra es de 2 horas, con una velocidad promedio de entre los 20 y 30 nudos¹ [10]. Estas embarcaciones navegan en mar abierto con un estado de mar que varía según de la época del año. En los meses de marzo a agosto ocurren los estado de mar más altos, con altura significativa de las olas mayor a 1.6 metros [26] por lo cual la velocidad de navegación debe reducirse a 20 nudos.

A pesar de que las rutas cruzan las corrientes del Océano Pacífico, la corriente ecuatorial del norte y la corriente ecuatorial del sur, estas tienen un valor aproximado de 0.2 m/s en la superficie y hasta 1.5m/s en aguas profundas por lo cual su efecto fue despreciado en este estudio [27].

Actualmente la SPTMF es el ente encargado del control de las embarcaciones de transporte interislas en Galápagos. La base de datos de SPTMF del 2019 fue usada para identificar a las embarcaciones con capacidad de pasajeros entre 6 y 40, descartando el servicio autorizado de "Fletera o Taxi" debido a que representan servicios de taxi que prestan pequeñas lanchas en cada isla, tampoco se consideró el servicio autorizado de "Yate de Recreo" y "Yate Oceánico" pues hacen referencias a embarcaciones de placer y no de transporte. Por lo tanto, se toma en consideración 26 embarcaciones que tienen el servicio autorizado de "Transporte

¹ Número de froude entre 1.0 y 1.3 calculado a partir del LWL

Interislas", y otras 63 con servicio de carga y pasajeros y servicio de lancha con motor, lo cual da un total de 89 embarcaciones (Figura 1.3).

Considerando que se realizaron pruebas de mar en dos embarcaciones a las cuales se van a denominar "Ship A" y "Ship M", para distinguir que tan representativo serán los resultados obtenidos con respecto a la flota en general. Estas lanchas son consideradas rápidas y "planeadoras" pues navegan a una velocidad mayor a 20 kn [10] y, al momento de alcanzar su velocidad de servicio, se elevan ocasionando que exista menor fricción con el agua, permitiéndole así, aumentar su velocidad.

Figura 1.3 Distribución de cantidad de embarcaciones por servicio autorizado Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

En la Figura 1.4 se puede observar que la eslora promedio de las embarcaciones varía entre 9 y 11 metros, la manga entre 2 y 3 metros, el puntal entre 1 y 1.5 metros y la capacidad promedio de pasajeros es alrededor de 20 personas. Cabe destacar que, las embarcaciones clasificadas como "pasaje" incluyen el servicio de embarque y desembarque de pasajeros y sus respectivos equipajes [28], mientras que carga y pasaje, además de tener el servicio de pasaje, posee una capacidad de embarque y desembarque de carga general.

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Desde la Figura 1.5 hasta la Figura 1.12, se muestra la recopilación de los datos de embarcaciones existentes en Galápagos proporcionada por la SPTMF [10] y la Dirección Nacional de Espacios Acuáticos (DIRNEA) [29] . Dónde, se puede identificar la distribución de la cantidad de embarcaciones según sus características, las mismas son: capacidad de pasajeros, eslora, manga, radio de aspecto eslora-manga, puntal, potencia instalada, TRN. En esta misma distribución se muestra la ubicación de las embarcaciones a analizar, las cuales se identificarán como "Ship A" y "Ship M" y cuyas características generales se muestran en la Tabla 1.2.

De lo cual, se puede observar que las embarcaciones a evaluar, a pesar de no tener iguales dimensiones principales, se encuentran en el rango con mayor incidencia en la relación de aspecto eslora-manga y manga-puntal mostrada en la Figura 1.9 y Figura 1.10. Así mismo, "Ship A" posee características que se apegan más a la mayoría de las lanchas. Por otro lado, las 2 embarcaciones registran mayor capacidad de pasajeros y potencia instalada que el promedio, aunque este último valor no es especificado en 35 de las lanchas.

Figura 1.5 Distribución de embarcaciones según capacidad de pasajeros

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.6 Distribución de cantidad de embarcaciones según eslora [m]

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.8 Distribución de cantidad de embarcaciones según puntal [m]

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.9 Distribución de cantidad de embarcaciones según el radio de aspecto eslora-manga

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.10 Distribución de cantidad de embarcaciones según el radio de aspecto manga-puntal

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.11 Distribución de cantidad de embarcaciones según potencia instalada [hp]

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Figura 1.12 Distribución de cantidad de embarcaciones según TRN

Fuente: Elaboración propia con datos obtenidos del catastro de Naves de la Subsecretaría de Pesca, Transporte Marítimo y Fluvial [10]

Tabla 1.2 Características de las embarcaciones a evaluar

En esta Tabla se muestran las características principales de las embarcaciones "Ship A" y "Ship M" que van a

ser evaluadas en este proyecto. Fuente: Elaboración propia

		Ship A	Ship M
	Eslora [m]	12.02	13.50
	Manga [m]	3.45	4.00
Características	Puntal [m]	1.51	1.60
nrincinales	Calado de diseño [m]	0.51	0.45
principaloo	Capacidad máxima de pasajeros	29	34
	Potencia instalada [Hp]	850	950

		Ship A	Ship M
	Combustible promedio utilizado	130	160
	por día- Gal	150	100
	Peso en pruebas [tons]	{7.7; 8.4}	{8.5; 9.2}
	Ángulo de astilla muerta β [deg]	14	14
Carácterísticas	Manga de china en sección	2 90	3 10
principales	media [m]	2.00	0.10
	Eslora en china [m]	11.30	12.85
	Velocidad de crucero [kn]	28	28
	Capacidad total de combustible	240	350
	[Gal]	210	
	Características de motore	9S	
	Fuera de borda	Suzuki	Suzuki
		DF300AP	DF300AP
	Potencia - hp	300	300
	Cilindraje	V6	V6
Babor	Peso - kg	274	274
	Radio de reducción	2.08:1	2.08:1
	Características de la hélice	Suzuki	Suzuki
		15"x18.5" 3	16"x18.5" 3
		blade stainless	blade stainless
		steel	steel
	Fuera de borda	Suzuki	Yamaha F350
		DF250AP	
	Potencia - hp	250	350
	Cilindraje	V6	V8
Crujía	Peso - kg	274	350
•	Radio de reducción	2.08:1	1.73:1
	Características de la hélice	Suzuki 16"x17" 3 blade stainless steel	Yamaha 16 1/4"x17" 3 blade stainless steel
	Fuera de borda	Suzuki	Suzuki
		DF300AP	DF300AP
Estribor	Potencia - hp	300	300
_0	Cilindraje	V6	V6
	Peso - kg	274	274
	Radio de reducción	2.08:1	2.08:1

Características de motores			
		Ship A	Ship M
Estribor	Características de la hélice	Suzuki	Suzuki
		15"x18.5" 3	16"x18.5" 3
		blade stainless	blade stainless
		steel	steel

1.4.3.1 Descripción del sistema propulsivo

Típicamente, el sistema propulsivo de las embarcaciones planeadoras interislas tienen las siguientes características:

- Los motores se encuentran ubicados en la popa de la embarcación, que, mediante cables electrónicos, son controlados usando el panel de control en el puente de mando (Figura 1.13).
- La mayoría de motores utilizado son fuera de borda, marcas Suzuki, Yamaha y Mercury, cuyo rango de potencia suele oscilar entre los 100 y 350 Hp [10].
- Se suelen instalar de 2 a 3 motores, de los cuales, no siempre coinciden las características y marcas de los motores laterales con el motor central (Figura 1.14).
- En la actualidad, los dueños de las embarcaciones están cambiando sus motores de 2 tiempos a motores fuera de borda de 4 tiempos (Figura 1.15).
- El combustible sugerido por los fabricantes de los motores, es la gasolina, cuyo octanaje varía según la marca y la potencia entre 87, 89 y 94 octanos [30]. En caso de usar un octanaje menor, el motor tendrá un desempeño menor y a largo plazo puede ocasionar daños en el control de emisiones [31]. Caso contrario, si el octanaje es mayor el desempeño podría mejorar [32].
- El combustible utilizado en Galápagos es la gasolina extra, cuyo octanaje medido experimentalmente es 87.1 [33] (Figura 1.16).
- Las hélices utilizadas varían en paso, diámetro y material disponible según las necesidades de la embarcación y el fabricante del motor escogido. Cabe recalcar que, al momento de adquirir un motor nuevo, el conjunto del motor fuera de borda incluye la hélice. En su gran mayoría, son de acero inoxidable o aluminio.

Figura 1.13 Ejemplo del panel de control de las interislas

Fuente: Elaboración propia

Figura 1.14 Posición de los motores fuera de borda

Fuente: Elaboración propia

Figura 1.15 Tipo de máquina principal usado por las embarcaciones de transporte interislas de Galápagos

Fuente: Elaboración propia a partir de base de datos [10]

Figura 1.16 Tipo de combustible usado por las embarcaciones de transporte interislas de Galápagos

Fuente: Elaboración propia a partir de base de datos [10]

1.4.3.2 Características del motor fuera de borda

Los motores fuera de borda de 4 tiempos se han posicionado como favoritos de los dueños de las embarcaciones interislas de Galápagos [10], debido a sus diversas ventajas en comparación con los motores internos convencionales. En general, algunas de sus ventajas son [34]:

- Son más accesibles en el mercado.
- Rápidos de instalar.
- Requieren menor frecuencia de mantenimiento.
- Generalmente, producen menos costos de mantenimiento.
- Al ser más livianos, se genera menos resistencia al avance, lo cual permite alcanzar mayor velocidad.

Por otra parte, es posible diferenciar tres tipos de potencias requeridas: la primera es la potencia de entrada (BHP), la segunda es la potencia entregada a la hélice (DHP) y finalmente la potencia propulsiva entregada por la hélice (THP). La transmisión y el sistema de arranque del motor fuera de borda se asemeja al de un carro, por lo cual, se estima que la eficiencia mecánica o relación de DHP y BHP del motor es de 61% [35].

La instalación del motor fuera de borda tiene gran relevancia, pues de esto depende su óptimo funcionamiento. Hay que conocer claramente las partes del motor mostradas en la Figura 1.17 para entender las instrucciones del fabricante. Como parte de las recomendaciones, se encuentra que, el eje de la hélice de estar completamente sumergida y en posición paralela a la línea de agua en el momento de la navegación, en algunos casos el motor incluye un sistema de automatización para cambiar el ángulo de la hélice acorde la embarcación va planeando [36], ver Figura 1.18.

Figura 1.17 Esquema de un motor fuera de borda

Partes principales de las que se compone un motor fuera de borda convencional Fuente: OSPESCA [36]

Figura 1.18 Montaje correcto de un motor fuera de borda Fuente: obtenida de catálogo de Nissan Marine [37]

Otro aspecto que debe ser tomado en cuenta es el cumplir un adecuado mantenimiento al motor, que incluye: limpieza del motor, reparación de raspaduras, monitoreo de ingreso de agua al motor, cambios de ánodos de sacrificio, cambios de filtros de aceite, cambios de aceite, revisión del desgaste en las palas de la bomba de agua y sustitución de bujías [36].

Por otro lado, el consumo de combustible varía según el tipo de motor que se utiliza. En general, los motores marinos pueden ser clasificados de la siguiente forma:

- Diésel interno.
- Diésel sobrealimentado con turbosoplante.
- Diésel fuera de borda.
- Fuera de borda de gasolina de 2 tiempos.
- Fuera de borda de gasolina de 4 tiempos.
- Cola larga.
- Fuera de borda a queroseno.
- Fuera de borda de gasolina con inyección directa de combustible.

La diferencia entre cada motor varía en cuanto a tamaño, peso, consumo de combustible, costo de inversión y disponibilidad de piezas [38]. En el caso de los motores diésel interno, consumen menos combustible que los motores fuera de borda, sin embargo, ocupan más espacio, suele ser más pesado y su instalación es más compleja [38]. Mientras que, las principales diferencias entre los motores fuera de borda de 4 tiempos y 2 tiempos son: el primero suele ser más costoso que el segundo, pero la vida útil del primero es mayor que la del segundo [38].

El motor más común encontrado en la flota interislas es el motor fuera de borda de gasolina, que como se observa en la Figura 1.19 y Figura 1.20 consume mucho más que un motor diésel interno. El consumo específico característico de un motor fuera de borda de gasolina de 4 tiempos es 0.33 litros/(hp*hora), y 0.25 litros/(hp*hora) para diésel interno [38]. Sin embargo, hay aspectos como la economía, peso y mayor aceleración que inclinan la balanza hacia los motores fuera de borda.

El consumo específico, definido como la relación del caudal de combustible que consume un motor y el BHP, varía según las RPM del motor y estos valores suelen ser proporcionados por los fabricantes. Sin embargo, en el caso de los motores de las embarcaciones Ship A y Ship M, esta información no se encuentra disponible. Por tal motivo, en el presente trabajo se tomó como referencia la curva de un motor

fuera de borda de otro fabricante de motores fuera de borda mostrada en la Figura 1.21.

Figura 1.19 Curvas comparativas de consumo de combustible de una lancha pesquera de 13 metros de eslora

Curvas resultantes de pruebas a una lancha pesquera de 13 metros de eslora [38]

Figura 1.20 Consumo efectivo de combustible relativo

Resultados de consumo de combustible con respecto a un motor fuera de borda de Gasolina de 4 tiempos, según los resultados de pruebas realizadas a una embarcación pesquera de 13m [38]

Figura 1.21 Curva de consumo de combustible típica para un motor fuera de borda Se muestran la curva de consumo de combustible específico, curva de torque y curva de potencia para un motor fuera de borda de 350hp [39].

1.4.3.3 Características de hélices para motor fuera de borda

La hélice es uno de los elementos más importantes dentro del proceso de propulsión y el consumo de combustible puede variar según su diseño [40]. El factor determinante es la eficiencia de la hélice que viene dada por el torque y empuje. Para estimar estas curvas, se hacen uso de polinomios existentes para distintos tipos de series, mismas que se diferencian en su geometría, como se muestra en la Figura 1.22.

La serie B es la más utilizada para estimar los parámetros de la hélice, sin embargo, para aguas abiertas y embarcaciones rápidas se recomienda la serie Gawn Burril [42]. Sobre esta ultima serie, recientemente se realizó un estudio de los 4 modelos matemáticos desarrollados a partir de los resultados de las pruebas realizadas por Gawn (1953) y Gawn Burril (1957) Blount y Hubble (1981), Kozhukharov´s (1986), Radojcic´s (1988) y Koushan (2007). Se determinó que la ventaja del modelo 1 es su simplicidad y validez para hélices con mucha cavitación. El modelo 3 es probablemente el mejor para condiciones sin cavitación, mientras que el modelo 4 es ventajoso para la zona de transición. El modelo 2, sin embargo, parece no tener ventajas en comparación con los demás [43].

Las ecuaciones 1.3, 1.4 y 1.5 que corresponden al modelo 3 fueron utilizadas en el presente trabajo para la obtención de las curvas de los coeficientes de empuje KT, de torque KQ y la eficiencia de la hélice no [43].

$$K_T = \sum_{1}^{16} (C_T x 10^e x (DAR)^X x (\frac{P}{D})^y x J^z)$$
(1.3)

$$K_Q = \sum_{1}^{17} (C_Q x 10^e x (DAR)^X x (\frac{P}{D})^y x J^z)$$
(1.4)

$$\eta o = \frac{K_T * J}{K_O * 2 * pi} \tag{1.5}$$

Donde:

- DAR es la relación entre el Área desarrollada de la hélice y el área del disco.
- J es el coeficiente de avance definido como la relación de la velocidad de avance y el producto de las RPM de la hélice su respectivo diámetro
- C_Q, e, x, y, z son coeficientes para condiciones no cavitantes (Ver coeficientes en APÉNDICE D).

Adicionalmente, cuando el número de cavitación σ , calculado con la ecuación 1.6 [44], se encuentra entre 1 y 0.5, se procedió a encontrar el parámetro de la cavitación local con la ecuación 1.7 [44] y, luego, se calculó el incremento de los coeficiente K_T y K_Q a partir de las ecuaciones 1.8 y 1.9 [43].

Series	Number of	Range of parameters		D(mm)	r_h/R	Cavitation	Notes	
	propetters in series	Z	$A_{\rm E}/A_{\rm O}$	P/D			available	
Wageningen B-series	≃120	2–7	0.3-1.05	0.6-1.4	250	0.169	No	Four-bladed propeller has non-constant pitch dist
Au-series	34	4-7	0.4-0.758	0.5 - 1.2	250	0.180	No	1.000
Gawn-series	37	3	0.2-1.1	0.4-2.0	508	0.200	No	
KCA-series	$\simeq 30$	3	0.5-1.25	0.6-2.0	406	0.200	Yes	
Ma-series	32	3 and 5	0.75-1.20	1.0-1.45	250	0.190	Yes	
Newton-Rader series	12	3	0.5-1.0	1.05-2.08	254	0.167	Yes	
KCD-series	24	3-6 (mainly 4)	0.587 Principal 0.44-0.8	0.6-1.6	406	0.200	Yes	Propellers not geosyms
Meridian series	20	6	0.45-1.05	0.4-1.2	305	0.185	Yes	Propellers not geosyms

Figura 1.22 Características de los parámetros de diferentes series de hélices

Fuente: Marine Propellers and Propulsion, Carlton J. [41]

$$\sigma = \frac{P_A + P_H - P_V}{0.5 * \rho * Va^2}$$
(1.6)

$$\sigma_{0.7R} = \frac{\sigma}{(1 - wt)^2} * \frac{J_T^2}{J_T^2 + 4.84}$$
(1.7)

$$\Delta K_T = \sum_{1}^{20} (d_T x 10^e x (DAR)^S x (\frac{P}{D})^v x \sigma_{0.7R}{}^t x (K_T)^u)$$
(1.8)

$$\Delta K_Q = \sum_{1}^{20} (d_Q x 10^e x (DAR)^S x (\frac{P}{D})^v x \sigma_{0.7R}{}^t x (K_T)^u)$$
(1.9)

Donde:

- P_A es la presión atmosférica, cuyo valor usado fue 1 atm.
- P_H es la presión ocasionada por el cabezal de agua sobre la hélice.
- P_V es la presión del vapor, puede ser despreciada.
- V_a es la velocidad de avance de la hélice.
- J_T es el coeficiente de avance.
- d_T, dQ, e, s, v, t, u son coeficientes para condiciones cavitantes (Ver APÉNDICE D).

CAPÍTULO 2

2. METODOLOGÍA

Para cumplir los objetivos de proyecto se desarrollaron las siguientes fases:

- Se usó la metodología descriptiva, que consistió en el detalle de la movilidad de las personas entre las islas pobladas de Galápagos, con la finalidad de tener conocimiento de la operación anual de las embarcaciones interislas.
- A través de la medición de variables, se procedió a realizar pruebas de mar, que siguió las recomendaciones establecidas por el International Towing Tank Conference (ITTC), para la evaluación actual de las dos embarcaciones.
- Se desarrolló un procedimiento matemático, para realizar una estimación teórica del consumo de combustible de las embarcaciones que siguen un perfil de operación especificado. El modelo matemático resume el concepto de análisis y síntesis de variables.
- Mediante el método deductivo, se realizó la elección del asiento dinámico y la selección de hélices marinas óptimas para las dos embarcaciones.

2.1 Fase I: Metodología de verificación de movilidad de personas entre las islas pobladas de Galápagos

Se realizó la verificación de movilidad marítima de personas entre las islas pobladas de Galápagos para poder cuantificar el alcance del mercado de las dos embarcaciones interislas. Primero, se consideró los reportes anuales del Observatorio de turismo de Galápagos [12]. Los datos reportados fueron generados a partir del registro e inspección de carga y pasajeros, realizados antes de embarque, por la Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG). Cómo se muestra en la Figura 2.1 [45], ABG reporta el control de 1.2 millones de equipajes, existiendo una disminución del 10% con respecto al año 2018.

Figura 2.1 Porcentaje de equipaje inspeccionado por la Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos en el año 2019

Según el informe dado por la ABG, desde enero a diciembre del 2019, se inspeccionó un total de 1.221.249 equipajes en los puntos de control, siendo 16.454 las inspecciones relacionadas al transporte marítimo en Galápagos. Fuente: ABG [45]

Las rutas marítimas establecidas por el Consejo de Gobierno del Régimen Especial de Galápagos son: Santa Cruz-San Cristóbal, San Cristóbal-Santa Cruz, Santa Cruz-Isabela, Isabela-Santa Cruz, ver Figura 2.3, tienen viajes diarios con salida de Santa Cruz desde las 6h30 y salida desde Isabela y San Cristóbal desde las 13h45 [25]. Mientras que, la ruta Santa Cruz-Floreana sólo suele darse los día martes y jueves, según la demanda de pasajeros [25]. Adicionalmente, lo reportado por la OTG coincide con la movilidad de personas que se pudo visualizar en la durante las pruebas de mar realizadas en el mes de enero del 2021, ver Figura 2.2.

Para el análisis, se consideró los datos de la cantidad de personas movilizadas y la cantidad de viajes requeridos por año reportados por el OTG en los años 2014 hasta 2018. De tal manera que, fueron resumidos y comparados, mediante gráficos e histogramas mostrados en el Capítulo 3.

Figura 2.2 Movilidad de personas en una embarcación de Santa Cruz a Santa

Isabela

Fuente: Elaboración propia

Figura 2.3 Rutas marítimas entre las islas pobladas de galápagos Fuente: Mapa de página web Vacation To Go [46]

2.2 Fase II: Evaluación de Eficiencia Energética

2.2.1 Obtención de datos mediante pruebas de mar

Dentro de este proyecto, se desarrollaron pruebas de mar de las dos embarcaciones facilitadas por los armadores durante su recorrido normal con pasajeros, como se muestra en la Tabla 2.1. Para esta fase, se siguieron las recomendaciones dadas por el International Towing Tank Conference para pruebas

de mar [47]. El objetivo de estas pruebas fue registrar la mayor cantidad de información sobre el comportamiento de la embarcación y consumo de combustible, a distintas velocidades y en diferentes rutas (Figura 2.4).

# de	Embarcación	Ruta	Fecha de	Hora de	Hora de
prueba			la prueba	salida	llegada
1	Ship A	Santa Cruz – Isabela	18/1/2020	07h12	09h10
2	Ship A	Isabela –Santa Cruz	18/1/2020	15h00	17h00
3	Ship M	Santa Cruz – San Cristóbal	19/1/2020	07h16	09h08
4	Ship M	San Cristóbal – Santa Cruz	19/1/2020	15h12	13h13

Tabla 2.1 Rutas de pruebas de mar

Fuente: Elaboración propia

En primer lugar, mediante conversaciones con los dueños de las embarcaciones, se planteó la agenda y parámetros iniciales de las pruebas, tales como, las rutas, los días de las pruebas y el horario a realizarlas (Ver equipos necesarios para prueba de mae en APÉNDICE A y la ubicación de pasajeros en las pruebas de mar en APÉNDICE I).

Finalmente, se identificaron los instrumentos y equipos electrónicos necesarios para llevar a cabo estas pruebas. Previo a las pruebas, para que sean válidas, se comprobó el buen funcionamiento de los equipos a utilizar mediante la simulación dentro del laboratorio SiMarLab de Ingeniería Naval.

Además, fue importante identificar las mediciones y los equipos necesarios, por ejemplo:

- Para la medición de las aceleraciones verticales se hizo uso de un acelerómetro digital.
- Para medir el consumo de combustible se usó una barra métrica proporcionada por los dueños de las embarcaciones.
- Para la ubicación y velocidad se usó GPS Garmin con una precisión de <u>+</u>3.65 metros [48]
- Para medir asientos y escoras de la embarcación se usó un inclinómetro digital.

Figura 2.4 Rutas y velocidades correspondientes en las pruebas de mar

Por otro lado, se estimó el rango de potencias que se debería evaluar y variaron entre el 65% al 100% del MCR [47], por lo que se determinaron los valores límites para cada motor de las interislas, mismos que son mostrados en Tabla 2.2. En general, se realizaron pruebas hasta con 4 diferentes potencias.

		•	•	
	Límites	Motor en babor	Motor en crujía	Motor en estribor
Ship A	Máximo 100% MCR	300 hp (5700rpm)	250 hp (5500rpm)	300 hp (5700rpm)
	Mínimo 65% MCR	196 hp (3700rpm)	163 hp (3500rpm)	196 hp (3700rpm)
Ship M	Máximo 100% MCR	300 hp (5700rpm)	350 hp (5500rpm)	300 hp (5700rpm)
	Mínimo 65% MCR	196 hp (3700rpm)	230 hp (3600rpm)	196 hp (3700rpm)

Tabla 2.2 Límites de potencias recomendadas para pruebas de mar

Fuente: Elaboración propia

No fue posible cumplir con las recomendaciones del ITTC sobre la trayectoria con corrida doble, ver Figura 2.5, debido a las condiciones del viaje y a que el tiempo de viaje no podía exceder considerablemente las dos horas esperadas por los pasajeros a bordo. De forma alternativa, cada interislas completó la ruta de ida incluyendo 4 tramos de 10 minutos con RPM relativamente constantes, y en la ruta de vuelta se realizó el mismo proceso, como se observa en la Figura 2.6. Como consecuencia, al ser las rutas en horarios diferentes de un mismo día, las condiciones del mar fueron diferentes, situación que trata de evitar la ITTC. Así mismo, la cantidad de pasajeros variaba con respecto a la prueba de ida con la prueba de vuelta. Por tal motivo, los resultados de cada prueba se tomaron independientemente, es decir, cada una con su condición de carga y estado de mar respectivo.

Figura 2.5 Recomendación de ITTC de la trayectoria por cada potencia

Para cada porcentaje de potencia se propone un "double run" o corrida doble, es decir, 10 minutos a una dirección y 10 minutos en la dirección contraria. Fuente: [47]

En una sola ruta se realizó la trayectoria de ida y de vuelta y se realizaron las pruebas a las mismas velocidades. Fuente: Elaboración propia

Las condiciones con las que se llevaron a cabo las pruebas fueron variables debido a que no se pudo prever la cantidad de pasajeros en cada viaje, ver Tabla 2.3, estado de mar y corrientes presentes que fueron despreciadas para este estudio, ver Figura 2.7.

Figura 2.7 Corrientes típicas presentes en marzo del 2005 en Galápagos

Se muestra una corriente predominante, de color azul, con magnitud de 0.2 m/s Fuente: [27]

					F F		
# de	Embar.	Pasaj. y	Hsig	Dir	Temperatura	Humed.	Dir de la
prueb.		tripulant.	estimada	Viento	[°C]		ola
			[m]				
1	Ship A	21 – 5	0.6	SE	25	86%	Sur -
							Norte
2	Ship A	29 – 4	1	SE	27	78%	Sur -
							Norte
3	Ship M	24 – 4	0.3	SE	24	86%	Sur -
							Norte
4	Ship M	16 – 4	1	SE	29	86%	Sur -
							Norte

Tabla 2.3 Condiciones de las pruebas de mar realizadas

Finalmente se determinó el protocolo de las pruebas mostrado en el APÉNDICE B del presente documento, considerando las recomendaciones planteadas por la 28ava edición de la conferencia Internacional de Tanques de prueba [47].

2.2.2 Comparación de resultados con línea base de eficiencia energética

Para realizar esta comparación se determinaron los indicadores de eficiencia energética (EEOI) a partir de los resultados de las pruebas de mar. Luego se procedió a comparar con los resultados de trabajos previos. Además, se generaron las líneas refenciales acorde a los factores a y c recomendados por la OMI, mismos que se muestran en la Tabla 2.4. Sin embargo, esto valores son recomendados para cargas mayores a 400 DWT, por lo cual se procedió a extender la línea referencial del indicador a esta carga y se comparó con los resultados de las pruebas de mar.

Luego, usando las líneas referenciales obtenidas de la base de datos de embarcaciones "Inland" en Bangladesh [21], se realizó la comparación de los resultados mostrados en la Tabla 2.5.

Tabla 2.4 Factores usados para calcular las líneas base referenciales del indicadorde eficiencia energética según la OMI

Fuente: T. LONGVA [5]				
Tipo de buque	а	С		
Bulk Carrier	961.79	0.477		
Gas tanker	1,120.00	0.456		
Tanker	1,218.00	0.488		
Container	174.22	0.201		
General Cargo	107.48	0.216		
Reefer	227.01	0.244		
Combination	1,218.80	0.488		

Tabla 2.5 Factores usados para calcular las líneas base referenciales del indicadorde eficiencia energética según base de datos de Bangladesh

Fuente: [21]

Tipo de buque	Carga mínima permitida - tons	а	С
Embarcaciones de pasajeros	10 GT	5,780.0	0.713
Embarcaciones tipo ferry de pasajeros	150 GT	9E+07	2.204
Embarcaciones de carga general	400 DWT	1,512.3	0.448

Finalmente, se comparó el índice de eficiencia de las embarcaciones Ship A y Ship M con embarcaciones con especificaciones similares mostradas en la Tabla 2.6.

Tabla 2.6 Características de las embarcaciones llevadas a comparación

Fuente: Elaboración propia						
Detalle de	Velocidad	Distancia	Froude	Capacidad	Tipo de motor	
embarcaciones	crucero	recorrida	de	de carga		
	[knots]	[mN]	diseño	[tons]		
Improved High speed catamaran [23]	22	11	0.77	200	4 x Mitsubishi S16R (Stationary)	
High speed catamaran [23]	22	11	0.77	200	2x MTU 20V (waterjet)	
RoPax [17]	18	127	0.22	525	estacionario	
RoPax [17]	18	25	0.22	525	estacionario	
RoPax [17]	18	174	0.22	525	estacionario	

36

Detalle de	Velocidad	Distancia	Froude	Capacidad	Tipo de motor
embarcaciones	crucero	recorrida	de	de carga	
	[knots]	[mN]	diseño	[tons]	
Ship A	22	45	1.04	2.5	Fuera borda: DF250AP y DF300AP Suzuki
Ship M	25	43	1.12	2.0	Fuera borda: DF300AP Suzuki y LF350 Yamaha
Pesquero madera- FAO [40]	7	40	0.36	0.5	Fuera borda
Pesquero PRF-FAO [40]	7	40	0.36	0.5	Fuera borda
Research-training vessel [22]	15	397	0.32	4.0	estacionario

2.3 Fase III: Estimación del consumo de combustible a partir de curvas de resistencia

Para el cálculo de consumo de combustible, fue necesario la implementación de un modelo matemático en Matlab (ver APÉNDICE E) que incluye la definición de diferentes funciones (Figura 2.6). Es importante resaltar que, se corroboró los datos de las hidrostáticas usando el libreto de estabilidad proporcionado por los armadores, pues de esto dependió la disminución del porcentaje de error de los resultados.

Además, se implementaron 3 scripts usando las funciones correspondientes para cada proceso: validación, determinación del asiento óptimo y determinación de la hélice óptima.

Figura 2.1 Esquema general de modelo matemático para cálculo de consumo de combustible

Fuente: Elaboración propia

2.3.1 Datos de ingreso en procedimiento para consumo de combustible

El ingreso de datos se realizó mediante un documento de excel, al que se le asignó nombres de variables en cada script. Se generaron 2 tipos de documentos:

- i) "DOCUMENTO EXCEL 01" para el proceso de Validación como se muestra en las ¡Error! No se encuentra el origen de la referencia. y ¡Error! No se encuentra el origen de la referencia.;
- ii) "DOCUMENTO EXCEL 02" para el proceso de optimización como se muestra desde la ¡Error! No se encuentra el origen de la referencia. hasta la ¡Error! No se encuentra el origen de la referencia.

A partir de los planos proporcionados por los armadores (Ver planos originales de las embarcaciones en APENDICE G), se obtuvo las dimensiones principales de las embarcaciones y se generó los 2 modelos 3D, usados para el cálculo de las hidrostáticas. De esta manera, se muestran los principales parámetros ingresados:

• Eslora en línea de agua L_{WL} [m]

- Eslora entre perpendiculares LPP [m]
- Manga total B [m]
- Manga de china en sección media BPX [m]
- Calado medio [m]
- Ángulo de asiento estático [grados]
- Desplazamiento total Δ [toneladas]
- Ángulo de astilla muerta en sección media β [grados]
- Ángulo de entrada i_E [grados]
- Área del espejo sumergido AT [m²]
- Superficie mojada S_{moj} [m²]
- Coeficiente de bloque CB
- Coeficiente de sección media C_M
- Coeficiente prismático CP
- Coeficiente de línea de agua Cwp
- Coeficiente de la forma de la popa Cstern, -10 para "V shape" [49]
- Distancia Vertical desde la sección del bulbo a la línea base T_F [m] (en este caso, cómo la embarcación no tiene bulbo, es cero)
- Posición del centro de gravedad medido desde el espejo LCG [m]
- Posición del centro de boyantes medido desde el espejo LCB [m]
- Velocidad de la embarcación V_{ms} [m/s]
- Ángulo de dirección del empuje con respecto a la línea de agua ε [grados]
- Distancia entre la fuerza de arrastre y el centro de gravedad, normal al arrastre a [m]
- Distancia entre la fuerza de empuje y el centro de gravedad, normal al empuje, f [m]
- Cantidad de motores instalados Nengines.
- Diámetro de la hélice D [in]
- Paso de la hélice P [in]
- Radio de reducción de la hélice gear []
- Wake fraction wt [], siendo 0.03 para motores fuera de borda [50].
- Thrust fraction tr [], siendo 0 para motores fuera de borda [50].
- Densidad del agua ρ en [Kg/m³]

- Viscosidad cinemática del agua υ en [m²/s]
- Altura significativa H_{sig} de las olas [m]
- Gravedad g [m/s²]

Tabla 2.7 Ejemplo de ingreso de datos para la validación en la hoja "General Data"

En la hoja "General Data" se completó las dimensiones principales de la embarcación, los valores de las hidrostáticas correspondientes a cada prueba, las condiciones del estado de mar, los parámetros para el cálculo de resistencia y las características de las hélices de cada motor.

DATOS DE LA EMBARCACIÓN				
Variable	Datos			
L, m	12.02			
B, m	3.45			
D, m	1.51			
Cantidad de motores	3			
Va, knot	1			
Vb, knots	35			
Intervalo velocidad	1			
Astilla muerta, grados	14			
L china proyectada, m	11.3			
A fondo proyectada, m2	29.599			
b, m	2.9			
Atransom, m^2	1.2868			
iE ángulo de entrada,	45.8			
grados	0.03			
••	0.03			
	1025			
Viscos m ^A 2/s	0.00001			
TF m	0.00001			
Cstern	10			
triminicial deg	-10			
fdiet	0.563			
adist	0.505			
ensilon	0.059			
	- -			
	0.0			
DATOS DE LAS PRUEBAS DE MAR A SER VALIDADA				
Variable	Condiciones Prueba 3			
Δ , tons	7.744			
Lt	12.02			
Lpp, m	11			
Lwl, m	10.689			

DATOS DE LAS PRUEBAS DE MAR A SER VALIDADA				
Variable	Condiciones Prueba 3			
Trim, m	0.29			
Tm, m	0.441			
Vol, m3	7.56			
BML, m	24.96			
LCF, m				
MTC1cm	0.174			
lcb, m	4.263			
lcg,m	4.91			
KG,m	1.1			
Sm, m2	30.708			
Cb	0.395			
CSM	0.686			
Сwp	0.798			
Ср	0.577			
	DATOS DE LA HÉL	ICE		
	Dimensiones de Helice Motor babor (300HP) giro derecho	Dimensiones de Helice Motor central (250HP) giro izquierdo	Dimensiones de Helice Motor estribor (300HP) giro derecho	
D, in	15	16	15	
P, in	18.5	17	18.5	
N palas	3	3	3	
Reducción	2.08	2.08	2.08	
Ae/Ao	0.55	0.55	0.55	
P/D	1.233333333	1.0625	1.233333333	
Ad/Ao	0.5	0.5	0.5	
% de corrección para SFC	0.85	0.89	0.85	
Z	3	3	3	

Tabla 2.8 Ejemplo de ingreso de datos para la validación en la hoja "Operaciones"

En la hoja "Operaciones" se colocó el perfil de operación de cada prueba, en la cual se indica las RPM del motor y el rango de tiempo en que esta fue constante

Tiempo inicial - min	Tiempo final - min	Delta tiempo	RPM engine
0	15	15	3500
15	25	10	3600
25	36	11	4100
36	38	2	5000
38	50	12	4200
45	65	20	4100
65	112	47	4000

Tabla 2.9 Ejemplo de ingreso de datos para la optimización en la hoja "General Data"

En la hoja "General Data" se completó las dimensiones principales de la embarcación, las condiciones de desplazamiento y del estado de mar, los parámetros para el cálculo de resistencia y las características actuales de las hélices de cada motor

Fuente: Elaboración propia

DATOS DE LA EMBARCACIÒN				
Variable	Dato			
L, m	12.02			
B, m	3.45			
D, m	1.51			
Cantidad de motores	3			
Va, knot	1			
Vb, knots	35			
Intervalo velocidad	1			
Astilla muerta, grados	14			
L china proyectada, m	11.3			
A fondo proyectada, m2	29.599			
b, m	2.8			
Atransom, m^2	1.2868			
iE ángulo de entrada, grados	45.8			
w	0.03			
t	0			
RHO, Kg/m^3	1025			
Viscos, m^2/s	0.000001			
TF,m	0			
Cstern	-10			
Vcruise - knots	28			
DETALLE DE CONDICIONI	ES DE PESO Y ES	TADOS DE MAR A EVALUAR		
Cantidad de Pesos a evaluar	3			
Peso condición 1 - tons	8.2			
Peso condición 2 - tons	7.86			
Peso condición 3 - tons	7.01			
Cantidad de Altura Significativa	4			
Estado de mar 2 Hsig [m]	0.6			
Estado de mar 3 Hsig [m]	1.25			
Estado de mar 3 Hsig [m]	1.55			
Estado de mar 4 Hsig [m]	1.75			

DATOS DE LA HÉLICE					
Variable	Dimensiones de Helice Motor babor (300HP) giro derecho	Dimensiones de Helice Motor central (LF250HP) giro izquierdo	Dimensiones de Helice Motor estribor (300HP) giro derecho		
D [in]	15.25	16	15.25		
P [in]	19	17	19		
N palas	3	3	3		
Reducción	2.08	2.08	2.08		
Ae/Ao	0.5	0.5	0.5		
P/D	1.25	1.06	1.25		
Ad/Ao	0.5	0.5	0.5		
% corrección para SFC	0.64	0.72	0.64		
Z	3	3	3		

Tabla 2.10 Ejemplo de ingreso de datos para la optimización en la hoja "Iteraciones"

En la hoja "Iteraciones" se completó las dimensiones de las hélices disponibles para los motores de babor, estribor y crujía. Las dimensiones de las hélices de babor y estribor deben coincidir para evitar problemas de inestabilidad

Diámetro para hélices de babor y estribor - in	Paso para hélices de babor y estribor - in	Diámetro para hélices decrujía - in	Paso para hélices de crujía - in
16	17	16	17
16	18.5	16	18.5
16	20	16	20
16	21.5	16	21.5
16	23	16	23
16	24.5	16	24.5
16	26	16	26
16	27.5	16	27.5
15.5	17	15.5	17
15.25	19	15.25	19
15	21	15	21
14.75	23	14.75	23
14.5	25	14.5	25
14.5	27	14.5	27
14	14	14	14

Tabla 2.11 Ejemplo de ingreso de datos para la optimización en la hoja "Operation"

En la hoja "Operation" se colocó el perfil de operación que cumpla con la distancia correspondiente a cada ruta Fuente: Elaboración propia

Tiempo inicial - min	Tiempo final - min	Delta tiempo	Velocidad de la embarcación - knots
0	5	20	4
5	25	100	28
25	50	10	9

Tabla 2.12 Ejemplo de ingreso de datos para la optimización en las hojas "Hidrotrimxx"

En la hoja "Hidrotrimxx" se coloca los datos hidrostáticos para un asiento estático determinado. Por tal motivo, cada vez que se generó las hidrostáticas a distintos asientos estáticos, se copió el formato de hoja y se le cambió el nombre, por ejemplo: "Hidrotrim0.5", "Hidrotrim1", "Hidrotrim1.5", etc.

Variable	Δ 1	Δ2	Δ3	Δ 4
Displacement t	2.610	2.819	3.037	3.285
fdist [m]	0.878	0.868	0.858	0.848
adist [m]	0.830	0.820	0.810	0.800
epsilon [m]	4.000	4.000	4.000	4.000
lcg (From stern) [m]	4.759	4.776	4.792	4.799
Lpp [m]	11.300	11.300	11.300	11.300
Icb (From stern) [m]	4.759	4.776	4.792	4.799
Vol [m^3]	2.546	2.750	2.963	3.205
KG	1.100	1.100	1.100	1.100
Smoj [m^2]	20.979	21.871	22.897	25.822
Prismatic coeff. (Cp)	0.770	0.772	0.774	0.774
Block coeff. (Cb)	0.384	0.384	0.354	0.345
Max Sect. area coeff. (Cm)	0.500	0.500	0.500	0.446
Waterpl. area coeff. (Cwp)	0.812	0.814	0.754	0.793
Draft Amidship	0.270	0.280	0.290	0.300
Heel deg	0.000	0.000	0.000	0.000
Draft at FP m	0.270	0.280	0.290	0.300
Draft at AP m	0.270	0.280	0.290	0.300
Draft at LCF m	0.270	0.280	0.290	0.300
Trim (+ve by stern) m	0.000	0.000	0.000	0.000
WL Length m	10.639	10.657	10.674	10.691

2.3.2 Función de cálculo de resistencia del modelo matemático

La función general de la resistencia resumió todos los procedimientos para hallar la resistencia total en [Kg] considerando una velocidad, estado de mar y condición de carga específica. Se aplicó según el régimen de la embarcación y este dependió del número de Froude volumétrico Fnv definido en la ecuación 2.1 [51] o del radio velocidad eslora SLR definido en la ecuación 2.2 [52].

$$Fn_{V} = \frac{V_{buque}}{\sqrt{g * \sqrt[3]{Volumen sumergido}}}$$
(2.1)

$$SLR = \frac{V_{knots}}{\sqrt{LWL_{Ft}}}$$
(2.2)

De manera general, se implementaron los 3 métodos en una sola función, en la cual, conociendo la velocidad, el volumen sumergido y la eslora en la línea de agua, determina el régimen y el método a utilizar:

[R_T , R_{Treg} , planning_{results}, V_{ship}] =totalresistanceV2 (L_{pp} , L_{WL} , B, T, T_F , \forall , A_T , S_{MOJ} , C_B , C_M , C_P , C_{WP} , L_{CB} , C_{stern} , i_E , V_{ms} , V_{cant} , V_{inter} , β , ρ , f, a, ε , v, Δ , L_{CG} , H_{sig})

Dónde:

- R_T es el vector de resistencia total para el rango de velocidades ingresadas
- R_{Treg} es una matriz con 3 columnas correspondientes al método utilizado, de acuerdo con el régimen que se encuentre la embarcación, respectivamente
- planning_{results} es un vector de cuatro columnas con resultados del régimen de planeo, los valores son la velocidad de la embarcación, el asiento dinámico, la eslora mojada de la china y un indicador de si la embarcación pasa el límite de porpoising (0=No y 1=Sí);
- V_{cant} es la cantidad de valores de velocidad a ser evaluadas
- V_{inter} es el incremento en la velocidad.

Figura 2.8 Estimación de la curva de resistencia total para diferentes velocidades de la embarcación Ship A

Se tomó en consideración las condiciones de la prueba 1, dónde se consideró a 26 personas a bordo Fuente: Elaboración propia

En la Figura 2.8 se puede observar la curva resultante de la resistencia total para cada velocidad de la embarcación Ship A, considerando el estado de mar. Para cada velocidad se determina qué método se aplica según el valor de Fn_V o *SLR*:

I. El primer caso, Fn_V ≤ 1 [51] o SLR ≤ 1.3 [52], se basó en formulaciones obtenidas mediante regresión de embarcaciones de desplazamiento que combinó elementos de resistencia en olas, resistencia friccional, resistencia por correlación y resistencia por efectos del espejo [49]. La función utilizada es la siguiente: [Rhtot, ~, ~, ~, ~] = HoltropResistance (Vms, Lpp, B, T, TF, ∀, AT, SMOJ, CB, CM, CP, CWP, LCB, Cstern, iE, v, ρ), donde Rhtot es la resistencia total en el régimen de desplazamiento. Esta función fue validada usando los resultados de Ship M dónde se obtuvo un error máximo de 8% cómo se puede observar en la Tabla 2.13.

Tabla 2.13 Verificación de función de resistencia en régimen de desplazamiento

Comparación de resultados de resistencia de la función desarrollada y corrida en Maxsurf de Ship

M a un calado de 0.45m y asiento 0 grados

Fuente:	Elaboración	Propia
---------	-------------	--------

V - kn	Resultados de resistencia de	Resultados de resistencia	Porcentaje de
	función desarrollado [kN]	de Maxsurf [kN]	diferencia
2	0.102	0.107	4%
3	0.221	0.237	7%
4	0.395	0.418	6%
5	0.679	0.687	1%
6	1.182	1.091	8%

- II. En el segundo caso, $1 < Fn_V \le 2$ [51] o $1.3 < SLR \le 3$ [52], se realizaron los cálculos considerando una embarcación de pre-planeo con dos posibles formulaciones:
- La formulación de Savitsky & Brown [51]: $\frac{R_T}{\Delta} = A_1 + A_2 X + A_4 U + A_5 W + A_6 X Z + A_7 X U + A_8 X W + A_9 Z U + A_{10} Z W + A_{15} W^2 + A_{18} X W^2 + A_{19} Z X^2 + A_{24} U W^2 + A_{27} W U^2$ (2.3)

$$X = \frac{\forall^{1/3}}{L_{WL}} \tag{2.4}$$

$$Z = \frac{\forall}{B_{PX}{}^3} \tag{2.5}$$

$$U = \sqrt{2 * iE} \tag{2.6}$$

$$W = \frac{A_T}{A_X} \tag{2.7}$$

Dónde:

- Axx son coeficientes especificados por los autores (Ver APÉNDICE C).
- ∀ Es el volumen sumergido
- Ax es el área máxima de la sección transversal.

- Siendo la función: [R_{sptot}, ~] = SavitskyPreplanningResistance (L_{WL}, B, V_{ms}, Δ, iE, W, ρ). Donde R_{sptot} es la resistencia total en aguas calmadas.
- La formulación de Radojcic y otros autores [53] $\frac{R_T}{\Delta} = \frac{sig(d_v + \sum_{w=1}^3 \left(D_{wv}xsig(c_w + \sum_{i=1}^5 (C_{iw}xsig(b_i + \sum_{j=1}^7 B_{ji}xsig(a_j + \sum_{k=1}^5 (A_{kj}x(P_kX_k + R_k))))) \right))}{H}$ (2.8)

Todas las constantes son especificadas por los autores (Ver Coeficientes para el c[alculo de la resistencia en el régimen de pre-planeo en APÉNDICE C). Siendo la función: [R_{sptot}, ~,~,~,~,~] = PreplanningResistance (L_{pp}, B_{px}, Vol., L_{CG} , β , V_{ms}, Δ).

La función se validó con el ejemplo presentado por Savitsky y Brown [51] como se muestra en la Tabla 2.14. Se puede observar que los resultados de la segunda función [53] presentaron mayor diferencia que la primera función [51], por tal motivo se trabajó con la función de Savitsky y Brown para obtener mayor precisión.

Tabla 2.14 Verificación de función de resistencia en régimen de pre-planeo

Fuente: Elaboración Propia a partir de resultados de la función de pre-planeo y los resultados de

FΝ _v	V [knots]	RT/A				
		Savitsky	preplanningsavitsky		PreplanningResistance	
		ejemplo	function		Function	
			(S&B, 19	975)	(R,20	14)
1	12.7	0.0624	0.0628	0.6%	0.1025	64.3%
1.5	19	0.1015	0.1029	1.4%	0.1332	31.2%
2	25.4	0.1236	0.125	1.1%	0.1279	3.5%

Savitzky

III. En el tercer caso, $Fn_V > 2$ [51] o SLR > 3 [52], se consideró a la embarcación en el régimen de planeo y se aplicó la formulación de equilibrio de momentos, como se muestra en la Figura 2.9 [54], que depende de la iteración de valores hasta que se cumpla la ecuación 2.9.

Figura 2.9 Diagrama de una embarcación en el régimen de planeo

Esquema utilizado para plantear las ecuaciones de equilibrio de momentos cuando una embarcación empieza a planear [54]

$$\left(\frac{\Delta}{g}\right)*\left(\left((1-\sin(\tau)*\sin(\tau+\varepsilon))*\frac{(LCG-Lp)}{\cos(\tau)}\right)-f*\sin(\tau)\right)+Rv*(a-f)*\cos(\tau)=0$$
(2.9)

- En caso de tener el valor de la posición de LCG, se usa la función: [R_T, R_P, R_V, Ţ, L_k, L_c, d_{keel}, P_{stab}, λ, S_{MOJ}]=SavitskyGenResistance (B_m, β, V_{ms}, ρ, f, a, ε, υ, Δ, L_{CG})
- En caso de conocer el valor de asiento dinámico, se hace uso de la función: [R_T, R_P, R_V, L_k, L_c, d_{keel}, Porpoise, λ]= SavitskyGendintrim (B_{px}, β, V_{ms}, ρ, υ, Δ, τ)

Donde:

RT es la resistencia total en el régimen de planero

Tabla 2.15 Verificación de función de resistencia en régimen de planeo

	Savitsky	Función de resistencia en aguas calmadas, usando formulación de planeo implementada	diferencia %
Rstot [lb]	9,095.00	8,955.00	1.5%
Lk [ft]	55.9	58.61	4.9%
Lc [ft]	36.1	38.57	6.8%
λ[]	3.29	3.47	5.5%
dkeel [ft]	2.24	2.29	2.3%
т [deg]	2.3	2.24	2.6%

En la Tabla 2.15 se muestran los resultados de resistencia usando el ejemplo planteado por el autor de la formulación [54], a fin de verificar que la formulación se encuentre bien planteada.

Si se desea conocer solo la resistencia en aguas calmadas, y se conoce el asiento dinámico, se usa la siguiente función:

[Rstot, R_P, R_V, L_k, L_c, d_{keel}, Porpoise, λ]= SavitskyGendintrim (Bpx, β , V_{ms}, ρ ,... v, Δ , τ)

El efecto de las olas fue añadido usando la ecuación 2.10 [55] para el régimen de desplazamiento y el régimen de pre-planeo, mientras que desde ecuación 2.11 hasta la 2.13 [51] se usaron para el régimen de planeo.

$$Raw = \left(\frac{1}{16}\right) * \rho * g * Hsig^2 * B * \sqrt{\left(\frac{B}{Lbwl}\right)}$$
(2.10)

Si SLR es igual a 2:

$$Raw = \rho * Bpx^{3} * (66 * 10^{-6} * (0.5 + \frac{Hsig}{B}) * (\frac{\left(\frac{LWL}{Bpx}\right)^{3}}{Cstatic}) + 0.0043 * (\tau - 4))$$
(2.11)

Si SLR es igual a 4

$$Raw = \left(\frac{\Delta}{9.81}\right) * 0.3 * \left(\frac{Hsig}{B}\right) * \left(1.76 - (\tau/6) - 2 * \left((tan(\beta))^{3}\right)\right) / (1 + 2 * \frac{Hsig}{B})$$
(2.12)

Si SLR es igual a 6

$$Raw = \rho * B^{3} * 0.158 * \left(\frac{Hsig}{B}\right) / \left(1 + \left(\frac{Hsig}{B}\right) * \left(0.12 * \beta - 21 * Cstatic * (5.6) - \left(\frac{LWL}{B}\right)\right) + 7.5 * \left(6 - \left(\frac{LWL}{B}\right)\right)\right)$$
(2.13)

(Ver implementación en el APÉNDICE F)

2.3.3 Función de cálculo de potencia del modelo matemático

La función de potencia comprende dos fases, la primera es el cálculo de los parámetros de empuje, torque y eficiencia de la hélice y en la segunda fase los parámetros de potencia.

Una vez realizado cálculo de resistencia, se obtiene el empuje generado por cada hélice T y su velocidad de avance V_A teniendo en consideración los factores tr y wt, como se muestra en la ecuación 2.14 y 2.15 respectivamente. En este caso se hicieron dos suposiciones principales calcular la potencia: i) las hélices, debido a las funciones que cumplen y sus similitudes geométricas, son del tipo Gawn Burril para aguas abiertas, las cuales poseen geometrías y resultados similares a las hélices de motores fuera borda (Figura 1.15), y ii) que todas las hélices instaladas en la interisla generan el mismo empuje.

$$T = \frac{R_T * (1 + tr)}{Nengines}$$
(2.14)

$$V_A = V_{ms} * (1 - wt) \tag{2.15}$$

Para realizar la suposición i) se verificaron las predicciones de los coeficientes K_T y K_Q utilizando una prueba realizada a las hélices de motor fuera borda con diámetro de 7cm en un tanque de pruebas (ver Figura 2.10). Los datos experimentales [56] y la curva resultante del polinomio Gawn Burril [43] no difieren mayormente.

Se observó que los resultados usando el polinomio de Gawn Burril para un número de Froude de 0.7, son valores cercanos a los resultados de la prueba experimental y se descarta el polinomio de la Serie B (Figura 2.11). Lo mismo ocurre para el número de Froude de 1.6, a pesar de que para valores de J mayor a 1.2 (Figura 2.12). El mismo comportamiento se da para el número de Froude de 2.1 (Figura 2.13).

Se comparó los resultados de las pruebas del trabajo de Katayana et al., sin cavitación a un número de froude de 0.7, con los resultados del polinomio de Gawn Burril y

Series B

Se comparó los resultados de las pruebas del trabajo de Katayana et al., sin cavitación a un número de froude de 1.6, con los resultados del polinomio de Gawn Burril y

Series B

Se comparó los resultados de las pruebas del trabajo de Katayana et al., con cavitación a un número de froude de 2.3, con los resultados del polinomio de Gawn Burril

y Series B
De tal manera que, para que el procedimiento sea confiable y congruente con los resultados de las comparaciones anteriores, se estableció los límites para coeficiente de avance J_T menor a 1.2 y el uso del polinomio para hélices cavitantes de Gawn Burril solo cuando el número de cavitación local σ se encuentra entre 0.5 y 1.

Cuando se desconocía los RPM de la hélice, se procedió a encontrar el equilibrio operativo, es decir, el punto de encuentro de la curva K_T usando la formulación Gawn Burril y la curva generada con la ecuación 2.16 [50].

$$\frac{K_T}{J^2} = \frac{T}{\rho * D^2 * Va^2}$$
(2.16)

Dónde:

- T es el empuje por cada hélice
- D es el diámetro de la hélice
- Va es la Velocidad de avance de la hélice

Función

 $[K_T, K_Q, J,\eta_o]$ = propellercoefV2 (L_{pp} , Nengines, D_{prop} , V_a , tr, wt, P/D, DAR, R_T , ρ , T) De esta manera, teniendo el valor de las revoluciones por minuto con las ecuaciones 2.17 y 2.18, el coeficiente de torque y la eficiencia, se obtiene el torque Q con la ecuación 2.19 y, por consiguiente, la potencia liberada para la hélice DHP, según la ecuación 2.20.

$$RPM_{prop} = \frac{V_A}{D_{prop} * J} \tag{2.17}$$

$$RPM_{eng} = RPM_{prop} * gear \tag{2.18}$$

$$Q = K_Q * \rho * RPM_{prop}^2 * D^5$$
(2.19)

$$DHP = 2 * pi * RPM * Q \tag{2.20}$$

(Ver Coeficientes para el cálculo de coeficientes de empuje y torque de la hélice en APÉNDICE D)

Tomando en consideración la eficiencia mecánica recomendada para motores fuera de borda en el Capítulo 1, la eficiencia promedio η 1 correspondiente a la relación DHP y BHP (Ecuación 2.21) para cada una de las pruebas de mar realizadas es 61% (Figura 2.14)

Figura 2.14 Esquema de las pérdidas en las transmisiones mecánicas

Fuente: A. De Almeida [35]

$$\eta 1 = \frac{DHP}{BHP} \approx 61\% \tag{2.21}$$

La función de la segunda fase se expresa de la siguiente manera:

[RPM_{eng}, EHP_{tot}, DHP, EHP_{eng}]=powercalculation(Nengines, Dprop, gear, Vship, Va, K_Q , J, ηo , R_T , ρ)

2.3.4 Función de consumo de combustible del modelo matemático

Para la implementación de esta función, se aproximó el valor del consumo específico característico para los motores fuera de borda, de 0.08gals/(hp*hora) [38]. Usando la ecuación 2.22 y las especificaciones de los motores de Ship M y Ship A como se muestra en la Tabla 2.16.

$$SFC = \frac{V_{fuel}}{BHP}$$
(2.22)

A partir de la curva de consumo de combustible para un motor fuera borda de 350hp marca Mercury y la referencia dada en las especificaciones de los fabricantes, se procedió a estimar la curva de consumo para cada motor (Figura 2.15).

Tabla 2.16 Consumo de combustible específico para el motor fuera de bordaYamaha LF350

Se comprobó el valor de consumo específico SFC según las especificaciones de los 3 tipos de motores presentes en las embarcaciones a evaluar [57] [58] [59]

Marca	Yamaha	Suzuki	Suzuki
Modelo	LF350	DF250AP	DF300AP
Тіро	4 tiempos	4 tiempos	4 tiempos
Cilindros	8	6	6
V _{fuel} [L/hr]	103	62	88
Potencia [hp]	350	250	300
SFC [Gal/hp*hr]	0.08	0.07	0.08

Curva de consumo de combustible específico

Figura 2.15 Curvas de consumo específico para cada motor

A pesar de que algunos motores tienen la misma potencia nominal, sus curvas difieren entre sí, esto puede darse debido a que, al ser de distintos fabricantes, la eficiencia del motor tiende a ser diferente Fuente: Elaboración propia

En los casos en los que se evaluó más de una velocidad, como sucedió en las pruebas de mar, se consideró un perfil de operación con distintos tramos de velocidad diferente y se sumó el consumo de combustible de todos los tramos para obtener el consumo total.

(Ver implementación en el APÉNDICE F)

2.3.5 Validación del modelo matemático

Una vez planteadas las funciones, se implementó un script para validar las funciones y modelo desarrollado.

Primero, se usó los resultados obtenidos en las pruebas de mar ingresando las mismas condiciones en los datos iniciales del modelo matemático para corroborar que la diferencia sea menor a 15%. Se siguieron los siguientes pasos:

- a) La Figura 2.8, muestra la curva de resistencia para 30 puntos de velocidad: desde 1 Kn hasta 30 kn, con un incremento de 1 kn.
- b) Se calcularon los parámetros de la formulación de planeo, mostrados en la Tabla 2.17.
- c) Se procedió a encontrar los valores correspondientes de J, KT y KQ para cada punto de la velocidad.
- d) Se calculó la RPM que deberían tener los motores para cada punto de velocidad (Ver Figura 2.16).
- e) Según la operación de cada prueba, es decir los RPM constantes registrados para cada intervalo de tiempo, se evaluó el DHP y el BHP de los motores (Tabla 2.18).
- f) Finalmente se calculó el consumo de combustible usando el polinomio del SFC y la corrección (Figura 2.15) correspondiente de cada motor (Tabla 2.19).

Vship [Knots]	Asiento dinámico [deg]	Lk [m]	Lc [m]	Asiento dinámico máximo para que no ocurra porpoising [deg]	٨
18	4.02	10.78	7.5	11.3	3.15
19	4.11	10.42	7.2	9.9	3.04
20	4.17	10.11	7.0	8.8	2.94
21	4.18	9.85	6.7	7.9	2.85
22	4.16	9.64	6.5	7.2	2.78
23	4.12	9.46	6.3	6.5	2.71
24	4.05	9.31	6.1	6.0	2.65

Tabla 2.17 Resultados de asiento dinámico para la prueba 1 Fuente: Elaboración propia

Vship [Knots]	Asiento dinámico [deg]	Lk [m]	Lc [m]	Asiento dinámico máximo para que no ocurra porpoising [deg]	٨
25	3.97	9.20	5.9	5.6	2.60
26	3.89	9.12	5.7	5.2	2.56
27	3.80	9.07	5.6	4.9	2.53
28	3.70	9.03	5.5	4.6	2.50
29	3.60	9.00	5.3	4.3	2.47
30	3.49	8.98	5.2	4.1	2.45

Figura 2.16 Relación de RPM de motores según la velocidad de la embarcación en la prueba 1

Tabla 2.18 Resultados de BHP para cada intervalo de tiempo de la prueba 1

Tiempo	Tiempo	RPM de	V embarc.	V embarc.	BHP -	BHP -	BHP -
inicial	final	los 3	estimada	según cálculo	motor	motor	motor
[mins]	[mins]	motores	con puntos	del modelo	babor	crujía	est.
			de GPS	[Knots]			
			[Knots]				
0	15	3500	20	19	106.5	97.3	106.5
15	25	3600	20	20	113.7	103.5	113.7
25	36	4100	25	24	151.9	134.6	151.9
36	38	5000	31	32	223.7	184.1	223.7
38	50	4200	24	25	159.9	140.8	159.9
45	65	4100	24	24	151.9	134.6	151.9
65	112	4000	23	23	144.1	128.4	144.1

Método	Combustible consumido en prueba 1 [Gal]	Combustible consumido en prueba 2 [Gal]	Combustible consumido en prueba 3 [Gal]	Combustible consumido en prueba 4 [Gal]
Mediciones en pruebas de mar	55	62	63	80
Modelo matemático desarrollado	51	55	59	76
Error porcentual	7%	12%	6%	4%

Tabla 2.19 Resultados de la validación del modelo matemático

Fuente: Elaboración propia

La diferencia entre el consumo de combustible medido y estimado mostrado en esta tabla se debe principalmente a las siguientes fuentes de error: i) El instrumento de medición del combustible en las embarcaciones son elaborados por los mismos tripulantes o dueños de embarcaciones por lo cual su precisión puede llegar a ser de \pm 5 galones; ii) La forma del casco es un factor importante en el cálculo de la resistencia sin embargo, durante las pruebas no fue posible corroborar las formas con los planos proporcionados por el armador.

Luego, se comparó la tendencia de las gráficas de consumo de combustible, a distintas velocidades, entre el modelo desarrollado y los resultados de una prueba de Suzuki con el motor DF300AP (Figura 2.17), que posee dimensiones similares a las interislas (Tabla 2.20). El resultado mostro una tendencia creciente de ambas curvas que cambian de pendiente acorde al régimen de desplazamiento en el cual se encuentra la embarcación

Tabla 2.20 Datos de	la prueba 1	realizada a un mo	tor de 300 hp

Fuente: [60]

Test 1: BTB	12M Landing Craft
Eslora - m	12
Manga -m	4
Peso ligero - kg	7500
Max potencia - Hp	900
Peso en la prueba	9500

Conclusión de Test 1: BTB 12M Landing Craft				
Velocidad óptima - Knots	18			
Velocidad máxima - km/h	34			
Outboard: Twin Suzuki DF300AP				
Нр	300			
Cilindraje	V6			
peso	274			
Radio de reducción	2.08:1			
Hélice	Suzuki 16x15 3 blade stainless steel			

Figura 2.17 Comparación de tendencia de la curva de consumo de combustible a diferentes velocidades de la prueba 1

Adicionalmente, usando la técnica de las pruebas de motores, se comprobó el rango de velocidad óptima de los motores en cada una de las pruebas. Es decir, el rango donde la curva de litros de combustible consumido / kilómetros tiene pendiente 0 o negativa y se recomienda que sea mayor a 4000 RPM para evitar los efectos de vibración, ver Figura 2.18 y Figura 2.19.

Figura 2.18 Curva de litros/kilómetros versus RPM del motor en la prueba 1 La curva muestra un estado óptimo en las velocidades del motor entre 4000 y 4800 RPM Fuente: Elaboración Propia

Figura 2.19 Curva de litros/kilómetro versus RPM del motor en la prueba 4 La curva muestra un estado óptimo en las velocidades del motor entre 4000 y 4700 RPM Fuente: Elaboración propia

Las pruebas del motor del fabricante mostraron la misma velocidad óptima resultante en la validación del modelo matemático.

2.4 Fase IV: Método de elección del asiento dinámico óptimo para cada condición

En primer lugar, se evaluó la función de resistencia para diferentes asientos dinámicos de la embarcación. Luego, usando la función de resistencia, se verificó los asientos dinámicos que generan el menor consumo. Así pues, se determinó la posición de centro de gravedad que produce el asiento dinámico óptimo para cada condición mostrada en las Tabla 2.21 y Tabla 2.22.

Fuente: Elaboración propia					
SHIP A	Cantidad de	Calado medio	Desplazamiento [tons]		
	pasajeros	[m]			
Condición 1	15	0.44	7.0		
Condición 2	25	0.47	7.9		
Condición 3	29	0.49	8.2		

Tabla 2.21 Condiciones evaluadas para Ship A

Tabla 2.22 Condiciones evaluadas para Ship M Fuente: Elaboración propia

SHIP M	Cantidad de	Calado medio	Desplazamiento [tons]
	pasajeros	[m]	
Condición 1	15	0.44	8.3
Condición 2	25	0.46	9.2
Condición 3	34	0.49	9.9

(Ver la implementación en el APÉNDICE F)

2.5 Fase V: Técnicas para selección de hélices marinas de las embarcaciones planeadoras

Se determinó todas las combinaciones posibles de paso y diámetro de las hélices disponibles en el mercado, de esta manera, se procedió a realizar el cálculo de consumo de combustible para cada combinación y cada estado de mar mostrado en la Tabla 2.23. Finalmente, se realizó una ponderación anual del consumo de combustibles (Ecuación 2.23), considerando una frecuencia operativa de 25% para la condición de pesos 1, 60% para la condición de pesos 2 y 25% para la condición de pesos 3 para 350 viajes al año. Las frecuencias se aproximaron a partir de los resultados de la movilidad y lo expuesto por los capitanes y armadores de las

embarcaciones. Por otro lado, se usó también la frecuencia de incidencia de los estados de mar presentes en Galápagos [26]. Eligiendo a la hélice que genera el menor consumo de combustible como la más conveniente.

Ponderación anual del consumo de combustible (2.23) = (C11 * 25% * 33% + C21 * 60% * 33% + C31 * 15% * 33% + C12 * 25% * 50% + C22 * 60% * 50% + C32 * 15% * 50% + C13 * 25% * 17% + C23 * 60% * 17% + C33 * 15% * 17%) + 350

Dónde:

- C11: Consumo de combustible en condición de peso 1 y altura significativa 1.25m
- C21: Consumo de combustible en condición de peso 2 y altura significativa 1.25m
- C31: Consumo de combustible en condición de peso 3 y altura significativa 1.25m
- C12: Consumo de combustible en condición de peso 1 y altura significativa 1.55m
- C22: Consumo de combustible en condición de peso 2 y altura significativa 1.55m
- C32: Consumo de combustible en condición de peso 3 y altura significativa 1.55m
- C13: Consumo de combustible en condición de peso 1 y altura significativa 1.75m
- C23: Consumo de combustible en condición de peso 2 y altura significativa 1.75m
- C33: Consumo de combustible en condición de peso 3 y altura significativa 1.75m

El costo de gasolina tomado en consideración para los cálculos del ahorro es \$2,56 por galón.

(Ver la combinación de hélices en APÉNDICE K y ejemplos de resultados a partir de códigos fuente en APÉNDICE F)

Tabla 2.23 Estados de mar evaluados en el análisis de consumo de combustible
Fuente: Elaboración propia

Altura significativa de olas [m]	Estado de mar	Porcentaje de incidencia en el año
0.60	3	Presente en pruebas de mar
1.25	4	33%
1.55	4	50%
1.75	4	17%

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

En este capítulo se muestran los resultados obtenidos a partir de la metodología explicada en el Capítulo 2.

3.1 Verificación de movilidad interislas

Desde la Figura 3.1 hasta la Figura 3.5 se presenta los resultados estadísticos de la movilidad entre las islas Galápagos desde el año 2014 hasta el año 2018:

- En la Figura 3.1 se muestra la movilidad del año 2014 donde se registró la movilización de 225 mil personas, en las rutas principales, mediante 13.7 mil viajes, siendo marzo el mes más frecuentado. La ruta Santa Cruz – Isabela fue la más utilizada con un promedio de 19 pasajeros por mes.
- En la Figura 3.2 se muestra que el año 2015 se registró la movilización de 234 mil personas mediante 17.1 mil viajes, siendo marzo y agosto los meses más frecuentados. La ruta Santa Cruz – Isabela fue la más utilizada con un promedio de 20 pasajeros por mes.
- En la Figura 3.3 se muestra que en el año 2016 se registró la movilización de 237 mil personas, en las rutas principales, mediante 12.7 mil viajes, siendo marzo y julio los meses más frecuentados. La ruta Santa Cruz – Isabela fue la más utilizada con un promedio de 20 pasajeros por mes.
- En la Figura 3.4 se muestra que el año 2017 se registró la movilización de 261 mil personas, en las rutas principales, mediante 13.6 mil viajes, siendo julio el mes más frecuentado. La ruta Santa Cruz – Isabela fue la más utilizada con un promedio de 20 pasajeros por mes.
- En la Figura 3.5 se muestra que el año 2018 se registró la movilización de 295 mil personas, en las rutas principales, mediante 15.3 mil viajes, siendo marzo y julio los meses más frecuentados. La ruta Santa Cruz – Isabela fue la más utilizada con un promedio de 20 pasajeros por mes.

Figura 3.1 Tendencia de la movilidad marítima en el año 2014

Figura 3.2 Tendencia de la movilidad marítima en el año 2015

Figura 3.3 Tendencia de la movilidad marítima en el año 2016

Figura 3.4 Tendencia de la movilidad marítima en el año 2017

Figura 3.5 Tendencia de la movilidad marítima en el año 2018

Se puede observar que, no es posible realizar una función predictiva de la variación de la movilidad, la frecuencia de viajes y pasajeros. Sin embargo, la movilidad ha crecido desde el año 2014 al año 2018, lo cual denota el aumento de turistas y habitantes debido al aumento de popularidad de la vida silvestre en Galápagos [61]. Por otro lado, a pesar de que los viajes tienen también una tendencia de crecimiento, entre el año 2015 y el 2016 la cantidad de viajes disminuye. Una posible causa de este comportamiento es el terremoto suscitado en Manabí-Ecuador el 16 de abril del 2016 [62], lo cual se considera como un evento externo no planificado. Finalmente, en los meses de julio y marzo se presenta la mayor cantidad de incidencia de turistas en Galápagos [12], el aumento de frecuencia en julio coincide con las vacaciones escolares de la sierra [63], mientras que el aumento en marzo coincide con las vacaciones de la costa [63].

3.2 Índices de eficiencia marítima

En la Tabla 3.1 se describe las pruebas de mar realizadas y los datos que se obtuvieron de distancia recorrida, cantidad de pasajeros y consumo de combustible. Cómo se puede observar el viaje de vuelta a Santa Cruz, que se llevó a cabo en horas de la tarde, hay mayor consumo de combustible lo cual coincide con la sensación de mayor incidencia de olas durante el viaje.

# de Prueba		Ruta	Cantidad de Pasajeros	Millas Náuticas recorridas	Galones de Combustible consumido
1	Ship A	Santa Cruz – Isabela	21	44.54	55
2	Ship A	Isabela – Santa Cruz	29	44.91	62
3	Ship M	Santa Cruz – San Cristóbal	24	43.15	63
4	Ship M	San Cristóbal – Santa Cruz	16	42.99	80

Tabla 3.1 Resultados de las pruebas de mar

Figura 3.6 Comparación del indicador de eficiencia energética con líneas referenciales de la OMI

Fuente: Elaboración propia a partir de [21]

En la Figura 3.6 se puede observar la posición del indicador de eficiencia energética de las embarcaciones interislas con respecto a la línea referencial de embarcaciones de pasajeros de 400 tons de capacidad de carga y la línea referencial de embarcaciones de carga de 400 tons de capacidad de carga. La diferencia porcentual excede los 3,200% (Tabla 3.2) debido a la gran diferencia en cuanto a la capacidad de carga.

Por otra parte, en la Figura 3.7 se muestra la comparación entre la línea base de las embarcaciones de pasajeros de 10 GT, embarcaciones tipo ferry de pasajero de 150 GT y embarcaciones de carga general de embarcaciones de 400 DWT, todas consideradas "inland" provenientes de Bangladesh, con respecto a los resultados de pruebas de mar. Las diferencias porcentuales son mayores a 200% y menores que 730% en el caso de las embarcaciones de pasajeros, mientras que la diferencia con las embarcaciones de carga general ronda entre 4,000% y 8,000%. Cómo se puede observar en los resultados, al realizar la comparación con embarcaciones de pasajeros de carga menor, el resultado del EEOI en las pruebas de mar se acerca más. Cabe recalcar que las comparaciones han sido realizadas con la menor carga registrada por los otros autores.

Tabla 3.2 Resultados del indicador de eficiencia energética de las pruebas de mar ylas líneas referenciales

Detalle de datos	EEOI				
	[gCO2/(mtxNm)]				
Ship A - Prueba 1	5.00E+03				
Ship A - Prueba 2	4.36E+03				
Ship M - Prueba 3	5.45E+03				
Ship M - Prueba 4	9.80E+03				
Embarcaciones de Pasajeros 400DWT- Línea referencial de OMI	1.43E+02				
Embarcaciones de carga General 400DWT – Línea referencial de OMI	2.95E+01				
Embarcaciones de Pasajeros 10 DWT – Línea referencial Zakaria & Rahman, 2017	1.12E+03				
Embarcaciones tipo ferry de Pasajeros 150 DWT – Línea referencial	1.44E+03				
Zakaria & Rahman, 2017					
Embarcaciones de Carga General 400 DWT – Línea referencial Zakaria &	1.03E+02				
Rahman, 2017					

Figura 3.8 Comparación del indicador de eficiencia energética con trabajos previos Fuente: Elaboración propia

En la Figura 3.8 se presenta la comparación de las embarcaciones cuyas características se encuentran en la Tabla 2.6. La embarcación destinada para investigación tiene la capacidad de carga más cercana a Ship A y Ship M, sin embargo, al ser de mayor dimensión y navegar a menor velocidad presenta el máximo valor del indicador de eficiencia energética.

En el caso de las embarcaciones pesqueras que reporta la FAO tienen instalado motores fuera borda y posee un valor de EEOI muy cercano a las embarcaciones interislas. En el caso de las embarcaciones de pasajeros, tanto el catamarán cómo el "RoPax – Deltamarin" presentan los indicadores más bajos de la gráfica, esto puede deberse a su mayor capacidad de carga. Por lo tanto, al encontrarse Ship A y Ship M entre los indicadores más altos, es decir, las dos embarcaciones muestran menor eficiencia y por lo tanto mayor posibilidades de mejora.

3.3 Equilibrio dinámico de las embarcaciones

En Figura 3.9 se presenta el comportamiento del asiento dinámico en cada prueba de mar, según la velocidad de la embarcación. Se puede identificar que para la prueba 1 y la prueba 4 las predicciones son más acertadas, mientras que para la prueba 2 y prueba 3 los resultados experimentales tienen magnitudes mayores de asiento dinámico. Cabe tener en consideración la estimación de la posición del centro de gravedad medido desde popa difirió en cada prueba debido a la diferencia

de la cantidad de pasajeros y su ubicación durante el viaje, siendo: 4.91 metros para la prueba 1, 4.41 metros para la prueba 2, 5.54 metros para la prueba 3 y 5.49 metros para la prueba 4.

A pesar de que, cuando hay menos pasajeros existe mayor posibilidad de que exista un cambio de asiento durante el viaje, afectando la posición de centro de gravedad estimada inicialmente, también es posible que la menor cantidad de equipaje produzca mayor precisión en la estimación del LCG de las pruebas, haciendo que los resultados sean más exactos.

3.4 Efecto de la variación del asiento dinámico en la eficiencia energética

En la Figura 3.10 y Figura 3.11 se presentan las curvas de resistencia respecto al asiento dinámico de las embarcaciones Ship A y Ship M, dando como resultado un asiento óptimo para cada embarcación.

Por lo tanto, se puede definir los valores más convenientes, según la redistribución de pesos, en la Tabla 3.3 y la verificación del cumplimiento de los rangos de potencia y revoluciones del motor. Como se puede observar, la potencia estimada es menor a la potencia instalada, por lo cual no se aprovecha toda la energía del motor.

(Ver redistribución recomendada para las embarcaciones en APÉNDICE J)

Figura 3.9 Resultado del asiento dinámico en las pruebas de mar

Tabla 3.3 Valores óptimos de centro de gravedad recomendados según el modelomatemático

	Cantidad de pasajeros	Rango (<u>+</u> 0.5%)	As. dinámico óptimo [deg]	LCG - m desde popa	As. estático [deg]	As. dinámico [deg]	RPM babor	RPM crujía	RPM estribor	BHP babor	BHP crujía	BHP estribor
	15	[3.3 - 4.3]	3.8	4.39	2.5	3.9	4290	3778	4290	130	128	130
Ship M	25	[3.0 - 3.9]	3.5	4.89	0	3.7	4334	3861	4334	138	147	138
	34	[2.8 - 3.72]	3.2	4.9	0	3.9	4378	3904	4378	147	157	147
	15	[3.3 - 4.3]	3.8	4.48	3.5	3.6	4370	4663	4370	160	165	160
Ship A	25	[3.0 - 4.0]	3.5	4.89	0.5	3.5	4457	4767	4457	179	188	179
	29	[2.9 - 3.9]	3.4	4.94	1.5	3.6	4457	4767	4457	179	188	179

Fuente: Elaboración propia a partir de resultados del modelo matemático

Figura 3.10 Efecto del asiento dinámico en la resistencia total Ship A Fuente: Elaboración propia

Figura 3.11 Efecto del asiento dinámico en la resistencia total Ship M Fuente: Elaboración propia

3.5 Opciones disponibles de hélices marinas

En la Tabla 3.4 se definen las hélices disponibles por cada motor, mismas que se utilizaron para calcular el consumo de combustible para cada combinación posible.

Tabla 3.4 Hélices disponibles por ca	ida motor
--------------------------------------	-----------

Fuente: Elaboración propia a partir de la información de hélices disponibles en los catálogos

	Diámetro [in]	Paso [in]
	16	17
Hélices	16	18,5
disponibles para	16	20
motores de	16	21.5
250hp/300hp	16	23
Suzuki	16	24.5
	16	26

	Diámetro [in]	Paso [in]
	16	27.5
Hálicos	15 1/2	17
disponibles para	15 1/4	19
motores de	15	21
250hp/300hp	14 1/2	23
Suzuki	14 1/2	25
	14 1/2	27
	14	14
Hélices	16 1/4	15
disponibles para	16 1/4 15 1/2	17
motores de		19
350hp Yamaha	15 1/4	21
	15 1/4	23

diferentes

Figura 3.13 Consumo de combustible anual ponderado para Ship A en cada combinación de hélice

Figura 3.14 Consumo de combustible anual para Ship M en cada combinación de hélice

Figura 3.15 Consumo de combustible ponderado para Ship M en cada combinación de hélice

En la Figura 3.12 y Figura 3.13 se muestra el proceso para la selección de la hélice para Ship A, en primer lugar, se graficó el consumo anual, considerando 350 viajes de 2 horas de duración, para cada condición y cada estado de mar. Luego se pondera según la frecuencia de ocurrencia de los estados de mar y se obtiene que la combinación 91 es la más adecuada para Ship A, pues es la que genera menor consumo de combustible.

En la Figura 3.14 y Figura 3.15 se muestra el proceso para la selección de la hélice para Ship M, en primer lugar, se graficó el consumo anual para cada condición y cada estado de mar. Luego se pondera según la frecuencia de ocurrencia de los estados de mar y se obtiene que la combinación 28 es la más adecuada para Ship M, porque es la que genera menor consumo de combustible.

3.6 Costos operativos

En la Tabla 3.5 se muestran los costos operacionales regularmente reportados por los dueños de las embarcaciones.

Fuente: Elaboración propia							
Costos o	Costos operacionales actuales						
Consumo de combustible	\$6144	mensual					
Aceite	\$275.6	mensual					
Aceite de transmisión	\$30.89	mensual					
Mantenimiento	\$2,000.00	Cada 6 meses					
Limpieza del casco	\$160.00	mensual					
Pago al capitán	\$1400.00	mensual					
Pago de marinero	\$1000.00	mensual					

Tabla 3.5 Costos operacionales actuales de las interislas

Gastos reportados por dueños de las embarcaciones interislas

Desde la Tabla 3.6 hasta la Tabla 3.11 se muestran los detalles de la disminución del consumo de combustible, para la condición máxima de pasajeros, de ambas embarcaciones. Sólo con la redistribución de pesos, los costos operativos pueden disminuir hasta un 3% en Ship A y en Ship M. Con redistribución y cambio de hélice la disminución llega hasta 5% y 3% respectivamente.

Tabla 3.6 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 3 de Ship A

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	29	29	29
	T sección media [m]	0.43	0.49	0.49
	Δ [tons]	8.2	8.2	8.2
	Asiento estático, deg (+popa)	1	1.5	1.5
	Asiento dinámico, deg (+popa)	3.8	3.4	3.4
	LCG, m (desde popa)	4.75	4.96	4.96
Babor	D hélice, [in]	15.25	15.25	16
Babor	Paso, [in]	19	19	26
Cruiía	D hélice, [in]	16	16	16.25
Crujia	Paso, [in]	17	17	26
Estribor	D hélice, [in]	15.25	15.25	16
LSUIDO	Paso, [in]	19	19	26
Hsia=0.6 m	Consumo de combustible [Gal]	63.47	61.36	59.83
11319-0.0111	Disminución %		3.3%	5.7%
Hsig=1.25 m	Consumo de combustible [Gal]	68.67	68.67	66.61
	Disminución %		0.0%	3.0%
Heig=1 75 m	Consumo de combustible [Gal]	77.34	74.8	74.62
1131y-1.73 III	Disminución %		3.3%	3.5%

Tabla 3.7 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 2 de Ship A

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	25	25	25
	T sección media [m]	0.42	0.47	0.47
	Δ [tons]	7.859	7.859	7.859
	Asiento estático, deg (+popa)	1	0.5	0
	Asiento dinámico, deg (+popa)	3.7	3.5	3.5
	LCG, m (desde popa)	4.71	4.89	4.89
Babor	D hélice, [in]	15.25	15.25	16
Daboi	Paso, [in]	19	19	26
Cruiía	D hélice, [in]	16	16	16.25
Orajia	Paso, [in]	17	17	26
Estribor	D hélice, [in]	15.25	15.25	16
Lotinoon	Paso, [in]	19	19	26
Hsia=0.6 m	Consumo de combustible [Gal]	59.7	59.7	58.47
139-0.0 11	Disminución %		0.0%	2.1%
Hsia=1 25 m	Consumo de combustible [Gal]	68.55	68.55	67.8
1131y-1.23 III	Disminución %		0.0%	1.1%
Hsia=1 75 m	Consumo de combustible [Gal]	74.6	74.6	74.55
11019-1170111	Disminución %		0.0%	0.1%

Tabla 3.8 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 1 de Ship A

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	15	15	15
	T sección media [m]	0.38	0.44	0.44
	Δ [tons]	7	7	7
	Asiento estático, deg (+popa)	1	3.5	3.5
	Asiento dinámico, deg (+popa)	3.5	3.6	3.6
	LCG, m (desde popa)	4.62	4.48	4.48
Babor	D hélice, [in]	15.25	15.25	16
Baboi	Paso, [in]	19	19	26
Cruiía	D hélice, [in]	16	16	16.25
Grujia	Paso, [in]	17	17	26
Estribor	D hélice, [in]	15.25	15.25	16
Lotingor	Paso, [in]	19	19	26
Hsig=0.6 m	Consumo de combustible [Gal]	54.3	54.21	51.39
	Disminución %	0.0%	0.2%	5.4%
Hsig=1 25 m	Consumo de combustible [Gal]	62.28	60.9	58.62
1131y=1.23 III	Disminución %	0.0%	2.0%	5.3%
Hsig=1 75 m	Consumo de combustible [Gal]	70.3	66.5	65.92
11519-1.7011	Disminución %	0.0%	5.4%	6.2%

Tabla 3.9 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 3 de Ship M

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	34	34	34
	T sección media [m]	0.45	0.45	0.45
	Δ [tons]	9.926	9.926	9.926
	Asiento estático, deg (+popa)	1	0	0
	Asiento dinámico, deg (+popa)	4.49	3.9	3.9
	LCG, m (desde popa)	4.46	4.9	4.9
Babor	D hélice, [in]	16	16	16
Daboi	Paso, [in]	18.5	18.5	24.5
Cruiía	D hélice, [in]	16.25	16.25	15.5
Orajia	Paso, [in]	17	17	19
Estribor	D hélice, [in]	16	16	16
Lotinoon	Paso, [in]	18.5	18.5	24.5
Hsia=0.6 m	Consumo de combustible [Gal]	85.19	84.21	84.52
	Disminución %		1.2%	0.8%
Hsia=1 25 m	Consumo de combustible [Gal]	98.6	96.63	96.04
nsiy-1.25 ili	Disminución %		2.0%	2.6%
Hsia=1 75 m	Consumo de combustible [Gal]	105.8	104.82	104.71
11319-1170111	Disminución %		0.9%	1.0%

Tabla 3.10 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 2 de Ship M

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	25	25	25
	T sección media [m]	0.42	0.42	0.42
	Δ [tons]	9.161	9.161	9.161
	Asiento estático, deg (+popa)	1	0	0
	Asiento dinámico, deg (+popa)	4.3	3.7	3.7
	LCG, m (desde popa)	4.36	4.89	4.89
Babor	D hélice, [in]	16	16	16
	Paso, [in]	18.5	18.5	24.5
Crujía	D hélice, [in]	16	16	15.5
	Paso, [in]	17	17	19
Estribor	D hélice, [in]	16	16	16
	Paso, [in]	18.5	18.5	24.5
Hsig=0.6 m	Consumo de combustible [Gal]	81.1	78.9	78.41
	Disminución %		2.7%	3.3%
Hsig=1.25 m	Consumo de combustible [Gal]	91.9	90.72	90.05
	Disminución %		1.3%	2.0%
Hsig=1.75 m	Consumo de combustible [Gal]	99.5	98.54	100.65
	Disminución %		1.0%	1.2%

Tabla 3.11 Detalle de la disminución de consumo de combustible para los cambiosrecomendados en la condición 1 de Ship M

				Cambios
			Cambios	recomendados
		Condición	recomendados	en condición
		actual	en condición	inicial y
			inicial	dimensiones de
				la hélice
	Pasajeros	15	15	15
	T sección media [m]	0.42	0.39	0.39
	Δ [tons]	8.311	7.611	7.611
	Asiento estático, deg (+popa)	1	2.5	2.5
	Asiento dinámico, deg (+popa)	4.09	3.93	3.93
	LCG, m (desde popa)	4.25	4.39	4.39
Babor	D hélice, [in]	16	16	16
	Paso, [in]	18.5	18.5	24.5
Crujía	D hélice, [in]	16	16	15.5
	Paso, [in]	17	17	19
Estribor	D hélice, [in]	16	16	16
	Paso, [in]	18.5	18.5	24.5
Hsig=0.6 m	Consumo de combustible [Gal]	74.06	71.31	71.74
	Disminución %		3.7%	3.1%
Hsig=1.25 m	Consumo de combustible [Gal]	85.2	82.1	81.75
	Disminución %		3.1%	3.5%
Hsig=1.75 m	Consumo de combustible [Gal]	93	91	90.31
	Disminución %		2.2%	2.9%
Luego, usando la ecuación 2.23 se procedió a estimar el consumo de combustible anual para cada una de las embarcaciones (Tabla 3.12 y Tabla 3.13) para posteriormente obtener los costos operativos.

		29 pasajeros	25 pasajeros	15 pasajeros
		15%	60%	25%
Hsig=0.6 m -	Consumo de combustible	1099.62	4137.21	1567.91
33% de	con parámetros actuales			
incidencia	Consumo de combustible con	1036.55	4051.97	1483.89
	Cambios recomendados			
Hsig=1.25 m -	Consumo de combustible	1802.59	7197.75	2724.75
50% de	con parámetros actuales			
incidencia	Consumo de combustible con	1748.51	7119.00	2564.63
	Cambios recomendados			
Hsig=1.75 m	Consumo de combustible	690.26	2663.22	1045.71
17% de	con parámetros actuales			
incidencia	Consumo de combustible con	665.98	2661.44	980.56
	Cambios recomendados			
Suma total de	consumo de combustible con	22929.02		
	parámetros actuales -gal			
Suma total de	consumo de combustible con	22312.53		
	cambios recomendados -gal			

Tabla 3.12 Estimación de consumo de combustible anual para Ship A

Fuente: Elaboración propia

Tabla 3.13 Estimación de consumo de combustible anual para Ship M

34 pasajeros 25 pasajeros 15 pasajeros 15% 60% 25% Hsig=0.6 m -Consumo de combustible 1475.92 5620.23 2138.48 33% de con parámetros actuales incidencia Consumo de combustible con 1464.31 5433.81 2071.49 Cambios recomendados Hsig=1.25 m -Consumo de combustible 2588.25 9649.50 3727.50 50% de con parámetros actuales incidencia Consumo de combustible con 9455.25 2521.05 3576.56 Cambios recomendados

Fuente: Elaboración propia

		34 pasajeros	25 pasajeros	15 pasajeros	
		15%	60%	25%	
Hsig=1.75 m	Consumo de combustible	944.27	3552.15	1383.38	
17% de	con parámetros actuales				
incidencia	Consumo de combustible con	934.54	3593.21	1343.36	
	Cambios recomendados				
	1				
Suma total de	consumo de combustible con	31079.67			
	parámetros actuales -gal				
Suma total de	consumo de combustible con	30393.58			
	cambios recomendados -gal				

Este proceso fue realizado para la condición de 15 y 25 pasajeros en ambas embarcaciones, teniendo como resultado las hélices recomendadas para cada motor en la Tabla 3.14 y la nueva posición del centro de gravedad en la Tabla 3.15

(Esquema de redistribución en APÉNDICE H).

Fuente: Elaboración propia								
Dimensiones de la hélice (Diámetro x Paso x Número de palas)								
Ship M Ship A								
Actual	Babor	16" x 18 ½" x 3	15´´ x 18 ½´´ x 3					
	Crujía	16 ¼" x 17" x 3	16′′ x 17′′ x 3					
	Estribor	16 " x 18 ½" x 3	15´´ x 18 ½´´ x 3					
Cambio	Babor	16" x 24 ½ ' x 3	16 ´´x 26 ´´x 3					
Recomendado	Crujía	15 ½ " x 19" x 3	16 ¼ ′′ x 26 ′′ x 3					
	Estribor	16" x 24 ½ " x 3	16 ´´x 26´´x 3					

Tabla 3.14 Cambios recomendados a las hélices de las interislas

Tomando en cuenta el precio actual de la gasolina extra en Ecuador de \$2,56 por galón, se tiene la estimación del posible ahorro en los costos operativos en la Tabla 3.16 y Tabla 3.17: 3% para Ship A y 2% para Ship M.

(Ver Verificación del MSI en la redistribución recomendada en APÉNDICE L)

	Cen	tro de Graveda	ad medido desde	popa [m]					
	Pasajeros	LCG –m	LCG –m	LCG –m	Se obtiene el:				
		Actual	Cambio	Redistribución	LCG				
			Recomendado	de pesos	recomendado				
					con				
					redistribución?				
	15	4,25	4.39	4,87	No				
Ship M	25	4,36	4.89	4,88	Sí				
	34	4,46	4.90	4,90	Sí				
	15	4,62	4.48	4,51	Sí				
Ship A	25	4,71	4.89	4,82	Sí				
	29	4,75	4.94	4,80	No				

Tabla 3.15 Centro de gravedad óptimo para cada interisla

Evente: Elaboración propia

Tabla 3.16 Posible ahorro en costos operacionales para Ship A

Costos Operacionales Anuales (Valor Actual)	\$ 58,698.29
Estimación de nuevos costos	\$ 57,120.07
Ahorro total anual	\$ 1,578.22
Porcentaje de ahorro	3%

Fuente: Elaboración propia

Tabla 3.17 Posible ahorro en costos operacionales para Ship M

Fuente: Elaboración propia

Costos Actuales	\$ 79,563.95
Estimación de nuevos costos	\$ 77,807.56
Ahorro total anual	\$ 1,756.39
Porcentaje de ahorro	2%

La inversión necesaria para realizar los cambios en la embarcación, se presentan en la Tabla 3.18, siendo un valor de \$2800 para Ship A y \$3200 para Ship M

(Ver cotizaciones y proformas en APÉNDICE M).

Tabla 3.18 Detalle de inversión por embarcación

Embarcación	Detalle	Cant	Costo unitario		Total
Ship A	Asientos	26	\$	50.00	\$ 1,300.00
	Hélices	3	\$	500.00	\$ 1,500.00
Ship M	Asientos	34	\$	50.00	\$ 1,700.00
	Hélices	3	\$	500.00	\$ 1,500.00

Fuente: Elaboración propia a partir de cotizaciones en Apéndice M

Tomando en consideración que el gasto por consumo de combustible mensual promedio reportado por los dueños de embarcaciones (Tabla 3.5) es \$6,100.00, es decir \$6,514,800.00 de costos anuales para la flota de 89 embarcaciones interislas, el ahorro de 3% por disminución de consumo de gasolina de la flota será de \$195,444.00 anual.

CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Según las estadísticas mostradas desde la Figura 3.1 hasta la Figura 3.5, la demanda del transporte interislas ha ido en aumento, y al ser una de las bases del turismo, se ha convertido en una de las actividades más relevantes de Galápagos. Por lo tanto, las embarcaciones deben brindar el mejor servicio posible, hasta el punto de ser un referente de transporte marítimo en Ecuador.
- El indicador operacional de eficiencia energética de las embarcaciones interistas "Ship A" y "Ship M", obtenido a partir de las pruebas de mar, se encuentra muy por encima de la línea de referencia de las embarcaciones de pasajeros, lo cual indica que es posible una mejora, ya sea aumentando la carga transportada o disminuyendo las emisiones de CO2.
- Cómo se pudo observar en el Capítulo 3, la redistribución de pasajeros y el cambio de hélices disminuirá el costo por consumo de combustible, aproximadamente, 3% en Ship A y 2% en Ship M, esto equivale a aproximadamente \$1.600 anuales por embarcación. Para Ship A la redistribución representa 1% de ahorro y para Ship M un 0.5%. Por otro lado, el cambio de hélice representa 2% de ahorro para Ship A, mientras que para Ship M 1.5%.
- La inversión que implica realizar los cambios recomendados alcanza el valor de \$3,000.00 dólares, que se considera baja dado que el cambio de un solo motor implica una inversión de aproximadamente \$30,000.00 dólares.
- En Galápagos existen 89 embarcaciones que poseen características similares a "Ship A" y "Ship M", por lo cual se puede concluir que, si toda la flota realiza su evaluación y mejora respectiva, el ahorro total de la flota llegaría a ser de 78,000 galones de gasolina y \$195,000.00 dólares anuales, aproximadamente.

4.2 Recomendaciones

- A fin de mejorar la exactitud de las predicciones de consumo de combustible, se recomienda verificar o levantar las formas de las embarcaciones. Adicionalmente, obtener experimentalmente la posición del centro de gravedad.
- Para mejorar el modelo matemático desarrollado se recomienda agregar un proceso de optimización en donde también se considere la aceleración vertical. De esta manera, el modelo generará cambios que disminuyan los costos a los dueños de las embarcaciones y mejoren el confort de los pasajeros.
- Se recomienda la verificación del dato de consumo específico mediante pruebas a cada motor.
- Es importante realizar la evaluación de la resistencia al avance usando simulación numérica y comprobando los efectos de nuevos apéndices como los interceptores o flaps.

BIBLIOGRAFÍA

- IMO, «Gases de efecto invernadero», Organización Marítima Internacional, 2019. http://www.imo.org/es/OurWork/Environment/PollutionPrevention/AirPollution/Pagin as/GHG-Emissions.aspx
- [2] Oceana, «Contaminación por la Industria Naval», OCEANA, 2017. https://eu.oceana.org/es/contaminacion-por-la-industria-naval-0
- [3] «Luxury cruise giant emits 10 times more air pollution (SOx) than all of Europe's cars
 study», *Transport&Enviroment*, jun. 04, 2019.
 https://www.transportenvironment.org/press/luxury-cruise-giant-emits-10-times-more-air-pollution-sox-all-europe%E2%80%99s-cars-%E2%80%93-study
- [4] Oceana, «Gases de efecto inverneadero», OCEANA, 2017. https://europe.oceana.org/es/node/46897
- [5] T. LONGVA, «CO2 emissions from ships», Det Norske Veritas, Norway, 2014.
- [6] Ing. H. Asamblea Nacional de la República del Ecuador, «Ley Orgánica de Eficiencia Energética», Asamble Nacional de la República del Ecuador, Quito, 449, mar. 2019.
- [7] IMO, «GUIDELINES FOR CALCULATION OF REFERENCE LINES FOR USE WITH THE ENERGY EFFICIENCY DESIGN INDEX (EEDI)», Organización Marítima Internacional, Londres, MEPC 65/22, may 2013.
- [8] M. A. Torralvo, «PROGRAMA DE MANTENIMIENTO PARA MOTORES FUERA DE BORDA YAMAHA CUATRO TIEMPOS DE PROPÓSITO COMERCIAL», Universidad Tecnológica de Bolivar - Facultad de Ingeniería, Cartagena, Bolivia, Tesis, 2011.
- [9] J. Mendoza y E. Vasquez, «Pruebas de mar de lanchas interislas de Galápagos», Escuela Superior Politécnica del Litoral, Galápagos, ene. 2020.
- [10] SPTMF, «Catastro de Naves SPTMF 2019». 2019.
- [11] Agencia de Regulación y Control Hidrocarburífero, «Consumo de Combustible Fósiles en Galápagos 2017 - 2018 - 2019». 2019.
- [12] Observatorio de Turismo Galápagos, «Estadísticas del turísmo en Galápagos en 2018», Ministerio de Turísmo, Galápagos, may 2019. [En línea]. Disponible en: observatoriogalapagos.gob.ec
- [13] IMO, «INITIAL IMO STRATEGY ON REDUCTION OF GHG EMISSIONS FROM SHIPS», INTERNATIONAL MARITIME ORGANIZATION, Londres, MEPC. 304(72), abr. 2018.

 [14] IMO, «Medidas de eficiencia energética», Organización Marítima Internacional, 2018.
 http://www.imo.org/os/Qurl//ork/Environment/PollutionProvention/AirPollution/Pagin

http://www.imo.org/es/OurWork/Environment/PollutionPrevention/AirPollution/Pagin as/Technical-and-Operational-Measures.aspx

- [15] IMO, «Una agencia de la ONU lanza un proyecto mundial para reducir las emisiones del sector marítimo», Organización Marítima Internacional, may 12, 2019. https://www.imo.org/es/MediaCentre/PressBriefings/Paginas/08-green-voyage-2050.aspx
- [16] IMO, «Prevención de la contaminación atmosférica ocasionada por los buques», Organización Marítima Internacional, 2018. http://www.imo.org/es/OurWork/Environment/PollutionPrevention/AirPollution/Pagin as/Air-Pollution.aspx
- [17] DELTAMARIN, «Study on tests and trials of the Energy Efficiency Design Index as developed by the IMO», Deltamarin Ltd, Finlandia, 6543, may 2011.
- [18] IMO, «2012 GUIDELINES FOR THE DEVELOPMENT OF A SHIP ENERGY EFFICIENCY MANAGEMENT PLAN (SEEMP)», Organización Marítima Internacional, Londres, mepc 63/23, mar. 2012.
- [19] A. Kedzierski y A. O'Leary, «Energy Efficiency of ships: What are we talking about?», dic. 2012.
- [20] IMO, «GUIDELINES FOR VOLUNTARY USE OF THE SHIP ENERGY EFFICIENCY OPERATIONAL INDICATOR (EEOI)», INTERNATIONAL MARITIME ORGANIZATION, Londres, MEPC.1/Circ.684, ago. 2009.
- [21] G. Zakaria y S. Rahman, «Energy Efficiency Design Index (EEDI) for Inland Vessels in Bangladesh», Bangladesh, 2017, vol. 194, pp. 362-369.
- [22] K. Prill y K. Igielski, «CALCULATION OF OPERATIONAL INDICATOR EEOI FOR SHIPS DESIGNED TO OTHER PURPOSE THAN TRANSPORT BASED ON A RESEARCH – TRAINING VESSEL», Maritime University of Szczecin, Polonia, DOI 10.2478/ntpe-2018-0041, 2018.
- [23] G. De Melo, I. Echeverrría, y J. M. Serra, «Improving the Efficiency of a High Speed Catamaran Through the Replacement of the Propulsion System», the International Journal on Marine Navigation and Safety of Sea Transportation, España, DOI: 10.12716/1001.09.04.09, dic. 2015.
- [24] EMETEBE, «EMETEBE.com.ec Air & Island Transfer», *EMETEBE*, sep. 2020. https://www.emetebe.com.ec

- [25] Parque Nacional Galápagos, «Transporte entre islas pobladas», *Parque Nacional Galápagos*, 2019. http://www.galapagos.gob.ec/transporte-entre-islas-pobladas/
- [26] R. Desiderio, «Análisis del confort delos pasajeros en un catamarán de servicio turístico de 28 m de eslora de diseño nacional», ESPOL, Ecuador, 2018.
- [27] S. van Adrichem, B. Guinee, Steenman, J. Verbart, y J. Zijlstra, «Floating photovoltaics for the Galapagos Islands», Escuela Superior Politécnica del Litoral, Galápagos, dic. 2019.
- [28] D. Godes G., «SERVICIOS AUXILIARES ASOCIADOS AL TRANSPORTE MARÍTIMO», Transporte, Universitat Politecnica de Catalunya, España, 2014.
- [29] DIRNEA, «Naves de Isabela, Cristobal y SantaCruz». 2019.
- [30] Suzuki Marine, «2020 SUZUKI OUTBOARD MOTORS», p. 44, 2020.
- [31] B. H. West y J. P. Szybist, «The Impact of Low Octane Hydrocarbon Blending Streams on the Knock Limit of "E85"», 2013, p. 11.
- [32] J. F. Thomas, B. H. West, y S. P. Huff, «Effects of High-Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle», Oak Ridge National Laboratory, Estados Unidos, ORNL/TM-2015/116, mar. 2015.
- [33] F. Druet Rodríguez y P. Vera Castro, «EVALUACIÓN TÉCNICA Y OPTIMIZACIÓN DEL USO DE ADITIVOS COMERCIALES PARA ELEVAR EL OCTANAJE DE LAS GASOLINAS EN EL ECUADOR», Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, 2017.
- [34] Crownline, «The advantages of Outboard Engines», *CROWNLINE*, 2020. https://crownline.com/the-advantages-of-outboard-engines/
- [35] A. De Almeida, «Transmisiones Mecánicas», 2018.
- [36] OSPESCA, «Guía general para el mantenimiento de motores fuera de borda para la pesca artesanal.», OSPESCA, El Salvador, 2012.
- [37] Nissan Marine, «Motor Fuera-Borda NSF15C/20C», n.º No.003N11090-6, p. 82, 2015.
- [38] J. D. K. Wilson, «Medidas de ahorro de combustible y de costos para armadores de pequeñas embarcaciones pesqueras», Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), Roma, Italia, Técnico 383, 2005.
- [39] Mercury, «Mercury 350 Fuel Consumption».
- [40] O. Gulbrandsen, «Ahorro de combustible en pequeñas embarcaciones pesquera», Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), Roma, Italia, Técnico, 2015.

- [41] J. Carlton, Marine Propellers and Propulsion, Segunda. Reino Unido: Elsevier, 2007.
- [42] R. Latorre y M. Mizina, «Design study for outboard propeller with spoiler», Ocean Engineering, p. 11, oct. 1997.
- [43] D. Radojcic, A. Simic, y M. Kalajdzic, «Fifty Years of the Gawn-Burril KCA Propeller Series», *Intl J Small Craft*, vol. 151, n.º B2, p. 11, jul. 2009.
- [44] D. L. Blount y D. L. Fox, «Design Considerations for Propellers in a Cavitating Enviroment», *Marine Technology*, vol. 15, n.º 2, pp. 144-178, abr. 1978.
- [45] Ministerio del Ambiente, «Informe de Rendición de Cuentas 2019 AGENCIA DE REGULACIÓN Y CONTROL DE LA BIOSEGURIDAD Y CUARENTENA PARA GALÁPAGOS - ABG», Ecuador, Rendición de cuentas, 2019.
- [46] VcationsToGo, «Isla Floreana, Islas Galápagos, Ecuador», Vacations To Go, 2020. https://espanol.vacationstogo.com/cruise_port/Isla_Floreana__Ecuador.cfm
- [47] ITTC, «ITTC Quality System Manual Recommended Procedures and Guidelines -Preparation, Conduct and Analysus of Speed/Power Trials». 2017.
- [48] Garmin, «Garmin GPS 73 Manual de Usuarion», p. 16, nov. 2015.
- [49] J. Holtrop y G. G. J. Mennen, «An approximate Power Prediction Method», International Shipbuilding Progress, Investigación, 1982.
- [50] D. L. Blount y R. J. Bartee, «Design of propulsion system for high-speed Craft», Marine Technology, vol. 15, n.º 2, oct. 1997.
- [51] D. Savitsky y P. W. Brown, «Procedure for hydrodynamic Evaluation of planning hulls in smooth and rough water», Society Of Naval Architects and Marine Engineers, Greece, Investigación, oct. 1975.
- [52] D. Savitsky, «ON THE SUBJECT OF HIGH-SPEED MONOHULLS», Society Of Naval Architects and Marine Engineers, Athens, Greece, oct. 2003.
- [53] D. Radojcic, A. Zgradic, M. Kalajdzic, y A. Simic, «Resistance Prediction for Hard Chine Hulls in the Pre-Planing Regime», University of Belgrade, NAVAR, Polonia, Investigación 9-26 10.2478/pomr-2014-0014, 2014.
- [54] D. Savitsky, «Hidrodynamic Design of Planning Hulls». oct. 1964.
- [55] H. J. J. Van Den Boom y T. W. F. Hasselaar, «Ship Speed- Power Performance Assessment», Houston, Texas, oct. 2014, p. 12.
- [56] T. Katayana, Y. Nishihara, y T. Sato, «A study on the characteristics of selfpropulsion factors of planing craft with outboard engine», ene. 2012.
- [57] YAMAHA, «F350 LF350 Owner Manual», n.º LIT-18626-12-53, p. 92, dic. 2018.

- [58] Suzuki Marine, «Ranger Reata DF250AP SUZUKI PERFORMANCE NOTEBOOK», Suzuki Marine, Key Kargo, FL, Resultados de pruebas, jun. 2014.
- [59] Suzuki Marine, «Stingray 234LR DF300AP SUZUKI PERFORMANCE NOTEBOOK», Suzuki Marine, Hartsville, SC, Resultados de pruebas, jul. 2015.
- [60] Suzuki Marine, «DF300AP tested on BTB 12m Landing craft», *Mitcham Marine*, 2019. www.mitchammarine.com.au
- [61] A. Muñoz, «LA CONTRADICCIÓN DEL TURISMO EN LA CONSERVACIÓN Y EL DESARROLLO EN GALÁPAGOS – ECUADOR», Pontífica Universidad Católica del Ecuador, Quito, Ecuador, Volúmen 24, 2015.
- [62] BBC, «Terremoto de magnitud 7,8 en la zona costera de Ecuador deja más de 600 muertos», BBC Mundo, Ecuador, abr. 17, 2016.
- [63] Ministerio de Educación, «CRONOGRAMA ESCOLAR RÉGIMEN SIERRA», Ministerio de Educación, Ecuador, oct. 2019.

APÉNDICES

APÉNDICE A

Equipos necesarios para pruebas de mar

Ítem	Equipo	
1	Acelerómetro	
1	Inclinómetro omega	
1	Inclinómetro manual	
1	Daqview	
1	Fuente de poder	
	Cables para conexión	
2	Iphone	
2	Laptop	
1	Flexómetro	
1	Rollo de piola	
1	Cámara de Samsung	
1	Cinta scotch	
1	Cinta de papel	
1	Cinta plomo	
1	Cinta aislante	
1	GPS	
1	Regleta eléctrica	
4	Pilas AA	
1	Anemómetro	
1	Medidor de Gases	
12	Funda plástica transparente	

APÉNDICE B

Protocolo para pruebas de mar

Actividad	Equipo requerido	check
Verificar dimensiones principales de la embarcación	Piola/flexómetro	
Verificar asiento inicial sin carga	Inc.Manual/Scramp	
Tomar fotos a la embarcación	Cámara	
Tomar medidas de la hélice	Flexómetro	
Verificar características del motor		
Tomar medida inicial de combustible		
Instalar Daqview, inclinómetro, laptop, fuente de poder	Cinta	
Asegurar Iphone (1 en SM y 1 en proa)	Cinta, funda	
Registrar velocidad de viento	Anemómetro	
Registrar temperatura de ambiente	App clima	
Una vez cargada totalmente, se registran francobordo en SM	Flexómetro /	
(Opciones: en proa y popa) de la embarcación	cámara	
Verificar asiento de embarcación cargada	Inc.Manual/Scramp	
Navegar a 65% de potencia total mínimo por 10 minutos. (Empezar	Velocímetro +	
la toma de datos cuando la velocidad se mantenga constante)	Tacómetro de	
	embarcación	
Iniciar Daqview y SCraMP		
Tomar foto al mar	Cámara	
Tomar foto al panel de la embarcación	Cámara	
Tomar medidas de GPS	GPS	
Guardar Datos de aplicación ScraMP		
Navegar a 80% de potencia total mínimo por 10 minutos. (Empezar	Velocímetro +	
la toma de datos cuando la velocidad se mantenga constante)	Tacómetro de	
	embarcación	
Iniciar Daqview y SCraMP		
Tomar foto al mar	Cámara	
Tomar foto al panel de la embarcación	Cámara	
Tomar medidas de GPS	GPS	
Guardar Datos de aplicación ScraMP		
Navegar a 100% de potencia total mínimo por 10 minutos.	Velocímetro +	
(Empezar la toma de datos cuando la velocidad se mantenga	Tacómetro de	
constante)	embarcación	
Iniciar Daqview y SCraMP		
Tomar foto al mar	Cámara	
Tomar foto al panel de la embarcación	Cámara	

Actividad	Equipo requerido	check
Tomar medidas de GPS	GPS	
Guardar Datos de aplicación ScraMP		
Navegar a velocidad de diseño por 10 minutos. (Empezar la toma	Velocímetro +	
de datos cuando la velocidad se mantenga constante)	Tacómetro de	
	embarcación	
Iniciar Daqview y SCraMP		
Tomar foto al mar	Cámara	
Tomar foto al panel de la embarcación	Cámara	
Tomar medidas de GPS	GPS	
Guardar Datos de aplicación ScraMP		
Registrar el consumo de combustible final en puerto		

APÉNDICE C

Coeficientes para el cálculo de la resistencia en el régimen de pre-planeo

-	4.0		10						4.0		
⊢nv	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
A1	0,065	0,108	0,095	0,035	0,030	0,032	0,032	0,043	0,050	0,056	0,060
A2	-0,487	-0,888	-0,637	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
A4	-0,010	-0,016	-0,015	-0,010	-0,007	0,000	0,000	0,000	0,000	0,000	0,000
A5	-0,065	-0,134	-0,136	-0,051	-0,055	-0,105	-0,086	-0,133	-0,156	-0,187	-0,198
A6	0,000	0,000	-0,160	-0,219	-0,194	-0,205	-0,194	-0,181	-0,178	-0,183	0,202
A7	0,106	0,182	0,168	0,104	0,096	0,060	0,062	0,055	0,051	0,047	0,046
A 8	0,973	1,883	1,560	0,435	0,518	0,582	0,520	0,782	0,929	1,186	1,300
A9	-0,003	-0,004	-0,003	-0,002	-0,002	-0,004	-0,004	-0,003	-0,003	-0,002	-0,002
A10	0,011	0,015	0,035	0,041	0,039	0,048	0,044	0,042	0,041	0,041	0,043
A15	0,000	0,000	0,000	0,000	0,000	0,083	0,074	0,121	0,149	0,181	0,198
A18	-1,410	-2,467	-2,156	-0,927	-0,953	-0,709	-0,721	-0,959	-1,122	-1,386	-1,551
A19	0,291	0,473	1,030	1,064	0,978	1,197	1,181	1,016	0,931	0,784	0,783
A24	0,030	0,059	0,052	0,022	0,024	0,000	0,000	0,000	0,000	0,000	0,000
A27	-0,002	-0,004	-0,003	-0,001	-0,001	0,000	0,000	0,000	0,000	0,000	0,000

i. Coeficientes para La formulación de [51]

ii. Coeficientes para la formulación de [53]

	Resistance to weight ratio - R/Disp									
J	A1j	A2j	A3j	A4j	A5j	aj				
1	1,74569	2,72933	8,84553	5,49071	-9,30733	-9,85793				
2	0,28981	-3,11603	20,45180	-0,89534	0,05872	-2,31503				
3	-0,71914	-3,24558	2,20440	1,02043	1,19921	-2,72317				
4	0,56210	2,92096	8,59674	1,69202	0,37316	-3,53955				
5	-7,51731	-1,33336	-0,06573	-1,02042	-0,38721	2,18048				
6	-6,23407	4,17861	8,87946	2,35625	2,38525	-7,76962				
7	0,34378	0,92431	23,87148	0,35819	0,15753	-2,57681				
I	B1i	B2i	B3i	B4i	B5i	B6i	B7I	bi		
1	-2,440651	2,108095	7,692917	-6,196037	-5,027568	3,024498	10,19426	-7,88068		
2	-3,082933	1,868111	3,50048	-12,57516	-1,865063	3,812434	13,9847	-5,29254		

Ι	B1i	B2i	B3i	B4i	B5i	B6i	B7I	bi
3	0,0122627	-4,322821	0,491269	-15,31444	0,655345	13,00491	10,0028	-4,6390
4	1,333009	9,386386	-2,638269	-3,542744	-24,96702	-0,316846	1,4468	-7,8299
5	1,018667	-0,2119331	0,1647189	-4,278055	0,341217	0,445738	7,24571	-4,3010
W	C1w	C2w	C3w	C4w	C5w	cw		
1	-7,016964	1,093353	-5,239396	0,4377735	-5,50526	-0,31006		
2	-3,2096	-3,698881	-11,50741	-6,913545	-6,01415	11,25484		
3	2,919018	-9,832901	0,7894529	-17,49013	6,350141	5,854543		
V	D1v	D2v	D3v	D4v				
1	-6,915595	-9,067731	-0,9125847	10,01967				
	L/B	L/V^1/3	Fnv	LCG/L	Beta			
Pk	0,4334425	0,3021148	0,1665957	6,5312046	0,075			
Rk	-1,0323493	-1,1270393	-0,0434102	-1,7402032	-0,85			
Н	3,1461161							
G	0,0266244							

	Wetted area coeff S/V^2/3									
j	A1j	A2j	A3j	A4j	aj					
1	-1,050266	4,847666	-1,538871	-1,580448	-0,4047123					
2	2,097027	-1,061998	-3,113578	-0,3070406	1,604686					
I	B1i	B2i	bi							
I	-2,791326	-3,247541	2,485906							
	L/B	L/V^1/3	Fnv	LCG/L						
Pk	0,415762	0,2589555	0,3021148	6,9230769						
Rk	-0,9881993	-0,0951964	-1,1270393	-1,8476154						
Н	0,1007964									
G	-0,2070596									

APÉNDICE D

Coeficiente para el cálculo de coeficientes de empuje y torque de la hélice

 Coeficientes para el cálculo de empuje KT y de torque KQ para ambientes no cavitantes [43].

Κ _T								
	СТ	е	X	У	z			
1	0,1193852	0	0	0	0			
2	-0,6574682	0	0	0	1			
3	0,3493294	0	0	1	0			
4	0,4119366	0	0	1	1			
5	-0,1991927	0	0	2	1			
6	5,863051	-2	0	2	2			
7	-1,107735	-2	0	2	3			
8	-0,1341679	0	1	0	0			
9	0,2628839	0	1	0	1			
10	-0,5217029	0	1	1	1			
11	0,2970728	0	1	2	0			
12	6,15258	-2	2	1	3			
13	-2,47084	-2	2	2	3			
14	-4,080166	-3	1	6	0			
15	4,154201	-3	1	6	1			
16	-1,136452	-3	2	6	0			

κ _q								
	Cq	е	X	У	Z			
1	1,541166	-3	0	0	0			
2	0,1091688	0	0	0	1			
3	-0,310242	0	0	0	2			
4	0,1547428	0	0	0	3			
5	-4,370615	-2	0	1	0			
6	0,249095	0	0	1	2			
7	-0,1594602	0	0	1	3			
8	8,536747	-2	0	2	0			

Kq										
	Cq e x y z									
9	-9,512163	-2	0	2	1					
10	-9,320307	-3	0	2	2					
11	3,287805	-2	0	2	3					
12	5,496034	-2	1	0	1					
13	-4,865063	-2	1	1	0					
14	-0,10625	0	1	1	1					
15	8,529955	-2	1	2	0					
16	1,101023	-2	2	0	3					
17	-3,151756	-3	2	2	2					

 Coeficiente para el cálculo del coeficiente de empuje KT y de torque KQ para ambientes cavitantes [43].

ΔΚτ								
	dT	е	S	V	I	u		
1	6,688144	-2	0	0	0	0		
2	3,579195	0	0	0	2	0		
3	-5,70035	0	0	0	3	0		
4	-1,35994	0	1	1	0	0		
5	-8,111903	0	1	1	1	0		
6	4,770548	1	1	1	3	0		
7	-2,313208	-1	2	1	0	0		
8	-1,387858	1	2	1	2	0		
9	4,992201	1	2	1	3	0		
10	-7,161204	1	2	1	4	0		
11	1,721436	1	2	2	0	0		
12	2,322218	1	2	2	1	0		
13	-1,156897	2	2	2	2	0		
14	5,014178	-2	0	0	0	2		
15	-6,555364	-2	0	0	1	2		
16	2,852867	-1	1	0	1	1		
17	-8,081759	-1	1	1	0	1		
18	8,671852	1	3	2	5	0		
19	-3,727835	1	3	3	0	0		
20	8,0497	1	3	3	1	0		

ΔΚο								
	d _Q	e	S	V	I	u		
1	4,024475	-3	0	0	0	0		
2	1,202447	-1	0	0	2	0		
3	-9,83607	-2	1	1	0	0		
4	-8,31884	-1	1	1	1	0		
5	5,098177	0	1	1	3	0		
6	-5,192839	-1	2	1	1	0		
7	2,641109	0	2	2	0	0		
8	-1,688934	1	2	2	3	0		
9	4,928417	-2	0	0	1	1		
10	1,024274	-2	0	0	0	2		
11	-1,194521	-1	0	1	1	1		
12	5,498736	-2	1	0	1	1		
13	-2,488235	-1	1	1	0	1		
14	-5,832879	-1	0	0	5	0		
15	1,503955	-1	0	3	0	0		
16	-3,316121	0	3	3	0	0		
17	3,890792	0	3	3	1	0		
18	1,682032	1	3	3	3	0		

APÉNDICE E

Códigos Fuentes y algoritmos

i. Código fuente para Validación

Nombre del documento: A_Fuel_Cons_ShipB_modelvalidation_Test1

%% Se agrega los datos desde el excel correspondiente filename='02 Data_ShipA.xlsx'; resfilename='C Results ShipA trim 3.5.xlsx'; % Asiento inicial initialtrim=3.5; %Dimensiones principales MainDim= xlsread(filename, 'General Data', 'B1:B3'); %Variables para cálculo de Resistencia Resvar= xlsread(filename, 'General Data', 'B4:B25'); %Datos de Condiciones de peso a evaluar y estado de mar Cond= xlsread(filename,'General Data','B27:B39'); %num2= xlsread(filename,'Datos generales','B11:C28'); %Coeficientes para obtener Kt,Kq,eff de la hélice Propdat = xlsread(filename,'General Data','B47:D54'); %Datos de la hélice %Datos para iteración (Trimado iniciala, Pitch, Diámetro helice) IterVar= xlsread(filename,'Iteraciones','I4:L18'); %Valor inicial, Valor Final, Intervalo %Datos de la operacion operation= xlsread(filename,'Operation','D5:E50'); mediciones=Resvar(22,1);

%% Definición de datos %Datos para cálculo de consumo de combustible % Constantes generales wfraction=Resvar(11,1); %[] %Según Blount and Bartee tdeduction=Resvar(12,1);%[] RHO=Resvar(13,1); %Para agua salada [kg/m^3] Viscos=Resvar(14,1);%m/s^2 Nengines=Resvar(1,1); %Número de motores fuera de borda

% Características de la embarcación Vcant=abs(((Resvar(3,1)+Resvar(4,1))-Resvar(2,1))/Resvar(4,1)); % Cantidad de datos de velocidades a procesar Vinter=Resvar(4,1);

```
Betadeg=Resvar(5,1); %Ángulo de astilla muerta
Bpx=Resvar(8,1);%[m]Manga en LWL
AT=Resvar(9,1);% Área mojada de espejo [m^2]
iE=Resvar(10,1);% Ángulo de entrada en grados [deg]
TF=Resvar(15,1);% Distancia vertical de la sección central del bulbo (Si no existe=0) a la quilla[m]
Cstern=Resvar(16,1);
%Características del motor y la helice
gear=Propdat(4,:);
DAR=Propdat(7,:);
EAR=Propdat(5,:);
Corr=Propdat(8,:);
SFCgal=[1E-9,-5E-6,0.1004]; %Polinomio SPECIFIC FUEL CONSUMPTION [Gal/(Hp*hr)]
Itervar=Resvar(21,1); % cantidad de variables a iterar
%% Variación de helice
j=1;
PDratio2=zeros(IterVar(15,j),Nengines-1);
pitch=zeros(IterVar(15,j),Nengines-1);
Dprop2=zeros(IterVar(15,j),Nengines-1); %pulgadas
ref=zeros(IterVar(15,j),Nengines-1);
counted=0;
for ci=1:(Nengines-1)
  %Variacion de Paso de la hélice
  for i=1:IterVar(15,j)
     counted=counted+1;
     Dprop2(i,ci)=IterVar(i,j);
     pitch(i,ci)=IterVar(i,j+1);
     ref(1,ci)=ref(1,ci)+1;
     PDratio2(ref(1,ci),ci)=pitch(i,ci)/Dprop2(i,ci);
  end
  j=j+2;
end
%% Cálculos
m=length(operation);
Vship=operation(:,2);
Results=zeros(5000,9);
Results2=zeros(5000,12);
```

```
Results3=zeros(5000,3);
```

```
RT=zeros(mediciones,1);
```

```
count=1;
```

count2=1;

count3=0;

for ipeso=1:Cond(1,1)

Disp=Cond(ipeso+1,1);

Disp2=Disp*1000*9.81; %[N]

% Obtener valores de hidrostáticas

[Lpp,LWL,LCB,T,VOL,SMOJ,CB,CM,CP,CWP,fdist,adist,epsilon,lcg...

]=obtenvartrim(filename,initialtrim,Disp);

%Variación de estado de mar

for imar=1:Cond(8,1)

Hsig=Cond(imar+8,1); % [m]

j=2;

% Variación de P/D para las hélices de babor y estribor

RT=zeros(mediciones,1);

for i=1:mediciones

Vms=Vship(i,1)*0.5144; %m/s

%Resistencia Total

[RT2,planres]=totalresistance(Lpp,LWL,Bpx,T,TF,VOL,...

AT,SMOJ,CB,CM,CP,CWP,LCB,Cstern,iE,Vms,Betadeg,RHO,...

fdist,adist,epsilon,Viscos,Disp2,Icg,Hsig);

RT(i,1)=RT2;% Resistencia total en KgF

Results(count,1)=Disp;

Results(count,2)=Hsig;

Results(count,3)=initialtrim;

Results(count,4)=Vms;

Results(count,5)=RT2;

Results(count,6)=planres(1,1); % Asiento dinámico

Results(count,7)=planres(1,2); %(CLbeta/2)^(0.5)

Results(count,8)=planres(1,3);% Asiento crítico - deg

Results(count,9)=planres(1,4); % 1 pasa el limite - 0 no pasa el limite

Results(count,10)=planres(1,5); %Lambdaw

count=count+1;

end

```
for ai=1:ref(1,1)
```

% Variación de P/D para la hélice central

for bi=1:ref(1,2)

Dprop(1,1)=Dprop2(ai,1)*0.0254; %metros

Dprop(1,2)=Dprop2(bi,2)*0.0254; %metros

Dprop(1,3)=Dprop2(ai,1)*0.0254; %metros

PDratio(1,1)=PDratio2(ai,1);

PDratio(1,2)=PDratio2(bi,2); PDratio(1,3)=PDratio2(ai,1); TotalFC=0;

for i=1:mediciones

Vms=Vship(i,1)*0.5144; %m/s

% Calculo de Kt/J^2

Va=Vms*(1-wfraction); %[m/s]

[KQengines,~,Jengines,Effiengines]=propellercoef(Nengines,...

Dprop,Va,tdeduction,PDratio,DAR,RT(i,1),RHO);

disp(i)

[RPMeng,~,DHP,THP]=powercalculation(Nengines,Dprop,gear,... Vms,Va,KQengines,Jengines,Effiengines,RT(i,1),RHO);

% Consumo de combustible

Vshipknot=Vship/0.51444; % knots [TotFC,FCengine,~,BHPeng]=fuelcons(DHP,operation(i,1),... SFCgal,Corr,RPMeng,Nengines); disp(TotFC) TotalFC=TotalFC+TotFC; count3=count3+1; Results3(count3,1)=Vms; Results3(count3,2)=Disp; Results3(count3,3)=Hsig; Results3(count3,4)=lcg; Results3(count3,5)=PDratio(1,1); Results3(count3,6)=PDratio(1,2); Results3(count3,7)=PDratio(1,3); Results3(count3,8)=RPMeng(1,1); Results3(count3,9)=RPMeng(1,2); Results3(count3,10)=RPMeng(1,3); Results3(count3,11)=BHPeng(1,1); Results3(count3,12)=BHPeng(1,2); Results3(count3,13)=BHPeng(1,3); Results3(count3,14)=THP(1,1); Results3(count3,15)=THP(1,2); Results3(count3,16)=THP(1,3); end

Results2(count2,1)=Disp; Results2(count2,2)=Hsig;

```
Results2(count2,3)=initialtrim;
            Results2(count2,4)=PDratio(1,1);
            Results2(count2,5)=PDratio(1,2);
            Results2(count2,6)=PDratio(1,3);
            Results2(count2,7)=Dprop(1,1);
            Results2(count2,8)=Dprop(1,2);
            Results2(count2,9)=Dprop(1,3);
            Results2(count2,10)=TotalFC;
            Results2(count2,11)=lcg;
            Results2(count2,12)=T;
            count2=count2+1;
            disp(Disp)
            disp(Hsig)
            disp(TotalFC)
            disp('finaliza iteracion')
       end
     end
  end
end
%% Escribir en excel los resultados
  Sheetres='Results';
  writematrix(Results2,resfilename,'Sheet',Sheetres,'Range','A23:L5023');
  Sheetres='Results2';
  writematrix(Results, resfilename, 'Sheet', Sheetres, 'Range', 'A6: J5023');
  writematrix(Results3,resfilename,'Sheet',Sheetres,'Range','M6:AC5006');
```

ii. Código fuente para hallar asiento óptimo

Código para el cálculo de resistencia usando el método de planeo de Savitsky

%% Documentos filename='02 Data_ShipA.xlsx'; resfilename='A_Optimal_DinTrim_Ship A_28knots.xlsx'; Resvar= xlsread(filename,'General Data','B4:B25'); %Datos de Condiciones de peso a evaluar Cond= xlsread(filename,'General Data','B27:B33'); %% Bm=Resvar(8,1);%[m]manga de popa en la china

Nombre del documento: Dimtrimvariation

```
Betadeg=Resvar(5,1); % Ángulo de astilla muerta [deg]
Vms=Resvar(17,1)*0.5144;
RHO=Resvar(13,1); %Para agua salada [kg/m^3]
Viscos=Resvar(14,1);%m/s^2
%%
Res=zeros(1302,11);
i=0;
for ipeso=1:Cond(1,1)
  Disp2=Cond(ipeso+1,1);
  Disp=Disp2*1000*9.81; %N
  trimangle=0.5;
  while (trimangle<=4.83)
    i=i+1;
    [Rstot,RP,RV,Lk,Lc,dkeel,Porpoise,Lambdaw]=...
     SavitskyGendintrim(Bm,Betadeg,Vms,RHO...
     ,Viscos,Disp,trimangle);
    Res(i,1)=Disp2;
    Res(i,2)=Rstot/Disp;
    Res(i,3)=RP/Disp;
    Res(i,4)=RV/Disp;
    Res(i,5)=Lk;
    Res(i,6)=Lc;
    Res(i,7)=dkeel;
    Res(i,8)=Porpoise(1,1);
    Res(i,9)=Porpoise(1,2);
    Res(i,10)=Porpoise(1,3);
    Res(i,11)=trimangle;
    Res(i,12)=Lambdaw;
    trimangle=trimangle+0.01;
  end
```

end

%% Escribir en documento Sheetres='Results'; writematrix(Res,resfilename,'Sheet',Sheetres,'Range','A3:N1304'); %% Variación de Velocidad Opttrim=xlsread(resfilename,'Resumen','E4:E6'); Res2=zeros(42,2); i=0;

```
for j=1:3
trimangle=Opttrim(j,1);
  for vship=22:35
     i=i+1;
    Vms=vship*0.5144;
     Cv=Vms/sqrt(9.81*Bm);
    trimangle=trimangle+0.5;
     [Rstot,~,~,~,~,~,Lambda]=...
     SavitskyGendintrim(Bm,Betadeg,Vms,RHO...
     ,Viscos,Disp,trimangle);
     Res2(i,1)=Cv/sqrt(Lambda);
     Res2(i,2)=Rstot/Disp;
  end
end
```

Sheetres='Results2';

writematrix(Res2,resfilename,'Sheet',Sheetres,'Range','B2:C43');

Cálculo del consumo de combustible para diferentes ángulos de asiento estático

Nombre del documento: Pruebatípica2 %% Se agrega los datos desde el excel correspondiente filename='02 Data_ShipM.xlsx'; resfilename='04 Results_ShipM.xlsx'; %Dimensiones principales MainDim= xlsread(filename, 'General Data', 'B1:B3'); %Variables para cálculo de Resistencia Resvar= xlsread(filename, 'General Data', 'B4:B25'); %Datos de Condiciones de peso a evaluar y estado de mar Cond= xlsread(filename,'General Data','B27:B39');

%Coeficientes para obtener Kt,Kq,eff de la hélice Propdat = xlsread(filename,'General Data','B47:D54'); %Datos de la hélice %Datos de la operacion operation= xlsread(filename,'Operation','D5:E50'); mediciones=Resvar(22,1);

%% Definicion de datos %Datos para calculo de consumo de combustible SFCgal=0.08; %sPECIFIC FUEL CONSUMPTION [Gal/(Hp*hr)] % Constantes generales wfraction=Resvar(11,1); %[] %Según Blount and Bartee

tdeduction=Resvar(12,1);%[] RHO=Resvar(13,1); %Para agua salada [kg/m^3] Viscos=Resvar(14,1);%m^2/s Nengines=Resvar(1,1); %Número de motores fuera de borda % Caracteristicas de la embarcación Vcant=abs(((Resvar(3,1)+Resvar(4,1))-Resvar(2,1))/Resvar(4,1)); % Cantidad de datos de velocidades a procesar Vinter=Resvar(4,1); % Incremento de velocida, knots Betadeg=Resvar(5,1); % Ángulo de astilla muerta Bpx=Resvar(8,1);%[m] manga en china AT=Resvar(9,1);% área del espejo [m^2] iE=Resvar(10,1);% ángulo de entrada en grados TF=Resvar(15,1);%Vertical distance from the bulbous section centre to the keel line[m] Cstern=Resvar(16,1); %Caracteristicas del motor y la hélice gear=Propdat(4,:); DAR=Propdat(7,:); EAR=Propdat(5,:); Dprop2=Propdat(1,:); % inches Dprop=Dprop2*0.0254; % meters Pitch=Propdat(2,:); % pulgadas PDratio=Pitch./Dprop2; %% Cálculos m=length(operation); Vship=operation(:,2); Results=zeros(200,12);

%Results3=zeros(5000,3); RT=zeros(mediciones,1); count=0; count2=1; for ipeso=1:Cond(1,1) Disp=Cond(ipeso+1,1); Disp2=Disp*1000*9.81; %[N] initialtrim=0;

while(initialtrim<=5)

Results2=zeros(50,12);

% Obtener valores de hidrostáticas

[Lpp,LWL,LCB,T,VOL,SMOJ,CB,CM,CP,CWP,fdist,adist,epsilon,lcg...

]=obtenvartrim(filename,initialtrim,Disp);

%Variación de estado de mar

for imar=1:Cond(8,1)

Hsig=Cond(imar+8,1); % [m]

% Variación de P/D para las hélices de babor y estribor

RT=zeros(mediciones,1);

TotalFC=0;

for i=1:mediciones

Vms=Vship(i,1)*0.5144; %m/s

%Resistencia Total

[RT2,planres]=totalresistance(Lpp,LWL,Bpx,T,TF,VOL,...

AT,SMOJ,CB,CM,CP,CWP,LCB,Cstern,iE,Vms,Betadeg,RHO,...

fdist,adist,epsilon,Viscos,Disp2,lcg,Hsig);

RT(i,1)=RT2;% Resistencia total en KgF

count=count+1;

Vms=Vship(i,1)*0.5144; % m/s

Va=Vms*(1-wfraction); % [m/s]

[~,KQengines,Jengines,Effiengines]=propellercoefV2(Lpp,Nengines,Dprop,Va,td eduction,wfraction,PDratio,DAR,RT(i,1),RHO,initialtrim);

[RPMeng,~,DHP,EHPeng]=powercalculation(Nengines,Dprop,gear,...Vms,Va,KQ engines,Jengines,Effiengines,RT(i,1),RHO);

[TotFC,FCengine,~,BHPeng]=fuelcons(DHP,operation(i,1),SFCgal);

```
TotalFC=TotalFC+TotFC;
```

```
Results(count,1)=Disp;
```

Results(count,2)=Hsig;

Results(count,3)=initialtrim;

Results(count,4)=Vms;

Results(count,5)=RT2;

Results(count,6)=planres(1,1); % asiento dinámico

Results(count,7)=planres(1,2); %(CLbeta/2)^(0.5)

Results(count,8)=planres(1,3);% Asiento dinámico - deg

Results(count,9)=planres(1,4); % 1 pasa el limite - 0 no pasa el limite

Results(count,10)=RPMeng(1,1); % RPM por cada motor

Results(count,11)=RPMeng(1,2); %

Results(count,12)=RPMeng(1,3); %

Results(count,13)=BHPeng(1,1); % BHP

Results(count,14)=BHPeng(1,2); %

Results(count,15)=BHPeng(1,3); %

Results(count,16)=EHPeng(1,1); % EHP por cada motor

```
Results(count,17)=EHPeng(1,2); %
Results(count,18)=EHPeng(1,3); %
Results(count,19)=lcg; %
Results(count,20)=planres(1,5); %Lambdaw
disp([initialtrim,planres(1,2)])
```

end

```
Results2(count2,1)=Disp;
Results2(count2,2)=Hsig;
Results2(count2,3)=initialtrim;
Results2(count2,4)=PDratio(1,1);
Results2(count2,5)=PDratio(1,2);
Results2(count2,6)=PDratio(1,3);
Results2(count2,7)=Dprop(1,1);
Results2(count2,8)=Dprop(1,2);
Results2(count2,8)=Dprop(1,3);
Results2(count2,10)=TotalFC;
Results2(count2,11)=lcg;
Results2(count2,12)=T;
```

```
count2=count2+1;
disp([initialtrim,Disp,Hsig,TotalFC])
```

disp('finaliza iteracion')

end

initialtrim=initialtrim+0.5;

end

end

```
%% Escribir en excel
```

```
Sheetres='Results';
```

writematrix(Results2,resfilename,'Sheet',Sheetres,'Range','A23:L5023');

Sheetres='Results2';

```
writematrix(Results,resfilename,'Sheet',Sheetres,'Range','A6:T5023');
```

iii. Código fuente para hallar combinación de hélice óptima

Nombre de documento: Prueba Típica %% Se agrega los datos desde el excel correspondiente filename='02 Data_ShipM.xlsx'; resfilename='02 Results_ShipA trim 2.5.xlsx';

% Initialtrim initialtrim=2.5; %Dimensiones principales MainDim= xlsread(filename, 'General Data', 'B1:B3'); %Variables para cálculo de Resistencia Resvar= xlsread(filename, 'General Data', 'B4:B25'); %Datos de Condiciones de peso a evaluar y estado de mar Cond= xlsread(filename,'General Data','B27:B39'); %Cond(8,1)=3; %num2= xlsread(filename, 'Datos generales', 'B11:C28'); %Coeficientes para obtener Kt,Kq,eff de la hélice Propdat = xlsread(filename,'General Data','B47:D54'); %Datos de la hélice %Datos para iteracion (Trimado iniciala, Pitch, Diametro helice) IterVar= xlsread(filename,'Iteraciones','I4:L18'); %Valor inicial, Valor Final, Intervalo %Datos de la operacion operation= xlsread(filename,'Operation','D5:E50'); mediciones=Resvar(22,1); %% Definicion de datos

% Constantes generales

wfraction=Resvar(11,1); %[] %Según Blount and Bartee tdeduction=Resvar(12,1);%[] RHO=Resvar(13,1); %Para agua salada [kg/m^3] Viscos=Resvar(14,1);%m/s^2 Nengines=Resvar(1,1); %Número de motores fuera de borda

% Caracteristicas de la embarcacion Vcant=abs(((Resvar(3,1)+Resvar(4,1))-Resvar(2,1))/Resvar(4,1)); % Cantidad de datos de velocidades a procesar Vinter=Resvar(4,1); Betadeg=Resvar(5,1); %Ángulo de astilla muerta Bpx=Resvar(8,1);%[m]manga en LWL AT=Resvar(8,1);%[m]manga en LWL AT=Resvar(9,1);% Área mojada de espejo [m^2] iE=Resvar(10,1);% ángulo de entrada en grados TF=Resvar(15,1);% Dintancia vertical del centro del bulbo (0 si no existe) hasta la quilla[m] Cstern=Resvar(16,1);

%Caracteristicas del motor y la helice gear=Propdat(4,:); DAR=Propdat(7,:); EAR=Propdat(5,:); Corr=Propdat(8,:); SFCgal=[1E-9,-5E-6,0.1004]; %specific fuel consumption [Gal/(Hp*hr)] Itervar=Resvar(21,1); % cantidad de variables a iterar

%% Variación de helice

```
j=1;
PDratio2=zeros(IterVar(15,j),Nengines-1);
pitch=zeros(IterVar(15,j),Nengines-1);
Dprop2=zeros(IterVar(15,j),Nengines-1); %inches
ref=zeros(IterVar(15,j),Nengines-1);
counted=0;
for ci=1:(Nengines-1)
  %Variacion de Pitch
  for i=1:IterVar(15,j)
     counted=counted+1;
     Dprop2(i,ci)=IterVar(i,j);
     pitch(i,ci)=IterVar(i,j+1);
     ref(1,ci)=ref(1,ci)+1;
     PDratio2(ref(1,ci),ci)=pitch(i,ci)/Dprop2(i,ci);
  end
  j=j+2;
```

end

```
%% Cálculos
```

```
m=length(operation);

Vship=operation(:,2);

Results=zeros(5000,9);

Results2=zeros(5000,12);

Results3=zeros(5000,3);

RT=zeros(mediciones,1);

count=1;

count2=1;

count2=1;

count3=0;

for ipeso=1:Cond(1,1)

Disp=Cond(ipeso+1,1);

Disp=Cond(ipeso+1,1);

Disp2=Disp*1000*9.81; %[N]

% Obtener valores de hidrostáticas

[Lpp,LWL,LCB,T,VOL,SMOJ,CB,CM,CP,CWP,fdist,adist,epsilon,lcg...
```

```
]=obtenvartrim(filename,initialtrim,Disp);
```

%Variación de estado de mar

for imar=1:Cond(8,1)

Hsig=Cond(imar+8,1); % [m]

j=2;

% Variación de P/D para las hélices de babor y estribor

RT=zeros(mediciones,1);

```
for i=1:mediciones
```

Vms=Vship(i,1)*0.5144; %m/s

%Resistencia Total

[RT2,planres]=totalresistance(Lpp,LWL,Bpx,T,TF,VOL,...

AT,SMOJ,CB,CM,CP,CWP,LCB,Cstern,iE,Vms,Betadeg,RHO,...

fdist,adist,epsilon,Viscos,Disp2,Icg,Hsig);

```
RT(i,1)=RT2;% Resistencia total en KgF
```

Results(count,1)=Disp;

Results(count,2)=Hsig;

Results(count,3)=initialtrim;

Results(count,4)=Vms;

Results(count,5)=RT2;

Results(count,6)=planres(1,1); % Asiento dinámico

Results(count,7)=planres(1,2); %(CLbeta/2)^(0.5)

Results(count,8)=planres(1,3);%Asiento crítico - deg

Results(count,9)=planres(1,4); % 1 pasa el limite - 0 no pasa el limite

Results(count,10)=planres(1,5); %Lambdaw

count=count+1;

end

```
for ai=1:ref(1,1)
```

% Variación de P/D para la hélice central

```
for bi=1:ref(1,2)
```

Dprop(1,1)=Dprop2(ai,1)*0.0254; %metros

Dprop(1,2)=Dprop2(bi,2)*0.0254; %metros

Dprop(1,3)=Dprop2(ai,1)*0.0254; %metros

```
PDratio(1,1)=PDratio2(ai,1);
```

PDratio(1,2)=PDratio2(bi,2);

PDratio(1,3)=PDratio2(ai,1);

TotalFC=0;

disp(PDratio)

for i=1:mediciones

Vms=Vship(i,1)*0.5144; %m/s

% Calculo de Kt/J^2

Va=Vms*(1-wfraction); %[m/s]

[KQengines,~,Jengines,Effiengines]=propellercoef(Nengines,...

Dprop,Va,tdeduction,PDratio,DAR,RT(i,1),RHO);

disp(i)

% Calculo de RPM y potencias

[RPMeng,~,DHP,EHPeng]=powercalculation(Nengines,Dprop,gear,... Vms,Va,KQengines,Jengines,Effiengines,RT(i,1),RHO);

% Consumo de combustible

Vshipknot=Vship/0.51444; % knots

[TotFC,FCengine,~,BHPeng]=fuelcons(DHP,operation(i,1),...

SFCgal,Corr,RPMeng,Nengines);

TotalFC=TotalFC+TotFC;

count3=count3+1;

Results3(count3,1)=Vms; Results3(count3,2)=Disp; Results3(count3,3)=Hsig; Results3(count3,4)=lcg; Results3(count3,5)=PDratio(1,1); Results3(count3,6)=PDratio(1,2); Results3(count3,7)=PDratio(1,3); Results3(count3,8)=RPMeng(1,1); Results3(count3,9)=RPMeng(1,2); Results3(count3,10)=RPMeng(1,3); Results3(count3,11)=BHPeng(1,1); Results3(count3,12)=BHPeng(1,2); Results3(count3,13)=BHPeng(1,3); Results3(count3,14)=EHPeng(1,1); Results3(count3,15)=EHPeng(1,2); Results3(count3,16)=EHPeng(1,3);

end

Results2(count2,1)=Disp; Results2(count2,2)=Hsig; Results2(count2,3)=initialtrim; Results2(count2,4)=PDratio(1,1); Results2(count2,5)=PDratio(1,2); Results2(count2,6)=PDratio(1,3); Results2(count2,7)=Dprop(1,1); Results2(count2,8)=Dprop(1,2);

```
Results2(count2,9)=Dprop(1,3);
            Results2(count2,10)=TotalFC;
            Results2(count2,11)=lcg;
            Results2(count2,12)=T;
            count2=count2+1;
            disp(Disp)
            disp(Hsig)
            disp(TotalFC)
            disp('finaliza iteracion')
       end
     end
  end
end
%% Escribir en excel
  Sheetres='Results';
  writematrix(Results2,resfilename,'Sheet',Sheetres,'Range','A23:L5023');
  Sheetres='Results2';
  writematrix(Results, resfilename, 'Sheet', Sheetres, 'Range', 'A6: J5023');
  writematrix(Results3, resfilename, 'Sheet', Sheetres, 'Range', 'M6:AC5006');
```

iv. Función general de resistencia

function [RT,RTreg,planres,Vship]=totalresistanceV2(Lpp,LWL,B,T,TF,VOL,... AT,SMOJ,CB,CM,CP,CWP,LCB,Cstern,iE,Vms,Vcant,Vinter,Betadeg,RHO,... fdist,adist,epsilon,Viscos,Disp,lcg,Hsig)

% NOTACION

- % RTdisp= Resistencia total de desplazamiento Kg
- % RTplann= Resistencia total en planeo Kg
- % RTsp= Resistencia total en semi planeo Kg
- % RT= union de RTdisp, RTplann, RTsp Kg
- % Trim= matriz con Vship-m/s, timado dinamico-deg, Longitud de china-m
- % L= eslora en línea de agua en metros
- % B= manga rn metros
- % T=Calado en metros
- % TF=Vertical distance from the bulbous section centre to the keel line[m]
- % Vol= Volumen sumergido en m^3
- % AT= area de espejo en m^2
- % Smoj= superficie mojada en m^2
- % CB= Coeff. de bloque []

```
% CM= Coeff. de secci'on media []
% CP= Coeff. prismático []
% CWP= Coef. plano de linea de agua []
% LCB= Cetro de boyantez longitudinal [m]
% Cstern
% iE= Angulo de entrada en deg
% Vms= Velocidad inicial [m/s]
% Vcant= Cantidad de valores de velocidad que se desea evaluar []
% Vinter= diferencia entre valores de velocidad a evaluar [m/s]
% Disp= Desplazamiento [N]
% Icg Centro de gravedad medido desde el espejo[m]
% triminicial= 'angulo de trimado estatico [deg]
%% Calculo de Resistencia
tv=1:
ireg=1;
Lbwl=Lpp*0.2; %Longitud de la proa [m]
RT=zeros(Vcant,1);
RTreg=zeros(Vcant,4);
Vship=zeros(Vcant,1);
SLR=zeros(Vcant,1);
Factcorr=1;
%Resistencia añadida por estado de mar
%Raw=(1/16)*RHO*9.81*Hsig^2*B*sqrt(B/Lbwl); Ship Speed-Power Performance Assessment
Raw=0;
Cstatic=Disp/(RHO*9.8*(B^3));
for jv=1:Vcant
  Vship(jv,1)=Vms;
  %Fnv=Vms/sqrt(9.81*(VOL^(1/3)));
  SLR(jv,1)=(Vms/0.5144)/sqrt(LWL);%Speed/Length ratio
  if(SLR(jv,1) \le 1.3)
    %Holtrop
    [Rhtot,~,~,~,~]=HoltropResistance(Vms,Lpp,B,T,TF,VOL,AT,...
       SMOJ,CB,CM,CP,CWP,LCB,Cstern,iE,Viscos,RHO);
     Raw=(1/16)*RHO*9.81*Hsig^2*B*sqrt(B/Lbwl);
     RT(jv,1)=Rhtot+Raw;
  elseif(SLR(jv,1)<=3)</pre>
     %Modelo matem'atico para embarcaciones rapidas
     [Rsptot,~,~,~,~,~]=PreplanningResistance(Lpp,B,VOL,lcg,Betadeg,Vms,Disp);
     Raw=(1/16)*RHO*9.81*Hsig^2*B*sqrt(B/Lbwl);
     RT(jv,1)=(Rsptot+Raw);
```
```
Rcorr=Rsptot+Raw;
  Vref=Vms;
elseif(SLR(jv,1)>3)
  %Savitsky
  [Rptot,~,~,trimfinal,Lk,~,~,Pstab]=SavitskyGenResistance(...
     B,Betadeg,Vms,RHO,fdist,adist,epsilon,Viscos,Disp,Icg);
  if (SLR(jv,1)==2)
     Raw=(RHO*2.20462)*(B^3)*(66*(10^-6)*(0.5+Hsig/B)*...
       (((LWL/(B*3.28))^3)/Cstatic)+0.0043*(trimfinal-4));
  elseif (SLR(jv,1)==4)
     Raw=(Disp*2.20462/9.81)*0.3*(Hsig/B)*(1.76-(trimfinal/6)-2*...
       ((tand(Betadeg))^3))/(1+2*Hsig/B);
  elseif (SLR(jv,1)>=6)
    Raw=(RHO*2.20462)*(B^3)*0.158*(Hsig/B)/(1+(Hsig/B)*(0.12*...
       Betadeg-21*Cstatic*(5.6-(LWL/(B*3.28)))+7.5*(6-(LWL/(B*3.28)))));
  elseif (0<SLR(jv,1)<2)
    Rini=0;
     Rfin=(RHO*2.20462)*(B^3)*(66*(10^-6)*(0.5+Hsig/B)*...
       (((LWL/(B*3.28))^3)/Cstatic)+0.0043*(trimfinal-4));
    Raw=Rini+(Rfin-Rini)*(SLR(jv,1)-0)/(2-0);
  elseif (2<SLR(jv,1)<4)
    Rini=(RHO*2.20462)*(B^3)*(66*(10^-6)*(0.5+Hsig/B)*...
       (((LWL/(B*3.28))^3)/Cstatic)+0.0043*(trimfinal-4));
    Rfin=(Disp*2.20462/9.81)*0.3*(Hsig/B)*(1.76-(trimfinal/6)-2*...
       ((tand(Betadeg))^3))/(1+2*Hsig/B);
     Raw=Rini+(Rfin-Rini)*(SLR(jv,1)-2)/(4-2);
  elseif (4<SLR(jv,1)<6)
    Rini=(Disp*2.20462/9.81)*0.3*(Hsig/B)*(1.76-(trimfinal/6)-2*...
       ((tand(Betadeg))^3))/(1+2*Hsig/B);
    Rfin=(RHO*2.20462)*(B^3)*0.158*(Hsig/B)/(1+(Hsig/B)*(0.12*...
       Betadeg-21*Cstatic*(5.6-(LWL/(B*3.28)))+7.5*(6-(LWL/(B*3.28)))));
     Raw=Rini+(Rfin-Rini)*(SLR(jv,1)-4)/(6-4);
  end
  RT(jv,1)=Rptot+(Raw/2.20462);
  planres(tv,1)=Vms;
  planres(tv,2)=trimfinal;
  planres(tv,3)=Lk;
  planres(tv,4)=Pstab;
  if (tv = = 1)
```

```
Rpref=RT(jv,1);
       Vref=Vms;
     end
    tv=tv+1;
  end
  Vms=Vms+(Vinter*0.5144);
end
%% Asignacion de Variables
for jv=1:Vcant
  if (SLR(jv,1)<=1.3)
     %Función de resistencia para displacement
     RTreg(ireg,1)=Vms/0.5144; %[Kn]
     RTreg(ireg,2)=RT(jv,1);
     %disp('Displacement assigned')
  elseif(SLR(jv,1)<=3)</pre>
     %Función de resistencia para Semi Planning
     RT(jv,1)=RT(jv,1)*Factcorr;
     RTreg(ireg,1)=Vms/0.5144; %[Kn]
     RTreg(ireg,4)=RT(jv,1);
     %disp('preplanning assigned')
  else
     %Funcion de resistencia para planning
     RTreg(ireg,1)=Vms/0.5144; %[Kn]
     RTreg(ireg,3)=RT(jv,1);
     %disp('planning assigned')
  end
  ireg=ireg+1;
end
end
```

Función de ingreso de datos para un asiento estático específico

function

```
[Lpp,LWL,LCB,T,VOL,SMOJ,CB,CM,CP,CWP,fdist,adist,epsilon,lcg]=obtenvartrim(filename,initialtrim,Dis
p)
  relat=0;
  numer=1;
i=1;
trim=initialtrim;
  while(i<=numer)
    %Se extraen datos de Hidrostaticas para el asiento correspondiente</pre>
```

```
Sheethidro=['Hidrotrim',num2str(trim)];
```

```
Hid= xlsread(filename,Sheethidro,'B1:AP22');
```

```
[~,n]=size(Hid);
```

```
%Se busca el desplazamiento en los datos de las hidrostáticas
```

```
%(Regresión)
```

```
id=1;
```

```
while(id<=n)</pre>
```

```
if(Hid(16,id)>=Disp)
```

```
yd=id-1;
```

```
if(Hid(16,id)==Disp)
```

```
relat2=0;
```

else

```
relat2=(Disp-Hid(16,yd))/(Hid(16,id)-Hid(16,yd));
```

end

%Se definen variables

```
Lpp1(1,i)=Hid(5,yd)+(Hid(5,id)-Hid(5,yd))*relat2;
  LWL1(1,i)=(Hid(22,yd)+(Hid(22,id)-Hid(22,yd))*relat2)*3.28; % [ft]
  LCB1(1,i)=Hid(6,yd)+(Hid(6,id)-Hid(6,yd))*relat2;
  T1(1,i)=Hid(15,yd)+(Hid(15,id)-Hid(15,yd))*relat2;
  VOL1(1,i)=Hid(7,yd)+(Hid(7,id)-Hid(7,yd))*relat2;
  SMOJ1(1,i)=Hid(9,yd)+(Hid(9,id)-Hid(9,yd))*relat2;
  CB1(1,i)=Hid(11,yd)+(Hid(11,id)-Hid(11,yd))*relat2;
  CM1(1,i)=Hid(12,yd)+(Hid(12,id)-Hid(12,yd))*relat2;
  CP1(1,i)=Hid(10,yd)+(Hid(10,id)-Hid(10,yd))*relat2;
  CWP1(1,i)=Hid(13,yd)+(Hid(13,id)-Hid(13,yd))*relat2;
  fdist1(1,i)=Hid(1,yd)+(Hid(1,id)-Hid(1,yd))*relat2;
  adist1(1,i)=Hid(2,yd)+(Hid(2,id)-Hid(2,yd))*relat2;
  epsilon1(1,i)=Hid(3,yd)+(Hid(3,id)-Hid(3,yd))*relat2;
  lcg1(1,i)=Hid(4,yd)+(Hid(4,id)-Hid(4,yd))*relat2;
  break
else
  id=id+1;
```

end

end

```
i=i+1;
trim=trim+1;
```

end

% Interpolacion linear para hayar el valor correspondiente if(relat==0)

```
Lpp=Lpp1(1,1);

LWL=LWL1(1,1); % [ft]

LCB=LCB1(1,1);

T=T1(1,1);

VOL=VOL1(1,1);

SMOJ=SMOJ1(1,1);

CB=CB1(1,1);

CM=CM1(1,1);

CWP=CWP1(1,1);

fdist=fdist1(1,1);

adist=adist1(1,1);

epsilon=epsilon1(1,1);

lcg=lcg1(1,1);
```

else

```
Lpp=Lpp1(1,1)+(Lpp1(1,2)-Lpp1(1,1))*relat;

LWL=LWL1(1,1)+(LWL1(1,2)-LWL1(1,1))*relat; % [ft]

LCB=LCB1(1,1)+(LCB1(1,2)-LCB1(1,1))*relat;

T=T1(1,1)+(T1(1,2)-T1(1,1))*relat;

VOL=VOL1(1,1)+(VOL1(1,2)-VOL1(1,1))*relat;

SMOJ=SMOJ1(1,1)+(SMOJ1(1,2)-SMOJ1(1,1))*relat;

CB=CB1(1,1)+(CB1(1,2)-CB1(1,1))*relat;

CM=CM1(1,1)+(CM1(1,2)-CM1(1,1))*relat;

CP=CP1(1,1)+(CP1(1,2)-CP1(1,1))*relat;

CWP=CWP1(1,1)+(GWP1(1,2)-CWP1(1,1))*relat;

fdist=fdist1(1,1)+(fdist1(1,2)-fdist1(1,1))*relat;

adist=adist1(1,1)+(adist1(1,2)-adist1(1,1))*relat;

epsilon=epsilon1(1,1)+(epsilon1(1,2)-epsilon1(1,1))*relat;

lcg=lcg1(1,1)+(lcg1(1,2)-lcg1(1,1))*relat;
```

end

v. Función de resistencia para régimen de desplazamiento

Función General

function

[Rhtot,RFR,RW,RTR,RCO]=HoltropResistance(Vms,Lpp,B,T,TF,VOL,AT,SMOJ,CB,CM,CP,CWP,LCB,C stern,iE,Viscos,RHO)

- % NOTACION
- % RT : RESISTENCIA TOTAL
- % RFR : RESISTENCIA FRICCIONAL
- % K1 : FACTOR DE FORMA
- % RAPP : RESISTENCIA POR APENDICE
- % RW : RESISTENCIA POR FORMACION DE OLAS
- % RB : RESISTENCIA POR PRESION ADICIONAL DEL BULBO DE PROA CERCA
- % DE LA SUPERFICIE DEL AGUA
- % RTR : RESISTENCIA POR PRESION ADICIONAL DEBIDO A LA INMERSION DEL TRANSOM.
- % RCO : RESISTENCIA POR CORRELACION MODELO-BUQUE

RN=Vms*Lpp/Viscos; %[]

```
k1=0.0432+(0.0444-0.0432)*(RN-3.5E5)/(7.5E5-3.5E5)
```

LR=Lpp*(1-CP+0.06*CP*LCB/(4*CP-1)); %m

C14=1+0.011*Cstern; %[]

UK1=0.93+0.487118*C14*((B/Lpp)^1.06806)*((T/Lpp)^0.46106)*((Lpp/LR)^0.121563)*(((Lpp^3)/VOL)^0.3 6486)*((1-CP)^(-0.604247)); %[]

C3=0; %Se considera que la embarcaci'on no tiene bulbo

C2=exp(-1.89*sqrt(C3));

L3VOL =(Lpp^3)/VOL;

if((TF/Lpp)<=0.04)

C4=TF/Lpp;

else

C4=0.04;

end

```
CA = 0.006^{*}((Lpp + 100.0)^{(-0.16)}) - 0.00205 + 0.003^{*} sqrt(Lpp / 7.5)^{*}(CB^{4})^{*}C2^{*}(0.04 - C4); \ \% []
```

C5=1-0.8*AT/(B*T*CM);

```
C17=6919.3*(CM^(-1.3346))*((1/L3VOL)^2.00977)*((Lpp/B - 2.0)^1.40692);
```

M3=-7.2035*((B/Lpp)^0.326869)*((T/B)^0.605375);

DRW=-0.9;

```
%%
```

```
if((Lpp/B) \le 12)
```

LAMBDA=1.446*CP-0.03*Lpp/B;

else

LAMBDA=1.446*CP-0.36;

end

%%

if(L3VOL<=512)

C15=-1.69385;

elseif(L3VOL<=1726.91)

C15=-1.69385+(Lpp/(VOL^0.33333)-8.0)/2.36;

```
else
    C15=0;
end
%%
if((B/Lpp)<=0.11)
  C7=0.229577*((B/Lpp)^0.33333);
elseif((B/Lpp)<=0.25)</pre>
    C7=B/Lpp;
  else
    C7=0.5-0.0625*Lpp/B;
end
%%
C1=2223105*(C7^3.78613)*((T/B)^1.07961)*((90-iE)^(-1.37565));
%%
if(CP<=0.8)
  C16 = 8.07981*CP-13.8673*(CP^2)+6.984388*(CP^3);
else
  C16=1.73014-0.7067*CP;
end
%%
M1=0.0140407*Lpp/T-1.75254*((VOL^0.333333)/Lpp )-4.79323*B/Lpp-C16;
PB=0; %Embarcación sin bulbo
%% Cálculo de Resistencia total
RCO=CorrelaResistance(Vms,RHO,CA,SMOJ); % KgF
RTR=TransomResistance(Vms,B,CWP,RHO,AT);% KgF
RW=WaveResistance(Vms,Lpp,RHO,C1,C15,C17,C2,C5,M1,M3,DRW,LAMBDA,VOL);% KgF
RFR=(1+k1)*FrictionalResistance(Vms,Lpp,Viscos,RHO,SMOJ,UK1);% KgF
Rhtot=RCO+RTR+RW+RFR; % KgF
end
```

Función para encontrar la resistencia por correlación

function Rco=CorrelaResistance(Vms,RHO,CA,SMOJ)
 NOTACIÓN
 RCO : RESISTENCIA POR CORRELACION MODELO-BUQUE
 Rco=0.5*RHO*(Vms^2)*SMOJ*CA/9.81;
 end

Función para encontrar la resistencia por efecto del espejo

function RTR=TransomResistance(Vms,B,CWP,RHO,AT)

% NOTACION

% RTR : RESISTENCIA POR PRESION ADICIONAL DEBIDO A LA INMERSION DEL TRANSOM.
if(AT==0)
 C6=0;
 RTR=0;
else
 FNT=Vms/sqrt(2*9.81*AT/(B+B*CWP));
 if(FNT<5)
 C6=0.2*(1-0.2*FNT);
 RTR = 0.5 * RHO *(Vms^2) * AT * C6 / 9.81;
 else
 RTR=0;
 end
end
end</pre>

Función para encontrar la resistencia por formación de olas

function RW=WaveResistance(Vms,L,RHO,C1,C15,C17,C2,C5,M1,M3,DRW,LAMBDA,VOL)

```
%
    NOTACIÓN
    RW : RESISTENCIA POR FORMACION DE OLAS
%
FN=Vms/sqrt(9.81*L);
M4=C15*0.4*exp(-0.034*FN^(-3.29));
if (FN>=0.55)
  RW=C17*C2*C5*VOL*RHO*exp(M3*(FN^DRW)+M4*cos(LAMBDA*(FN^(-2))));
elseif (FN<=0.40)
  RW=C1*C2*C5*VOL*RHO*exp(M1*(FN^DRW)+M4*cos(LAMBDA*(FN^(-2))));
else
  M4=C15*0.4*exp(-0.034*(FN^(-3.29)));
  RWB=C17*C2*C5*VOL*RHO*exp(M3*(0.55^DRW)+M4*cos(LAMBDA*(0.55^(-2))));
  RWA=C1*C2*C5*VOL*RHO*exp(M1*(0.4^DRW)+M4*cos(LAMBDA*(0.4^(-2))));
  RW=RWA+(10*FN-4)*(RWB-RWA)/1.5;
end
end
```

Función para encontrar la resistencia friccional

function RFR=FrictionalResistance(Vms,L,Viscos,RHO,SMOJ,UK1)

% NOTACIÓN

```
% RFR: RESISTENCIA FRICCIONAL
```

```
RN=Vms*L/Viscos;
```

```
X=log10 (RN);
```

```
%CF=0.0303*(RN^ (1/7));
```

```
CF=0.075/(X-2) ^2;
RFR=0.5*RHO*SMOJ*(Vms^2)*CF*UK1/9.81;
end
```

vi. Función de preplaning

Función de preplanning según la formulación de [51]

function [RT,RTdisp]=SavitskyPreplanningResistance(LWL,Bpx,Vms,Disp,iE,W,RHO) %function [RT,RTdisp]=SavitskyPreplanningResistance(LWL,Bpx,Fnv,Disp,iE,AT,AX,RHO) %FNb es el número de froude de la manga Vms/sqrt(B*g) %Bpx es la manga de la china en metros %Betdeg es el ángulo de astilla muerta en grados %Vms es la velocidad de la embarcación %RHO es la densidad en Kg/m3 %Disp masa*gravedad de la embarcación - N %lcg Centro de gravedad medido desde el tramson %LWL en ft %Rsptot es la resistencia total – KgF %% COEFFICIENTS FOR: Resistance to weight ratio - R/Disp FNref=[1,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2]; Coeff=[0.06473,0.10776,0.09483,0.03475,0.03013,0.03163,0.03194,0.04343,0.05036,0.05612,0.05967;...

 $-0.4868, -0.88787, -0.6372, 0, 0, 0, 0, 0, 0, 0, 0; \ldots$

-0.0103,-0.01634,-0.0154,-0.00978,-0.00664,0,0,0,0,0,0,;...

-0.0649,-0.13444,-0.1358,-0.05097,-0.0554,-0.10543,-0.08599,-0.13289,-0.15597,-0.18661,-0.19758;... 0,0,-0.16046,-0.2188,-0.19359,-0.20540,-0.19442,-0.18062,-0.17813,-0.18288,0.20152;...

 $0.10628, 0.18186, 0.16803, 0.10434, 0.09612, 0.06007, 0.06191, 0.05487, 0.05099, 0.04744, 0.04645; \ldots$

-0.00272,-0.00389,-0.00309,-0.00198,-0.00215,-0.00372,-0.0036,-0.00332,-0.00308,-0.00244,-0.00212;...

0.01089,0.01467,0.03481,0.04113,0.03901,0.04794,0.04436,0.04187,0.04111,0.04124,0.04343;... 0,0,0,0,0,0.08317,0.07366,0.12147,0.14928,0.1809,0.19769;...

-1.40962,-2.46696,-2.15556,-0.92663,-0.95276,-0.70895,-0.72057,-0.95929,-1.12178,-1.38644,-1.55127;...

0.29136,0.47305,1.02992,1.06392,0.97757,1.19737,1.18119,1.01562,0.93144,0.78414,0.78282;... 0.02971,0.05877,0.05198,0.02209,0.02413,0,0,0,0,0,0;...

-0.0015, -0.00356, -0.00303, -0.00105, -0.0014, 0, 0, 0, 0, 0, 0];

```
Vol=Disp/(9.81*RHO);
Fnv=Vms/sqrt(9.81*(Vol^(1/3)));
X=(Vol^(1/3))/(LWL/3.28);
Z=Vol/(Bpx^3);
U=sqrt(2*iE);
%% Cálculo
i=1;
while(i<=11)</pre>
  if(Fnv<=FNref(1,i))</pre>
    A1=Coeff(1,i);
    A2=Coeff(2,i);
    A4=Coeff(3,i);
    A5=Coeff(4,i);
    A6=Coeff(5,i);
    A7=Coeff(6,i);
    A8=Coeff(7,i);
    A9=Coeff(8,i);
    A10=Coeff(9,i);
    A15=Coeff(10,i);
    A18=Coeff(11,i);
    A19=Coeff(12,i);
    A24=Coeff(13,i);
    A27=Coeff(14,i);
     RTdisp1=A1+A2*X+A4*U+A5*W+A6*X*Z+A7*X*U+A8*X*W+A9*Z*U+A10*Z*W+...
    A15*(W^2)+A18*X*(W^2)+A19*Z*(X^2)+A24*U*(W^2)+A27*W*(U^2);
     RTdisp=RTdisp1;
     %disp(i)
     %disp(RTdisp1)
     if(Fnv<FNref(1,i))</pre>
       j=i;
       i=i-1;
       relat2=(Fnv-FNref(1,i))/(FNref(1,j)-FNref(1,i));
       A1=Coeff(1,i);
       A2=Coeff(2,i);
       A4=Coeff(3,i);
       A5=Coeff(4,i);
       A6=Coeff(5,i);
       A7=Coeff(6,i);
       A8=Coeff(7,i);
```

A9=Coeff(8,i);

```
A10=Coeff(9,i);

A15=Coeff(10,i);

A18=Coeff(11,i);

A19=Coeff(12,i);

A24=Coeff(13,i);

A27=Coeff(14,i);

RTdisp2=A1+A2*X+A4*U+A5*W+A6*X*Z+A7*X*U+A8*X*W+A9*Z*U+A10*Z*W+...

A15*(W^2)+A18*X*(W^2)+A19*Z*(X^2)+A24*U*(W^2)+A27*W*(U^2);

RTdisp=RTdisp1+(RTdisp2-RTdisp1)*relat2;

end

break

end

i=i+1;

end

RT=RTdisp*Disp/9.81; %KG
```

```
end
```

Función de preplanning según la formulación de [53]

function [Rsptot,Ssp,Lk,Y1,Y2,LkL]=PreplanningsimpleResistance(Lpp,Vol,Vms,Disp)

%Vms es la velocidad de la embarcación

%Disp masa*gravedad de la embarcación - N

%Rsptot es la resistencia total - KgF

%Y1= relacion Rsptot/Vol^1/3

%Y2= relacion Ssp/Vol^2/3

%% Desarrollo de ecuaciones

v=1;

%Definición de variables

LVol=Lpp/(Vol^(1/3));

Fnv=Vms/(9.81*(Vol^(1/3)));

Y1=0;

% Desarrollo 'Resistance to weight ratio - R/disp'

Ares=-0.0048694*(LVol^4)+0.1057838*(LVol^3)-0.8432151*(LVol^2)+2.8994541*(LVol)-3.5683179; Bres=0.0301221*(LVol^4)-0.6562651*(LVol^3)+5.2443776*(LVol^2)-18.05606*(LVol)+22.1656778; Cres=-0.050881*(LVol^4)+1.1119496*(LVol^3)-8.9006694*(LVol^2)+30.6066779*(LVol)-37.2112557; Dres=0.020914*(LVol^4)-0.4573261*(LVol^3)+3.6580101*(LVol^2)-12.5431467*(LVol)+15.1453; Y1=Ares*(Fnv^3)+Bres*(Fnv^2)+Cres*(Fnv)+Dres; Rsptot=Y1*Disp/9.81; % [Kgf]

%Desarrollo 'Wetted area coefficient - S/V^2/3'

Awet=0.0197989*(LVol^3)-0.2876721*(LVol^2)+1.3944044*LVol-2.1175915;

Bwet=-0.161288*(LVol^3)+2.3295698*(LVol^2)-11.3511782*LVol+18.0264798; Cwet=0.4226973*(LVol^3)-6.1030996*(LVol^2)+29.8350864*(LVol)-49.7163001; Dwet=-0.4432887*(LVol^3)+6.7794188*(LVol^2)-33.1423777*(LVol)+58.8177152; Y2=Awet*(Fnv^3)+Bwet*(Fnv^2)+Cwet*(Fnv)+Dwet;

Ssp=Y2*(Vol^(2/3));

% Desarrollo de 'Length of wetted area -Lk/L'

Acoef=0.0010024*(LVol^3)-0.0165489*(LVol^2)+0.0910387*LVol-0.1630761; Bcoef=-0.0021325*(LVol^3)+0.0437025*(LVol^2)-0.3171667*LVol+0.7839794; Ccoef=-0.0049667*(LVol^3)+0.0482171*(LVol^2)+0.0626019*LVol-1.1483516; Dcoef=-0.0086702*(LVol^3)+0.1543888*(LVol^2)-0.9891214*LVol+3.2719934; LkL=Acoef*(Fnv^3)+Bcoef*(Fnv^2)+Ccoef*(Fnv)+Dcoef;

Lk=LkL*Lpp; % [m]

end

vii. Función de cálculo de resistencia en el régimen de planeo

Función de cálculo de resistencia en el régimen de planeo planeo conociendo la posición de LCG

function [Rstot,RP,RV,trimfinal,Lk,Lc,dkeel,Pstab,Slambdaw,SMOJ]=SavitskyGenResistance... (Bm,Betadeg,Vms,RHO,fdist,adist,epsilon,Viscos,Disp,Icg) %FNb es el número de froude de la manga Vms/sqrt(B*g) %B es la manga en metros %Betdeg es el ángulo de astilla muerta en grados %Vms es la velocidad de la embarcación %RHO es la densidad en Kg/m3 %fdist es la distancia "vertical" entre el centro de gravedad de la %embarcación y la línea de acción del thrust-m %adist es la distancia "vertical" entre el centro de gravedad de la %embarcación y la línea de acción de RV - m %epsilon es el ángulo de acción del trhust respecto a la embarcación - deg %Viscos - m2/s %Disp masa*gravedad de la embarcación - N %lcg Centro de gravedad medido desde el tramson %RV Resistencia Viscosa - KgF %RP es la componente horizontal de la fuerza normal - KgF %Rstot es la resistencia total - KgF

```
FNb=Vms/sqrt(9.81*Bm);
```

CLbeta=Disp/(0.5*RHO*(Vms^2)*(Bm^2));%Coef de sustentación syms CLo; %Coef de sust para Beta=0 %Resolución numérica del valor de CLo SCLo=vpasolve(CLbeta-CLo+0.0065*Betadeg*(CLo^0.6)==0,CLo,[0,1]); %% Iteraciones para hallar el asiento dinámico error=zeros(199,1); j=1; Results=zeros(199,5); %trim - Lambda - Rtotal - RV - RP trimangle=2; flag=1; while(flag==1) %% En caso de encontrar solucion if(j>2) if(error(j-1,1)>=0) $if(error(j-2,1) \le 0)$ %Interpolaci'on lineal para hallar trim final

```
trimfinal=Results(j-2,1)+(Results(j-1,1)-Results(j-2,1))*(0-
error(j-2,1))/(error(j-1,1)-error(j-2,1));
trimangle=trimfinal;
Slambdaw=Results(j-2,2)+(Results(j-1,2)-Results(j-
2,2))*(trimfinal-Results(j-2,1));
flag=0;
end
end
end
```

if(flag==1)

```
%Resolución numérica del valor de lambdaw
syms lambdaw; %mean weted length-beam ratio
Slambdaw=vpasolve(SCLo-(trimangle^1.1)*(0.012*(lambdaw^0.5)+...
0.0055*((lambdaw^2.5)/(FNb^2)))==0,lambdaw,[-Inf,Inf]);
```

end

```
trimangrad=deg2rad(trimangle); %radianes
%trimanglerad y epsilon deben estar en radianes
%Wetted Keel Length
Lk=Slambdaw*Bm+(Bm*tand(Betadeg)/(2*pi*tand(trimangle)));
```

```
%Wetted Chine Length
```

```
Lc=Slambdaw*Bm-(Bm*tand(Betadeg)/(2*pi*tand(trimangle)));
%draft of Keel at Transom
dkeel=Lk*sind(trimangle);
RP=Disp*tand(trimangle)/9.81;
Vm=Vms*sqrt(1-((0.012*(trimangle^1.1))/((Slambdaw^0.5)*cosd(trimangle))));
RN=Vm*Lk/Viscos; %Número de Reynolds
%CF=0.0303*(RN^(1/7));
CFittc=0.075/((log10(RN)-2).^(2)); %ITTC Formulation
AHR=0.000150; %HULL ROUGHTNES [m]
%CF correction
deltaCF=(10^(-3))*(44*(((AHR/Lk).^(1/3))-10*(RN.^(-1/3)))+0.125);
CF=CFittc+deltaCF;
%Wetted surface from bow to chine wetting starts
S1=((tand(Betadeg))^2)*((Bm^2)/(4*0.5*3.1416*trimangrad))/(sind(Betadeg));
%Wetted surface from chine wetting starts to tramson
S2=Bm*Lc/(cosd(Betadeg));
SMOJ=S1+S2;
```

RV=0.5*RHO*SMOJ*(Vm^2)*CF/(9.81*cosd(trimangle)); %KgF

%RV=RHO*Vm^2*Slambdaw*Bm^2*CF/(2*9.81*cosd(Betadeg)*cosd(trimangle));

Results(j,1)=trimangle;

Results(j,2)=Slambdaw;

Results(j,4)=RV;

Results(j,5)=RP;

%Posición longitudinal del centro de presión desde tramson

lpdist=(Slambdaw*Bm)*(0.75-(1/(5.21*((FNb^2)/(Slambdaw.^(2)))+2.39)));

Fact23=1-sind(trimangle)*sind(trimangle+epsilon);

Fact24=Fact23*(lcg-lpdist)*3.28/(cosd(trimangle));

Fact25=fdist*3.28*sind(trimangle);

Fact26=Fact24-Fact25;

Fact27=(Disp/9.81)*2.20462*Fact26;

error(j,1)=Fact27+RV*2.20462*(adist-fdist)*3.28*cosd(trimangle);

Results(j,3)=RV+RP;

j=j+1;

trimangle=trimangle+1;

end

%% Resultados por Porpoising

CLvalue=(CLbeta/2)^(0.5);

trimcrit=0.1197*(Betadeg^0.7651)*exp(15.7132*CLvalue*(Betadeg^-0.2629));

if (trimfinal<trimcrit)

Pstab1=0;

else

Pstab1=1;

end

Pstab=[trimcrit,CLvalue,Pstab1];

%%

RV=Results(j-1,4); %KgF RP=Results(j-1,5); %KgF Rstot=Results(j-1,3); %KgF end

Función de cálculo de resistencia en el régimen de planeo planeo conociendo el asiento dinámico

function [Rstot,RP,RV,Lk,Lc,dkeel,Porpoise,Slambdaw]=... SavitskyGendintrim(Bm,Betadeg,Vms,RHO... ,Viscos,Disp,trimangle) %FNb es el número de froude de la manga Vms/sqrt(B*g) %Bm es la manga de la china en metros %Betdeg es el ángulo de astilla muerta en grados %Vms es la velocidad de la embarcación %RHO es la densidad en Kg/m3 %Viscos - m2/s %Disp masa*gravedad de la embarcación - N %RV Resistencia Viscosa - KgF %RP es la componente horizontal de la fuerza normal - KgF %Rstot es la resistencia total - KgF %% Previus calculations FNb=Vms/sqrt(9.81*Bm); CLbeta=Disp/(0.5*RHO*(Vms^2)*(Bm^2));%Coef de sustentación syms CLo; %Coef de sust para Beta=0 %Resolución numérica del valor de CLo SCLo=vpasolve(CLbeta-CLo+0.0065*Betadeg*(CLo^0.6)==0,CLo,[0,1]); AHR=0.000150; %HULL ROUGHTNES [m] %% Desarrollo conociendo el asiento dinámico %Resolución numérica del valor de lambdaw syms lambdaw; %mean weted length-beam ratio Slambdaw=vpasolve(SCLo-(trimangle^1.1)*(0.012*(lambdaw^0.5)+0.0055*((lambdaw^2.5)/(FNb^2)))==0,lambdaw,[-Inf,Inf]); %disp(['Lambdaw',num2str(Slambdaw)]) trimangrad=deg2rad(trimangle); %radianes %trimanglerad y epsilon deben estar en radianes %Wetted Keel Length Lk=Slambdaw*Bm+(Bm*tand(Betadeg)/(2*pi*tand(trimangle))); %Wetted Chine Length Lc=Slambdaw*Bm-(Bm*tand(Betadeg)/(2*pi*tand(trimangle))); %draft of Keel at Transom dkeel=Lk*sind(trimangle); RP=Disp*tand(trimangle)/9.81; Vm=Vms*sqrt(1-((0.012*(trimangle^1.1))/((Slambdaw^0.5)*cosd(trimangle)))); RN=Vm*Lk/Viscos; %Reynolds Number %CF=0.0303*(RN^(1/7));

```
CFittc=0.075/((log10(RN)-2).^(2)); %ITTC Formulation
%CF correction
deltaCF=(10^(-3))*(44*(((AHR/Lk).^(1/3))-10*(RN.^(-1/3)))+0.125);
CF=CFittc+deltaCF;
%Wetted surface from bow to chine wetting starts
S1=((tand(Betadeg))^2)*((Bm^2)/(4*0.5*3.1416*trimangrad))/(sind(Betadeg));
%Wetted surface from chine wetting starts to tramson
S2=Bm*Lc/(cosd(Betadeg));
SMOJ=S1+S2;
RV=0.5*RHO*SMOJ*(Vm^2)*CF/(9.81*cosd(trimangle)); %KgF
Rstot=RV+RP; %KgF
%% Porpoising Stability results
CLvalue=(CLbeta/2)^(0.5);
trimcrit=0.1197*(Betadeg^0.7651)*exp(15.7132*CLvalue*(Betadeg^-0.2629));
Porpoise(1,1)=CLvalue;
Porpoise(1,2)=trimcrit;
if (trimangle<trimcrit)
  Pstab=0;
else
  Pstab=1;
end
Porpoise(1,3)=Pstab;
end
```

viii. Función de propeller y power

Función de cálculo de coeficientes de empuje y torque de la hélice

function [KQengines,KTengines,Jengines,Effiengines]=propellercoefcav(Nengines,...

Dprop,gear,Vms,Va,tdeduction,PDratio,DAR,EAR,RT,RHO)

%NOTACION

- % Nengines= numero de motores instalados
- % Dprop= Matriz de di'ametro de helice de cada motor
- % gear= Martir con factor de reducci'on de cada motor
- % Va= Velocidad de avance de cada h'elice
- % tdeduction= factor de thrust deduction
- % PDratio=radio Paso/Diametro
- % DAR=realcion Adesarrollada/Adisco

%Coeficientes para obtenere KT

PropCoefkt=[0.11938520000000,0,0,0,0;...

-0.65746820000000,0,0,0,1;...

0.34932940000000,0,0,1,0;...

0.41193660000000,0,0,1,1;...

-0.19919270000000,0,0,2,1;...

5.8630510000000,-2,0,2,2;...

-1.1077350000000,-2,0,2,3;...

-0.13416790000000,0,1,0,0;...

0.26288390000000,0,1,0,1;...

-0.52170290000000,0,1,1,1;...

0.29707280000000,0,1,2,0;...

6.1525800000000,-2,2,1,3;...

-2.4708400000000,-2,2,2,3;...

-4.0801660000000,-3,1,6,0;...

4.1542010000000,-3,1,6,1;...

-1.1364520000000,-3,2,6,0];

PropCoefktcav=1;

%Coeficientes para obtener KQ

PropCoefkq=[1.5411660000000,-3,0,0,0;...

0.10916880000000,0,0,0,1;...

-0.31024200000000,0,0,0,2;...

0.15474280000000,0,0,0,3;...

-4.3706150000000,-2,0,1,0;...

0.24909500000000,0,0,1,2;...

-0.15946020000000,0,0,1,3;...

8.5367470000000,-2,0,2,0;...

-9.5121630000000,-2,0,2,1;... -9.3203070000000,-3,0,2,2;...

3.2878050000000,-2,0,2,3;...

5.4960340000000,-2,1,0,1;...

-4.8650630000000,-2,1,1,0;...

-0.10625000000000,0,1,1,1;...

8.5299550000000,-2,1,2,0;...

1.1010230000000,-2,2,0,3;...

-3.1517560000000,-3,2,2,2];

PropCoefkqcav=1;

%%

hcavit=0.5*Lpp*tand(triminicial); %m cabezal de agua que genera presion PH=RHO*9.81*hcavit; PA=101325; %Pascal PV=0; Cavitnum=(PA+PH-PV)/(0.5*RHO*Vms^2); RT1=RT*10; %[N] Tprop=RT1*(1+tdeduction)/Nengines;%[N]

%Thrust load

m=1;

Jengines=zeros(1,Nengines);

KTengines=zeros(1,Nengines);

KQengines=zeros(1,Nengines);

Effiengines=zeros(1,Nengines);

Kt=zeros(15,Nengines);

Kq=zeros(15,Nengines);

Effi=zeros(15,Nengines);

KTJ=zeros(m,Nengines);

KTengines=zeros(m,Nengines); %Kt (Fila representa iteraciones de velocidad, columna cada motor) KQengines=zeros(m,Nengines); %KQ (Fila representa iteraciones de velocidad, columna cada motor) Effiengines=zeros(m,Nengines); %Effi (Fila representa iteraciones de velocidad, columna cada motor) Jengines=zeros(m,Nengines); %J (Fila representa iteraciones de velocidad, columna cada motor)

for ci=1:Nengines

```
Aproj(1,ci)=EAR(1,ci)*pi*Dprop(1,ci)*(1.067-0.229*PDratio(1,ci); %meters
%Generación de curvas de Gawm Burrill (Non cavitating)
J=0.1;
jo=1;
while(J<=1.7)
```

```
if (0.5<cavitnumber<6.3)
    V07R=sqrt((J^2+4.84)*(Va*3.28)^2/(J^2))/3.28; %m/s
    Tload=Tprop(1,ci)/(0.5*RHO*Aproj*(V07R^2)); %N
    cavitR=cavitnumber*(J^2/(J^2+4.84))/(1-0.03)^2;
    Kt2=0;
    for c=1:16
        %Kt2=suma(Ct*(10^e)*(Ad/Ao)^x*(P_D)^y*(J^z))</pre>
```

Kt2=Kt2+(PropCoefkt(c,1)*10^PropCoefkt(c,2)*DAR(1,ci)^PropCoefkt(c,3)*PDratio(1,ci)^PropCoefkt(c,4)* J^PropCoefkt(c,5));

end Kq2=0;

```
for c=1:17
%Kq2=suma(Cq*(10^e)*(Ad/Ao)^x*(P_D)^y*(J^z))
```

 $\label{eq:Kq2+(PropCoefkq(c,1)*10^PropCoefkq(c,2)*DAR(1,ci)^PropCoefkq(c,3)*PDratio(1,ci)^PropCoefkq(c,4)*J^PropCoefkq(c,5));$

```
end
else
Kt2=0;
for c=1:16
%Kt2=suma(Ct*(10^e)*(Ad/Ao)^x*(P_D)^y*(J^z))
```

```
\label{eq:Kt2+(PropCoefkt(c,1)*10^PropCoefkt(c,2)*DAR(1,ci)^PropCoefkt(c,3)*PDratio(1,ci)^PropCoefkt(c,4)* J^PropCoefkt(c,5));
```

end Kq2=0; for c=1:17 %Kq2=suma(Cq*(10^e)*(Ad/Ao)^x*(P_D)^y*(J^z))

```
Kq2=Kq2+(PropCoefkq(c,1)*10^PropCoefkq(c,2)*DAR(1,ci)^PropCoefkq(c,3)*PDratio(1,ci)^PropCoefkq(c,4)*J^PropCoefkq(c,5));
```

```
end
end
%Jtable1(jo,ci)=J;
Kt(jo,ci)=Kt2;
Kq(jo,ci)=10*Kq2;
Effi(jo,ci)=Kt2*J/(Kq2*2*pi);
J=J+0.1;
jo=jo+1;
end
geared=gear(1,ci);
```

```
\%\% Se encuentra la constante Kt/J^2 para cada velocidad
```

```
for c=1:m
```

```
KTJ(c,ci)=Tprop(c,1)/(RHO*(Dprop(1,ci)^2)*(Va(c,1)^2)); %Valor de constante Kt/J^2
end
%% Se encuentra J a partir de los datos obtenidos de resistencia
%Polinomio Gawm Burril según Radojic
i=1;
while(i<=m)
J=0.1;</pre>
```

```
jo=1;
     Kt J2=0;
     %Sin cavitacion
     while (J \le 1.7)
       Kt_J2(jo,ci)=KTJ(i,ci)*(J^2);
       %disp(Kt_J2)
       %Jtable(jo,ci)=J;
       if(Kt_J2(jo,ci)>=Kt(jo,ci))
          Jengines(1,ci)=J;
          KTengines(1,ci)=Kt(jo,ci);
          KQengines(1,ci)=Kq(jo,ci);
          Effiengines(1,ci)=Effi(jo,ci);
          break
       end
       J=J+0.1;
       jo=jo+1;
     end
    i=i+1;
  end
end
end
```

Función de cálculo de potencia y RPM del motor

function [RPMprop,RPMeng,Q,DHP,THP,EHPeng]=powercalculation(Nengines,...

Dprop,gear,Vship,Va,KQengines,Jengines,Effiengines,RT,RHO)

m=length(Vship);

RPS=zeros(m,Nengines);

RPMprop=zeros(m,Nengines);

RPMeng=zeros(m,Nengines);

Q=zeros(m,Nengines);

DHP=zeros(m,Nengines);

THP=zeros(m,Nengines);

EHPtot=zeros(m,1);

%Se calcula las variables para cada punto de velocidad ingresado

for ci=1:Nengines

for c=1:m

RPS(c,ci)=Va(c,1)/(Dprop(1,ci)*Jengines(c,ci)); %Rev por segundo de la hélice de cada punto de velocidad

RPMprop(c,ci)=RPS(c,ci)*60; %rev por min de hélice de cada punto de velocidad

```
RPMeng(c,ci)=RPMprop(c,ci)*gear(1,ci); %Rev por min de motor de cada punto de velocidad
Q(c,ci)=(KQengines(c,ci)/10)*RHO*(RPS(c,ci)^2)*(Dprop(1,ci)^5)/1000; %Unidades KN-m
DHP(c,ci)=2*pi*RPS(c,ci)*Q(c,ci)*1.34102; %VALORES DE POTENCIA EN HP
THP(c,ci)=Effiengines(c,ci)*DHP(c,ci);
end
end
for c=1:m
EHPtot(c,1)=RT(c,1)*10*Vship(c,1)*1.34102/1000; %EHP
end
```

end

ix. Función de consumo de combustible

function [TotFC,FCengine,GPH,BHPeng] = fuelcons (DHP, deltatime, SFCgal, Corr, RPMeng, Nengines)

- % NOTACIÓN
- % BHP= Brake Horse Power of the engine
- % SFCgal=sPECIFIC FUEL CONSUMPTION [Gal/(Hp*hr)]
- % mediciones= Candidad de mediciones de RPM
- % Operation= size [mediciones,2]
- % colum 1: Delta tiempo
- % colum 2: Vship

%Método1: usando una eficiencia estimada de DHP effiDhpBhp=0.61;

BHPeng=DHP/effiDhpBhp;

%MÉTODO 2: Usando la eficiencia total recomendada para motores fuera de borda (si se usa este método se desprecia elefecto de la hélice) %effiEhpBhp=1.5; %BHPeng=EHPeng*effiEhpBhp; m=length(deltatime); FCengine=zeros(m,Nengines); GPH=zeros(m,Nengines); TotFC=0; GPHtot=0; for j=1:Nengines for j=1:m

```
SFC=(SFCgal(1,1)*RPMeng(i,j)^2+SFCgal(1,2)*RPMeng(i,j)+SFCgal(1,3))*Corr(1,j);
GPH(i,j)=SFC*BHPeng(i,j);% Gal/Hr AproximaciÓn del Consumo por hora total
FCengine(i,j)=GPH(i,j)*deltatime(i,1)/60;
GPHtot=GPHtot+GPH(i,j);
TotFC=TotFC+FCengine(i,j);
end
```

end

end

APÉNDICE F

Ejemplos de resultados a partir de códigos fuente

I. Cálculo de resistencia usando formulación de pre-planeo – ejemplo de [51]

• Pre-planeo con Formulación de [51]

```
>> [RT,RTdisp]=SavitskyPreplanningResistance(80,7.32,6.53,843920.1,49,0.91,1025)
```

RT =

5.3987e+03

RTdisp =

0.0628

```
>> [RT,RTdisp]=SavitskyPreplanningResistance(80,7.32,9.77,843920.1,49,0.91,1025)
```

RT =

8.8491e+03

RTdisp =

0.1029

```
>> [RT,RTdisp]=SavitskyPreplanningResistance(80,7.32,13.065,843920.1,49,0.91,1025)
```

RT =

1.0756e+04

RTdisp =

• Pre-planeo con Formulación de [53]

```
>> [Raptot, Ssp, Lk, Y1, Y2, LkL]=PreplanningResistance (24.4, 7.32, 82.33, 10.4, 15, 6.53288, 843920.1)
Raptot =
    8.8192e+03
Ssp =
    44.8534
Lk =
    23.0633
Y1 =
    0.1025
>> [Raptot, Ssp, Lk, Y1, Y2, LkL]=PreplanningResistance (24.4, 7.32, 82.33, 10.4, 15, 9.77, 843920.1)
Raptot =
    1.1460e+04
Ssp =
    45.2896
```

Lk =

22.6627

Y1 =

>> [Rsptot, Ssp, Lk, Y1, Y2, LkL]=PreplanningResistance(24.4,7.32,82.33,10.4,15,13.066,843920.1)

Rsptot =

1.1003e+04

Ssp =

46.0148

Lk =

22.1974

Y1 =

```
>> [Rstot, RP, RV, trimfinal, Lk, Lc, dkeel, Pstab, Slambdaw]=SavitskyGenResistance...
    (4.26,10,20.58,RH0,0.1524,0.42,4,Viscos,27215.54*9.81,8.84)
Rstot =
   4.0619e+03
RP =
   1.0643e+03
RV =
   2.9976e+03
trimfinal =
    2.2395
Lk =
  17.8780
Lc =
    11.7641
dkeel =
     0.6986
Pstab =
      0
Slambdaw =
     3.4791
```

II. Cálculo de resistencia usando formulación de planeo - ejemplo de [54]

III. Ejemplo de elección de asiento óptimo

Resultados en Matlab de obtención resistencia Ship A a partir de asiento dinámico:

This	This file can be opened as a Live Script. For more information, see		1302x1	3 double							
i) Crea	ting Live Scripts.	Ē		1	2	3	4	5	6	7	8
31 -	i=i+1;		148	8.2000	0.0124	0.0035	0.0089	16.5504	10.0899	0.5689	0.2460
32			149	8.2000	0.0124	0.0035	0.0089	16,4921	10.0643	0.5698	0.2460
33 -	[Rstot, RP, RV, Lk, Lc, dkeel, Porpois		150	8,2000	0.0124	0.0035	0.0088	16,4342	10.0387	0.5707	0.2460
34	SavitskyGendintrim (Bm, Betade		151	8,2000	0.0124	0.0036	0.0088	16.3768	10.0133	0.5715	0.2460
55	, viscos, bisp, trimangie, idist		157	8 2000	0.0124	0.0036	0.0088	16 3197	0 0970	0.5724	0.2460
27 -	Res(1,1)=Disp2;		152	0.2000	0.0124	0.0030	0.0000	16 2621	0.0627	0.5722	0.2460
38 -	Res $(i, 2)$ -RSCOC/Disp, Res $(i, 3)$ =RP/Disp.		155	0.2000	0.0124	0.0030	0.0000	16 2070	0.0276	0.5741	0.2400
39 -	Res(i, 4)=BV/Disp;		154	0.2000	0.0124	0.0030	0.0000	16,1510	9.9370	0.5740	0.2400
10 -	Res(1,5)=Lk:		100	8.2000	0.0124	0.0036	0.0087	10.1312	9.9120	0.3749	0.240
11 -	Bes(1,6)=Lc:		156	8.2000	0.0124	0.0036	0.0087	16.0958	9.8876	0.5758	0.2460
12 -	Res(i,7)=dkeel;		157	8.2000	0.0123	0.0037	0.0087	16.0408	9.8628	0.5766	0.2460
13 -	Res(1,8)=Porpoise(1,1);		158	8.2000	0.0123	0.0037	0.0087	15.9863	9.8381	0.5774	0.2460
14 -	Res(i,9)=Porpoise(1,2);		159	8.2000	0.0123	0.0037	0.0086	15.9321	9.8135	0.5783	0.2460
15 -	Res(i,10)=Porpoise(1,3);		160	8.2000	0.0123	0.0037	0.0086	15.8783	9.7890	0.5791	0.2460
16 -	Res(i,11)=trimangle;		161	8.2000	0.0123	0.0037	0.0086	15.8248	9.7646	0.5799	0.2460
17 -	Res(1,12)=Lambdaw;		162	8.2000	0.0123	0.0038	0.0086	15.7718	9.7403	0.5807	0.2460
18 -	Res(1,13)=lcg;		163	8.2000	0.0123	0.0038	0.0085	15.7191	9.7161	0.5815	0.2460
19 -	<pre>trimangle=trimangle+0.01;</pre>		164	8.2000	0.0123	0.0038	0.0085	15.6668	9.6920	0.5823	0.2460
50 -	- end		165	8.2000	0.0123	0.0038	0.0085	15,6149	9,6680	0.5831	0.2460
51 -	disp(Disp2)	11	166	8,2000	0.0123	0.0038	0.0085	15,5633	9,6441	0.5839	0.2460
52	<pre>%YMatrix1=[Res(:,1),Res(:,3),Res(:,2</pre>		167	8 2000	0.0123	0.0038	0.0085	15 5120	9.6203	0 5847	0 2460
53	<pre>%createfiguretrim(Res(:,10), YMatrix</pre>		160	0.2000	0.0122	0.0030	0.0003	15 4611	0.5066	0.5054	0.2460
54 -	end		100	0.2000	0.0123	0.0039	0.0004	15,4001	9,3900	0.5053	0.2400
55	%% Write in document		109	0.2000	0.0123	0.0039	0.0004	15,4100	9.3/30	0.5852	0.240
56 -	Sheetres='Results';		170	8.2000	0.0123	0.0039	0.0084	15.3604	9.5495	0.5870	0.2460
57 -	writematrix (Res, resfilename, 'Sheet', Shee		171	8.2000	0.0123	0.0039	0.0084	15.3105	9.5260	0.5877	0.2460
20	** Variaci'on de Velocidad		172	8.2000	0.0123	0.0039	0.0084	15.2610	9.5027	0.5885	0.2460

Resultados de asiento Óptimo para Ship A en cada condición de carga:

	А	В	С	D	E	F	G	Н	L	J	K	L	0
	Δ -	RT/A	RP/A	RV/Δ	Lk	Lc	dke	(Clbeta/2)^0.5	Critical trim -	Porpoising	trim angle	λ	Optimo
	tons						el		deg		- deg		
2	-	-	*	-	-	-	¥			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*	्र
290	8,20	0,0135	0,0060	0,0074	10,29	6,51	0,60	0,22	5,06	0	3,37	3,00	Es Óptimo
737	7,86	0,0136	0,0062	0,0073	9,67	6,03	0,59	0,22	4,88	0	3,50	2,80	Es Óptimo
1206	7,01	0,0138	0,0069	0,0069	8,11	4,81	0,54	0,20	4,44	0	3,85	2,31	Es Óptimo

Comprobación de que los asientos óptimos de Ship A no sobrepasan el límite de porpoising:

Resultados en Matlab de obtención resistencia de Ship M a partir de asiento

dinámico:

This file	can be opened as a Live Script. For more information, see <u>Creating Live Scripts</u> .	312	3120x17 double								
37 -	i=i+1;		1	2	3	4	5	6			
38 -	[Lincre, Dincrem, ~, ~]=	496	9.9260	1.1616e+03	450.7370	710.8589	14.4975	9.079			
39	Savitskyflap(Lf, Deflec, Vms, RHO, s	497	9.9260	1.1628e+03	468.0983	694.7493	14.0924	8.875			
40 -	[Rstot, RP, RV, Lk, Lc, dkeel, Porpoise, La	498	9.9260	1.1648e+03	485.4624	679.2910	13.7083	8.677			
41	SavitskyGendintrimV2(Bm, Betadeg,	499	9,9260	1.1673e+03	502.8295	664,4324	13.3434	8.486			
42	, Viscos, Disp, trimangle);	500	9,9260	1.1703e+03	520,1996	650,1279	12,9960	8.301			
43 -	Res(1,1)-Disp2;	501	9,9260	1.1739e+03	537,5729	636,3367	12,6646	8,121			
45 -	Res(1,2)-RSCCC,	502	9 9260	1 1780e+03	554 9496	623 0222	12 3480	7 947			
46 -	Res(1,4)=RV;	503	9 9260	1 1825e+03	572 3296	610 1520	12 0450	7 778			
47 -	Res(1,5)=Lk;	504	9.9260	1.1874e+03	589 7131	597 6963	11 7546	7 613			
48 -	Res(1,6)=Lc;	505	0.0260	1 1927e+03	607 1002	585 6288	11 4750	7 453			
49 -	Res(i,7)=dkeel;	505	0.0260	1 1984e+03	624 4910	573 9252	11 2080	7 207			
50 -	Res(i,8)=Porpoise(1,1);	507	0.0260	1.13046+03	6/1 0056	563 5630	10.0502	7 1 45			
51 -	Res(i,9)=Porpoise(1,2);	500	9.9200	1.20446+03	650 3043	502,5050	10.3005	6 007			
52 -	Res(i,10)=Porpoise(1,3);	508	9.9200	1.21060+05	039.2042	531,3243	10.7019	0.997			
53 -	Res(i,11)=trimangle;	509	9.9200	1.21/5e+U3	0/0.0808	540.7893	10.4625	0.803			
54 -	Res(i,12)=Lambdaw;	510	9.9260	1.2244e+03	694.0935	530.3415	10.2313	6./13			
55 -	Res(1,13)=Lf;	511	9.9260	1.2317e+03	711.5045	520.1660	10.0079	6.575			
56 -	Res(1,14)=Deflec;	512	9.9260	1.2392e+03	728.9199	510.2487	9.7919	6.441			
57 -	Res(1,15)=span;	513	9.9260	1.2469e+03	746.3397	500.5768	9.5828	6.310			
58 -	Res(1,16)=Lincre;%10	514	9.9260	1.2549e+03	763.7641	491.1386	9.3802	6.182			
59 -	Res(1,17)=Dincrem/2.205;%RgI	515	9.9260	1.2631e+03	781.1931	481.9232	9.1838	6.057			
61 -	crimangie-crimangie+0.1;	516	9.9260	1.2715e+03	798.6270	472.9204	8.9932	5.935			
62	end	517	9.9260	1.2802e+03	816.0658	464.1210	8.8082	5.815			
63 -	end	518	9.9260	1.2890e+03	833.5095	455.5164	8.6285	5.698			
64 -	end	519	9.9260	1.2981e+03	850.9584	447.0985	8.4538	5.584			
65 -	Sheetres=['Flap', num2str(j)];	520	9.9260	1.3073e+03	868.4125	438,8600	8,2840	5.471			

Resultados de asiento Óptimo para Ship M en cada condición de carga:

d.	A	В	C	D	E	F	G	Н	Ι	J	K	L	0
	Δ- tons	RT/A	RP∕∆	RV∕∆	Lk	Le	dkeel	(Clbeta/2)^0.5	Critical trim - deg	Porpoising	trim angle - deg	λ	Optimo
2	-	-	-		-			×		ज	-	-	.
276	9,926	0,0132	0,0058	0,0074	11,47	7,11	0,65	0,22	5,00	0	3,23	3,00	Es óptimo
733	9,161	0,0134	0,0062	0,0072	10,24	6,17	0,62	0,21	4,68	0	3,46	2,65	Es óptimo
1197	8,311	0,0135	0,0067	0,0068	8,82	5,07	0,58	0,20	4,33	0	3,76	2,24	Es óptimo

Comprobación de que los asientos óptimos de Ship M no sobrepasan el límite de porpoising:

Cálculo de asiento dinámico resultante para cada posición longitudinal de centro de gravedad:

Verificación de consumo de combustible para diferentes posiciones de centro de gravedad:

Prue	baTipica2.m 🗶 PruebaTipica.m 🗙 🕂		Res 🛛 Resva	ar 🗙 Resul	ts2 ×					
This f	ile can be opened as a Live Script. For more information, see ing <u>Live Scripts</u> .	* —	132x12 double		5	6	7	0	0	10
.50 -	Results (count, 20) =planres (1, 5); %I			1 1562	1.0462	1 1557	0 4064	0 4130	0 4064	52 0006
.51 -	disp([initialtrim, planres(1,2)])		0	1.1305	1.0402	1.1505	0.4004	0.4120	0.4004	35.0090
.52 -	- end	2	0	1.1503	1.0462	1.1503	0.4064	0.4128	0.4064	81.0019
.53 -	Results2 (count2, 1) = Disp;	3	0	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	91.5208
.54 -	Results2 (count2, 2) =Hsig;	4	0	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	99.3544
.55 -	Results2(count2,3)=initialtrim;	5	0.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	53.8896
.56 -	Results2 (count2, 4) = PDratio (1, 1);	6	0.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	81.6619
.57 -	Results2 (count2, 5) = PDratio (1, 2);	7	0.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	91.5208
.58 -	Results2 (count2, 6) = PDratio (1, 3);	8	0.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	101.3296
.59 -	Results2 (count2,7) = Dprop(1,1);	9	1	1,1563	1.0462	1,1563	0.4064	0.4128	0.4064	53.8834
.60 -	Results2 (count2, 8) = Dprop(1, 2);	10	1	1,1563	1.0462	1,1563	0.4064	0.4128	0.4064	81,6495
.61 -	Results2 (count2, 9) = Dprop (1, 3);	10	1	1 1563	1 0462	1 1563	0.4064	0.4128	0.4064	01 5208
.62 -	Results2 (count2, 10) = TotalFC;	11	1	1 1563	1.0462	1 1563	0.4064	0.4120	0.4064	00.2544
.63 -	Results2 (count2, 11) = lcg;	12	1 5000	1.1305	1.0402	1.1505	0.4004	0.4120	0.4004	53.0144
.64 -	Results2 (count2, 12) =T;	13	1,5000	1.1503	1.0462	1.1503	0.4064	0.4128	0.4064	53.9444
.65	%disp(count2)	14	1,5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	81.6495
.66 -	count2=count2+1;	15	1.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	91.5208
.67 -	disp([initialtrim,Disp,Hsig,TotalFC])	16	1.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	99.3544
.68	%disp(TotalFC)	17	2	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	55.1342
.69 -	<pre>disp('finaliza iteracion')</pre>	18	2	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	84.8816
.70 -	-d	19	2	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	91.5208
.71 -	itialtrim=initialtrim+0.5;	20	2	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	99.5363
.72 -	-	21	2,5000	1,1563	1.0462	1,1563	0.4064	0.4128	0.4064	55,1998
.73 -		27	2 5000	1 1563	1 0462	1 1563	0.4064	0.4128	0.4064	86 6308
.74	r en excel	22	2.5000	1 1562	1.0462	1,1562	0.4064	0.4120	0.4064	02,4000
75 -	es='Results';	23	2.3000	1,1005	1,0402	1,1005	0.4004	0.4128	0.4004	93,4990
.76 -	atrix (Results2, resfilename, 'Sheet', Sheet	24	2.5000	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	101.5116
.11 -	es='Results2';	25	3	1.1563	1.0462	1.1563	0.4064	0.4128	0.4064	55.1939

Cálculo del asiento dinámico generado para cada posición de centro de gravedad:

Prue	baTipica2.m 💥 PruebaTipica.m 🗶 🕂		Res ×	Resvar 🗙	Results2 🔀	Results	×			
🕽 This fi	le can be opened as a Live Script. For more information, see <u>Creating Live Scripts</u> . ×	H	Η 396x20 double							
24 -	tFC, FCengine, ~, BHPeng]=fuelcons(DHP, operation(i, 1), 5		1	2	3	4	5	6	7	
.25	sp (TotFC)	49	9.9260	0	2	2.0576	70.0092	0	0	
.26 -	alFC=TotalFC+TotFC;	50	9,9260	0	2	12,8600	1.2785e+03	4,6487	6,1469	
.27	unt3=count3+1;	51	9,9260	0	2	4.6296	791,9209	0	0	
.28	<pre>sults3(count3,:)=FCengine;</pre>	52	9 9260	0.6000	2	2 0576	162 6817	0	0	
.29	unt3=count3+1;	52	0.0260	0.0000	2	12.0570	1 0026- 02	4 6 4 0 7	6 1 460	
.30	<pre>sults3(count3,1)=TotFC*1.1;</pre>	25	9.9200	0.0000	2	12.0000	1.09200+03	4.0407	0.1409	
.31 -	ults(count,1)=Disp;	54	9.9260	0.6000	2	4.6296	884.5934	0	0	
.32 -	ults(count,2)=Hsig;	55	9.9260	1.2500	2	2.0576	472.2335	0	0	
.33 -	ults(count,3)=initialtrim;	56	9.9260	1.2500	2	12.8600	2.0257e+03	4,6487	6.1469	
.34 -	ults(count,4)=Vms;	57	9.9260	1.2500	2	4.6296	1.1941e+03	0	0	
.35 -	ults(count,5)=RT2;	58	9.9260	1.7500	2	2.0576	858.3687	0	0	
.36 -	ults(count,6)=planres(1,1); % Dinamic trim	59	9.9260	1.7500	2	12.8600	2.1281e+03	4.6487	6.1469	
.37 -	ults(count,7)=planres(1,2); %(CLbeta/2)^(0.5)	60	9.9260	1.7500	2	4.6296	1.5803e+03	0	0	
.38 -	ults(count,8)=planres(1,3);%Trim cr'itico - deg	61	9,9260	0	2,5000	2,0576	68,9136	0	0	
.39 -	ults(count,9)=planres(1,4); % 1 pasa el limite - 0	67	9.9260	0	2 5000	12,8600	1 2892e+03	4 7797	6 1469	
.40 -	ults(count,10)=RPMeng(1,1); % RPM per engine	67	0.0260	0	2.5000	4 6206	700 5056		0.1405	
.41 -	ults(count,11)=RPMeng(1,2); %	05	9.9200	0 (000	2.3000	4.0290	161 5000	0	0	
42 -	ults(count,12)=RPMeng(1,3); %	64	9,9200	0.0000	2.5000	2.05/0	101.5800	0	0	
.43 -	ults(count,13)=BHPeng(1,1); % BHP	65	9.9260	0.6000	2.5000	12.8600	1.9261e+03	4.7797	6.1469	
.44 -	ults(count,14)=BHPeng(1,2); %	66	9.9260	0.6000	2.5000	4.6296	892.1781	0	0	
.45 -	ults(count,15)=BHPeng(1,3); %	67	9.9260	1.2500	2.5000	2.0576	471.1378	0	0	
.46 -	ults(count,16)=EHPeng(1,1); % EHP per engine	68	9.9260	1.2500	2.5000	12.8600	2.0550e+03	4.7797	6.1469	
.47 -	ults(count,17)=EHPeng(1,2); %	69	9.9260	1.2500	2.5000	4.6296	1.2017e+03	0	0	
.48 -	ults(count,18)=EHPeng(1,3); %	70	9.9260	1.7500	2.5000	2.0576	857.2731	0	0	
49 -	uits(count,19)=lcg; %	71	9.9260	1,7500	2,5000	12.8600	2.1542e+03	4,7797	6,1469	
50 -	uits(count,20)=pianres(1,5); %Lambdaw	72	9,9260	1,7500	2,5000	4,6296	1.5879e+03	0	0	
.51 -	p([initiaitrim,pianres(1,2)])	72	0.0260		2.5000	2.0576	67.0540	0	0	

IV. Ejemplo de Selección de Hélice

Cálculo de resistencia total para cada condición de peso y estado de mar:

Prueb	aTipica.m 🗶 🕂	1	Results 🗶	Results2 ×	Results3	×			
This file	e can be opened as a Live Script. For more information, see <u>Creating Live</u> ×	5	000x10 doubl	e					
Scripts.			1	2	3	4	5	6	7
94 - [i=1:mediciones	13	7.8600	0.6000	2.5000	2.0576	157.3584	0	0
95 —	Vms=Vship(i,1)*0.5144; %m/s	14	7.8600	0.6000	2,5000	14.4032	1.3227e+03	3.5494	4.8789
96	%Resistencia Total	15	7.8600	0.6000	2,5000	4,6296	1.1703e+03	0	0
97 -	[RT2,planres]=totalresistance(Lpp,LWL,Bpx,T,TF,V	16	7 8600	1,2500	2 5000	2 0576	438 3440	0	0
98	AT, SMOJ, CB, CM, CP, CWP, LCB, Cstern, iE, Vms, Betad	17	7 9600	1 2500	2,5000	14 4022	1.4450e+02	2 5404	4 9790
99	fdist, adist, epsilon, Viscos, Disp2, lcg, Hsig);	10	7.0000	1,2500	2.5000	4 6206	1.4512-02	0.0494	4.0703
100 -	RT(i,1)=RT2;% Resistencia total en KgF	18	7.0000	1,2300	2,3000	4.0290	1.43126+05	0	0
101 -	Results (count, 1) = Disp;	19	7.8600	1.5500	2.5000	2.0576	634.6250	0	0
102 -	Results (count, 2) =Hsig;	20	7.8600	1.5500	2,5000	14.4032	1.5014e+03	3.5494	4.8789
103 -	Results (count, 3) = initial trim;	21	7.8600	1.5500	2.5000	4.6296	1.6475e+03	0	0
104 -	Results (count, 4) = Vms;	22	7.8600	1.7500	2.5000	2.0576	788.8458	0	0
105 -	Results (count, 5) = RT2;	23	7.8600	1.7500	2.5000	14.4032	1.5390e+03	3.5494	4.8789
106 -	Results (count, 6) = planres (1, 1); % Dinamic trim	24	7.8600	1.7500	2.5000	4.6296	1.8017e+03	0	0
107 -	Results (count, 7) = planres (1, 2); % (CLDeta/2) ~ (0.5)	25	7.0100	0.6000	2.5000	2.0576	155.8586	0	0
108 -	Results (count, 8) = planres (1, 3); %irim cr'itico - d Results (count, 9) = planres (1, 4); % 1 page el limit	26	7.0100	0.6000	2.5000	14.4032	1.2093e+03	3.3052	4.4416
110 -	Results (count 10)=plances (1 5) · \$Lambdaw	27	7.0100	0.6000	2.5000	4.6296	1.0103e+03	0	0
111	<pre>%disp(count)</pre>	28	7.0100	1.2500	2.5000	2.0576	436.8441	0	0
112 -	count=count+1;	29	7.0100	1.2500	2.5000	14.4032	1.3438e+03	3.3052	4.4416
113 -		30	7.0100	1.2500	2,5000	4.6296	1.2913e+03	0	0
114 - [ai=1:ref(1,1)	31	7.0100	1.5500	2,5000	2.0576	633,1251	0	0
115	Variación de P/D para la hélice central	32	7.0100	1,5500	2,5000	14,4032	1.4059e+03	3,3052	4,4416
116 - [for bi=1:ref(1,2)	32	7.0100	1 5500	2 5000	4 6296	1.4876e+03	0	0
117 -	Dprop(1,1)=Dprop2(ai,1)*0.0254; %metros	24	7.0100	1 7500	2 5000	2 0576	787 3459	0	0
118 -	B - Dprop(1,2)=Dprop2(bi,2)*0.0254; %metros	34	7.0100	1 7500	2,5000	14 4022	1 4472 02	2 2052	4.4416
119 -	Dprop(1,3)=Dprop2(ai,1)*0.0254; %metros	35	7.0100	1.7500	2.5000	4 6206	1.641002	3.3032	

Cálculo de consumo de combustible para cada condición de peso, estado de mar y combinación de hélices:

Prueb	paTipica.m 🗶 🕂		Results 🔀	Results2 🔀	Results3 🛛				
This fil	e can be opened as a Live Script. For more information, see <u>Creating Live</u> ×	5	i000x12 doubl	e					
Scripts			4	5	6	7	8	9	10
171 -	Results3 (count3, 16) = EHPeng (1, 3);	19	1.1563	1.4375	1.1563	0.4064	0.4064	0.4064	67.0296
172 -	- end	20	1,1563	1.5313	1.1563	0.4064	0.4064	0.4064	66.8501
173 -	Results2 (count2, 1)=Disp;	21	1,1563	1.6250	1,1563	0.4064	0,4064	0.4064	67.0912
174 -	Results2 (count2,2) =Hsig;	22	1,1563	1.7188	1,1563	0.4064	0.4064	0.4064	67,2136
175 -	Results2(count2,3)=initialtrim;	22	1 1563	1.0968	1 1563	0.4064	0 3037	0.4064	68 3003
176 -	Results2 (count2, 4) = PDratio (1, 1);	25	1,1560	1.0300	1.1563	0.4064	0.3937	0.4064	67 7441
177 -	Results2(count2,5)=PDratio(1,2);	24	1,1005	1,2439	1.1505	0.4004	0.3873	0.4004	07.7441
178 -	Results2 (count2, 6) = PDratio (1, 3);	25	1.1563	1.4000	1.1563	0.4064	0.3810	0.4064	67.5372
179 -	Results2 (count2,7) = Dprop(1,1);	26	1.1563	1.5593	1.1563	0.4064	0.3747	0.4064	67.5307
180 -	Results2 (count2, 8) = Dprop(1, 2);	27	1.1563	1.7241	1.1563	0.4064	0.3683	0.4064	67.8745
181 -	Results2(count2,9)=Dprop(1,3);	28	1.1563	1.8621	1.1563	0.4064	0.3683	0.4064	68.3715
182 -	Results2(count2,10)=TotalFC;	29	1.2500	1.0625	1.2500	0.4064	0.4064	0.4064	68.0912
183 -	Results2 (count2, 11) = lcg;	30	1.2500	1.1563	1.2500	0.4064	0.4064	0.4064	67.2723
184 -	Results2 (count2, 12) =T;	31	1,2500	1.2500	1.2500	0.4064	0.4064	0.4064	67,0052
185	<pre>%disp(count2)</pre>	32	1,2500	1,3438	1,2500	0.4064	0.4064	0.4064	66,5778
186 -	count2=count2+1;	22	1 2500	1 4375	1 2500	0.4064	0.4064	0.4064	66 5554
187 -	disp(Disp)	33	1.2500	1 6010	1.2500	0.4064	0.4064	0.4064	66 3750
188 -	disp(Hsig)	54	1.2500	1.0010	1.2300	0.4004	0.4004	0.4004	00.5739
189 -	disp(TotalFC)	35	1.2500	1.0230	1.2500	0.4064	0.4064	0.4064	00.0170
190 -	disp('finaliza iteracion')	36	1.2500	1.7188	1.2500	0.4064	0.4064	0.4064	66.7393
191 -	- end	37	1.2500	1.0968	1.2500	0.4064	0.3937	0.4064	67.8261
192 -		38	1.2500	1.2459	1.2500	0.4064	0.3873	0.4064	67.2699
193 -		39	1.2500	1.4000	1.2500	0.4064	0.3810	0.4064	67.0630
194 -		40	1.2500	1.5593	1.2500	0.4064	0.3747	0.4064	67.0565
195	en excel	41	1,2500	1,7241	1,2500	0.4064	0.3683	0.4064	67,4003
196 -	s='Results':								

Resultados de consumo de combustible para cada combinación de hélice tabulados en Excel:

1.1	A	В	С	D	E	F	G	н	1	J	м	Q	R	S	Т	U	V
	∆ [Tons]	Hs [m]	Initial trim [deg]	P/D Engi ne 1	P/D Eng ne 2	·P/D· iEngi 2 ne 3	Propeller Diameter [m] - Engine 1	Propeller Diameter [m] - Engine 2	Propeller Diameter [m] - Engine 3	Total fuel Cons [Gal]	Combination	Propeller Diameter [in] - Engine 1	Propeller Diameter [in] - Engine 2	Propeller Diameter [in] - Engine 3	Propeller Pitch [in] - Engine 1	Propeller Pitch [in] - Engine 2	Propeller Pitch [in] - Engine 3
22	Ţ	Ţ	-	-	-			7	<u>-</u>	-		•	-	-	-	*	-
1235	7,86	1,25	0	1,25	1,10	1,25	0,41	0,39	0,41	73,07	Combination 37	16,00	15,50	16,00	20,00	17,00	20,00
1236	7,86	1,25	0	1,25	1,25	5 1,25	0,41	0,39	0,41	72,66	Combination 38	16,00	15,25	16,00	20,00	19,00	20,00
1237	7,86	1,25	0	1,25	1,40	1,25	0,41	0,38	0,41	73,01	Combination 39	16,00	15,00	16,00	20,00	21,00	20,00
1238	7,86	1,25	0	1,25	1,50	5 1,25	0,41	0,37	0,41	73,01	Combination 40	16,00	14,75	16,00	20,00	23,00	20,00
1239	7,86	1,25	0	1,25	1,72	2 1,25	0,41	0,37	0,41	73,75	Combination 41	16,00	14,50	16,00	20,00	25,00	20,00
1240	7,86	1,25	0	1,25	1,80	5 1,25	0,41	0,37	0,41	74,60	Combination 42	16,00	14,50	16,00	20,00	27,00	20,00
1241	7,86	1,25	0	1,34	1,00	5 1,34	0,41	0,41	0,41	71,95	Combination 43	16,00	16,00	16,00	21,50	17,00	21,50
1242	7,86	1,25	0	1,34	1,10	5 1,34	0,41	0,41	0,41	72,04	Combination 44	16,00	16,00	16,00	21,50	18,50	21,50
1243	7,86	1,25	0	1,34	1,2	5 1,34	0,41	0,41	0,41	71,86	Combination 45	16,00	16,00	16,00	21,50	20,00	21,50
1244	7,86	1,25	0	1,34	1,34	1,34	0,41	0,41	0,41	71,46	Combination 46	16,00	16,00	16,00	21,50	21,50	21,50
1245	7,86	1,25	0	1,34	1,44	1,34	0,41	0,41	0,41	71,99	Combination 47	16,00	16,00	16,00	21,50	23,00	21,50
1246	7,86	1,25	0	1,34	1,53	3 1,34	0,41	0,41	0,41	72,28	Combination 48	16,00	16,00	16,00	21,50	24,50	21,50
1247	7,86	1,25	0	1,34	1,63	3 1,34	0,41	0,41	0,41	72,46	Combination 49	16,00	16,00	16,00	21,50	26,00	21,50
1248	7,86	1,25	0	1,34	1,7	2 1,34	0,41	0,41	0,41	72,56	Combination 50	16,00	16,00	16,00	21,50	27,50	21,50
1249	7,86	1,25	0	1,34	1,10	1,34	0,41	0,39	0,41	72,28	Combination 51	16,00	15,50	16,00	21,50	17,00	21,50
1250	7,86	1,25	0	1,34	1,25	5 1,34	0,41	0,39	0,41	71,87	Combination 52	16,00	15,25	16,00	21,50	19,00	21,50
1251	7,86	1,25	0	1,34	1,40	1,34	0,41	0,38	0,41	72,21	Combination 53	16,00	15,00	16,00	21,50	21,00	21,50
1252	7,86	1,25	0	1,34	1,50	5 1,34	0,41	0,37	0,41	72,21	Combination 54	16,00	14,75	16,00	21,50	23,00	21,50
1253	7,86	1,25	0	1,34	1,72	2 1,34	0,41	0,37	0,41	72,96	Combination 55	16,00	14,50	16,00	21,50	25,00	21,50
1254	7,86	1,25	0	1,34	1,80	5 1,34	0,41	0,37	0,41	73,81	Combination 56	16,00	14,50	16,00	21,50	27,00	21,50
1255	7,86	1,25	0	1,44	1,00	5 1,44	0,41	0,41	0,41	73,00	Combination 57	16,00	16,00	16,00	23,00	17,00	23,00

Tabulación de ponderación de consumo de combustible anual:

		220				4.05	5000				4.75	470/			Días de viajes
Hsig	0,6	33%			Hsig	1,25	50%			Hsig	1,75	17%			al ano
Pasajeros	15	25	29		Pasajeros	15	25	29		Pasajeros	15	25	29		24
Asiento estático	3,5	0	1,5		Asiento estático	3,5	0	1,5		Asiento estático	3,5	0	1,5		
Combination	Total	fuel Cons [Ga	1]		Combination	Tota	l fuel Cons [Ga	u]		Combination	Total	fuel Cons [Ga	ıj		
Columna1 💌	15% 💌	60% 💌	25% 💌	Columna ∓	Columna1 💌	15% 💌	60% 💌	25% 💌	Columna 💌	Columna1 💌	15% 💌	60% 💌	25% 💌	Columna 💌	Ponderación 🗜
Combination 1	58,90	67,16	67,23	15824,73	Combination 1	64,24	72,93	73,06	17197,48	Combination 1	70,44	79,70	79,93	18808,67	17018,3
Combination 2	58,16	66,07	66,17	15578,22	Combination 2	64,51	73,02	73,15	17226,13	Combination 2	70,65	79,71	79,93	18817,64	16952,8
Combination 3	58,35	66,08	66,17	15586,10	Combination 3	64,55	72,84	72,94	17188,73	Combination 3	70,63	79,38	79,60	18749,42	16925,1
Combination 4	58,30	65,87	65,96	15541,40	Combination 4	64,36	72,44	72,54	17100,31	Combination 4	70,37	80,14	80,36	18894,96	16890,9
Combination 5	58,08	66,49	66,58	15659,82	Combination 5	63,99	72,96	73,11	17196,57	Combination 5	70,98	79,42	79,63	18769,84	16956,9
Combination 9	59,31	66,15	66,24	15635,31	Combination 9	64,65	73,25	73,39	17278,50	Combination 9	70,82	80,07	80,29	18896,78	17011,3
Combination 10	58,35	66,09	66,19	15589,02	Combination 10	64,56	72,84	72,94	17189,83	Combination 10	70,62	80,80	79,59	18952,40	16961,2
Combination 11	58,16	66,63	66,72	15692,71	Combination 11	64,13	73,19	73,37	17249,43	Combination 11	71,18	79,77	79,90	18843,32	17006,6
Combination 15	57,42	64,99	65,11	15331,72	Combination 15	64,79	73,11	73,24	17254,78	Combination 15	70,85	79,72	79,94	18826,62	16887,3
Combination 16	56,68	63,90	64,05	15085,21	Combination 16	65,06	73,20	73,33	17283,42	Combination 16	71,06	79,73	79,94	18835,60	16821,8
Combination 17	56,88	63,91	64,05	15093,09	Combination 17	65,10	73,02	73,12	17246,02	Combination 17	71,05	79,40	79,61	18767,37	16794,1
Combination 18	56,82	63,70	63,84	15048,39	Combination 18	64,90	72,62	72,72	17157,60	Combination 18	70,79	80,16	80,37	18912,91	16759,9
Combination 19	56,61	64,32	64,46	15166,80	Combination 19	64,53	73,15	73,29	17253,86	Combination 19	71,40	79,44	79,64	18787,79	16825,9
Combination 23	57,84	63,98	64,12	15142,30	Combination 23	65,20	73,44	73,57	17335,80	Combination 23	71,23	80,09	80,30	18914,73	16880,3
Combination 24	56,87	63,92	64,07	15096,00	Combination 24	65,11	73,02	73,13	17247,12	Combination 24	71,04	80,81	79,60	18970,36	16830,2
Combination 25	56,69	64,46	64,61	15199,69	Combination 25	64,67	73,37	73,55	17306,72	Combination 25	71,60	79,78	79,91	18861,28	16875,6
Combination 29	57,81	65,00	65,11	15347,48	Combination 29	64,87	72,75	72,82	17179,97	Combination 29	70,82	79,06	79,27	18690,17	16831,9
Combination 30	57,07	63,91	64,05	15100,97	Combination 30	65,14	72,84	72,91	17208,62	Combination 30	71,03	79,07	79,27	18699,15	16766,4
Combination 31	57,26	63,92	64,05	15108,85	Combination 31	65,18	72,66	72,70	17171,22	Combination 31	71,02	78,74	78,94	18630,93	16738,7
Combination 32	57,20	63,71	63,84	15064,15	Combination 32	64,98	72,26	72,30	17082,80	Combination 32	70,76	79,50	79,70	18776,46	16704,5
Combination 33	56,99	64,33	64,46	15182,56	Combination 33	64,61	72,78	72,87	17179,06	Combination 33	71,37	78,78	78,97	18651,34	16770,5
Combination 37	58,22	63,99	64,13	15158,06	Combination 37	65,27	73,07	73,15	17260,99	Combination 37	71,20	79,42	79,63	18778,29	16824,9

APÉNDICE G

Planos originales de las embarcaciones

PLANO 1 Distribución original de la embarcación SHIP M

PLANO 2 Líneas de formas de la embarcación SHIP M

Fuente: Proporcionado por el armador

PLANO 3 Distribución original de la embarcación SHIP A

PLANO 4 Líneas de forma de la embarcación SHIP A
APÉNDICE H

Estimación de pesos usados en validación

Shi			
Descripción	cantidad	Peso unitario - tons	
Casco	1	3.26	Uso de modelador 3D para
			estimar el peso
Caseta	1	0.23	Uso de modelador 3D para
			estimar el peso
Motor Babor	1	0.274	Fabricante
Motor Crujía	1	0.29	Fabricante
Motor Estribor	1	0.274	Fabricante
Baterias	5	0.025	Fabricante
Otros	1	0.2	Margen de error por pesos
			no considerados
Tripulantes C.	1	0.075	Según la OMI
Capitan	1	0.075	Según la OMI
Combustible	1	0.43724	Planos de embarcación
Agua	1	0.182	Planos de embarcación
Carga Pasajeros	1	0.01	10 kg por cada pasajero
Pique de Proa (ancla y cadenas)	1	0.1	Peso de anclas y cadena

Sh			
Descripción	cantidad	Peso unitario - tons	
Casco	1	4.50	Uso de modelador 3D para
			estimar el peso
Caseta	1	0.30	Uso de modelador 3D para
			estimar el peso
Motor Babor	1	0.274	Fabricante
Motor Crujía	1	0.35	Fabricante
Motor Estribor	1	0.274	Fabricante
Baterias	5	0.025	Fabricante
Otros	1	0.2	Margen de error por pesos
			no considerados
Tripulantes C.	1	0.075	Según la OMI
Capitan	1	0.075	Según la OMI
Combustible	1	0.43724	Planos de embarcación
Agua	1	0.182	Planos de embarcación
Carga Pasajeros	1	0.01	10 kg por cada pasajero
Pique de Proa (ancla y cadenas)	1	0.1	Peso de anclas y cadena

APÉNDICE I

Ubicación de pasajeros en las pruebas de mar

PLANO 5 Ubicación de los pasajeros en SHIP A – prueba 1

PLANO 7 Ubicación de los pasajeros en SHIP M – prueba 3

PLANO 8 Ubicación de los pasajeros en SHIP M – prueba 4

APÉNDICE J

Redistribución recomendada para las embarcaciones

PLANO 10 Esquema de redistribución de 25 pasajeros en SHIP A

PLANO 11 Esquema de redistribución de 15 pasajeros en SHIP A

PLANO 12 Esquema de redistribución de 34 pasajeros en SHIP M

PLANO 13 Esquema de redistribución de 25 pasajeros en SHIP M

PLANO 14 Esquema de redistribución de 15 pasajeros en SHIP M

APÉNDICE K

Combinaciones de hélices

Ship M

Combinaciones	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
de hélice	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 1	16	16.25	16	17	15	17
Combination 2	16	16.25	16	17	17	17
Combination 3	16	15.5	16	17	19	17
Combination 4	16	15.25	16	17	21	17
Combination 5	16	15.25	16	17	23	17
Combination 6	16	16.25	16	18.5	15	18.5
Combination 7	16	16.25	16	18.5	17	18.5
Combination 8	16	15.5	16	18.5	19	18.5
Combination 9	16	15.25	16	18.5	21	18.5
Combination 10	16	15.25	16	18.5	23	18.5
Combination 11	16	16.25	16	20	15	20
Combination 12	16	16.25	16	20	17	20
Combination 13	16	15.5	16	20	19	20
Combination 14	16	15.25	16	20	21	20
Combination 15	16	15.25	16	20	23	20
Combination 16	16	16.25	16	21.5	15	21.5
Combination 17	16	16.25	16	21.5	17	21.5
Combination 18	16	15.5	16	21.5	19	21.5
Combination 19	16	15.25	16	21.5	21	21.5
Combination 20	16	15.25	16	21.5	23	21.5
Combination 21	16	16.25	16	23	15	23
Combination 22	16	16.25	16	23	17	23
Combination 23	16	15.5	16	23	19	23
Combination 24	16	15.25	16	23	21	23
Combination 25	16	15.25	16	23	23	23
Combination 26	16	16.25	16	24.5	15	24.5
Combination 27	16	16.25	16	24.5	17	24.5
Combination 28	16	15.5	16	24.5	19	24.5
Combination 29	16	15.25	16	24.5	21	24.5
Combination 30	16	15.25	16	24.5	23	24.5
Combination 31	16	16.25	16	26	15	26
Combination 32	16	16.25	16	26	17	26
Combination 33	16	15.5	16	26	19	26
Combination 34	16	15.25	16	26	21	26

Combinaciones	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
de hélice	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 35	16	15.25	16	26	23	26
Combination 36	16	16.25	16	27.5	15	27.5
Combination 37	16	16.25	16	27.5	17	27.5
Combination 38	16	15.5	16	27.5	19	27.5
Combination 39	16	15.25	16	27.5	21	27.5
Combination 40	16	15.25	16	27.5	23	27.5
Combination 41	15.5	16.25	15.5	17	15	17
Combination 42	15.5	16.25	15.5	17	17	17
Combination 43	15.5	15.5	15.5	17	19	17
Combination 44	15.5	15.25	15.5	17	21	17
Combination 45	15.5	15.25	15.5	17	23	17
Combination 46	15.25	16.25	15.25	19	15	19
Combination 47	15.25	16.25	15.25	19	17	19
Combination 48	15.25	15.5	15.25	19	19	19
Combination 49	15.25	15.25	15.25	19	21	19
Combination 50	15.25	15.25	15.25	19	23	19
Combination 51	15	16.25	15	21	15	21
Combination 52	15	16.25	15	21	17	21
Combination 53	15	15.5	15	21	19	21
Combination 54	15	15.25	15	21	21	21
Combination 55	15	15.25	15	21	23	21
Combination 56	14.75	16.25	14.75	23	15	23
Combination 57	14.75	16.25	14.75	23	17	23
Combination 58	14.75	15.5	14.75	23	19	23
Combination 59	14.75	15.25	14.75	23	21	23
Combination 60	14.75	15.25	14.75	23	23	23
Combination 61	14.5	16.25	14.5	25	15	25
Combination 62	14.5	16.25	14.5	25	17	25
Combination 63	14.5	15.5	14.5	25	19	25
Combination 64	14.5	15.25	14.5	25	21	25
Combination 65	14.5	15.25	14.5	25	23	25
Combination 66	14.5	16.25	14.5	27	15	27
Combination 67	14.5	16.25	14.5	27	17	27
Combination 68	14.5	15.5	14.5	27	19	27
Combination 69	14.5	15.25	14.5	27	21	27
Combination 70	14.5	15.25	14.5	27	23	27

Ship A

Combinación	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 1	16.00	16.00	16.00	17.00	17.00	17.00
Combination 2	16.00	16.00	16.00	17.00	18.50	17.00
Combination 3	16.00	16.00	16.00	17.00	20.00	17.00
Combination 4	16.00	16.00	16.00	17.00	21.50	17.00
Combination 5	16.00	16.00	16.00	17.00	23.00	17.00
Combination 6	16.00	16.00	16.00	17.00	24.50	17.00
Combination 7	16.00	16.00	16.00	17.00	26.00	17.00
Combination 8	16.00	16.00	16.00	17.00	27.50	17.00
Combination 9	16.00	15.50	16.00	17.00	17.00	17.00
Combination 10	16.00	15.25	16.00	17.00	19.00	17.00
Combination 11	16.00	15.00	16.00	17.00	21.00	17.00
Combination 12	16.00	14.75	16.00	17.00	23.00	17.00
Combination 13	16.00	14.50	16.00	17.00	25.00	17.00
Combination 14	16.00	14.50	16.00	17.00	27.00	17.00
Combination 15	16.00	16.00	16.00	18.50	17.00	18.50
Combination 16	16.00	16.00	16.00	18.50	18.50	18.50
Combination 17	16.00	16.00	16.00	18.50	20.00	18.50
Combination 18	16.00	16.00	16.00	18.50	21.50	18.50
Combination 19	16.00	16.00	16.00	18.50	23.00	18.50
Combination 20	16.00	16.00	16.00	18.50	24.50	18.50
Combination 21	16.00	16.00	16.00	18.50	26.00	18.50
Combination 22	16.00	16.00	16.00	18.50	27.50	18.50
Combination 23	16.00	15.50	16.00	18.50	17.00	18.50
Combination 24	16.00	15.25	16.00	18.50	19.00	18.50
Combination 25	16.00	15.00	16.00	18.50	21.00	18.50
Combination 26	16.00	14.75	16.00	18.50	23.00	18.50
Combination 27	16.00	14.50	16.00	18.50	25.00	18.50
Combination 28	16.00	14.50	16.00	18.50	27.00	18.50
Combination 29	16.00	16.00	16.00	20.00	17.00	20.00
Combination 30	16.00	16.00	16.00	20.00	18.50	20.00
Combination 31	16.00	16.00	16.00	20.00	20.00	20.00
Combination 32	16.00	16.00	16.00	20.00	21.50	20.00
Combination 33	16.00	16.00	16.00	20.00	23.00	20.00
Combination 34	16.00	16.00	16.00	20.00	24.50	20.00
Combination 35	16.00	16.00	16.00	20.00	26.00	20.00
Combination 36	16.00	16.00	16.00	20.00	27.50	20.00
Combination 37	16.00	15.50	16.00	20.00	17.00	20.00

Combinación	Propeller	Propeller	Propeller	Propeller Propeller		Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 38	16.00	15.25	16.00	20.00	19.00	20.00
Combination 39	16.00	15.00	16.00	20.00	21.00	20.00
Combination 40	16.00	14.75	16.00	20.00	23.00	20.00
Combination 41	16.00	14.50	16.00	20.00	25.00	20.00
Combination 42	16.00	14.50	16.00	20.00	27.00	20.00
Combination 43	16.00	16.00	16.00	21.50	17.00	21.50
Combination 44	16.00	16.00	16.00	21.50	18.50	21.50
Combination 45	16.00	16.00	16.00	21.50	20.00	21.50
Combination 46	16.00	16.00	16.00	21.50	21.50	21.50
Combination 47	16.00	16.00	16.00	21.50	23.00	21.50
Combination 48	16.00	16.00	16.00	21.50	24.50	21.50
Combination 49	16.00	16.00	16.00	21.50	26.00	21.50
Combination 50	16.00	16.00	16.00	21.50	27.50	21.50
Combination 51	16.00	15.50	16.00	21.50	17.00	21.50
Combination 52	16.00	15.25	16.00	21.50	19.00	21.50
Combination 53	16.00	15.00	16.00	21.50	21.00	21.50
Combination 54	16.00	14.75	16.00	21.50	23.00	21.50
Combination 55	16.00	14.50	16.00	21.50	25.00	21.50
Combination 56	16.00	14.50	16.00	21.50	27.00	21.50
Combination 57	16.00	16.00	16.00	23.00	17.00	23.00
Combination 58	16.00	16.00	16.00	23.00	18.50	23.00
Combination 59	16.00	16.00	16.00	23.00	20.00	23.00
Combination 60	16.00	16.00	16.00	23.00	21.50	23.00
Combination 61	16.00	16.00	16.00	23.00	23.00	23.00
Combination 62	16.00	16.00	16.00	23.00	24.50	23.00
Combination 63	16.00	16.00	16.00	23.00	26.00	23.00
Combination 64	16.00	16.00	16.00	23.00	27.50	23.00
Combination 65	16.00	15.50	16.00	23.00	17.00	23.00
Combination 66	16.00	15.25	16.00	23.00	19.00	23.00
Combination 67	16.00	15.00	16.00	23.00	21.00	23.00
Combination 68	16.00	14.75	16.00	23.00	23.00	23.00
Combination 69	16.00	14.50	16.00	23.00	25.00	23.00
Combination 70	16.00	14.50	16.00	23.00	27.00	23.00
Combination 71	16.00	16.00	16.00	24.50	17.00	24.50
Combination 72	16.00	16.00	16.00	24.50	18.50	24.50
Combination 73	16.00	16.00	16.00	24.50	20.00	24.50
Combination 74	16.00	16.00	16.00	24.50	21.50	24.50
Combination 75	16.00	16.00	16.00	24.50	23.00	24.50
Combination 76	16.00	16.00	16.00	24.50	24.50	24.50

Combinación	Propeller	Propeller	Propeller	Propeller Propeller		Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 77	16.00	16.00	16.00	24.50	26.00	24.50
Combination 78	16.00	16.00	16.00	24.50	27.50	24.50
Combination 79	16.00	15.50	16.00	24.50	17.00	24.50
Combination 80	16.00	15.25	16.00	24.50	19.00	24.50
Combination 81	16.00	15.00	16.00	24.50	21.00	24.50
Combination 82	16.00	14.75	16.00	24.50	23.00	24.50
Combination 83	16.00	14.50	16.00	24.50	25.00	24.50
Combination 84	16.00	14.50	16.00	24.50	27.00	24.50
Combination 85	16.00	16.00	16.00	26.00	17.00	26.00
Combination 86	16.00	16.00	16.00	26.00	18.50	26.00
Combination 87	16.00	16.00	16.00	26.00	20.00	26.00
Combination 88	16.00	16.00	16.00	26.00	21.50	26.00
Combination 89	16.00	16.00	16.00	26.00	23.00	26.00
Combination 90	16.00	16.00	16.00	26.00	24.50	26.00
Combination 91	16.00	16.00	16.00	26.00	26.00	26.00
Combination 92	16.00	16.00	16.00	26.00	27.50	26.00
Combination 93	16.00	15.50	16.00	26.00	17.00	26.00
Combination 94	16.00	15.25	16.00	26.00	19.00	26.00
Combination 95	16.00	15.00	16.00	26.00	21.00	26.00
Combination 96	16.00	14.75	16.00	26.00	23.00	26.00
Combination 97	16.00	14.50	16.00	26.00	25.00	26.00
Combination 98	16.00	14.50	16.00	26.00	27.00	26.00
Combination 99	16.00	16.00	16.00	27.50	17.00	27.50
Combination 100	16.00	16.00	16.00	27.50	18.50	27.50
Combination 101	16.00	16.00	16.00	27.50	20.00	27.50
Combination 102	16.00	16.00	16.00	27.50	21.50	27.50
Combination 103	16.00	16.00	16.00	27.50	23.00	27.50
Combination 104	16.00	16.00	16.00	27.50	24.50	27.50
Combination 105	16.00	16.00	16.00	27.50	26.00	27.50
Combination 106	16.00	16.00	16.00	27.50	27.50	27.50
Combination 107	16.00	15.50	16.00	27.50	17.00	27.50
Combination 108	16.00	15.25	16.00	27.50	19.00	27.50
Combination 109	16.00	15.00	16.00	27.50	21.00	27.50
Combination 110	16.00	14.75	16.00	27.50	23.00	27.50
Combination 111	16.00	14.50	16.00	27.50	25.00	27.50
Combination 112	16.00	14.50	16.00	27.50	27.00	27.50
Combination 113	15.50	16.00	15.50	17.00	17.00	17.00
Combination 114	15.50	16.00	15.50	17.00	18.50	17.00
Combination 115	15.50	16.00	15.50	17.00	20.00	17.00

Combinación	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 116	15.50	16.00	15.50	17.00	21.50	17.00
Combination 117	15.50	16.00	15.50	17.00	23.00	17.00
Combination 118	15.50	16.00	15.50	17.00	24.50	17.00
Combination 119	15.50	16.00	15.50	17.00	26.00	17.00
Combination 120	15.50	16.00	15.50	17.00	27.50	17.00
Combination 121	15.50	15.50	15.50	17.00	17.00	17.00
Combination 122	15.50	15.25	15.50	17.00	19.00	17.00
Combination 123	15.50	15.00	15.50	17.00	21.00	17.00
Combination 124	15.50	14.75	15.50	17.00	23.00	17.00
Combination 125	15.50	14.50	15.50	17.00	25.00	17.00
Combination 126	15.50	14.50	15.50	17.00	27.00	17.00
Combination 127	15.25	16.00	15.25	19.00	17.00	19.00
Combination 128	15.25	16.00	15.25	19.00	18.50	19.00
Combination 129	15.25	16.00	15.25	19.00	20.00	19.00
Combination 130	15.25	16.00	15.25	19.00	21.50	19.00
Combination 131	15.25	16.00	15.25	19.00	23.00	19.00
Combination 132	15.25	16.00	15.25	19.00	24.50	19.00
Combination 133	15.25	16.00	15.25	19.00	26.00	19.00
Combination 134	15.25	16.00	15.25	19.00	27.50	19.00
Combination 135	15.25	15.50	15.25	19.00	17.00	19.00
Combination 136	15.25	15.25	15.25	19.00	19.00	19.00
Combination 137	15.25	15.00	15.25	19.00	21.00	19.00
Combination 138	15.25	14.75	15.25	19.00	23.00	19.00
Combination 139	15.25	14.50	15.25	19.00	25.00	19.00
Combination 140	15.25	14.50	15.25	19.00	27.00	19.00
Combination 141	15.00	16.00	15.00	21.00	17.00	21.00
Combination 142	15.00	16.00	15.00	21.00	18.50	21.00
Combination 143	15.00	16.00	15.00	21.00	20.00	21.00
Combination 144	15.00	16.00	15.00	21.00	21.50	21.00
Combination 145	15.00	16.00	15.00	21.00	23.00	21.00
Combination 146	15.00	16.00	15.00	21.00	24.50	21.00
Combination 147	15.00	16.00	15.00	21.00	26.00	21.00
Combination 148	15.00	16.00	15.00	21.00	27.50	21.00
Combination 149	15.00	15.50	15.00	21.00	17.00	21.00
Combination 150	15.00	15.25	15.00	21.00	19.00	21.00
Combination 151	15.00	15.00	15.00	21.00	21.00	21.00
Combination 152	15.00	14.75	15.00	21.00	23.00	21.00
Combination 153	15.00	14.50	15.00	21.00	25.00	21.00
Combination 154	15.00	14.50	15.00	21.00	27.00	21.00

Combinación	Propeller	Propeller	Propeller	Propeller Propeller		Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 155	14.75	16.00	14.75	23.00	17.00	23.00
Combination 156	14.75	16.00	14.75	23.00	18.50	23.00
Combination 157	14.75	16.00	14.75	23.00	20.00	23.00
Combination 158	14.75	16.00	14.75	23.00	21.50	23.00
Combination 159	14.75	16.00	14.75	23.00	23.00	23.00
Combination 160	14.75	16.00	14.75	23.00	24.50	23.00
Combination 161	14.75	16.00	14.75	23.00	26.00	23.00
Combination 162	14.75	16.00	14.75	23.00	27.50	23.00
Combination 163	14.75	15.50	14.75	23.00	17.00	23.00
Combination 164	14.75	15.25	14.75	23.00	19.00	23.00
Combination 165	14.75	15.00	14.75	23.00	21.00	23.00
Combination 166	14.75	14.75	14.75	23.00	23.00	23.00
Combination 167	14.75	14.50	14.75	23.00	25.00	23.00
Combination 168	14.75	14.50	14.75	23.00	27.00	23.00
Combination 169	14.50	16.00	14.50	25.00	17.00	25.00
Combination 170	14.50	16.00	14.50	25.00	18.50	25.00
Combination 171	14.50	16.00	14.50	25.00	20.00	25.00
Combination 172	14.50	16.00	14.50	25.00	21.50	25.00
Combination 173	14.50	16.00	14.50	25.00	23.00	25.00
Combination 174	14.50	16.00	14.50	25.00	24.50	25.00
Combination 175	14.50	16.00	14.50	25.00	26.00	25.00
Combination 176	14.50	16.00	14.50	25.00	27.50	25.00
Combination 177	14.50	15.50	14.50	25.00	17.00	25.00
Combination 178	14.50	15.25	14.50	25.00	19.00	25.00
Combination 179	14.50	15.00	14.50	25.00	21.00	25.00
Combination 180	14.50	14.75	14.50	25.00	23.00	25.00
Combination 181	14.50	14.50	14.50	25.00	25.00	25.00
Combination 182	14.50	14.50	14.50	25.00	27.00	25.00
Combination 183	14.50	16.00	14.50	27.00	17.00	27.00
Combination 184	14.50	16.00	14.50	27.00	18.50	27.00
Combination 185	14.50	16.00	14.50	27.00	20.00	27.00
Combination 186	14.50	16.00	14.50	27.00	21.50	27.00
Combination 187	14.50	16.00	14.50	27.00	23.00	27.00
Combination 188	14.50	16.00	14.50	27.00	24.50	27.00
Combination 189	14.50	16.00	14.50	27.00	26.00	27.00
Combination 190	14.50	16.00	14.50	27.00	27.50	27.00
Combination 191	14.50	15.50	14.50	27.00	17.00	27.00
Combination 192	14.50	15.25	14.50	27.00	19.00	27.00
Combination 193	14.50	15.00	14.50	27.00	21.00	27.00

Combinación	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
de hélices	Diameter	Diameter	Diameter	Pitch [in] -	Pitch [in] -	Pitch [in] -
	[in] -	[in] -	[in] -	Engine 1	Engine 2	Engine 3
	Engine 1	Engine 2	Engine 3			
Combination 194	14.50	14.75	14.50	27.00	23.00	27.00
Combination 195	14.50	14.50	14.50	27.00	25.00	27.00
Combination 196	14.50	14.50	14.50	27.00	27.00	27.00

APÉNDICE L

Verificación del MSI en la redistribución recomendada

Resultados de Motion Sickness Incidence en 2 horas de viajes, que es menor a 10%, valor límite recomendado.

	Pasajeros	Mid section Pax: SM; MSI 120 min.; MSI 120 min. Velocidad: 28 knot Estado de mar: 2	Cantidad de personas que pueden sufrir vómitos
	15	4.1%	1
Ship A	25	3.9%	1
	29	3.8%	1
	15	3.1%	0
Ship M	25	4.4%	1
	34	4.3%	1

Resultados dinámicos para la condición de 34 pasajeros de Ship M:

ltem	m0	units	RMS	units	Significant a	units
Heave motion	0.013	m^2	0.114	m	0.227	m
Roll motion	0.01300	rad^2	0.11402	rad	0.22804	rad
Pitch motion	0.00040	rad^2	0.02002	rad	0.04004	rad
Heave velocity	0.059	m^2/s^2	0.242	m/s	0.484	m/s
Roll velocity	0.07211	(rad/s)^2	0.26852	rad/s	0.53705	rad/s
Pitch velocity	0.00210	(rad/s)^2	0.04585	rad/s	0.09171	rad/s
Heave acceleration	0.809	m^2/s^4	0.899	m/s^2	1.799	m/s^2
Roll acceleration	0.57335	(rad/s/s)^2	0.75720	rad/s/s	1.51439	rad/s/s
Pitch acceleration	0.03082	(rad/s/s)^2	0.17555	rad/s/s	0.35110	rad/s/s
Mid section Pax: Abs. vert. motion	0.036	m^2	0.190	m	0.380	m
Mid section Pax: Rel. vert. motion	0.031	m^2	0.177	m	0.354	m
Mid section Pax: Abs. vert. velocity	0.177	m^2/s^2	0.421	m/s	0.842	m/s
Mid section Pax: Rel. vert. velocity	0.323	m^2/s^2	0.569	m/s	1.137	m/s
Mid section Pax: Abs. vert. accel	1.534	m^2/s^4	1.238	m/s^2	2.477	m/s^2
Mid section Pax: Rel. vert. accel	28.482	m^2/s^4	5.337	m/s^2	10.674	m/s^2
Mid section Pax: Long. (due to pitch) m	0.000	m^2	0.005	m	0.010	m
Mid section Pax: Long. (due to pitch) ve	0.000	m^2/s^2	0.012	m/s	0.024	m/s
Mid section Pax: Long. (due to pitch) a	0.002	m^2/s^4	0.046	m/s^2	0.091	m/s^2
Mid section Pax: Lat. (due to roll) motio	0.001	m^2	0.030	m	0.059	m
Mid section Pax: Lat. (due to roll) veloci	0.005	m^2/s^2	0.070	m/s	0.140	m/s
Mid section Pax: Lat. (due to roll) accel	0.039	m^2/s^4	0.197	m/s^2	0.394	m/s^2
Mid section Pax: MII slide; tip f/a; tip s/	0.005	MII/h	9.820	MII/h	2.765	MII/h
Mid section Pax: SM; MSI 120 min.; M	5.283	SM	4.291	%	1.909	%

Resultados dinámicos para la condición de 25 pasajeros de Ship M:

Item	m0	units	RMS	units	Significant a	units
Heave motion	0.013	m^2	0.113	m	0.225	m
Roll motion	0.01350	rad^2	0.11618	rad	0.23236	rad
Pitch motion	0.00040	rad^2	0.02004	rad	0.04008	rad
Heave velocity	0.054	m^2/s^2	0.233	m/s	0.467	m/s
Roll velocity	0.08297	(rad/s)^2	0.28804	rad/s	0.57609	rad/s
Pitch velocity	0.00200	(rad/s)^2	0.04478	rad/s	0.08955	rad/s
Heave acceleration	0.760	m^2/s^4	0.872	m/s^2	1.744	m/s^2
Roll acceleration	0.72871	(rad/s/s)^2	0.85365	rad/s/s	1.70729	rad/s/s
Pitch acceleration	0.02986	(rad/s/s)^2	0.17281	rad/s/s	0.34562	rad/s/s
Mid section pax: Abs. vert. motion	0.037	m^2	0.191	m	0.382	m
Mid section pax: Rel. vert. motion	0.032	m^2	0.179	m	0.358	m
Mid section pax: Abs. vert. velocity	0.191	m^2/s^2	0.437	m/s	0.874	m/s
Mid section pax: Rel. vert. velocity	0.337	m^2/s^2	0.580	m/s	1.161	m/s
Mid section pax: Abs. vert. accel	1.720	m^2/s^4	1.312	m/s^2	2.623	m/s^2
Mid section pax: Rel. vert. accel	32.004	m^2/s^4	5.657	m/s^2	11.314	m/s^2
Mid section pax: Long. (due to pitch) m	0.000	m^2	0.005	m	0.010	m
Mid section pax: Long. (due to pitch) vel	0.000	m^2/s^2	0.012	m/s	0.023	m/s
Mid section pax: Long. (due to pitch) ac	0.002	m^2/s^4	0.045	m/s^2	0.090	m/s^2
Mid section pax: Lat. (due to roll) motio	0.001	m^2	0.030	m	0.060	m
Mid section pax: Lat. (due to roll) velocit	0.006	m^2/s^2	0.075	m/s	0.150	m/s
Mid section pax: Lat. (due to roll) accel	0.049	m^2/s^4	0.222	m/s^2	0.444	m/s^2
Mid section pax: Mll slide; tip f/a; tip s/	0.009	MII/h	10.008	MII/h	2.989	MII/h
Mid section pax: SM; MSI 120 min.; M	5.674	SM	4.426	%	1.941	%

Resultados dinámicos para la condición de 15 pasajeros de Ship M:

ltem	m0	units	RMS	units	Significant a	units
Heave motion	0.017	m^2	0.129	m	0.258	m
Roll motion	0.01287	rad^2	0.11347	rad	0.22694	rad
Pitch motion	0.00060	rad^2	0.02458	rad	0.04916	rad
Heave velocity	0.131	m^2/s^2	0.362	m/s	0.724	m/s
Roll velocity	0.06962	(rad/s)^2	0.26385	rad/s	0.52770	rad/s
Pitch velocity	0.00476	(rad/s)^2	0.06902	rad/s	0.13805	rad/s
Heave acceleration	2.106	m^2/s^4	1.451	m/s^2	2.902	m/s^2
Roll acceleration	0.54095	(rad/s/s)^2	0.73549	rad/s/s	1.47098	rad/s/s
Pitch acceleration	0.07852	(rad/s/s)^2	0.28021	rad/s/s	0.56042	rad/s/s
Mid Section Pax: Abs. vert. motion	0.032	m^2	0.178	m	0.356	m
Mid Section Pax: Rel. vert. motion	0.035	m^2	0.187	m	0.374	m
Mid Section Pax: Abs. vert. velocity	0.243	m^2/s^2	0.493	m/s	0.985	m/s
Mid Section Pax: Rel. vert. velocity	0.412	m^2/s^2	0.642	m/s	1.283	m/s
Mid Section Pax: Abs. vert. accel	3.189	m^2/s^4	1.786	m/s^2	3.572	m/s^2
Mid Section Pax: Rel. vert. accel	29.738	m^2/s^4	5.453	m/s^2	10.907	m/s^2
Mid Section Pax: Long. (due to pitch) motion	0.000	m^2	0.006	m	0.011	m
Mid Section Pax: Long. (due to pitch) velocity	0.000	m^2/s^2	0.016	m/s	0.032	m/s
Mid Section Pax: Long. (due to pitch) accel	0.004	m^2/s^4	0.064	m/s^2	0.129	m/s^2
Mid Section Pax: Lat. (due to roll) motion	0.001	m^2	0.026	m	0.052	m
Mid Section Pax: Lat. (due to roll) velocity	0.004	m^2/s^2	0.061	m/s	0.121	m/s
Mid Section Pax: Lat. (due to roll) accel	0.029	m^2/s^4	0.169	m/s^2	0.338	m/s^2
Mid Section Pax: MII slide; tip f/a; tip s/s	0.029	MII/h	11.234	MII/h	3.516	MII/h
Mid Section Pax: SM; MSI 120 min.; MSI 120 min	8.047	SM	3.133	%	0.950	%

	ltem	m0	units	RMS	units	Significant a	units
18	Heave motion	0.015	m^2	0.124	m	0.248	m
19	Roll motion	0.01268	rad^2	0.11258	rad	0.22517	rad
20	Pitch motion	0.00055	rad^2	0.02340	rad	0.04681	rad
21	Heave velocity	0.098	m^2/s^2	0.313	m/s	0.626	m/s
22	Roll velocity	0.06552	(rad/s)^2	0.25597	rad/s	0.51193	rad/s
23	Pitch velocity	0.00395	(rad/s)^2	0.06288	rad/s	0.12576	rad/s
24	Heave acceleration	1.534	m^2/s^4	1.239	m/s^2	2.477	m/s^2
25	Roll acceleration	0.48766	(rad/s/s)^2	0.69833	rad/s/s	1.39666	rad/s/s
26	Pitch acceleration	0.06339	(rad/s/s)^2	0.25178	rad/s/s	0.50356	rad/s/s
27	Remote location1: Abs. vert. motion	0.043	m^2	0.206	m	0.413	m
28	Remote location1: Rel. vert. motion	0.028	m^2	0.167	m	0.335	m
29	Remote location1: Abs. vert. velocity	0.209	m^2/s^2	0.457	m/s	0.914	m/s
30	Remote location1: Rel. vert. velocity	0.364	m^2/s^2	0.603	m/s	1.206	m/s
31	Remote location1: Abs. vert. accel	2.219	m^2/s^4	1.490	m/s^2	2.979	m/s^2
32	Remote location1: Rel. vert. accel	28.286	m^2/s^4	5.318	m/s^2	10.637	m/s^2
33	Remote location1: Long. (due to pitch)	0.000	m^2	0.001	m	0.001	m
34	Remote location1: Long. (due to pitch) v	0.000	m^2/s^2	0.001	m/s	0.003	m/s
35	Remote location1: Long. (due to pitch)	0.000	m^2/s^4	0.005	m/s^2	0.011	m/s^2
36	Remote location1: Lat. (due to roll) moti	0.000	m^2	0.002	m	0.005	m
37	Remote location1: Lat. (due to roll) velo	0.000	m^2/s^2	0.006	m/s	0.011	m/s
38	Remote location1: Lat. (due to roll) acc	0.000	m^2/s^4	0.015	m/s^2	0.030	m/s^2
39	Remote location1: Mll slide; tip f/a; tip s	0.033	MII/h	13.782	MII/h	4.757	MII/h
10	Remote location1: SM; MSI 120 min.;	6.522	SM	3.820	%	1.443	%
_							

Resultados dinámicos para la condición de 29 pasajeros de Ship A:

Resultados dinámicos para la condición de 25 pasajeros de Ship A:

	Item	m0	units	RMS	units	Significant a	units
18	Heave motion	0.014	m^2	0.120	m	0.239	m
19	Roll motion	0.01293	rad^2	0.11369	rad	0.22739	rad
20	Pitch motion	0.00051	rad^2	0.02257	rad	0.04515	rad
21	Heave velocity	0.076	m^2/s^2	0.275	m/s	0.550	m/s
22	Roll velocity	0.07051	(rad/s)^2	0.26554	rad/s	0.53109	rad/s
23	Pitch velocity	0.00323	(rad/s)^2	0.05684	rad/s	0.11369	rad/s
24	Heave acceleration	1.171	m^2/s^4	1.082	m/s^2	2.164	m/s^2
25	Roll acceleration	0.55081	(rad/s/s)^2	0.74217	rad/s/s	1.48433	rad/s/s
26	Pitch acceleration	0.05239	(rad/s/s)^2	0.22890	rad/s/s	0.45780	rad/s/s
27	Remote location1: Abs. vert. motion	0.040	m^2	0.199	m	0.398	m
28	Remote location1: Rel. vert. motion	0.026	m^2	0.160	m	0.321	m
29	Remote location1: Abs. vert. velocity	0.191	m^2/s^2	0.437	m/s	0.874	m/s
30	Remote location1: Rel. vert. velocity	0.310	m^2/s^2	0.557	m/s	1.114	m/s
31	Remote location1: Abs. vert. accel	1.869	m^2/s^4	1.367	m/s^2	2.735	m/s^2
32	Remote location1: Rel. vert. accel	25.627	m^2/s^4	5.062	m/s^2	10.125	m/s^2
33	Remote location1: Long. (due to pitch)	0.000	m^2	0.001	m	0.003	m
34	Remote location1: Long. (due to pitch) v	0.000	m^2/s^2	0.003	m/s	0.007	m/s
35	Remote location1: Long. (due to pitch)	0.000	m^2/s^4	0.014	m/s^2	0.027	m/s^2
36	Remote location1: Lat. (due to roll) moti	0.000	m^2	0.007	m	0.014	m
37	Remote location1: Lat. (due to roll) velo	0.000	m^2/s^2	0.016	m/s	0.032	m/s
38	Remote location1: Lat. (due to roll) acc	0.002	m^2/s^4	0.044	m/s^2	0.089	m/s^2
39	Remote location1: Mll slide; tip f/a; tip s	0.024	MII/h	13.293	MII/h	4.464	MII/h
40	Remote location1: SM; MSI 120 min.;	5.893	SM	3.933	%	1.583	%

Resultados dinámicos para la condición de 15 pasajeros de Ship A:

	Item	m0	units	RMS	units	Significant a	units
10		0.010		0.404		0.000	
18	Heave motion	0.018	m^2	0.134	m	0.268	m
19	Roll motion	0.01287	rad^2	0.11345	rad	0.22690	rad
20	Pitch motion	0.00071	rad^2	0.02659	rad	0.05318	rad
21	Heave velocity	0.149	m^2/s^2	0.387	m/s	0.773	m/s
22	Roll velocity	0.06949	(rad/s)^2	0.26361	rad/s	0.52721	rad/s
23	Pitch velocity	0.00614	(rad/s)^2	0.07838	rad/s	0.15676	rad/s
24	Heave acceleration	2.589	m^2/s^4	1.609	m/s^2	3.218	m/s^2
25	Roll acceleration	0.53797	(rad/s/s)^2	0.73347	rad/s/s	1.46693	rad/s/s
26	Pitch acceleration	0.10798	(rad/s/s)^2	0.32860	rad/s/s	0.65720	rad/s/s
27	Remote location1: Abs. vert. motion	0.053	m^2	0.230	m	0.459	m
28	Remote location1: Rel. vert. motion	0.033	m^2	0.183	m	0.366	m
29	Remote location1: Abs. vert. velocity	0.304	m^2/s^2	0.552	m/s	1.103	m/s
30	Remote location1: Rel. vert. velocity	0.498	m^2/s^2	0.706	m/s	1.412	m/s
31	Remote location1: Abs. vert. accel	3.994	m^2/s^4	1.998	m/s^2	3.997	m/s^2
32	Remote location1: Rel. vert. accel	33.862	m^2/s^4	5.819	m/s^2	11.638	m/s^2
33	Remote location1: Long. (due to pitch)	0.000	m^2	0.002	m	0.005	m
34	Remote location1: Long. (due to pitch) v	0.000	m^2/s^2	0.007	m/s	0.013	m/s
35	Remote location1: Long. (due to pitch)	0.001	m^2/s^4	0.028	m/s^2	0.056	m/s^2
36	Remote location1: Lat. (due to roll) moti	0.000	m^2	0.010	m	0.019	m
37	Remote location1: Lat. (due to roll) velo	0.001	m^2/s^2	0.023	m/s	0.045	m/s
38	Remote location1: Lat. (due to roll) acc	0.004	m^2/s^4	0.063	m/s^2	0.126	m/s^2
39	Remote location1: Mll slide; tip f/a; tip s	0.122	MII/h	13.716	MII/h	5.171	MII/h
40	Remote location1: SM; MSI 120 min.;	9.455	SM	4.121	%	1.380	%

APÉNDICE M Cotizaciones y proformas

Cotización de asientos de ferry marinos en septiembre 2020

\$45,00 - \$60,00 / Set | 100.0 Set/s (Pedido mínimo)

Número de Mod	BW-M-10		
Lead Time:	Cantidad(Set/s)	1 - 1000	>1000
	Hora del Est.(días)	25	Negociable

Asientos de pasajeros de plástico de alta calidad de China para barcos de tráfico

Aplicación: Transbordador rápido, barco de pasajeros de alta velocidad, crucero, catamarán, barco de la tripulación, coche/pasajero ro-ro Barco, carguero, barco de turismo, bote de tráfico, lanzamiento del piloto, yates y otros barcos de pasajeros.

Descripción:

El asiento está hecho de asientos de plástico de inyección, a juego con el Marco inoxidable

1. Caja de almacenamiento de chalecos salvavidas bajo el asiento de la silla.

2. material de la superficie impermeable.

3. Se adopta la tecnología de pulverización electrostática tras el tratamiento antióxido y el sellado de grano.

Hecho en la superficie del marco del asiento.

Especificaciones:

Nombre del producto	Asientos de pasajeros de plástico de alta calidad de China para barcos de tráfico
El nombre de la marca	Bonwell
Número de modelo	BW-M-10
Tipo de	Marino asientos de pasajeros
Color	Personalizado
Material	Acero inoxidable y PE
Anchura del asiento (individual)(mm)	440
Profundidad del asiento (mm)	420
Altura del asiento (total) (mm)	1020 ± 10
OEM	Sí
MOQ	100 sets
El tiempo de entrega	Dentro de 20 días
Plazo de entrega	Por mar o avión
Puerto de carga	Shanghai China

Cotización de hélices marinas en septiembre, 2020

X ADD TO COMPARE LIST

SOLAS Rubex Stainless 15-1/4 x 20 RH 9573-153-20 propellers

Manufacturer part number: 9573-153-20

https://www.propelierdepot.com/solas-rubex-stainless-15-14-x-20-rh-9573-153-20-prop

1/4

Share:

IN STOCK Retail-price:\$458.99 Price: \$375.99 1 * BUY © Shipping: Ships Same Day* OVERVIEW SPECIFICATIONS REVIEWS CONTACT US

https://www.propelierdepot.com/solas-rubex-stainless-15-14-x-20-rh-9573-153-20-prop

214

Model Number: 957315320

Diameter: 15-1/4

Pitch: 20

Blade: 4

Rotation: RH

Engine: Various Engines Types - Please verify

Product tags

6BR-45B70-00-00 (1), 6CE-45B70-00-00 (1), 990C0-00840-20P (1), MAR-15420-0R-E0 (1)

SOLAS Rubex Stainless 15-1/4 x 20 LH 9574-153-20 prop \$450:99 \$375.99

Customers who bought this item also bought

Cotización de motor fuera borda 300hp septiembre, 2020

Empresa: Comandato Contacto de Asesora comercial Teléfono: 0981585977